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LAW OF LARGE NUMBERS IN THE SUPREMUM NORM FOR
A CHEMICAL REACTION WITH DIFFUSION!

By DouGLAs BLOUNT

Arizona State University

A space-time jump Markov process, modeling a chemical reaction with
diffusion, is compared in the supremum norm to the usual model, the
solution to a partial differential equation. Conditions are given which imply
the deviation converges in probability to 0 uniformly on bounded time
intervals. Estimates reflecting underlying large deviation behavior are ob-
tained.

1. Introduction. In Arnold and Theodosopulu (1980) a stochastic model
of a chemical reaction with diffusion was constructed and compared with the
usual deterministic model, the solution of a partial differential equation. This
model has been studied further by Kotelenez [(1982a), (1982b), (1986a),
(1986b), (1987), (1988)]. The model, a space-time jump Markov process, is
constructed by dividing [0, 1]9 into N? congruent cells of volume N7 and
modeling the concentration within a cell by a density-dependent birth and
death process rescaled by /~!, where [ is a parameter proportional to the
initial number of particles in a cell [see Kurtz (1971) or Ethier and Kurtz
(1986)). Also, particles diffuse symmetrically to neighboring cells with a jump
rate proportional to N2. This couples the cell reactors and extends the model
of Kurtz (1971) to the spatially inhomogeneous case.

In Kotelenez (1986a), for a linear reaction (branching random walks) with
g =1, it was shown that N2/l — 0 is sufficient to prove a law of large
numbers in L,([0, 1]). In Blount [(1987), (1991)] this was improved by only
requiring = © as N — «. In Kotelenez (1988), for a nonlinear reaction, a law
of large numbers was shown to hold in a space of distributions rather than
L,([0,1]9). In this paper we prove the law of large numbers holds in the
supremum norm for any dimension q if log N/! — 0 as N — . The reaction
may be linear or nonlinear. We believe our result is necessary as well as
sufficient but have not proved this. However, we do give a nontrivial example,
Example 4.19, which suggests the conditions are necessary. We obtain an
estimate, (4.18), which reflects underlying large deviation behavior.

For simplicity we prove the result for ¢ = 1 with periodic boundary condi-
tions but remark at the end of the proof on the minor notational changes
needed for extending the result to g > 1.

References to related work may be found in the papers of Kotelenez. We
have only stated previous results that compare directly with this paper.
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132 D. BLOUNT

Note that within a proof we may use the same symbol for different con-
stants that depend on the same parameters so long as these are not N or /.
Theorems, lemmas and numbered equations are considered on the same
numbering system.

2. The deterministic model. Let R(x) = b(x) — d(x) = L 4¢;x° be a
polynomial for x € R, with ¢,, < 0 and b(x), d(x) being polynomials of degree
less than or equal to m with nonnegative coefficients. Assume d(0) = 0. For
one reactant in the unit interval with periodic boundary conditions the concen-
tration is given by #(t, r), where, for r € [0,1] and ¢ > 0,

;_t'l'(t’r) =Ay(t,r) + R(y(t,r)),

¥(t,0) = ¢(¢,1),
0<y(0,r) <p <o

A denotes the Laplacian. Let ¢(¢) = ¢(¢, - ) and note that R(x) < 0 for all
large x. We assume p large enough so that R(x) <0 for x >p and that
¥(0) € C3([0, 1)), functions on [0,1] with three continuous derivatives and
norm given by L2_lly®|l. where |||l denotes the supremum norm. In
Kotelenez (1986b) it is shown that (2.1) has a unique mild solution in
C([0, »); C3([0, 1])) and that 0 < ¢(¢) < p for all ¢ > 0.

Let HY denote the real-valued step functions on [0, 1] that are constant on
the intervals [kEN~,(k + 1)N~1), 0 <k < N — 1, where N > 1 is an integer;
we extend functions in HY to be periodic with period 1. For f € HY, let

VEf(r) =N(f(r £ N71) = f(r))

(2.1)

and
Ay f(r) = =V Vg f(r)
= —VgVif(r) = N2[f(r + N™Y) = 2f(r) + f(r —N7H)].

