LAW OF LARGE NUMBERS IN THE SUPREMUM NORM FOR A CHEMICAL REACTION WITH DIFFUSION¹

By Douglas Blount

Arizona State University

A space-time jump Markov process, modeling a chemical reaction with diffusion, is compared in the supremum norm to the usual model, the solution to a partial differential equation. Conditions are given which imply the deviation converges in probability to 0 uniformly on bounded time intervals. Estimates reflecting underlying large deviation behavior are obtained

1. Introduction. In Arnold and Theodosopulu (1980) a stochastic model of a chemical reaction with diffusion was constructed and compared with the usual deterministic model, the solution of a partial differential equation. This model has been studied further by Kotelenez [(1982a), (1982b), (1986a), (1986b), (1987), (1988)]. The model, a space-time jump Markov process, is constructed by dividing $[0,1]^q$ into N^q congruent cells of volume N^{-q} and modeling the concentration within a cell by a density-dependent birth and death process rescaled by l^{-1} , where l is a parameter proportional to the initial number of particles in a cell [see Kurtz (1971) or Ethier and Kurtz (1986)]. Also, particles diffuse symmetrically to neighboring cells with a jump rate proportional to N^2 . This couples the cell reactors and extends the model of Kurtz (1971) to the spatially inhomogeneous case.

In Kotelenez (1986a), for a linear reaction (branching random walks) with q=1, it was shown that $N^2/l\to 0$ is sufficient to prove a law of large numbers in $L_2([0,1])$. In Blount [(1987), (1991)] this was improved by only requiring $l\to\infty$ as $N\to\infty$. In Kotelenez (1988), for a nonlinear reaction, a law of large numbers was shown to hold in a space of distributions rather than $L_2([0,1]^q)$. In this paper we prove the law of large numbers holds in the supremum norm for any dimension q if $\log N/l\to 0$ as $N\to\infty$. The reaction may be linear or nonlinear. We believe our result is necessary as well as sufficient but have not proved this. However, we do give a nontrivial example, Example 4.19, which suggests the conditions are necessary. We obtain an estimate, (4.18), which reflects underlying large deviation behavior.

For simplicity we prove the result for q=1 with periodic boundary conditions but remark at the end of the proof on the minor notational changes needed for extending the result to q>1.

References to related work may be found in the papers of Kotelenez. We have only stated previous results that compare directly with this paper.

Received February 1990; revised April 1991.

¹Research partially supported by NSF Grant DMS-88-11738.

AMS 1980 subject classifications. Primary 60F17, 60K35; secondary 60H05.

Key words and phrases. Chemical reaction with diffusion, law of large numbers, density dependent birth and death process.

Note that within a proof we may use the same symbol for different constants that depend on the same parameters so long as these are not N or l. Theorems, lemmas and numbered equations are considered on the same numbering system.

2. The deterministic model. Let $R(x) = b(x) - d(x) = \sum_{i=0}^{m} c_i x^i$ be a polynomial for $x \in \mathbf{R}$, with $c_m < 0$ and b(x), d(x) being polynomials of degree less than or equal to m with nonnegative coefficients. Assume d(0) = 0. For one reactant in the unit interval with periodic boundary conditions the concentration is given by $\psi(t, r)$, where, for $r \in [0, 1]$ and $t \ge 0$,

(2.1)
$$\begin{aligned} \frac{\partial}{\partial t} \psi(t, r) &= \Delta \psi(t, r) + R(\psi(t, r)), \\ \psi(t, 0) &= \psi(t, 1), \\ 0 &\leq \psi(0, r) < \rho < \infty. \end{aligned}$$

 Δ denotes the Laplacian. Let $\psi(t)=\psi(t,\cdot)$ and note that R(x)<0 for all large x. We assume ρ large enough so that R(x)<0 for $x>\rho$ and that $\psi(0)\in C^3([0,1])$, functions on [0,1] with three continuous derivatives and norm given by $\sum_{i=0}^3 ||\psi^{(i)}||_{\infty}$ where $||\cdot||_{\infty}$ denotes the supremum norm. In Kotelenez (1986b) it is shown that (2.1) has a unique mild solution in $C([0,\infty);C^3([0,1]))$ and that $0\leq \psi(t)<\rho$ for all t>0.

