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A continuous-time, consumption-investment problem on a finite hori-
zon is considered for an agent seeking to maximize expected utility from
consumption plus expected utility from terminal wealth. The agent is
prohibited from selling stocks short, so the usual martingale methods for
solving this problem do not directly apply. A dual problem is posed and
solved, and the solution to the dual problem provides information about the
existence and nature of the solution to the original problem.

1. Introduction. This is the first of two papers which treat a consump-
tion-investment decision problem for a single agent, endowed with some
initial wealth, who can consume the wealth at some rate C(¢) and invest it in
any of d + 1 available assets. The agent is attempting to maximize a linear
combination of two quantities, namely:

1. E[J Ut C()) dt, the total expected discounted utility from consumption
over the time interval [0, T'];
2. EU,(X(T)), the expected utility from terminal wealth.

The d + 1 assets or securities available to the agent are very general. One
of them is a bond, a security whose instantaneous rate of return may fluctuate
(possibly randomly), but which is otherwise riskless. The other assets are
stocks, risky securities whose prices have randomly fluctuating mean rates of
return b,(¢) and dispersion coefficients o;;(¢). Section 2 provides a careful
exposition of these matters. The stock prices are driven by independent Wiener
processes; these represent the sources of uncertainty in the market model,
which we assume to be complete in the sense of Harrison and Pliska (1981,
1983) and Bensoussan (1984).

In our context, completeness amounts to nondegeneracy of the ‘“diffusion”
matrix a(t) = o(t)o”(¢), as imposed in condition (2.3). This condition guaran-
tees, roughly speaking, that there are exactly as many stocks as there are
sources of uncertainty in the market model. It also enables us to construct a
new probability measure under which the stock prices, discounted at the rate
r(¢) of the bond, become a local martingale; this fact is of great importance in
the modern theory of financial economics, and we refer the reader to Harrison
and Pliska (1981, 1983) for a fuller account of its ramifications.
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The processes r(¢), b;(¢) and o;,(¢), 1 < i, j < d, will be collectively referred
to as the coefficients of the market model. In a companion paper, Xu and
Shreve (1992), we examine the case where r, b, and o; » 1<i,j<d, are
constants. The companion paper is nearly independent of the present paper,
although it does refer to the present paper for notation and interpretation. In
both papers, we assume that our agent is a “small investor,” in that his
decisions do not influence the asset prices, which are treated as exogenous.

Single-agent consumption—portfolio problems have been investigated by a
number of authors. A significant plateau was reached by Merton (1969, 1971),
who found closed-form solutions to the Hamilton—Jacobi—Bellman equation
for a constant-coefficient model with power utility functions. Karatzas,
Lehoczky, Sethi and Shreve (1986) generalized this work to allow general
utility functions. More recently, Cox and Huang (1989), Pliska (1986) and
Karatzas, Lehoczky and Shreve (1987) used martingale methods to study the
problem with nonconstant market coefficients. Using the Girsanov theorem to
change to a probability measure under which all the stock prices discounted by
the bond rate become martingales, these authors found a simple expression for
the optimal consumption process. The fact that every martingale relative to a
Brownian filtration can be represented as a stochastic integral with respect to
the underlying Brownian motion played a key role in the proof that this
consumption process can be financed, that is, that there is a corresponding
portfolio process which, together with the consumption process, results in a
nonnegative wealth process. However, the portfolio process which is obtained
by this method may require short-selling of the stocks. This paper and Xu and
Shreve (1992) examine the model in which such short-selling is prohibited.

The approach of this paper is to define a dual problem for the original
consumption-portfolio problem, hereafter referred to as the primal problem.
Rockafellar and Wets (1976) have developed such a duality theory for discrete-
time stochastic control, and Bismut (1973) has studied the continuous-time
case. This approach has been used to get necessary conditions for optimal
control processes, for example, Rockafellar and Wets (1978) and Frank (1984).
Bismut (1975) applied this theory to stochastic growth problems and asset
allocation problems. Our work is in the spirit of Bismut (1975), but our
problem is complicated by the presence of a short-selling constraint and our
analysis is enhanced by the martingale representation theorem. Pages (1989)
has studied a complete market problem with an endowment stream and with
the constraint that wealth be nonnegative at all times. He provides conditions
sufficient for the existence of an optimal solution, which he characterizes via
duality. For the problem at hand, we do not know how to directly establish
existence of an optimal solution, but we can establish existence of an optimal
dual control process under fairly general conditions, and then use complemen-
tary slackness to obtain existence in the original (primal) problem and to
characterize the optimal consumption and portfolio processes in that problem.

. Our dual problem is defined in Section 3, and the relations between the two
problems are developed in Section 4. Section 5 proves the existence of the
optimal dual and primal control processes.
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The approach of Xu and Shreve (1992) is to attack directly the
Hamilton-Jacobi-Bellman equation associated with the consumption-invest-
ment problem. The solution to this equation was discovered by specializing the
results of the present paper, but once the solution is known, the verification of
the solution can proceed without reference to this paper.

Both this paper and Xu and Shreve (1992) are derived from the first
author’s Ph.D. dissertation [Xu (1990)]. The duality method presented in this
paper is also useful in the study of optimal consumption and investment in
incomplete markets; we refer the reader to Karatzas, Lehoczky, Shreve and Xu
(1991) for an analysis of the maximization of the utility of terminal wealth in
an incomplete market. He and Pearson (1989) have developed a closely related
approach for both the incomplete market problem and the complete market
problem with short-selling prohibition.

2. Formulation of the primal problem. In this section we formulate
the problem of optimal consumption and investment when short-selling of the
stocks is prohibited. We follow the notation of Karatzas and Shreve (1987),
Section 5.8, which can be consulted for a more detailed formulation of this
model. See also the survey by Karatzas (1989).

2.1. Assets. To model uncertainty, we will consider our problem on a
probability space (Q, %, P). We assume that the o-field % is rich enough to
support a d-dimensional Brownian motion {w(¢), #(¢); 0 <t < T}, where T is
a fixed finite horizon and {#(¢)} is the augmentation by null sets of the
filtration generated by w. There are d + 1 assets being traded continuously on
the finite horizon [0, T']. One of them is a bond, whose price p(¢) at time ¢
evolves according to the differential equation

(2.1) dpo(t) = r(t)ps(t)dt, O0<t<T.