Rather than work directly with ¢, we use a spatially discretized version given
by the solution of the differential equation

(¢,
——;t—r) = Ay uN(t,r) + R(yN(t, 1)),
(2.2) ¥M(t,0) = (2, 1),
(0, r) = N[** PV y(0,u)du forre [ANTY (k + N7,
kN1

Set ¢ N(t) = ¢y M(¢, - ). From Kotelenez (1986b), we have'

(2.3) ‘ 0<y¥(t) <p forallt

and '

24)  suply™(t) — ¥(t)l < C(T, R,¥(0))N~* for T > 0.
[0,T]
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If N is an odd integer with 0 <m <N — 1 and m even, let ¢, y = 1 and
define ¢, (1) = V2 cos(mmkN~?) and ¢, y(r) = V2 sin(wmkN~?) for r €
[kN~Y,(k + DN™Y. {¢,, n)¥, n} are eigenvectors of Ay with eigenvalues
defined by —B. n = “2N%(1 — cos(wrmN~1)) < 0. For f, g HY, the
L%00,1]) inner product is given by {(f,g) = LN lf(EN- 1)g(kN 1)N -
{®m, N> Um, n} form an orthonormal basis for (HY, ( ). If N is even, we
need the additional eigenfunction ey (1) = cos mk for r e [EN~1
(k + )N,

Let Ty(t) = exp(Ayt) denote the semigroup on HY generated by A,. If
f € HY, we have

(25) Ty()f=X e Pnv({f, 0 MmN+ o ¥m NIV n)-
Also note that for f, g € HY,

(Vnf,g)={f,Vyg), Ty()ANf=ANTN(2)f,
and Ay, Ty(2) are self-adjoint on (HY,( -, - )).

3. The stochastic model. Given N > 1 and a parameter [ > 0, let

n(t) = (no(t);...,ny_1(2))
denote the jump Markov process with integer-valued components and transi-
tion rates given by

(Rg>nps1) = (ny— 1,n,,, + 1) atrate N?n,,

(3.1) (ng-1,n4) = (n4—y + 1,0, — 1) atrate N°n,,
' n,—n,+1 atratelb(n,l™"),
n,—n,—1 atrateld(n,l™").

Here we set n)y =ny and n_; = ny_, and b and d are the polynomials used
to define (2.1). We view 7 ,(¢) as the number of particles in the kth cell at time
t, where the cells are arranged on the unit circle. The last two jump rates
reflect births or deaths in a cell and the first two reflect coupling of cells
through diffusion. Particles diffuse on the circle according to simple random
walks with jump rate 2 N2 and particles are produced or removed within cells.
Our subsequent assumptions will imply that [ is proportional to the initial
number of particles in each cell and that initially there are of order NI
particles distributed on the circle. We take n(#) to be right-continuous with left
limits and defined on some probability space.

Let FX'! denote the completion of the o-algebra o(n(s): s <¢) and let
én(t) = n(t) — n(t — ) denote the jump at time ¢. If 7 is an F'! stopping time
such that

sup supl;, . gn,(t A7) <M(T,N,l) <o
0,71

for all T > 0, then as in Blount (1991) or Kotelenez (1988) we have:
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3.2 LEMMA. The following are FN'' martingales:

ny(t AT) — sztm(nk_l(s) —2n,(8) + ny,q(s))ds
(a) °
—[O‘A’lR(nk(s)l-l) ds.

L (i) = N2 [ (nyi(s) + 2a(s) + nyi(s)) ds
(b) S<tAT

—jo’“z(b(nk(s)z—l) +d(ny(s)l™Y)) ds.

tAT
© I (0mn(9))(0n4(5) + N[ (n411(5) + na(s)) ds.
S<IAT
Now we define the stochastic analogue of (2.1). Let
XN(t,r) =ny(¢)I”' forre[EN"',(k+1)N7Y).