Let H^N denote the real-valued step functions on [0,1] that are constant on the intervals $[kN^{-1},(k+1)N^{-1}),\ 0 \le k \le N-1$, where $N \ge 1$ is an integer; we extend functions in H^N to be periodic with period 1. For $f \in H^N$, let

$$\nabla_{\!N}^{\pm}f(r)=N\big(f(r\pm N^{-1})-f(r)\big)$$

and

$$\begin{split} \Delta_N \, f(r) &= -\nabla_{\!N}^+ \nabla_{\!N}^- f(r) \\ &= -\nabla_{\!N}^- \nabla_{\!N}^+ f(r) = N^2 \big[\, f(r+N^{-1}) - 2 \, f(r) + f(r-N^{-1}) \big]. \end{split}$$

Rather than work directly with ψ , we use a spatially discretized version given by the solution of the differential equation

$$\begin{split} \frac{\partial \psi^N(t,r)}{\partial t} &= \Delta_N \, \psi^N(t,r) \, + R\big(\psi^N(t,r)\big), \\ (2.2) \quad \psi^N(t,0) &= \psi^N(t,1), \\ \psi^N(0,r) &= N \! \int_{kN^{-1}}^{(k+1)N^{-1}} \! \psi(0,u) \, du \quad \text{for } r \in [kN^{-1},(k+1)N^{-1}). \end{split}$$

Set $\psi^{N}(t) = \psi^{N}(t, \cdot)$. From Kotelenez (1986b), we have

$$(2.3) 0 \le \psi^N(t) < \rho \text{ for all } t$$

(2.4)
$$\sup_{[0,T]} \|\psi^N(t) - \psi(t)\|_{\infty} \le C(T, R, \psi(0)) N^{-1} \quad \text{for } T > 0.$$

If N is an odd integer with $0 \le m \le N-1$ and m even, let $\varphi_{0,\,N} \equiv 1$ and define $\varphi_{m,\,N}(r) = \sqrt{2}\,\cos(\pi m k N^{-1})$ and $\psi_{m,\,N}(r) = \sqrt{2}\,\sin(\pi m k N^{-1})$ for $r \in [kN^{-1},(k+1)N^{-1})$. $\{\varphi_{m,\,N},\psi_{m,\,N}\}$ are eigenvectors of Δ_N with eigenvalues defined by $-\beta_{m,\,N} = -2N^2(1-\cos(\pi m N^{-1})) \le 0$. For $f,g\in H^N$, the $L^2([0,1])$ inner product is given by $\langle f,g\rangle = \sum_{k=0}^{N-1} f(kN^{-1})g(kN^{-1})N^{-1}$. $\{\varphi_{m,\,N},\psi_{m,\,N}\}$ form an orthonormal basis for $(H^N,\langle\,\cdot\,\,,\,\cdot\,\,\rangle)$. If N is even, we need the additional eigenfunction $\varphi_{N,\,N}(r) = \cos\pi k$ for $r \in [kN^{-1},(k+1)N^{-1})$.

Let $T_N(t) = \exp(\Delta_N t)$ denote the semigroup on H^N generated by Δ_N . If $f \in H^N$, we have

$$(2.5) T_N(t) f = \sum_{k} e^{-\beta_{m,N}t} (\langle f, \varphi_{m,N} \rangle \varphi_{m,N} + \langle f, \psi_{m,N} \rangle \psi_{m,N}).$$

Also note that for $f, g \in H^N$,

$$\langle \nabla_{\!N}^+ f, g \rangle = \langle f, \nabla_{\!N}^- g \rangle, \qquad T_N(t) \Delta_N f = \Delta_N T_N(t) f,$$

and Δ_N , $T_N(t)$ are self-adjoint on $(H^N, \langle \cdot, \cdot \rangle)$.

3. The stochastic model. Given $N \ge 1$ and a parameter l > 0, let

$$n(t) = (n_0(t), \dots, n_{N-1}(t))$$

denote the jump Markov process with integer-valued components and transition rates given by

$$(n_{k}, n_{k+1}) \to (n_{k} - 1, n_{k+1} + 1) \quad \text{at rate } N^{2}n_{k},$$

$$(n_{k-1}, n_{k}) \to (n_{k-1} + 1, n_{k} - 1) \quad \text{at rate } N^{2}n_{k},$$

$$n_{k} \to n_{k} + 1 \quad \text{at rate } lb(n_{k}l^{-1}),$$

$$n_{k} \to n_{k} - 1 \quad \text{at rate } ld(n_{k}l^{-1}).$$

Here we set $n_N=n_0$ and $n_{-1}=n_{N-1}$ and b and d are the polynomials used to define (2.1). We view $n_k(t)$ as the number of particles in the kth cell at time t, where the cells are arranged on the unit circle. The last two jump rates reflect births or deaths in a cell and the first two reflect coupling of cells through diffusion. Particles diffuse on the circle according to simple random walks with jump rate $2N^2$ and particles are produced or removed within cells. Our subsequent assumptions will imply that l is proportional to the initial number of particles in each cell and that initially there are of order Nl particles distributed on the circle. We take n(t) to be right-continuous with left limits and defined on some probability space.