The remaining d assets are stocks, and their prices are modeled by the
stochastic differential equations

dp;(¢) = pi(2)| b;(¢) dt + _Zd'. a;;(t) dw(t) |,

(2.2) =

0<t<T,i=1,...,d.

The interest rate process r(-) as well as the vector process b(:) =
(by(*), ..., b,(:)T of mean rates of return and the d X d matrix volatility
process o(-) = (0;;(+)) are assumed to be {F(¢)}-progressively measurable and
uniformly bounded. We introduce the covariance process a(-) £ o(:)o”(-) and
assume the strong nondegeneracy condition

(2.3) ETa()é > kollell?, VéeR?,VEe[0,T],as.,

for some k, > 0. This implies that there is a constant k, such that [see, e.g.,



90 G.-L. XU AND S. E. SHREVE

Karatzas and Shreve (1987), Problem 5.8.1, with solution on page 393]

max([(a7(#)) " €ll, (o (£)) "¢ll} < gl

(2.4)
VéeR4,Vte[0,T],as,

o p o1 o L
@5 min{l(a7(¢)) "¢l (o (2)) €l > el

VéeRY,Vte[0,T],as.
For specificity, we assume that p,(0) = 1,7 = 0,..., d. The solution to (2.1)

with this initial condition is- py(¢) = exp([¢{r(s)ds). We define for future
reference a discount process

1 t
(2.6) B(¢) 2 O] =exp(—[0r(s) ds), 0<t<T.

2.2. Portfolio and consumption processes.

DEFINITION 2.1. A portfolio process w(+) = (m(*),..., m;(-)T is a measur-
able, {#(¢)}-adapted, R?valued process satisfying [Jllw(®)|®dt < » as. A
consumption process C(-) is a measurable, {%(¢)}-adapted, dt X dP-almost
everywhere nonnegative process satisfying [JC(t) dt < « a.s.

In Definition 2.1 we regard =,(¢) as the value of stock i held by an agent at
time ¢ and we regard C(¢) as the rate of the agent’s consumption at time ¢. If
X(¢) denotes the wealth of the agent at time ¢, then the amount of money
invested in the bond is X(#) — 177 (¢), where 1 denotes the d-dimensional
vector of ones. In view of (2.1) and (2.2), the agent’s wealth must evolve
according to

dX(t) = (r(t)X(t) — C(¢)) dt + =wT(¢)(b(t) — r(¢)1) dt
+ 7T (t)o(t) dw(t), 0<t<T,

whose solution is given by

BHX(0) =x + [B(s)[~C(s) + 77(s)(b(s) — r(s)1)] ds

(2.7

(2.8)
+ [B(s)n7(s)o(s) du(s),
0

where x > 0 denotes the agent’s initial wealth.

DEFINITION 2.2. Let an initial wealth x > 0 and a consumption—portfolio
. progess pair (C,w) be given. We say that (C,w) is admissible for x if for
i=1,...,d, we have

(2.9) m(t) 20, dt X dP-ae.
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and the wealth process X(-) defined by (2.8) satisfies
(2.10) X(¢)=0, O0<t<T,as.

The set of all consumption-portfolio process pairs which are admissible for x
will be denoted by A(x).

Condition (2.9) rules out short-selling of stocks. However, X(¢) — 177(¢) is
allowed to become negative, that is, borrowing from the bond is permitted.

Following the notation of Karatzas and Shreve (1987), Section 5.8, we
define the relative risk process

(2.11) 0(t) 2 (a(2))7'[b(2) —r(t)1], O0<t<T.
We then introduce the martingale
1
(2.12) Z(t) 2 exp —[’oT(s)dw(s) - —[’Ilo(s)||2ds , 0<t<T,
0 2J
and the new probability measure P defined by
(2.13) P(A) 2 E[Z(T)1,], VAe %,
and the drifted Brownian motion
(2.14) W(t) 2 w(t) + ftﬂ(s) ds, 0<t<T.

According to Girsanov’s theorem, i is a standard Brownian motlon under P.
In terms of @, we may rewrite (2.8) as

(2.15) B(t)X(t) +[Otﬁ(s)0(s)ds -x +[Ot;3(s)wT(s)a(s)dw(s).

If (C, w) is admissible, then the left-hand side of (2.15) is nonnegative and the
right-hand side is a local {%(¢)}-martingale under P. But Fatou’s lemma
shows that any nonnegative local martingale is a supermartingale, and the
supermartingale property in (2.15) yields

B[ o) 2(r)x(1) + [T8(0)2()00) i
(2.16)
- E[B(T)X(T) + [OTﬁ(t)C(t) dt] <x.

. We have obtained the following mecessary condition for admissibility.

ProrosiTioN 2.3. If (C,w) € A(x) and X(-) is the corresponding wealth
process, then (2.16) is satisfied.
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2.3. Utility functions.

DEFINITION 2.4. A utility function U is a strictly increasing, strictly con-
cave, twice continuously differentiable, real-valued function defined on [0, »)
which satisfies

(2.17) U(©0) =0,
(2.18)  U(0) 2 lmU'(x) ==, U'(w) £ lim U'(x) = 0,

(2.19) 0<U(x) <ky(l+xP) Vx=0,

for some constants «; > 0, 0 < p, < 1.

Condition (2.17) can be replaced by the assumption that U(0) > —; we
assume (2.17) only for notational convenience. However, our model does not
include utility functions such as log, for which U(0) = —«. Condition (2.18)
ensures that the strictly decreasing, C! function U’ maps (0,%) onto (0, ),
and hence has a strictly decreasing, C! inverse I: (0, %) — (0, »), that is,

(2.20) U(I(5) =y, Vy>0,
I(U'(x))=x, Vx>0.

We define

(2.21) 1(0) £ }ifr(}[(y) = w,

the last equality resulting from U’(«) = 0.

Throughout the remainder of the paper, we will have a terminal wealth
utility function U,: [0,©) — R satisfying the properties in Definition 2.4 and
with I, denoting the inverse of Uj;, and we will have a consumption utility
function U,: [0, T] X [0,) — R which is (jointly) Borel measurable. For every
t €[0,T], U, - ) is assumed to satisfy Definition 2.4 with «, and p, indepen-
dent of ¢. We denote by Uj(¢, x) the derivative of U, with respect to its second
variable, and we denote by I,(¢, - ) the inverse of Uj(¢, - ).