XN(t,r) depends on N and I [as does n(t)], but we suppress the ! in the
superscript. Now let X™(¢) = X™(¢, - ), and note that X? is an H?%-valued
Markov process. Using Lemma 3.2(a), we can write

(3.3) XN(t) =XN(0) + [OANXN(s) ds + jOR(XN(s))ds + ZN(1),

where ZN(¢t A 7) is an F'! martingale with values in H" for r as in Lemma
3.2.

4. The law of large numbers. In this section we prove the following
result.
4.1 THEOREM. Assume:

@ [1X™(0) — ¢(0)ll. — 0 in probability.
(ii) I = I(N) satisfies log N/l - 0 as N > .

Then suplO,T]IIXN () — ¥Vl — 0 in probability for any T > 0.
Before giving the proof we need some preliminary results and discussion.
4.2 LEMMA. Ty (2) is a positive contraction semigr;)up on (HN, ||+ lle).
Proor. If f is constant, then Ty@®)f=f, since Ayf=0.1If f>0, then

(2N2% + Ap)f=0. Thus Ty(¢) f = exp(—2N2t)expl(2N 2 + Ap)t]f = 0. These
two facts imply the result. O
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4.3 LEMMA. Let f= NI[k/N,(k+1)/N)‘ Then
(VETn() F)* + (Ve Tw(2) £)* + (T (2) F)?, 1) < hy(t),

where [(hy(s)ds < CN + ¢.

Proor. Using the observations at the end of Section 2, we have

(VETu(t) £)’,1)

—(Tn(2t) f, AN )
Z [< f, ‘Pm,N>2 + <f, ll’m,N>2]e_2ﬁm'Nth,N
m

= X (on v(ENTY) + g7 N(ENTY))e 2Pmnig, o

S 22 e_Zﬁm,Nth,N.
m

Similarly (Ty(®)f)%,1) <1+ 2%,,.,e ?#n~" The result then holds for
hn()=1+4L%, e 2nnvi(B, \ + 1), since By y =0 and B,, x> cm? for
m > 0 and ¢ > 0, where ¢ is independent of m and N. O

4.4 LemMA. Let m(t) be a bounded martingale of finite variation defined
on [ty,t,] with m(t,) = 0 and satisfying:
(i) m is right-continuous with left limits.
G 16m@) <1 forty <t <t,.
(iii) X, Sss,(c‘im(s))z Ji,8(s) ds is @ mean 0 martingale with 0 < g(s) <
h(s), where h(s) is a bounded deterministic function and g(s) is F'! adapted.
Then E exp(m(t,)) < exp(2[ 1h(s) ds).

Proor. Let f(x) =e* and note 0 < f"(x + y) = f(x) f(y) < 8 f(x) if |y| <
1. Using change of variables for functions of bounded variation we have, for

to <t <t
f(m(®) =1+ ['f'(m(s ) dm(s)
+ T [f(m(s)) = f(m(s =) = f'(m(s =) dm(s)]

to<s<t

<1+ ff(m(s -))dm(s) +2 ¥ f(m(s—))(6m(s))?
toss <t
by Taylor’s theorem, (ii) and .our observations at the start of the proof. Note
Ifhat Jey f'(m(s = )) dm(s) has mean 0 and after applying (iii) and taking
expectations, we have Ef(m(t)) <1 + 3 £1. Ef(m(s)h(s)ds. The result then
follows from Gronwall’s inequality. O
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Since 0 < ¥(¢) < p for all ¢ > 0 and we are assuming || X™(0) — y(0)ll, — 0
in probability, we may, by conditioning on || X™(0)ll. < p if necessary, assume
without loss of generality that

(4.5) 0<XM(0) <p forall N.
Also, by (2.4) it suffices to consider supy r|IXN(#) — ¢V(O)llo. Let 7=
inf{z: 1 X)) — VOl > g} for fixed ¢, € (0, 1] and define