Let $F_t^{N,\,l}$ denote the completion of the σ -algebra $\sigma(n(s): s \leq t)$ and let $\delta n(t) = n(t) - n(t-1)$ denote the jump at time t. If τ is an $F_t^{N,\,l}$ stopping time such that

$$\sup_{[0,T]}\sup_{k}I_{\{\tau>0\}}n_{k}(t\wedge\tau)\leq M(T,N,l)<\infty$$

for all T > 0, then as in Blount (1991) or Kotelenez (1988) we have:

3.2 Lemma. The following are $F_{\star}^{N,l}$ martingales:

$$\begin{array}{c} n_k(t\wedge\tau)-N^2\!\int_0^{t\wedge\tau}\!\!\left(n_{k-1}\!(s)-2n_k(s)+n_{k+1}\!(s)\right)ds\\ \\ -\int_0^{t\wedge\tau}\!\!lR\!\left(n_k(s)l^{-1}\right)ds. \end{array}$$

$$\begin{array}{ll} & \sum\limits_{s \leq t \wedge \tau} \left(\delta n_{k}(s) \right)^{2} - N^{2} \int_{0}^{t \wedge \tau} \! \left(n_{k-1}\!(s) + 2 n_{k}(s) + n_{k+1}\!(s) \right) ds \\ & - \int_{0}^{t \wedge \tau} \! l\! \left(b\! \left(n_{k}(s) l^{-1} \right) + d\! \left(n_{k}(s) l^{-1} \right) \right) ds. \end{array}$$

$$(c) \qquad \sum_{s \le t \wedge \tau} (\delta n_{k+1}(s)) (\delta n_k(s)) + N^2 \int_0^{t \wedge \tau} (n_{k+1}(s) + n_k(s)) ds.$$

Now we define the stochastic analogue of (2.1). Let

$$X^{N}(t,r) = n_{k}(t)l^{-1}$$
 for $r \in [kN^{-1}, (k+1)N^{-1})$.

 $X^N(t,r)$ depends on N and l [as does n(t)], but we suppress the l in the superscript. Now let $X^N(t) = X^N(t,\cdot)$, and note that X^N is an H^N -valued Markov process. Using Lemma 3.2(a), we can write

(3.3)
$$X^{N}(t) = X^{N}(0) + \int_{0}^{t} \Delta_{N} X^{N}(s) ds + \int_{0}^{t} R(X^{N}(s)) ds + Z^{N}(t),$$

where $Z^N(t \wedge \tau)$ is an $F^{N,l}_t$ martingale with values in H^N for τ as in Lemma 3.2.

- **4. The law of large numbers.** In this section we prove the following result.
 - 4.1 THEOREM. Assume:
 - (i) $||X^N(0) \psi(0)||_{\infty} \to 0$ in probability.
 - (ii) l = l(N) satisfies $\log N/l \to 0$ as $N \to \infty$.

Then $\sup_{[0,T]} ||X^N(t) - \psi(t)||_{\infty} \to 0$ in probability for any T > 0.

Before giving the proof we need some preliminary results and discussion.

4.2 Lemma. $T_N(t)$ is a positive contraction semigroup on $(H^N, \|\cdot\|_{\infty})$.

PROOF. If f is constant, then $T_N(t)f=f$, since $\Delta_N f=0$. If $f\geq 0$, then $(2N^2+\Delta_N)f\geq 0$. Thus $T_N(t)f=\exp(-2N^2t)\exp[(2N^2+\Delta_N)t]f\geq 0$. These two facts imply the result. \square

4.3 LEMMA. Let $f = NI_{\lceil k/N, (k+1)/N \rceil}$. Then

$$\left\langle \left(\nabla_{N}^{+}T_{N}(t)f\right)^{2}+\left(\nabla_{N}^{-}T_{N}(t)f\right)^{2}+\left(T_{N}(t)f\right)^{2},1\right\rangle \leq h_{N}(t),$$

where $\int_0^t h_N(s) ds \leq CN + t$.

Using the observations at the end of Section 2, we have

$$\begin{split} &\left\langle \left(\nabla_{\!N}^{\pm}T_{N}(t)\,f\right)^{2},1\right\rangle \\ &=-\left\langle T_{N}(2t)\,f,\Delta_{N}\,f\right\rangle \\ &=\sum_{m}\left[\left\langle \,f,\varphi_{m,\,N}\right\rangle ^{2}+\left\langle \,f,\psi_{m,\,N}\right\rangle ^{2}\right]e^{-2\beta_{m,\,N}t}\beta_{m,\,N} \\ &=\sum_{m}\left(\varphi_{m,\,N}^{2}(kN^{-1})+\psi_{m,\,N}^{2}(kN^{-1})\right)e^{-2\beta_{m,\,N}t}\beta_{m,\,N} \\ &\leq2\sum_{m}e^{-2\beta_{m,\,N}t}\beta_{m,\,N}. \end{split}$$

