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THE MIXED EFFECTS MODEL AND SIMULTANEOUS
DIAGONALIZATION OF SYMMETRIC MATRICES

By RoBERT HULTQUIST AND ERWIN M. ATZINGER
The Pennsylvania State University

This paper presents results obtained in efforts to generalize ideas re-
ported during the past 15 years on the subject of variance components.
The paper applies the result of Newcomb (1960) to the mixed effects model

Y= Ria Xiti + Dia1 Zubi

where the ¢; are fixed parameters and the b; are random vectors distributed
normally with covariance matrix ox2I. The restrictions made on the model
are far less severe than those imposed by other authors. Through a non-
singular transformation of the data vector Y, minimal sufficient statistics
are obtained. Theorems are presented which give conditions under which
minimum variance unbiased estimates exist and these estimates are dis-
played. Properties of the model and the estimates are discussed in both the
complete and noncomplete density cases. Perhaps the most important con-
tribution relates to the simplicity with which the theoretical methods treat
the general variance components situation.

1. Introduction. Many investigators have researched the area in statistics re-
lated to the concept of variance components. Today it still receives much atten-
tion. Efforts such as those of Kendall and Stuart (1960) have been directed
toward unifying the theory. This paper consists of some results obtained in a
further attempt to unify the theory and generalize concepts.

We consider the mixed effects model of the form

(1) Y = i Xy + Tk Zyb, = Xo 4 i Z, b,
where ¢/ = [7,, 7,, - - -, 7,] is a vector of t components and b,, k = 1, ..., h are
random vectors. Models discussed in some earlier papers such as [9], [10], [12],
[20], were special cases of this model. The obtaining of a set of minimal sufficient
statistics was a principal objective of the papers.

Most easily handled is the situation where all X;X;’ and Z,Z,’ commute in
pairs, that is where

X; X/ X, X! = X, X/ X; X;; Lj=1,2, -t
X;X/'z2,2) =2, Z2/X;X/; j=1,2,.---,6k=1,2,...,h and
z,2'2,Z' =2,Z,/2,Z/ ; k,i=1,2,...,h.

Some results have been reported for the non-commutative case.
The model

Y =jp+ Z,b, + Z,b, + Ib,,
where p is a scalar and j is a vector of ones, was studied by Weeks and Graybill
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(1962). They obtained a set of minimal sufficient statistics in the case where
Z,Z' and Z,Z, do not necessarily commute.
The model
Y = X¢ + Z,b, + Ib,,

was studied by Hultquist and Graybill (1965). In that study XX’ and Z,Z," did
not necessarily commute.

As is well known, when symmetric matrices 4, commute in pairs, there exists
an orthogonal matrix P such that P4, P’ are simultaneously diagonal. What is
not so well known is the fact presented by Newcomb (1960) that for nonnegative
matrices B, and B, there always exists a nonsingular matrix R such that both
RB,R’ and RB,R’ are diagonal. Indeed there exist pairwise non-commutative
matrices B,, B,, - - -, B,, h > 2 for which there is a nonsingular matrix R such
that each RB; R’ is diagonal. This paper concerns itself with the class of models
where there exists a nonsingular matrix R independent of all parameters and such
that RZ, Z,/R’ is diagonal for all k = 1,2, ..., A.

In another important way the model discussed in this paper is a generalization
of the models discussed in other papers, where the matrix Z, was always chosen
to be the identity matrix. In this paper we relax that assumption.

We now describe more carefully the model which will be investigated. The
(n x 1) vector of observations Y is writen

Y =Xt 4 i Zeby
with the following assumptions:

(a) Xisan (n x ) matrix of known constants.

(b) 7 isa (t x 1) vector of functionally independent unknown parameters.

(c) b, (k =1,2, ..., k) are vectors distributed normally with mean matrix
¢ (a vector of zeros) and covariance matrix o,*/.

(d) All components of all vectors b, are stochastically independent.

(¢) 0,2 (k =1,2, .., k) are functionally independent. That is we assume no
known relationship among them.

(f) Each ¢, is functionally independent of the elements of <.

(g) The rank of the matrix [Z,, Z,, - - -, Z,] is equal to n.

2. Estimability. Perhaps the most natural first question to consider is the ques-
tion of estimability of the parameters. (A function of parameters is said to be
estimable if there exists an unbiased estimate of the function of the parameters.)
In this section, necessary and sufficient conditions for estimability are presented
in terms of the design matrices X; and Z,. The results obtained by the authors
are special cases of results obtained by Seely (1969) and hence no proofs are given.
Theorems 1 and 2 are presented because the statements are in a different frame-
work and notation and of a different flavor from those presented by Seely.