2.4. The value function. For x > 0 and (C, 7) € A(x), we define the ex-
pected utility of (C,m) as

(2.22) J(x,C,m) 2 E[OTUI(t,C(t)) dt + EU,(X(T)),

where X(-) is given by (2.8) [or equivalently, (2.15)]. The primal value
function is

(2.23) V(x) & sup{J(x,C,m)I(C,m) € A(x)}, Vx=0.

An optimal consumption—portfolio process pair is one which attains the
supremum in (2.23). Because of the strict concavity of U(t, - ) and U,, if such
a pair exists, the consumption process component C(-) and the corresponding
terminal wealth X(T') are uniquely determined [see Xu (1990), Theorem
2.4.5].
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Our goal is to characterize V, to obtain conditions under which an optimal
consumption—portfolio process pair exists and to characterize this pair. We
begin with the following description of V.

PROPOSITION 2.5. The primal value function V: [0,») — [0, ») is a continu-
ous, nondecreasing concave function.

Proor. We first obtain an upper bound on V(x). With p, as in (2.19),
choose ¢, € [1,1/p,) and define g, = 1 — q,p, € (0,1). Given (C, ) € A(x)
and the corresponding wealth process X(-) of (2.15), we use (2.19), the
inequality (a + b)% < 29(a? + b%) V a, b > 0, and the boundedness of r(-) to
write

E["[Ut,C(0)]" dt < (@) " E[[1 + (C())""] at
< (2r) 7 + T [T[() 0] |
Holder’s inequality and Proposition 2.3 imply
E["[B(5)C(H)]"" di = E[ 27 0(1) [B(2)Z(£)C ()] "

q1P0

< ( E jo Tz-awo/ar(t) dt)qz( E jo TB(6)Z(t)C(2) dt)

r 2
< ([ EZ =910/ 92(¢) dt) x %P0,
0

Because 6 appearing in (2.12) is bounded, EZ~%10/%2(¢) is bounded uniformly
in ¢ € [0, T']. Therefore, for some constant k(q,) independent of x, C and m,
we have

(2.24) EIT[Ul(t’ C(t))]ql dt < K(ql)(l + qupo)-

0
A similar estimation applied to E((U,(X(T'))]%*) results in the inequality
(2-25) E([Uz(X(T))]ql) < K(ql)(l + quﬂo).

Setting ¢, = 1 in (2.24) and (2.25), we obtain an upper bound on J(x,C, )
which is independent of C and ; the finiteness of V(x) follows.

Since the sets A(x) increase with x, V must be nondecreasing. To
prove concavity, note that for x,,x, >0, A €(0,1), (Cy,7,) € A(x;) and
(C,,my) € A(xy), the linearity of the wealth equation (2.7) implies that
(AC; + (1 = AM)Cy, Ay + (1 — Mmry) € A(Ax; + (1 — M)xy). The concavity of
U(¢, - ) and U, allows us to conclude that

" A (%, Cypmy) + (1 - A)J(xz’cz,ﬂz)
S J(/\xl + (1 - A)x2, ACI + (1 - A)Cz, Aﬂ'l + (1 - A)'Tr2)
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Maximize the left-hand side of this inequality over (C,,m,) € A(x,) and
(Cy, m3) € A(x,) to obtain the concavity of V.

The concavity of V implies its continuity on (0,%). Now V(0) = 0 [recall
(2.17)], so to establish the continuity of V at 0, it suffices to show

(2.26) lim V(x) < 0.
xl0

For every ¢ € (0, 1), choose (C,, m,) € A(e) such that
(2.27) V(e) < Jd(e,C,,m,) +&.
Let X,(-) be the associated wealth process. Inequality (2.16) implies

EB(T)Z(T)X(T) <, EfOTB(t)Z(t)CS(t)dtSe.

Because L' convergence implies convergence almost everywhere along a sub-
sequence, we can choose {¢,);_; such that ¢,10, B(T)Z(T)X, (T) -0,
P-ae., and B(-)Z(-)C,(-) — 0, dt X dP-a.e. But (2.25) with ¢, > 1 lmphes
that {U2(X(T))}T; L s unlformly P-integrable, and (2.24) with ¢, > 1 im-
plies that {U(-C,(-))),_; is uniformly dt X dP-integrable. Therefore,

lim, ., J(e,,C, ,m, ) = 0, and (2.26) follows from (2.27). O

3. Formulation of the dual problem. In this section we introduce a
stochastic control problem which is dual to the problem of Section 2. We define
the dual value function and establish its basic properties. The relationship
between the dual problem of this section and the primal problem of Section 2
will be explored in Sections 4 and 5.

3.1. Concave-convex conjugate function pairs.

DermirioN 3.1. Let U be a utility function (Definition 2.4). The convex
conjugate of the concave function U is the convex function U defined by

(3.1) U(y) 2 sup{U(x) —xy}, Vy>O0.

x>0

It is an easy exercise to verify that

(32) U(0) = }Vi?(}ﬁ(y) =U(x), U(=)* Jim U(y) = U(0) = 0.

From (2.20) we have
(3.3) U(y) =U(1(y)) —y1(y), VYy>0,

. 80

34)  U()=-I(y), Uy =-I() >0, V¥y>o.

In particular, U is a strictly decreasing, strictly convex, C? function. Equation
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(8.1) implies
(3.5) Ux) <U(y) +xy, VYx=0,Yy>0,

and equality holds if and only if x = I(y), or equivalently, y = U’(x). It follows
that

(36) U(x) = ing{lj(y) +xy} = U(U'(x)) +2U'(x), Vx>0
y>
Finally, (3.1) and (2.19) imply
(3.7) 0<U(y) < sup{iy(1+x°) —xy} <ko(l+y7%), Vy>0,
x>0

where «k, is a positive constant and a = p,/(1 — p,).
Associated with the utility functions U; and U, introduced in Section 2.3,

we have the convex conjugate functions U,, U, defined by

(3.8) Uy(t,y) = sup{Uy(t,x) —xy}, Vete[0,T],Vy>0,

x>0

(3.9) Up(y) = S‘:I;{Uz(x) —xy}, Vy>0.

We define these functions at y = 0 and y = = as in (3.2). We denote by Ui(t,y)
the derivative of U, with respect to its second argument.

3.2. Dual control processes.

DerFINITION 3.2. A dual control process is a measurable, {#(¢)}-adapted,
R-valued process #(-) = (#(*),..., 7,(:))T which satisfies E[J ||l7#(¢)|I> dt < «
and

(3.10) 7(t) =0, dtxXdP-a.e.
The set of all dual control processes will be denoted by A.