Similarly $\langle (T_N(t)f)^2,1\rangle \leq 1+2\sum_{m>0}e^{-2\beta_{m,N}t}$. The result then holds for $h_N(t)=1+4\sum_{m>0}e^{-2\beta_{m,N}t}(\beta_{m,N}+1)$, since $\beta_{0,N}=0$ and $\beta_{m,N}>cm^2$ for m>0 and c>0, where c is independent of m and N. \square

4.4 Lemma. Let m(t) be a bounded martingale of finite variation defined on $[t_0, t_1]$ with $m(t_0) = 0$ and satisfying:

- (i) m is right-continuous with left limits.
- (ii) $|\delta m(t)| \le 1$ for $t_0 \le t \le t_1$. (iii) $\sum_{t_0 \le s \le t} (\delta m(s))^2 \int_{t_0}^t g(s) \, ds$ is a mean 0 martingale with $0 \le g(s) \le h(s)$, where h(s) is a bounded deterministic function and g(s) is $F_t^{N,l}$ adapted. Then $E \exp(m(t_1)) \le \exp(\frac{3}{2}\int_{t_0}^{t_1}h(s)\,ds)$.

PROOF. Let $f(x) = e^x$ and note $0 \le f''(x + y) = f(x)f(y) \le 3f(x)$ if $|y| \le 3f(x)$ 1. Using change of variables for functions of bounded variation we have, for $t_0 \leq t \leq t_1$

$$f(m(t)) = 1 + \int_{t_0}^{t} f'(m(s-)) dm(s)$$

$$+ \sum_{t_0 \le s \le t} \left[f(m(s)) - f(m(s-)) - f'(m(s-)) \delta m(s) \right]$$

$$\le 1 + \int_{t_0}^{t} f'(m(s-)) dm(s) + \frac{3}{2} \sum_{t_0 \le s \le t} f(m(s-)) (\delta m(s))^2,$$

by Taylor's theorem, (ii) and our observations at the start of the proof. Note that $\int_{t_0}^{r} f'(m(s-1)) dm(s)$ has mean 0 and after applying (iii) and taking expectations, we have $Ef(m(t)) \leq 1 + \frac{3}{2} \int_{t_0}^{t} Ef(m(s))h(s) ds$. The result then

Since $0 \le \psi(t) < \rho$ for all $t \ge 0$ and we are assuming $||X^N(0) - \psi(0)||_{\infty} \to 0$ in probability, we may, by conditioning on $||X^N(0)||_{\infty} < \rho$ if necessary, assume without loss of generality that

$$(4.5) 0 \leq X^N(0) < \rho \text{for all } N.$$

Also, by (2.4) it suffices to consider $\sup_{[0,T]} ||X^N(t) - \psi^N(t)||_{\infty}$. Let $\tau = \inf\{t: ||X^N(t) - \psi^N(t)||_{\infty} > \varepsilon_0\}$ for fixed $\varepsilon_0 \in (0,1]$ and define

$$\overline{X}^N(t) = X^N(t \wedge \tau)$$
 for $0 \le t \le \tau < \infty$ or $0 \le t < \tau = \infty$,

(4.6)
$$\overline{X}^{N}(t) = X^{N}(t \wedge \tau) + \int_{t \wedge \tau}^{t} \Delta_{N} \, \overline{X}^{N}(s) \, ds + \int_{t}^{t} R(\overline{X}^{N}(s)) \, ds \quad \text{for } \tau < t < \infty.$$

 \overline{X}^N is obtained by running X^N until time τ and then running it deterministically afterwards (if $\tau < \infty$). We have

$$\begin{split} P\bigg[\sup_{[0,T]} \|X^N(t) - \psi^N(t)\|_{\infty} &> \varepsilon_0\bigg] \\ &\leq P\bigg[\sup_{[0,T]} \|X^N(t \wedge \tau) - \psi^N(t \wedge \tau)\|_{\infty} &\geq \varepsilon_0\bigg] \\ &\leq P\bigg[\sup_{[0,T]} \|\overline{X}^N(t) - \psi^N(t)\|_{\infty} &\geq \varepsilon_0\bigg], \end{split}$$

so we may consider $\sup_{[0,\,T]} \lVert \overline{X}^N(t) - \psi^N(t) \rVert_\infty$. We have

$$(4.7) \quad \overline{X}^N(t) = X^N(0) + \int_0^t \Delta_N \overline{X}^N(s) \, ds + \int_0^t R(\overline{X}^N(s)) \, ds + Z^N(t \wedge \tau).$$

By our definitions, the jumps for X^N and \overline{X}^N satisfy

$$\|\delta \overline{X}^N(t)\|_{\infty} = \|\delta X^N(t \wedge \tau)\|_{\infty} \le l^{-1}.$$

Since $0 \le \psi^N(t) < \rho$ for $t \ge 0$ and $l \to \infty$, we may assume that