THEOREM 1. Necessary and sufficient conditions for a'; s = 1, ..., h to be esti-
mable by a quadratic form Y'C,Y are:
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(@) The set of matrices {Z,Z,': k = 1, ..., h} is a linearly independent set and

(b)y 2,2, (k=1, ..., h)is not a linear combination of the matrices {X; X, --
X; X/ iZj=1,.-,1}.

THEOREM 2. A necessary and sufficient condition for each o} to be estimable by
a quadratic form Y'C,Y and each product t,7; (i < j =1, - - -, t) to be estimable by
a quadratic form Y'B;;Y is that the set of matrices {Z,Z':k =1, ..., h} U
(X;X;) + X;X/:i<j=1, ..., t} be linearly independent.

3. General theory. The theoretical development in this section exhibits the
use of a nonsingular transformation of the observation vector Y in order to obtain
mutually independent unbiased sufficient statistics for the parameters. The joint
density of Y can be written

fx) = cewer
where Q = (Y — Xo)’V (Y — Xr)and V = X, 02,2 .

We consider the fairly broad class of designs where there exists a nonsingular
matrix R such that RZ, Z,'R’ is diagonal for all k = 1, ..., . The transformed
covariance matrix is

RVR = Yt 0, RZ,Z/R
which is diagonal. Without loss of generality the matrix R can be chosen in
such a way that the like elements on the diagonal of RVR’ are grouped and such
that no diagonal element is a multiple of another diagonal element. Let {;, i =
1, ..., s be the s distinct diagonal elements of RVR’, then the quadratic form
Q can be written
0=y, L(RY— RXcY(RY — RXr).

The dimension of R; is (m; X n) where m; is the multiplicity of {;.

Let ¢; denote the rank of the (m, x r) matrix R;X. For each i we can now
select an (m; x m;) orthogonal matrix (functionally independent of 7).

6.=[%]
G,®
with G, partitioned such that G, is (¢; X m;) and G, R; Xt = ¢. In the case
where ¢; = 0, G, does not exist and when ¢; = m; then G,* does not exist.
We employ the matrices G, in the following way.

Q=Z%%@J—&&WNMJ—&h)

0= 2, CL(GiRiY — G;R; X7)'(G;R;Y — G, R; X)
0=y 1 [G,YR,Y — GYR, Xz V[G,VR,Y — G,VR, Xt
= Zia ¢ G,®R,Y G,*R,Y

0=, 1 {Y'R/G,V"G,YR,Y + T’X'R/G,'G;'R; Xt

— 2¢'X'R/G,Y'G,"R,Y + Y'R/G,?'G*R,Y}.
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Denote ¢’X’R/G," by 6/ and if they exist denote G;,“R;Y by U,, and
Y'R/G,*'G,R,Y by v,. In this notation the quadratic form can be written

) 0=, Ci {U/U; + 6,6, — 20,U; + v}).

Letg. = i q.letr,=1if g, #m, r,=0if g, = m;andletr. = 3i_, r; = no.
of ¢; #+ m;. Equation (2) then exhibits sufficient statistics which when put into
vector form has dimension r. 4 q..

THEOREM 3. The r. + q. dimensional vector statistic consisting of the elements
U;; and v;, is jointly sufficient for the t + h parameters v and o,* (k = 1, - -, h).
(U;; denotes the jth element of U,).

Furthermore we have

TueoreM 4. The r. + q. statistics U;; and v; are stochastically independent with
U;; ~ N(0,;, C;) and v,/{; ~ y*(m; — g;). (0,; denotes the jth element of 0;.)

It readily follows, from the minimality criterion of Lehmann and Scheffé (1950)
that if the set {{;':i= 1,2, ...,s} is a linearly independent set of distinct
diagonal elements of (RVR’)~* then the r, 4+ ¢. dimensional sufficient statistic is
minimal sufficient. This fact provides additional incentive to investigate the
nature of the distinct diagonal elements of RVR'.

LeEMMA. If 0, = Dt ¢, 05i=1,2, ..., swherethea; k = 1,2, ..., hare
functionally independent then the reciprocals 9, are linearly independent.