XN(t)=XN(tAT) forO<t<r<owor0<t<r=oo,

g X@O=X"@Am)+ [:MAN XN(s)ds

+ft R(XM(s))ds for r<t<o.
tAT

X" is obtained by running XV until time  and then running it deterministi-
cally afterwards (if 7 < «). We have

P[ sup 1 X¥(2) — ¢Vt > 50]
[0,T]

< P[ sup | XNt A7) — pN(E ATl > 50]
[0,T]

< P[ sup |1 XN(t) — ¢ N(t)l. = so],
[0,T]

so we may consider supy, 7| X (t) — ¢V(¢)ll.. We have
(4.7) XN(t) =X¥(0) + [AyXN(s)ds + [R(XV(s))ds + ZV(t A ).
0 0

By our definitions, the jumps for X" and X7 satisfy
N6XY(t) e = IBXN(E A7)l < 171

Since 0 < yM(t) < p for ¢t > 0 and ! - », we may assume that

(4.8) 0<XN(tAT)<p+1 fort=>0.

Using variation of constants we have that for 1 < © and ¢ > 7,
XN(t) = Ty(t — 1) XN(r) + [‘Ty(t - s)R(XN(s)) ds.
By Lemma 4.2 and the definition of R, this shows we may also assume
(4.9) 0<XNit)y<p+1 fort>0.
Using variation of constants we have :
XN(t) = ¢N(2) = Ty(£)(XN(0) - ¢7(0))
+fo‘TN(t ~ s)(R(XN(s)) - R(y™(s))) ds + YN(2),

where YN(¢) = [{Ty(t — s)dZN(s A 7). Note that each ZM(s A 7,EN~Y),
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0 <k <N -1, is of bounded variation in s and Ty may be viewed as a
continuous N X N matrix-valued function. Thus Y¥(¢, LN~ 1,0 <k <N — 1,
is defined as a Stieltjes integral. Using Lemma 4.2, (2.3) and (4.9), we have

IXN(2) - p¥ ()l
<1XN¥(0) — y¥(0)ll. + K jo IXN(s) = yV(8)l ds + 1Y Y(8)ll,

where K depends on p and the coefficients of R(x). By our previous discussion
and Gronwall’s inequality, Theorem 4.1 will follow from the following result.

4.10 LemMA.  supyy 7Y V()lle = 0 in probability if log N/l = 0 as N — c.

Proor. Fix € (0,T] and 2 {0,1,..., N — 1} and let f=
NI 5,41y vy Let m(@) = ([gTy(E - s) de"(s A1), ) for 0 <¢ <% Note
that m is a mean 0 martingale on 0 < ¢ <% and m() = YV(, kN~!) since
(g, f>=g(kN~1) for g € HY. Basic computations using Lemma 3.2 show
that, for ¢y € HY,

¥ (8Z¥(s A7), )

(4.11) —(NI)~} fotm[( XN(s),(Vre)® + (Vre)®)

+{(b(XN(s)) + d(XV(s)), ¢?)| ds
is a mean 0 martingale. Thus, for 0 < ¢ < f,

¥ (67(s))”

s<t

(4.12) —(NI)~! j()‘“(XN(s), (Vi Ty(E = s) ) + (Ve Ty(E - 5) f)*)ds

()7 [ (6(XM(s)) + d(XN(5)), (Tw(E ~ ) f)")ds
is a mean 0 martingale. Note that |67 (s)| <I™. For 6 €[0,1], let m(¢) =
0lm(t). Then |6m(¢)| < 1 and by Lemma 4.3, (4.8) and Lemma 4.4, we have
E exp(0lm()) < exp[c(p)03 (1 + INY)].
Since ¢ < T, we may assume /N < 1. Thus, for ¢ > 0, we have
P(YN(#,kN"Y) > &) = P(0IYN(E, EN™1) > 6l¢)
< E exp(01Y N (%, kN~ 1) )exp( —0ls)
) < exp[6l(c(p)0 — ¢)].
Thus we can choose 6 so that
P[Y¥(#,kN"Y) > €] <e " fora =a(p) >0,
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independently of N, I, ¢ and #. The same holds for P[—Y™(Z, AN~1) > ¢].
Thus, for 0 <¢t < T and 2 €{0,1,..., N — 1}, we have