(4.8)
$$0 \le X^N(t \wedge \tau) < \rho + 1 \text{ for } t \ge 0.$$

Using variation of constants we have that for $\tau < \infty$ and $t > \tau$,

$$\overline{X}^N(t) = T_N(t-\tau)X^N(\tau) + \int_{\tau}^t T_N(t-s)R(\overline{X}^N(s)) ds.$$

By Lemma 4.2 and the definition of R, this shows we may also assume

$$(4.9) 0 \leq \overline{X}^N(t) < \rho + 1 \text{for } t \geq 0.$$

Using variation of constants we have

$$egin{align} \overline{X}^N(t) - \psi^N(t) &= T_N(t) ig(X^N(0) - \psi^N(0)ig) \ &+ \int_0^t \!\! T_N(t-s) ig(Rig(\overline{X}^N(s)ig) - Rig(\psi^N(s)ig)ig) \, ds + Y^N(t), \end{split}$$

where $Y^{N}(t) = \int_{0}^{t} T_{N}(t-s) dZ^{N}(s \wedge \tau)$. Note that each $Z^{N}(s \wedge \tau, kN^{-1})$,

 $0 \le k \le N-1$, is of bounded variation in s and T_N may be viewed as a continuous $N \times N$ matrix-valued function. Thus $Y^N(t,kN^{-1})$, $0 \le k \le N-1$, is defined as a Stieltjes integral. Using Lemma 4.2, (2.3) and (4.9), we have

$$\| \overline{X}^N(t) - \psi^N(t) \|_{\infty}$$

$$\leq \|X^N(0) - \psi^N(0)\|_{\scriptscriptstyle{\infty}} + K \! \int_0^t \! \|\overline{X}^N(s) - \psi^N(s)\|_{\scriptscriptstyle{\infty}} \, ds + \|Y^N(t)\|_{\scriptscriptstyle{\infty}},$$

where K depends on ρ and the coefficients of R(x). By our previous discussion and Gronwall's inequality, Theorem 4.1 will follow from the following result.

4.10 Lemma.
$$\sup_{[0,T]} ||Y^N(t)||_{\infty} \to 0$$
 in probability if $\log N/l \to 0$ as $N \to \infty$.

PROOF. Fix $\bar{t} \in (0,T]$ and $k \in \{0,1,\ldots,N-1\}$ and let $f = NI_{[k/N,(k+1)/N)}$. Let $\overline{m}(t) = \langle \int_0^t T_N(\bar{t}-s) \, dZ^N(s \wedge \tau), \, f \rangle$ for $0 \leq t \leq \bar{t}$. Note that \overline{m} is a mean 0 martingale on $0 \leq t \leq \bar{t}$ and $\overline{m}(\bar{t}) = Y^N(\bar{t},kN^{-1})$ since $\langle g,f \rangle = g(kN^{-1})$ for $g \in H^N$. Basic computations using Lemma 3.2 show that, for $\psi \in H^N$,

$$(4.11) \qquad \sum_{s \leq t} \left(\delta \langle Z^N(s \wedge \tau), \varphi \rangle \right)^2$$

$$- (Nl)^{-1} \int_0^{t \wedge \tau} \left[\left\langle X^N(s), (\nabla_N^+ \varphi)^2 + (\nabla_N^- \varphi)^2 \right\rangle + \left\langle b(X^N(s)) + d(X^N(s)), \varphi^2 \right\rangle \right] ds$$

is a mean 0 martingale. Thus, for $0 \le t \le \overline{t}$,

$$\sum_{s < t} (\delta \overline{m}(s))^2$$

$$egin{aligned} (4.12) & -(Nl)^{-1} \int_0^{t\wedge au} \Bigl\langle X^N(s), ig(
abla_N^+ T_N(ar t-s)\,fig)^2 + ig(
abla_N^- T_N(ar t-s)\,fig)^2 \Bigr
angle ds \ & -(Nl)^{-1} \int_0^{t\wedge au} \Bigl\langle b(X^N(s)) + d(X^N(s)), ig(T_N(ar t-s)\,fig)^2 \Bigr
angle ds \end{aligned}$$

is a mean 0 martingale. Note that $|\delta \overline{m}(s)| \le l^{-1}$. For $\theta \in [0, 1]$, let $m(t) = \theta l \overline{m}(t)$. Then $|\delta m(t)| \le 1$ and by Lemma 4.3, (4.8) and Lemma 4.4, we have

$$E\exp\bigl(\theta l\overline{m}(\bar{t})\bigr) \leq \exp\bigl[c(\rho)\theta^2 l(1+\bar{t}N^{-1})\bigr].$$