ProoF. We prove this lemma by the method of contradiction. Assume
. a;/0; = 0 with not all a; = 0. Then

i=1%4

4q;
1 {#h—‘?} =0.
2ik=1 € Oy,
This means that the ¢,? are functionally dependent which contradicts the hy-

pothesis and proves the lemma.
Invoking this lemma we then have according to the result of Lehmann and

Schefté (1950), the following

THEOREM 5. The r. + q. dimensional statistic consisting of the U,; and the v; is
minimal sufficient for the t + h parameters v and ¢,* (k = 1, - -+, h).

In the search for minimum variance unbiased estimates, the next logical step
is to determine when the joint density for the minimal sufficient statistic is
complete. In a straightforward manner the application of a completeness lemma
introduced by Herbach (1959) and generalized by Imhof (1960), establishes

THEOREM 6. When q. = t and r. = h then the joint density, of the minimal suf-
ficient statistic, with components U,; and v;, is complete.

In application of Theorem 6, the question arises as to whether g; (equal to
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the rank of R, X) is dependent on the particular choice of the diagonalizing trans-
formation R. Possibly, by a more judicious choice of R a complete statistic could
be obtained in certain situations which, for the particular choice of R, was in-
complete. It is shown however by Atzinger (1970) that g, is in fact unique for
all R and hence only one choice of the diagonalizing transformation need be
examined to determine whether the conditions of Theorem 6 are satisfied.

4. Applications and illustrations. The following example illustrates how the
theoretical concepts of Section 3 are used to obtain best estimates. Consider the
five observations

Py =7 4 by 4 by + by
J’2=T+bu+bz1+b32‘
y3:7+b11+b22+b31
y4=T+bu+b22+b32
y5=7+b12+b31

where ¢ is fixed and b;; ~ N(0, ¢,%) and b,; ~ N(O, o) and by; ~ N(O, o) for
j=1,2. This can be represented by the model

Y = X + Z,b, + Z,b, + Z,b,

where
1 1100 1 100 0
=0 11 1], Z’:[ ] z'=[ ]
[ ] ! 000 11 : 00110
1 010 1] .
Z, = and b/ = [b, b =1,2,3).
7= 1 01 o [ba b0l ( )

By applying Theorem 1, it is seen that ¢ (i = 1, 2, 3) is estimable. Thus, it
appears practical to continue the search for minimum variance unbiased estimates
in this case.

Clearly, 4, = Z; Z; (i = 1,2, 3) do not commute in pairs. Their structure,
however, is such that they can be simultaneously diagonalized by the following
matrix:

1 -1 -1 1 0
1 -1 0 0 0
R=|-2 2 1 -1 2.
1 0 -1 0 0
3 -2 -1 2 -2

The diagonalized covariance matrix is then
RVR' = diag (20, 20, 20.* + 207, 205’ 20,)

where, {, = 202, {, = 20, §; = 2(0? + 0%, and , = 20, are the s = 4 distinct
diagonal elements.
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Corresponding to each {; are the following values of m,; and ¢;,

m=1, m,=1, m,=1, m, =2
=0, =0, ¢=1, 4¢=0
and hence, g. = 1 and r, = 3. The second transformation, G is then chosen as
G=G»=1,
G, =G> =1,
G,=G"Y =1,
o.-er=[1 1]

Having obtained G, the following statistics are formed.

U, = G,R,Y = —2}’1 + 2y, + Vs — Vi + 2}’5 s

v = YR/G¥GPRY = (1 — Yo — Vs + Vo)

vZ = YIR2IG2(Z),GZ(2)R2Y = (yl - y2)2 ’
and ,

v, = Y,R4,G4(2)’G4(2)R4Y = 2{(2y1 — Y2 =) + Vi — yﬁ)z
+ (= 4y =y + )}

The ¢q. + r. = 4 statistics are complete, sufficient and minimal dimension. Their
distributions are as follows:

U, ~ N2z, 20 + 20%), LI xra), I (),
20'12 20‘32
and
Y% 22).
20 1(2)

Thus, the estimates of the parameters 7, ¢,% ¢, and ¢;* are:

.U

T =—2°§: (_y1+y2+y3/2 '_y4/2+y5)’
gt = % =0 — 0 — s+ 22,
67 = % = %[(2)’1 — V2= Vst Y=y + (=t =yt )]s

and

62 = 222_ = — n)2.

These unbiased estimates, being based on a complete minimal sufficient set of
statistics, are minimum variance unbiased.
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