P[IYN(t, ENY)| > &] < 2e".
Since |[YV(#)|l. = sup,|Y ™ (¢, EN~1)| and YV(0) = 0, we have
(4.13) P[IYV(#)lle > €] < 2Ne2¢™
for 0 <¢ < T and a = a(p) > 0. We now show that (4.13) holds with [[Y¥(¢)||..
replaced by sup[O,T]IIYN(t)IIw and N (on the right) replaced by N3. We have

YN@) = [EANYN(s)ds + ZN(¢ A 7). Thus for nTN 2 <t <(n + DTN ™2 and
0 <n <N?%-1, we have
YN(t) = YN(nIN“2) + [ AyYP(s)ds + i (2),
nTN~2
where m(t) = Z¥(@t A7) — Z¥N(nTN-2 A7) for nTN"2<t <(n+ )TN 2
Taking norms and using the definition of A, gives
IY¥()llo < 1Y¥(nTN %)l + 4N2ftTN_2||YN(S)IIw ds + [17(t) |l
Applying Gronwall’s inequality shows
sup IY¥(#)lle
[nTN~2,(n+ )TN 2]
(4.14)
< (IIYN(nTN_z)II.ao + sup llrh(t)llw)e“.
[nTN~2,(n+1)TN~2]
Fix k€{0,1,..., N—1} and 0 €[0,1] and let m(¢) = 0lm(t,KN~1). By
Lemma 3.2(b) and the fact that 6ZV(¢, AN~1) = 6 XN(¢t, EN~Y) = 17 16n,(2),

T (em(s))* - 6aN2 [

-2
nTN-2<s<t nIN"“AT

[XN(s,(k—1)N~1) + 2XN(s, kN 1)
+XN(s,(k + 1)N~Y)] ds

_ozl]:;;_zm[b(XN(s,kN_l)) + d(XN(S,kN_l))] ds

is a mean 0 martingale for nTN~2 < ¢ < (n + )TN ~2. Also [6m(¢)| < 1. By
Lemma 4.4 and (4.8), we have

Eexp[m((n + 1)TN~?)] < exp(c(p)62T).
Thus, applying Doob’s inequality, we have

P[ sup (¢, EN"') >¢| < Eexp[m((n + 1)TN~2)]exp(—8l¢)
[nTN~2,(n+1)TN~2] B

< exp(0l(c(p)TO - ¢))

<e *" wherea =a(p,T) > 0.
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The same holds for —(¢, k/N). But this shows

(4.15) P[ sup I ()l > s] < 2Ne™2",
[nTN-2,(n+1)TN"2]
By (4.13), (4.14) and (4.15) we have
(4.16) P[e“‘T sup NY¥(e)ll. > e] < 4Ne ",
[nTN~2,(n+1)TN~2]
We also have
N2-1
P[e“‘T sup YV (#)ll.. > s] < Y P[e“‘T sup YNl > .
[0,T] n=0 [RTN~2,(n+1DTN"2]
By (4.16) this implies
(4.17) P[e“‘T sup [IlYN ()l > e] < 4N3e~o"
[0,T]

where a = a(p, T') > 0. And we have sup|, 7||lYV(#)ll. converges to 0 in proba-
bility if log N/l - 0 as N — ». This completes the proof of the lemma and