Since $\bar{t} \leq T$, we may assume $\bar{t}/N \leq 1$. Thus, for $\varepsilon > 0$, we have

$$\begin{split} P\big(Y^N(\bar{t},kN^{-1}) > \varepsilon\big) &= P\big(\theta l Y^N(\bar{t},kN^{-1}) > \theta l \varepsilon\big) \\ &\leq E \exp\big(\theta l Y^N(\bar{t},kN^{-1})\big) \exp\big(-\theta l \varepsilon\big) \\ &\leq \exp\big[\theta l \big(c(\rho)\theta - \varepsilon\big)\big]. \end{split}$$

Thus we can choose θ so that

$$P[Y^N(\bar{t},kN^{-1})>\varepsilon] \le e^{-a\varepsilon^2 l} \text{ for } a=a(\rho)>0,$$

independently of N, l, k and \bar{t} . The same holds for $P[-Y^N(\bar{t}, kN^{-1}) > \varepsilon]$. Thus, for $0 < t \le T$ and $k \in \{0, 1, ..., N-1\}$, we have

$$P[|Y^N(t,kN^{-1})| > \varepsilon] \leq 2e^{-a\varepsilon^2 t}.$$

Since $||Y^{N}(t)||_{\infty} = \sup_{k} |Y^{N}(t, kN^{-1})|$ and $Y^{N}(0) = 0$, we have

$$(4.13) P[||Y^N(t)||_{\infty} > \varepsilon] \le 2Ne^{-a\varepsilon^2 l}$$

for $0 \le t \le T$ and $a = a(\rho) > 0$. We now show that (4.13) holds with $\|Y^N(t)\|_{\infty}$ replaced by $\sup_{[0,T]} \|Y^N(t)\|_{\infty}$ and N (on the right) replaced by N^3 . We have $Y^N(t) = \int_0^t \Delta_N Y^N(s) \, ds + Z^N(t \wedge \tau)$. Thus for $nTN^{-2} \le t \le (n+1)TN^{-2}$ and $0 \le n \le N^2 - 1$, we have

$$Y^{N}(t) = Y^{N}(nTN^{-2}) + \int_{nTN^{-2}}^{t} \Delta_{N}Y^{N}(s) ds + \tilde{m}(t),$$

where $\tilde{m}(t) = Z^N(t \wedge \tau) - Z^N(nTN^{-2} \wedge \tau)$ for $nTN^{-2} \leq t \leq (n+1)TN^{-2}$. Taking norms and using the definition of Δ_N gives

$$||Y^N(t)||_{\infty} \leq ||Y^N(nTN^{-2})||_{\infty} + 4N^2 \int_{nTN^{-2}}^t ||Y^N(s)||_{\infty} ds + ||\tilde{m}(t)||_{\infty}.$$

Applying Gronwall's inequality shows

$$(4.14) \qquad \sup_{[nTN^{-2},(n+1)TN^{-2}]} ||Y^{N}(t)||_{\infty} \\ \leq \left(||Y^{N}(nTN^{-2})||_{\infty} + \sup_{[nTN^{-2},(n+1)TN^{-2}]} ||\tilde{m}(t)||_{\infty} \right) e^{4T}.$$

Fix $k \in \{0,1,\ldots,N-1\}$ and $\theta \in [0,1]$ and let $m(t) = \theta l \tilde{m}(t,kN^{-1})$. By Lemma 3.2(b) and the fact that $\delta Z^N(t,kN^{-1}) = \delta X^N(t,kN^{-1}) = l^{-1}\delta n_k(t)$,

$$\sum_{nTN^{-2} \leq s \leq t} \left(\delta m(s)\right)^2 - \theta^2 l N^2 \int_{nTN^{-2} \wedge au}^{t \wedge au} \left[X^N (s, (k-1)N^{-1}) + 2X^N (s, kN^{-1}) + X^N (s, (k+1)N^{-1}) \right] ds$$

$$- heta^2 l \! \int_{nTN^{-2}\wedge au}^{t\wedge au} \! \left[big(X^N\!\left(s,kN^{-1}
ight)ig) + dig(X^N\!\left(s,kN^{-1}
ight)ig)
ight] ds$$

is a mean 0 martingale for $nTN^{-2} \le t \le (n+1)TN^{-2}$. Also $|\delta m(t)| \le 1$. By Lemma 4.4 and (4.8), we have

$$E\exp\bigl[\,m\bigl((\,n\,+\,1)TN^{-\,2}\bigr)\bigr]\,\leq\exp\bigl(c(\,\rho\,)\theta^2lT\,\bigr).$$

Thus, applying Doob's inequality, we have

$$\begin{split} P\bigg[\sup_{[nTN^{-2},(n+1)TN^{-2}]} \tilde{m}(t,kN^{-1}) &\geq \varepsilon\bigg] &\leq E \exp\big[m\big((n+1)TN^{-2}\big)\big] \exp(-\theta l \varepsilon) \\ &\leq \exp\big(\theta l \big(c(\rho)T\theta - \varepsilon\big)\big) \\ &\leq e^{-a\varepsilon^2 l} \quad \text{where } a = a(\rho,T) > 0. \end{split}$$