For 7+ € A, we define the nonnegative local martingale (hence supermartin-
gale)

Z.(t) 2 exp{—ft[e(s) + o-‘l(s)a'-‘r(s)]wa(s)
(3.11) 0

1 . 9
_ELHO(S) + o }(s)w(s)ll ds}, 0<t<T.

LEmMA 3.3. The set of processes 22 {Z.(*)|7r € A} is convex.

Proor. For every A > 0, u > 0 with A + u = 1, and for every 7, 7, € A,
define £ =AZ; +pZ., 7 =1/6XATZ; + rfaZ; ). Then 7 € A, £(0) = 1,
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and
dé(t) =AdZ;(t) + pdZ;(t)

—AZ,(1)[0(t) + o7 () ()] duw(t)
— nZ(t)[6() + o7 () 7o(1)] " duw(2)

—£()[0(2) + o7 ()7 ()] dw(t).
Therefore, ¢ =Z. € . O

3.3. The dual control problem. Let U, and U, be defined by (3.8) and
(3.9). For y > 0 and # € A, define the dual objective function

- T ~ ~
(312)  J(y,7) & E[ Ui(t,y8() Z+(t)) dt + EU,(yB(T) Z5(T)).
The dual problem is to minimize J(y, #) over A for fixed y. The dual value
function V is defined by
(3.13) V(y) 2 inf{J(y,#)l7 €A}, Vy=0.

An optimal process for the dual problem with initial condition y is a process
7, € A which attains the infimum in (3.13). Because of the strict convexity of

U(t, ) and U,, if such a process exists, it must be unique [see Xu (1990),
Theorem 3.3.1].

THEOREM 3.4. Restricted to (0,), the dual value function V is finite,
nonnegative, continuous, nonincreasing and convex. Moreover,

(3.14) V(0) & ["Ty(t,0) dt + Ty(0) = imV(y),
0 yl0
but V(0) may be infinite. If V(0) is finite, then

e V) -V
(3.15) V/(0) £ lim —=———— =

Proor. Because U(t, - ) and U, are nonincreasing and nonnegative, V is
also. Let 0 denote the identically zero dual control process, and note that Zj is
the martingale Z defined by (2.12). Inequality (3.7) implies that for every
y>0,

V(y) <J(,0) < EfOTK2[1 + (yﬂ(t)Z(t))‘“] dt

) 4 Eiy[1 + (y8(T)Z(T)) "]

Because B(:) and 6(:) are uniformly bounded, the above expectations are
finite, s0 0 < V(y) < o, V y > 0.
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We now prove convexity of V.For y;,y, > 0, A, u > 0 such that A + u = 1,
and #,, 7, € A, by Lemma 3.3 there exists # € A such that

1
Z- = Ay Z,ﬁ. + I.Ly Z,ﬁ, .
Non iy (i T 10:)

Therefore,

V(Ay; + nyz) < J(Ayy + pys, )
> jo U8, B(2) (124 (t) + 1322 (0))) de
+ EUy(B(T)(A1Z4(T) + p32Z:(T)))
<E jo (AUt 7,802 (2)) + mUL(t, 7:8() 24 (1))] dt
+ E[AU(1.B(T) Zo(T)) + nUs(928(T) Z:(T))]

= Aj(yl, 'ﬁ'l) + I.Lj(yz, ’ﬁ'z).

Minimization of the right-hand side of this inequality over #,, 7, € A yields
the convexity of V. The continuity of V on (0, ) follows from its convexity.

The monotonicity of V implies V(0) > lim,, 0V(y) For the reverse inequal-
ity, let « be an upper bound on B(-). The monoton1c1ty of Ut -) and U,
dJensen’s inequality and the supermartingale property imply that for y > 0,
TEA,

F(5, %) = E[ Uy(t, yxZ,(2)) dt + EUy(ykZ(T))
0

> [TO,(t, yEZ(t)) dt + Up(yxEZ,(T))
0

> [TO(t, yx) dt + Uy(yx).
0

Therefore,
- T ~ -~
V(y) = [ Uyt ye) dt + Up(yx),

and the monotone convergence theorem implies
&

limV(y) = [ Uy(t,0) dt + Uy(0) = V(0).
yi0 0
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If V(0) < «, then

~V(0) = i YO V) o VO ~I(0,0)

le y y10 Yy

Y I Y -
= hmmf{;Efo [Uy(2,0) — Uy, yB(t) 2(2))] dt

yi0

1 . -
+;E[U2(O) - Uz(yB(T)Z(T))]}

> liminf 2 B[0,(0) - Uy(sB(T)2Z(T))].
The convexity of U,, (3.4), (2.21) and the monotone convergence theorem
imply

1 -
lil;llionf;E[Uz(O) - Uy(yB(T)2(T))]

= yng[B(T)Z(T)Iz(yB(T)Z(T))] = . o

COROLLARY 3.5. For every x > 0, there exists y, > 0 such that

(3.16) V(y,) +xy, = inf(; {V(y) + xy}.
y>

Proor. Define f: (0,) —» R by f(y) = V(y) + xy. Note that f is continu-
ous and lim, ,, f(y) = . If V(0) = =, then lim, o f(y) =, and f attains
its m1n1mum on (0,). If V(0) < o, then f has a contlnuous extension to
[0, ) and must attain its minimum at some y, € [0,®). According to (3.15),
f'(0) = —, so y, must be positive. O

4. Relations between the primal and dual problems. In this section
we show that, for any dual control process 7, the objective function (-, #) in
the dual problem provides a bound on the value function V for the prlmal
problem. Moreover, the existence of an optimal dual control process 7 implies
the existence of an optimal consumption—portfolio process pair (C, 7), and 7 is
related to 7 by the complementarity condition (4.4) below.

4.1. Weak duality.

. WEaKk Duauity THEOREM 4:1.  For every x > 0, y > 0, (C,w) € A(x) and
1 € A, the inequality

(4.1) J(x,C,m) <J(y,#) +xy
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holds. Equality holds in (4.1) if and only if

(4.2) C(t) = I(t,yB(t)Z+(¢)), dt xdP-a.e.,
(4.3) X(T) = L(yB(T)Z«(T)), as.,

(4.4) wT(t)#(¢t) =0, dtxdPa.e.,

(4.5) Ef "Z.(1)B(+)C(t) dt + EZ,(T)B(T)X(T) = x,

where X(+) is the wealth process associated with x, C(-) and w(-) [see (2.8)],
and Z.(-) is given by (3.11).