Theorem 4.1. O

REMARK. Our result is easily extended to the g-dimensional hypercube,
[0, 1]9. In this case [0, 1] is divided into N? disjoint congruent cells of volume
N~19. Particles jump to each neighboring cell at rate N2, or total rate 2¢N2. A,
is given by

q
Anf(ry,..r)) =X =WV f(r,...,1),

i=1
where
VE (e r) = N[ f(ri o £ N7 ) = f(ry, .1

Ay has N? bounded eigenvectors formed by taking products of the one-dimen-

sional eigenvectors.
Our final estimate, (4.17), now becomes

(4.18) P[e-" sup [Y¥(£)ll > e} < ANT+2emael,
[0,T]
where the N? arises from taking the supremum over all cells, as in (4.13) and
(4.15). An important fact is that replacing N by N7 in Lemma 4.3 causes no
change since this N? is cancelled by replacing N~! by N~? in (4.12). Our
result would also hold as well for reflecting boundary conditions. For a linear
reaction one need only replace p by py.
-Finally, we note that the idea of defining the martingale

— t -
0
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to obtain information about Y(Z, kN~!) = mi(Z) was used to bound the mo-
ments of XV in Kotelenez (1988), but we have refined it here by bounding the
moment generating function of Y(Z, AN~1).

4.19 ExaAMPLE. Assume the initial cell numbers {n,(0): 0 < < N — 1} are
independent Poisson random variables, each with mean [. Also assume there is
no reaction, only diffusion; that is, b(x) = d(x) = 0. Then X¥(¢) has a station-
ary distribution with {IX™(¢, kN~1): 0 < k£ < N — 1} being independent and
mean [ Poisson random variables for each ¢ > 0. In this case, ¥(¢,r) = 1.
Given ¢ > 0,

P(I1XN(0) = ¢(0)ll > ¢)
N-1
< kz_:o P(n,(0) =2 I(1 +£)) + P(n,(0) <I(1-¢))

= NP(n,(0) > I(1 +¢)) + NP(n(0) <I(1 - £))
<2Nexp[0l(8 — ¢)]
for § > 0, after applying Markov’s inequality and using the moment generat-
ing function of n,(0). Setting 6 = ¢/2 shows that || X¥(0) — ¢(0)]l, — 0 in
probability if log N/I — 0 as N — . Thus, by Theorem 4.1, sup;, 7| X¥(¢) —
¥()llo — 0 in probability if log N/l - 0 as N — .

This can also be proved by an elementary argument as in Blount (1987).
Conversely, we now show that if N — « and lim sup(l/log N) < «, then one
can choose £ > 0 such that

limsup P XN(¢) — ¢(¢)lle=¢] 1 as N> o

for each fixed ¢. This will show that requiring log N/l - 0 as N - « is
necessary for this special case.

By stationarity it suffices to consider ¢ = 0. Let A, be the event {n ,(0) >
I(1 + ¢)}. Then

1 - P(IXN(0) — y(0)ll > &)

N-1

(4.20) 1 P( 0 Ak) = (1 - P(Ay)" < exp(~NP(A,)).
0

Let [-] denote the greatest integer function. Then
NP(A;) = NP(ny(0) = [I(1 +¢)] + 1)
> Ne~'1'0*9/([1(1 + ¢)] + 1)!

> oNe ! !0 0e!0 0/ (1/2(U(1 + ) + 1)),

where we have applied Stirling’s formula and ¢ = ¢(1) is bounded away from 0
for all large [. Thus,

NP(A;) = cNe®/(13/2(1 + & + 171)/+*+17)
> cNI™3/2 exp(~1(e? + 26171 + 171 + 172)),
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where we have used (1 +x)™! > e™* for x > 0. If limsup(l/log N) < », we
can choose ¢ so that lim sup NP(A;) = ». By (4.20), this implies
lim sup P(IX7¥(0) — ¢(O)ll. > &) = 1.

Note that in this example one can obtain convergence by holding N fixed
and letting [ — « arbitrarily. However, this is because (¢) is spatially homo-
geneous. If Ay # 0, then letting N — « is necessary.
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