The same holds for $-\tilde{m}(t, k/N)$. But this shows

$$(4.15) P\bigg[\sup_{[nTN^{-2},(n+1)TN^{-2}]} \|\tilde{m}(t)\|_{\infty} > \varepsilon\bigg] \leq 2Ne^{-a\varepsilon^2 l}.$$

By (4.13), (4.14) and (4.15) we have

$$(4.16) P\bigg[e^{-4T} \sup_{[nTN^{-2}, (n+1)TN^{-2}]} ||Y^N(t)||_{\infty} > \varepsilon\bigg] \le 4Ne^{-a\varepsilon^2 l}.$$

We also have

$$P\bigg[e^{-4T}\sup_{[0,T]}\|Y^{N}(t)\|_{\infty}>\varepsilon\bigg]\leq \sum_{n=0}^{N^{2}-1}P\bigg[e^{-4T}\sup_{[nTN^{-2},(n+1)TN^{-2}]}\|Y^{N}(t)\|_{\infty}>\varepsilon\bigg].$$

By (4.16) this implies

$$(4.17) P\bigg[e^{-4T}\sup_{[0,T]}\|Y^N(t)\|_{\infty}>\varepsilon\bigg]\leq 4N^3e^{-\alpha\varepsilon^2l},$$

where $a=a(\rho,T)>0$. And we have $\sup_{[0,T]}\lVert Y^N(t)\rVert_{\infty}$ converges to 0 in probability if $\log N/l\to 0$ as $N\to \infty$. This completes the proof of the lemma and Theorem 4.1. \square

REMARK. Our result is easily extended to the q-dimensional hypercube, $[0,1]^q$. In this case $[0,1]^q$ is divided into N^q disjoint congruent cells of volume N^{-q} . Particles jump to each neighboring cell at rate N^2 , or total rate $2qN^2$. Δ_N is given by

$$\Delta_N f(r_1, \dots, r_q) = \sum_{i=1}^q - \nabla_{N,i}^+ \nabla_{N,i}^- f(r_1, \dots, r_q),$$

where

$$\nabla_{N,i}^{\pm} f(r_1,\ldots,r_q) = N \Big[f(r_1,\ldots,r_i \pm N^{-1},\ldots,r_q) - f(r_1,\ldots,r_q) \Big].$$

 Δ_N has N^q bounded eigenvectors formed by taking products of the one-dimensional eigenvectors.

Our final estimate, (4.17), now becomes

$$(4.18) P\left[e^{-4T} \sup_{[0,T]} \|Y^{N}(t)\|_{\infty} > \varepsilon\right] \le 4N^{q+2}e^{-a\varepsilon^{2}l},$$

where the N^q arises from taking the supremum over all cells, as in (4.13) and (4.15). An important fact is that replacing N by N^q in Lemma 4.3 causes no change since this N^q is cancelled by replacing N^{-1} by N^{-q} in (4.12). Our result would also hold as well for reflecting boundary conditions. For a linear reaction one need only replace ρ by ρ_T .

Finally, we note that the idea of defining the martingale

$$\overline{m}(t) = \left\langle \int_0^t T_N(\overline{t} - s) \, dZ^N(s \wedge \tau), NI_{[k/N,(k+1)/N)} \right\rangle$$

to obtain information about $Y(\bar{t}, kN^{-1}) = \overline{m}(\bar{t})$ was used to bound the moments of X^N in Kotelenez (1988), but we have refined it here by bounding the moment generating function of $Y(\bar{t}, kN^{-1})$.

4.19 Example. Assume the initial cell numbers $\{n_k(0)\colon 0\le k\le N-1\}$ are independent Poisson random variables, each with mean l. Also assume there is no reaction, only diffusion; that is, $b(x)=d(x)\equiv 0$. Then $X^N(t)$ has a stationary distribution with $\{lX^N(t,kN^{-1})\colon 0\le k\le N-1\}$ being independent and mean l Poisson random variables for each $t\ge 0$. In this case, $\psi(t,r)\equiv 1$. Given $\varepsilon>0$,

$$\begin{split} &P\big(\|X^N(0) - \psi(0)\|_{\infty} \geq \varepsilon\big) \\ &\leq \sum_{k=0}^{N-1} P\big(n_k(0) \geq l(1+\varepsilon)\big) + P\big(n_k(0) \leq l(1-\varepsilon)\big) \\ &= NP\big(n_1(0) \geq l(1+\varepsilon)\big) + NP\big(n_1(0) \leq l(1-\varepsilon)\big) \\ &\leq 2N \exp\big[\theta l(\theta-\varepsilon)\big] \end{split}$$

for $\theta>0$, after applying Markov's inequality and using the moment generating function of $n_1(0)$. Setting $\theta=\varepsilon/2$ shows that $\|X^N(0)-\psi(0)\|_\infty\to 0$ in probability if $\log N/l\to 0$ as $N\to\infty$. Thus, by Theorem 4.1, $\sup_{[0,\,T]} \|X^N(t)-\psi(t)\|_\infty\to 0$ in probability if $\log N/l\to 0$ as $N\to\infty$.