Proor. From (2.8), (3.11), (2.11) and It6’s rule, we have
d(Z(2)B(t) X(2))
= —Z(£)B(2)C(t) dt — Z;(t)B(t)w" (¢)7(¢) dt
+ Z,(0)B()| 7T (D)o () — X(£)(6(2) + o1 () #(t))" | dw(2),
SO

Z())B(8) X(2) + f(:Zﬁ(S)B(S)C(S) ds

+[Z)B(s)7(5)i(s)ds,  0stsST,

is a nonnegative local martingale, hence a supermartingale. This supermartin-
gale has initial condition x, so

EZ.(T)B(T)X(T) + B[ Z,(s)B(5)C(s) ds
(4.6)
+ Ej;TZﬁ(s)B(s)wT(s)ﬁ(s) ds < x.
From (3.5) we have
U (¢,C(2)) < U'l(t,yB(t)Zﬁ(t)) + yB(t)Z;(¢)C(2), dt X dP-a.e.,
Uy(X(T)) < Uy(y8(T)Z+(T)) +yB(T)Z:(T)X(T), as.,

and equality holds if and only if (4.2) and (4.3) hold. Therefore,

J(x,C,7) < J(y,7) + y{EfOTB(t)Zﬁ(t)C(t) dt
(47) +EB(T)Z,(T)X(T) |

. <J(y,7) +yx
because of (4.6) and the fact that w7(¢)#(¢) > 0, 0 < ¢ < T, a.s. Equality holds
in (4.7) if and only if (4.2)-(4.5) hold. O
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COROLLARY 4.2. For everyx > 0 andy > 0,
(4.8) V(x) < V(y) + xy.
If (C,m,) € Alx) and 7, € A satisfy (4.2)-(4.5), then they are optimal in their
respective problems, that is,
(4.9) V(x) =d(x,C,m,), V(y)=J(y,7,).

REMARK 4.3. Corollary 4.2 implies that
(4.10) V(y) = sup{V(x) —xy}, Vy>0,

x<0

that is, V dominates the convex conjugate of V. We provide conditions in
Corollary 4.9 and Remark 5.7 under which the reverse inequality holds.

4.2. Strong duality. In order to construct pairs (C,7) € A(x) and # € A
which are related by the duality conditions (4.2)-(4.5), we begin with y > 0
and 7 € A. We can define C(-) by (4.2) and x by (4.5) [with X(T') given by
(4.3)], and we must then ask whether there is a portfolio process = € A(x)
satisfying (4.4) such that the wealth process X(-) associated with x, C(-) and
m(-) satisfies (4.3). We first construct a portfolio process 7 such that (4.3) is
satisfied, but = may take negative values and so may fail to be admissible. We
subsequently show that if # is optimal, then 7 is indeed admissible and (4.4)
holds.

LEmMMA 4.4. Let y> 0 and # € A be given. Define C(-) by (4.2) and
assume the finiteness of

(411) x 2 EfOTz,.,(t)B(t)C(t) dt + E[Z,(T)B(T) L,(yB(T)Zx(T))).

Then there exists a portfolio process m(-), which may take negative values, and
there exists a continuous, nonnegative process X(), such that

(4.12) X(0)=x, X(T)=IL(yB(T)Z«(T)),
dX(t) = (r(t)X(¢t) — C(¢))dt
(4.13) + 7T(8)(b(t) — r(t)1 + #(¢)) dt

+wT(¢)o(t) dw(t), 0<t<T.
ProoF. Define
D4 foTz;,(t)B(t)C(t) dt + Zﬁ(T)B(T)IZ(yB(T)Zﬁ(T)),

so x = ED. We may assume that P-a.e. path of the martingale B(¢) £
E(D|#(2)) is right-continuous [Karatzas and Shreve (1987), Theorem 1.3.13],
- and so B has a representation as

B(t) =x + [O‘YT(S) dw(s), 0<t<T,
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where Y(-) is an R%valued, {#(¢)}-progressively measurable process satisfying
JZIIY@)I? dt < = as. [use Karatzas and Shreve (1987), Theorem 3.4.15 and a
localization argument]. In particular, B is actually continuous. Define

£(t) = B(2) — [[B(s)C(5)Zs(5) ds,
(4.14)  X(1) = € [B) Zo(1)] 7,
m(t) = X’(t)(vT(t))'l[ﬂ(t) +o () 7(E) + ?(%
Then X(0) = x, X(T') = I,(yB(T)Z.(T)). To verify (4.13), we observe that
dé(t) = YT (t) dw(t) — B(t)C(8)Z:(2) dt,
d[B(1)Z(1)] 7 = [B(£)Z:(2)] "'[r(2) +116(2) + o7 ()7 (D)I?] dt
+[B(1) Z,(8)] "[6(2) + o M) 7 (2)]" duw(t).

Y(t)|.

Therefore,
dX(t) = X(¢)[r(2) +ll6(2) + o ()7 (2)I] dt
+ X()[6(2) + o 1) 7(8)]" dw(t)

X(t)
+ ?(HYT(t) dw(t) — C(¢) dt
+ 0 YT(2)[0(2) + o~ Y(t)7(t)] dt
= (r() X(¢) - C(2)) dt + nT(t)a(t)[6(2) + o~ (t)7(t)] dt
+ 7T(t)o(t) dw(t),

which agrees with (4.13). O
REMARK 4.5. Note that (4.13) differs from the wealth equation (2.8) be-
cause of the term 77 (¢)#(¢) dt in (4.13); when the complementary slackness
condition (4.4) holds, the two equations agree. The solution to (4.12) and (4.13)
satisfies
(4.15) B(t)X(¢) =M(2) - [B(s)C(s)ds, 0=<t<T,
0

where

. (418)  M(¢) éx+jotp(s)ﬂ(s)a(s)dw,.,(s), 0<t<T,

(4.1.17) wa(t) £ w(t) + j:(ﬂ(s) + o7} (s)(s))ds, O0=<t<T.
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From the definitions in the proof of Lemma 4.4, we also have the useful
formula

2B X(r) = E| ["2,()8(5)C(s) sl ()]

®

(4.18)
+E|Z,(T)B(T)X(T)IF(7)],

for any {Z(¢)}-stopping time 7 taking values in [0, T'].

Let y > 0 be given and assume the dual problem with initial condition y has
an optimal solution 7,, that is,
(4.19) J(y,7,) =V(y).

