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AN UPPER BOUND FOR THE RENEWAL FUNCTION!

By CHARLES J. STONE
University of California, Los Angeles

In this note we show that the renewal function H corresponding to a
random walk with positive mean ¢ and finite variance o satisfies the ine-
quality H(x) < p~1x + 3(1 + p202).

Let X, X;, - .- be independent and identically distributed random variables
having positive mean ¢ and finite variance ¢>. SetS, = 0and S, = X, 4 ...+ X,,
n > 1. Let H denote the renewal function, defined by

H(x) = DeoP(S, £ %), —o < x< .

It is a well-known consequence of Wald’s identity that

1) Hx =X, —o < x< oo,

where x* = x for x > 0 and x* = 0 for x < 0. In this note we will obtain an
inequality in the opposite direction, namely

+ 2 2
) m@<%+3ﬁ%l” —0 < X< oo,
The constant 3 appearing in (2) could conceivably be made significantly
smaller. We could not hope to do better, however, than to sharpen (2) to
(3) H(x)§£+ﬁ2_+2_‘f_, —0<x< oo,
© ©

For if P(X; = 1) = 1, then equality holds in (3) when x = 0.
An inequality such as (2) is suggested by the well-known results that

) lim, ., <H(x) _ i) _ £t
Iz 2
if X, has a nonlattice distribution and
. d 2 | g? d
5 11m_m<Hd_”_.>_—_fi_____ a
) e (H(d) = it

if X, has a lattice distribution with span d. Observe that in the latter case
¢+ ot = E|X
= Y2 _. n*d*P(X, = nd)
>dY s _ndP(X, = nd)=du,
so the right side of (5) is bounded above by (¢* 4 ¢%)/p.
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We will now prove (2). Let f denote the characteristic function of X;, defined
by
f0) = Eet™s, —0 <0< o0,
Since
e —1—io) = 7., —o0 <0< oo,
it follows that
|f(0) — 1 — ipf] = |E(e** — 1 — ifX)|
< Elei?* — 1 — ifX)|

SE02X2=<#2+02>02‘

2 2
Set .
a = M,
7
Then
© SO 1=l S LE, e <d<o,
and hence '
() 11— f0) = £16], _leg<d,
2 o o
Define R(x), —oo < x < oo, by
R(x) = 2. P(X, £ ) dy, x<0,
=y P(X, =z y)dy, x>0,

and define S(x), —oo < x < o0, by

S(x) = 2 R(y) dy -
Then S(x) increases to (¢* + ¢%)/2 = ap/2 as x — co. Thus

(8) 0§S(x)§“2#, —0<x< 0.
Let K(x), —oo < x < oo, be the probability density function
1 [sin ()c/Z)}2
K = — | — 21 7 , — X .
) 2;:[ %2 ® LX< o
Its characteristic function
k(@) = {=,, ei"K(x) dx , —0 <0< o,
is given by
©) k@) =110, o<1,
=0, o] > 1.

It is easy but a little tedious to use tables of

Sgsiny dy and Sfocosydy
J y
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to verify that

(1) 53 — K(—y) dy > L EXO.
According to an identity of M. Dubman ([1] page 43)

1) §m ek — ) (HO) - L = 20
I

—i oLy emin0k(ab) (f() — 1 — ipb)’ do .

2np (1 — f(0))

It follows from (6), (7), and (9) that the absolute value of the right side of (11)
is bounded above by

a? -1 1 aK(d)
— 1 — k(al) do = —2 .
2p e "2n (af) 2
We now conclude from (8) and (11) that
+
(12) = @K@ x — ) (HO) — L) dy < % (1 + K(0))
JZ 2

Choose x > 0. Since H(y) is non-decreasing in y it follows from (1) and (12)
that

THEO 2 o ack (@ — ) () — ) dy

= gymn-nie K(—y) (=% y) gy

Thus by (10)
pH(x) — x
a

<3
or equivalently
+ 2 2
Hpy < X430 Xy 3wt o
e 2

This completes the proof of (2) for x = 0 and hence for all x, since if x < 0

H(x)§H(0)<3£2_";_”2:i‘1+3#2L2"2,
1z Iz 1z
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