This can also be proved by an elementary argument as in Blount (1987). Conversely, we now show that if $N \to \infty$ and $\limsup(l/\log N) < \infty$, then one can choose $\varepsilon > 0$ such that

$$\limsup P\big[\|X^N(t)-\psi(t)\|_{\scriptscriptstyle\infty}\geq \varepsilon\big]\to 1\quad\text{as }N\to\infty$$

for each fixed t. This will show that requiring $\log N/l \to 0$ as $N \to \infty$ is necessary for this special case.

By stationarity it suffices to consider t=0. Let A_k be the event $\{n_k(0) \ge l(1+\varepsilon)\}$. Then

$$(4.20) 1 - P(\|X^{N}(0) - \psi(0)\|_{\infty} \ge \varepsilon)$$

$$\le 1 - P\left(\bigcup_{0}^{N-1} A_{k}\right) = (1 - P(A_{1}))^{N} \le \exp(-NP(A_{1})).$$

Let [·] denote the greatest integer function. Then

$$\begin{split} NP(A_1) &\geq NP\big(n_1(0) = \big[l(1+\varepsilon)\big] + 1\big) \\ &\geq Ne^{-l}l^{l(1+\varepsilon)}/\big(\big[l(1+\varepsilon)\big] + 1\big)! \\ &\geq cNe^{-l}l^{l(1+\varepsilon)}e^{l(1+\varepsilon)}/\big(l^{1/2}(l(1+\varepsilon) + 1)^{l(1+\varepsilon)+1}\big), \end{split}$$

where we have applied Stirling's formula and c = c(l) is bounded away from 0 for all large l. Thus,

$$NP(A_1) \ge cNe^{\varepsilon l} / \left(l^{3/2} (1 + \varepsilon + l^{-1})^{l(1+\varepsilon+l^{-1})}\right)$$

 $\ge cNl^{-3/2} \exp(-l(\varepsilon^2 + 2\varepsilon l^{-1} + l^{-1} + l^{-2})),$

where we have used $(1+x)^{-1} \ge e^{-x}$ for $x \ge 0$. If $\limsup (l/\log N) < \infty$, we can choose ε so that $\limsup NP(A_1) = \infty$. By (4.20), this implies $\limsup P(\|X^N(0) - \psi(0)\|_{\infty} \ge \varepsilon) = 1$.

Note that in this example one can obtain convergence by holding N fixed and letting $l \to \infty$ arbitrarily. However, this is because $\psi(t)$ is spatially homogeneous. If $\Delta \psi \not\equiv 0$, then letting $N \to \infty$ is necessary.

Acknowledgment. Research for this paper was done during the author's instructorship at the University of Utah.

REFERENCES

- Arnold, L. and Theodosopulu, M. (1980). Deterministic limit of the stochastic model of chemical reactions with diffusion. Adv. in Appl. Probab. 12 367-379.
- BLOUNT, D. J. (1987). Comparison of a stochastic model of a chemical reaction with diffusion and the deterministic model. Ph.D. dissertation, Univ. Wisconsin-Madison.
- BLOUNT, D. J. (1991). Comparison of stochastic and deterministic models of a linear chemical reaction with diffusion. *Ann. Probab.* 19 1440–1462.
- ETHIER, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
- KOTELENEZ, P. (1982a). Ph.D. dissertation, Universität Bremen Forschungsschwerpunkt Dynamische Systemes.
- KOTELENEZ, P. (1982b). A submartingale type inequality with applications to stochastic evolution equations. Stochastics 8 139–151.
- Kotelenez, P. (1986a). Law of large numbers and central limit theorem for linear chemical reactions with diffusion. *Ann. Probab.* 14 173–193.
- Kotelenez, P. (1986b). Gaussian approximation to the nonlinear reaction-diffusion equation. Report 146, Universität Bremen Forschungsschwerpunkt Dynamische Systems.
- KOTELENEZ, P. (1987). Fluctuations near homogeneous states of chemical reactions with diffusion. Adv. in Appl. Probab. 19 352-370.
- KOTELENEZ, P. (1988). High density limit theorems for nonlinear chemical reactions with diffusion. *Probab. Theory Related Fields* **78** 11-37.
- Kurtz, T. G. (1971). Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 9 344-356.

DEPARTMENT OF MATHEMATICS ARIZONA STATE UNIVERSITY TEMPE, ARIZONA 85287