In the remainder of this section, we show that the corresponding portfolio
given by Lemma 4.4 is optimal in the primal problem with initial wealth x
given by (4.11) when 7, is substituted for 7. In order to obtain this result, we
define

g,(1) 2 J(ry, %)
(4.20) = E["Uy(t, yB(t) Z; (1)) dt
0

+ EUZ(AyB(T)Z,-,y(T)), VA>0,
and we need to assume
(4.21) 35, (0,1) suchthat g,(A) <», VAre(1-8,1+35).
A sufficient condition for (4.21) is that for some a € (0, 1), y € (1, ),
aUi(¢,x) 2 Uj(t,yx),  aUi(x) = Uz(yx),

Vte[0,T], x> 0;

see Karatzas, Lehoczky, Shreve and Xu (1989), Lemma 11.5.

(4.22)

LEMMA 4.6. Lety > 0 be given, assume ,, € A satisfies (4.19) and assume
(4.21). Then g, is differentiable at 1 and
T
(429 g(1) = —E[ yB(t) Zs () Ii(t, yB(1) Z (1)) dt
— E[yB(T)Z; (T)I(y8(T) Z:(T))]-

PrOOF. Because of the convexity of U,, we have for A € (1 — 8,/2,D U
(1, ), ‘
1 ~ -
o | Ce(MB(T) 25 (1)) = To(yB(T) Z:,(T) )|
2

< —
63’

Al 351 PR Z,(T)) - @(yﬁ(T)zﬁy(T))].
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The right-hand side is integrable, so the dominated convergence theorem and
(8.4) imply

i .
aEUZ,(AyB(T)zﬁ,(T))L:l = —E[yB(T) 2+ (T) L,(yB(T)Z,(T))).
A similar analysis applies to U,, and we thereby obtain (4.23). O

Let 7, € A satisfy (4.19) and let w- be another process in A. For any

e [0, 1] the “perturbed”’ process 7, 2 wy + &( — r,) is also in A, so we can

study the sensitivity of J(y,,) to variations in &. In order to carry out this
program, we introduce some notation. Define

(4.24) N(t) 2 ft[o-'l(s)(ﬁ(s) —#,(s))] dws(s), 0=<t<T,

where w; is defined by (4.17). Corresponding to #,, let m, be the portfolio
process constructed in Lemma 4.4 and let C(-) and X(-) be given by (4.2),
(4.12) and (4.13) when 7 and # are replaced by m, and 1, respectively. For
each positive integer n, define the stopping time

AT A inf{t & [0, T1IIN()| + 1X(8)| + 1Z,(2)]

+j‘||o(s) + o7 1(s)7,(s)lI ds
(4.25) °
+[0‘/3(s)0(s) ds + j:lla‘l(s)(ﬁ'(s) - #,(s))I* ds

+[0‘||UT(s)wy(s)||2 ds > n},

and note that
(4.26) 7, 1T asn — o,
Set w}(t) £ w1, ., ,0<t<T.

LEMMA 4.7. Assume (4.21). Then

VE "2, (BT () (7(2) - 7,(1)) dt
(4.27)

_£1$8[J(y,"”)— ( ﬁy)]éO.

Proor. Because 7, satisfies @. 19), the inequality

lnenl})nf [J(y, wr) — (y’ )] 0
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holds. As for the equality in (4.27), direct computation reveals
Zealt) = Za (t)exp| ~eN(t A7)

tAT,

—1.2 »
2€ f
0

From the definition of 7,, we have
e 27 (8) < Z;p(t) <e™Z;(t), Vn=z=1e€]0,1],2€[0,T]
Choose ¢, € (0,1] such that 1 — e~2"¢ < 38, for all & € (0, ¢,). If £ € (0, &,)
and Z;n(¢) # Zﬁy(t), then the convexity of U, implies
1, . ~
—|Un(oB(T) Z:2(T)) = Un(yB(T) Z(T))|

. Za(MZNT) -1 |Ua(y8(T) Z42(T)) — Up(yB(T)Z:(T))|
£ Z:(T)ZzN(T) - 1

(4.28)

o= 1(s)(#(s) - "y(s))uzds}.

< —max{l — e”2"¢, e"* — 1}
&

e (1 - 38,)2:(T)) - Uy(yB(T) Z,(T))]
- .

U Z..t)=2, (t) the first expression in the above string of inequalities is still
dommated by the last expression. The last expression is the product of a
bounded function of & € (0, ¢,] and an integrable random variable, because of
assumption (4.21). By the dominated convergence theorem, (4.28) and (3.4), we
have

lim & [Uy(yB(T) Zs5(T)) = Un(yB(T) 23 (T))]

J .
= EgUz(yﬂ(T)Zﬁy(T)eXp{_SN(T'L)

(4.29) B _8 f

“1(s)(#(s) — (s))||2ds}) )
= E[yB(T) Z+(T) L(yB(T ) Z;(T))N(r,)]
= E[yB(T)Z; (T) X(T)N(r,)|.

A similar analysis for U, results in the formula 4

1 . .

; ilf% ;E[[OTUl(t,yB’(t)Zﬂ(t)) dt — ATUl(t,yB(t)Zﬁy(t)) dt]
(4.30)

- E[j;)TyB(t)Zﬁy(t)C(t)N(t AT dt].
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Summing (4.29) and (4.30), we obtain
1 -4 -3 ~
llfr(} " [J(y, 7)) = J(y, wy)]
(4.31) =yE[fTZﬁy(s)B(s)C(s)N(s AT,)ds
0

+zﬁy(T)B(T)X(T)N(T,,)].

It remains to show that the right-hand side of (4.31) agrees with the
left-hand side of (4.27). Note first that (4.18) with 7, replacing 7 implies

B[ [72:(9)B(8)C(5)N(s A 7,) ds + 2, (T)B(T) R(T) NGz

= E["Z,(5)B(s)C(5)N(s) ds
(432) .
+ E{N(f,,)E[ (72, (5)B(5)C(s) ds + zﬁy(T)ﬁ(T)X(T)lf(fn)]}

- B[ [ 2 (0B CON() di + 24 () () () N5
so it suffices to prove that this last expression equals

E[ "2, (1)B(5)m ())(7(¢) = #,(1)) de.

Since [§l16(s) + o~ Ys)#(s)I*ds < n as., the Novikov condition [see, e.g.,
Karatzas and Shreve, Corollary 3.5.13] 1mp11es that Z_ (t A 7,) is an {F (t)}
martingale. Define a new probability measure P, “on 5" by P,(A) %
E[1,Z, (7 )], VA € & Girsanov’s theorem implies that under P,, the pro-
cess w; (t A 7,) is a standard Brownian motion stopped at time 7,. Accord-
ing to "Remark 4. 5, d(B@)X() = dM(t) — B(t)C(t) dt, where dM(t) =
Bl (H)o(t) dw, +(£). Therefore,

d(B(t)X’(t)N(t)) = B(t) X(¢) AN(¢) + N(t) dM(¢)
(4.33) — N(t)B(¢)C(t) dt

+ B(2)ml (8)(7(t) — 7y (2)) dt.

Integrating (4.33) and taking expectation under P,, with respect to which
N(t A 7,) and M(¢ A 7,) are martingales, we obtain

E[Zﬁy(fn)ﬁ(fn).’?(fn)N('rn) + f(:"Zﬁ,(t)B(t)C(t)N(t) dt
. (4.34) ) -
: -E jo "Z, ()B(t)TT (£)(7(2) — 7(2)) dt.

Equation (4.27) follows from (4.31), (4.32) and (4.34). O
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STRONG DuaLiTY THEOREM 4.8. Let y > 0 be given and let T, €A be
optimal for the dual problem with initial condition y. Assume that (4.21)
holds. With i, replacing 7, let C(-) be gwen by (4.2), x by (4.11), and let , be
the portfolio process whose existence is guaranteed by Lemma 4.4. Then
(C,m,) € A(x) and

(4.35) ) (¢)7(t) =0, dt XdP-a.e.
In particular, the pair (C,,) is optimal in the primal problem with initial

wealth x, that is, (4.9) holds.

Proor. According to Corollary 4.2 and Lemma 4.4, we need only to verify
that

(4.36) m,(¢t) 20, dtXdP-ae,
and that (4.35) holds. Define # = (#,,...,#,;) € A by
w(2) & (#,),(2) - (7,),(0) 0<t<T,j=1,...,d.

1+ flary ()2 O

Lemma 4.7 implies

~E["Z,(1)B(2)

1
THimOF & Z (M) 3() L < 0y G 2 O,

from which we conclude that (m,); > 0, d¢ X dP-a.e. on the set {(t, w)|0 < ¢ <
7,(w)}. Because of (4 26), we have (4 36).
Now take 7+ = '2'17' and apply Lemma 4.7 again to conclude

(4.37) - Ej’"z,.,y(t)ﬁ(t)wf(t)ﬁy(t) dt>0, n=12,....

Since m/(t) > 0, #7,(t) = 0, dt X dP-almost everywhere, (4.37) implies
wy ()7, (t) = 0, first on {(¢, »)|0 < ¢ < 7,(w)} and then on [0, T] X Q, dt X dP-
almost everywhere m]

COROLLARY 4.9. Under the assumptions of Theorem 4.8, V(y) =
sup,, o{V(£) — £y).

Proor. With 7, m, and x as in Theorem 4.10, we have from the Weak
Duality Theorem 4.1,

V(y) =d(y,%,) = J(x,C,m,) —xy <V(x) —xy < iulg{V(f) - ¢&y).
The reverse inequality follows from Remark 4.3. O
The Strong Duality Theorem 4.8 begins with a dual variable y > 0 and an

optimal dual process #,, and then constructs an optimal consumption—port-
folio process pair (C, gfor the primal problem with initial wealth x, where x
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is defined in terms of y and #, by (4.11) with # replaced by 7,. We now show
how, beginning with x, to find the corresponding dual variable y which
permits this construction.

THEOREM 4.10. Assume that for every y > 0, there exists an optimal control
process i, € A for the dual problem with initial condition y. Assume further
that (4.21) holds for every y > 0. For every x > 0, let y, > 0 be a minimizer of
V(y) + xy (the existence of y, is guaranteed by Corollary 3.5). Then (4.11)

holds with replaced by 7, . In partwular the consumption—portfolio process

(C,m, ) constructed in Theorem 4.8 is optimal for the primal problem with
lnltlal wealth x.

Proor. We are given that y, satisfies (3.16), and must prove that
T
x = E[ Zs (B8, 9.B(t) 2, (1))
(4.38) + E|Z; (T)B(T) L{yB(T) 2, (T))|
1 !
== ;;g yx( 1) ’
the last equality being a restatement of (4.23). We have

inf (J(hy,, %) + Ay} = inf {J(3,%,) + o) 2 inf (V(5) + )

= V(yx) +xy, = j(yx,'ﬁ'yx) + xy,.

Therefore, the function A — g, (A) + Axy, is minimized by A = 1, and conse-
quently, g, (1) + xy, = 0. O

COROLLARY 4.11. Under the hypotheses of Theorem 4.10, we have
(4.39) V(x) = min (V(y) +xy}, Vzx>o0.
y>
Proor. Given x > 0, let y,, 7, and (C,, ) be as in Theorem 4.10. These

processes were constructed to satlsfy 4.2)- (4 ’5), s0 (4.1) holds with equality.
From (4.6) we have

V(x) < min{V(y) + 2y} = V(5,) + 2,
y>
) = j(yx,‘i'yx) +xy, =J(x,C,7) < V(x). O

5. Existence of optimal dual processes. A key assumption in the
Strong Duality Theorem of the previous section was the existence of an
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optimal dual process. In this section, we show that if

1y - W5 3 vie[o,T] x>0
. = 17N =4 TP <1, € ’ ) X ’
Us(x) Ui(t, x)

then for every y > 0, the dual problem with initial condition y has an optimal
solution. The ratios appearing on the left-hand side of the inequalities in (5.1)
are called the Arrow-Prait indices of relative risk aversion.

LemMA 5.1. Let U: [0,%) — [0,) be a utility function (Definition 2.4).
Then

xU"(x)

U'(x)
if and only if the mapping from R to [0,) given by s — Ul(e®) is convex. In
this case,

(5.3) U(x) = U(0) = .

Proor. From (2.20) and (8.3), we have

(5.2) - <1, Vx>0,

%U(es) =U'(I(e®))I'(e*)e® — e’I(e®) — e*I'(e®) = —e®I(e*),

Z7U(en) = —e¥I'(e?) - e'I(e’) = Wd TNy

Therefore, U(e®) is a convex function of s if and only if
d
(5.4) d—x(xU’(x)) >0, Vx>0.

But (5.4) is equivalent to (5.2). Moreover, (5.4) implies U'(x) > U’(1) /x,
V x > 1, and integration of this inequality yields U(») — U(1) = ». The re-
mainder of (5.3) is a restatement of (3.2). O

Let H denote the set of all measurable, {#(¢)}-adapted, R%-valued processes
# satisfying E[J|l#(@)|?> dt < ». We impose on H the inner product

(5.5) <w1,72>AEj #T(t)7y(2) dt, V7,7, €H,

and we denote the associated norm by |#| £ V{(#,#), V # € H. The set of
dual control processes A of Definition 3.2 is a closed convex set in the Hilbert
space H. For every fixed y > 0, J(y, - ) given by (3.12) is a possibly »-valued
nonlinear functional on A. The finiteness of /! i(y, #) for at least some 7 € A
’ follows from Theorem 3.4. For # € H \ A, we define J(y, #) = =,

LEMMA 5.2. For every y > 0, the extended real-valued functional J(y, - ) is
lower semicontinuous on H.
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Proor. It suffices to show that if {#,);_, is a sequence in A which
converges in norm to # € A, then

(5.6) J(y, #) < limian'( ¥, 7).
Define y, 20 + o~ '#,, y 20 + o '#, and note that lim,_ E[T Iy (t) —

yOI* dt = lim,, .| y, — yI =0,
,}iﬂEfo [y (I = lly(&)IP dt = lim E[ I9n(1) = 3()) " (a(®) +3(8))I

< limly, —y| |y, +51 =0.
It follows that
1
lim EfTHftyn(s) dw(s) + —’/‘t".}'n(s)“2 ds]
(5 7) n—o 0 0 2 0

a [fty(s) dw(S) + —;—ft”y(s)llz ds] dt =

hﬂEl[ [ yu(£) dw(t) + j IIyn(t)Ilzdt]
(5.8) "
= 0.

- [ [0 Ty(2) dw(t) + = [0 Ty ()12 dt]

Because L' convergence implies convergence almost surely along a subse-
quence, there exists a subsequence, also denoted by {y,);_,, along which the
convergences in (5.7) and (5.8) are almost sure. Consequently, lim,, . Z (¢) =
Z(t), dt X P almost everywhere on [0,T] X Q, and lim, . Z. (T) = Z (1),
a.lmost surely on (. Ineguahty (5.6) follows from Fatou’s lemma and the
nonnegativity of U, and U,. O

LemMa 5.3. If U, and U, satisfy (5.1), then for every y > 0, J(y, ) is a
convex, extended real-valued functional on H.

Proor. It suffices to prove convexity of J(y, - ) on the convex set A. Let
7, To € A and A; > 0, A, > 0 with A, + A, = 1 be given. The convexity of the
Euclidean norm implies

A A
Zy sirgift) 2 (Z:(8))(Z;(2))?, 0<t<T,as.
The monotonicity of U, and Lemma 5.1 imply ‘
- ~ A A
Uz(yB(T)ZMﬁ'ﬁ"\z‘ﬁz(T)) = U2(yB(T)(Z‘ﬁ'1(T)) l(z'ﬁ'z(T)) 2)
| < AlljZ(yB(T)Z‘ﬁ'l(T)) + )tzljz(yB(T)Z,,-,z(T)),
A similar inequality holds for U,, and the convexity of /(y, - ) follows. O
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Lemma 5.4. If U, satisfies (5.1), then for every y > 0, we have
(5.9) lim J(y,#) = o.

|‘ﬁ-| —

Proor. Let k be a constant such that g(¢) <«, 0 <t < T, a.s. From the
monotonicity of U,, Lemma 5.1 and Jensen’s inequality applied to the func-
tion s — U,(yke®), we have for all 7 € A,

- . - 1
J(y,7) = EUy(yxZ.(T)) = Uz(yx exp( - EI() + o-"lﬁ-lz)).
The result follows from (2.5) and (5.3). O

DuaL EXISTENCE THEOREM 5.5. Assume that the utility functions U, and
U, satisfy (5.1). Then, for each y > 0, there exists an optimal solution 7, € A
to the dual problem (3.13) with initial condition y.

Proor. This follows immediately from Lemmas 5.2, 5.3 and 5.4. See, for
example, Ekeland and Temam (1976), Corollary 1.2.2. O

We now summarize the principal result of this work. Examples with explicit
computations are provided in Xu and Shreve (1991).

COROLLARY 5.6. Assume that U, and U, satisfy (5.1), and (4.21) [or (4.22)]
is satisfied as well. Then, for every x > 0, the optimal consumption—invest-
ment problem has an optimal solution (C,w). Moreover, let y > 0 solve the
equation
(5.10) xy +8,(1) =0,

and let , € A be the optimal solution for the dual problem with initial
condition y. Then optimal consumption and wealth processes are given by

(5.11) C(t) = L(t,yB(t)Z:(t)), O0<t<T,as.,
(5.12) X(T) = L(yB(T)Z:(T)), as.
(5.13) X(t) = £1)[B(H)Z,()] ", 0<t<T,as,
where

(5.14) £(t) = B(t) — ftﬁ(s)C(s)Z,-, (s)ds, 0<t<T,a.s,
(] 7 '
and B is a continuous version of

B(¢) = EI:/;TZﬁy(t)ﬁ(t)C(t) dt + Z; (T)B(T)X(T)IF(?)|,

0<t<T,a.s.

(5.15)
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The process B(-) has a representation as
t
(5.16) B(t)=x+ [Y'(s)dw(s), 0s<t<T,
0

for some R%valued, {F(t)}-progressively measurable process satisfying
JENY@®I? dt < © a.s., and in terms of Y, the optimal portfolio process is

a1y O =XOE®) [e(t) o N () A,(8) + g(t) —¥(1)|,
0<t<T,a.s.

Proor. This corollary is a restatement of Theorem 4.10 which takes
advantage of the Dual Existence Theorem 5.5 and the characterization (4.38)
of the minimizer y, of V(y) + xy. O

REMARK 5.7. Under the assumptions of the Dual Existence Theorem 5.5,
Corollary 4.9 implies that the dual value function V is the convex conjugate of
the primal value function V. When there is no utility for terminal wealth, that
is, U, = 0, the proof of the Dual Existence Theorem breaks down and we do
not know if the conclusion of that theorem holds. However, the conclusion of
Corollary 4.9 still holds, as can be proved by introducing an artificial utility for
terminal wealth Uy(x) = &Vx, and then letting & | 0. See Xu (1990), Theorem
5.2.1, for details.
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