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THE PRICING OF THE AMERICAN OPTION

By Ravi MYNENI
Stanford University

This paper summarizes the essential results on the pricing of the
American option.

1. Introduction. The valuation of contingent claims is prominent in the
theory of modern finance. Typical claims such as call and put options are
significant not only in theory but in real security markets. A call (put) option is
a ‘“‘right to buy (sell) a certain asset at a specified price until or at a future
date.” The situation can be colorfully imagined as a game where the reward is
the payoff of the option and the option holder pays a fee (the option price) for
playing the game. If the option specifies that the holder may exercise the right
only at the given future date, the claim is termed Europear. The pricing of
European puts and calls on stocks has an interesting history, beginning with
Bachelier [2] in 1900. The theory only reached a satisfying level with the
celebrated papers by Black and Scholes [9] and Merton [51], using certain
notions of hedging and arbitrage-free pricing. These ideas were formalized
and extended in Harrison and Kreps [33] and Harrison and Pliska [34] by
applying the fundamental concepts of stochastic integrals and the Girsanov
theorem in stochastic calculus.

A more common option, however, is one with exercise possible at any
instant until the given future date. These options are termed American, and it
is the added dimension which makes them more interesting and complex to
evaluate. The earliest, and still one of the most penetrating, analysis on the
pricing of the American option is by McKean [49]. There the problem of pricing
the American option is transformed into a Stefan or free boundary problem.
Solving the latter, McKean writes the American option price explicitly up to
knowing a certain function (the optimal stopping boundary). This work was
taken further by van Moerbeke [61], who studied properties of the optimal
stopping boundary. Although the American option problem was treated as an
optimal stopping problem by McKean and van Moerbeke, a financial justifica-
tion using hedging arguments was given only later by Bensoussan [7] and
Karatzas [39], [40].

From the theory of optimal stopping, it is well-known that the value process
of the optimal stopping problem can be characterized as the smallest super-
martingale majorant to the stopping reward. As such, the value process of the
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2 R. MYNENI

American option has a Riesz decomposition into martingale and potential
processes. Recent work has identified the martingale, which values the reward
at the terminal date, and the potential, which values the early exercise feature.
Among finance theorists, this is sometimes known as the early exercise
premium representation. This result can be derived as a simple consequence of
McKean’s free boundary formulation or as a somewhat involved, but proba-
bilistic, result directly from the optimal stopping representation. The latter
approach follows from the work of El Karoui [24] and El Karoui and Karatzas
[25], [26].

In addition to the free boundary method, another major technique that can
be applied to understand the option price as the value of the optimal stopping
" problem is that of variational inequalities. This method, as developed by
Bensoussan and Lions [8], was applied by Jaillet, Lamberton and Lapeyre [36]
(JLL hereafter) to look at the regularity of the price function and its numerical
approximation. Variational inequalities are superior for understanding the
discretization of the American option but lack the explicitness of the other
methods.

The purpose of this paper is to review these methodologies used in the
American option pricing problem. Here, we survey the existing literature,
present the recent results mentioned previously and indicate a few unresolved
issues. Some proofs have been omitted; the reader will find the many details
and background material in the references.

To round off this overview of the American option, it must be mentioned
that there is an abundance of numerical work on the subject. With the notable
exception of the so-called binomial model, these algorithms contain few rigor-
ous connections to the underlying theory. This being the case, references to
this work have been relegated to the appendix.

2. The American option problem. The story begins with a model for
the behavior of the primitives which, for illustrative purposes, we have not
made as general as possible. All activity occurs on a filtered probability space
(Q, &,{%,}, Q) supporting Brownian motion with a finite horizon date 7. The
filtration will be the canonical one augmented with the @-null sets of % and
Fr = F. (For details of this as well as the following stochastic concepts,
consult Karatzas and Shreve [41].) As is standard to much of option pricing,
our economy has the following desirable properties.

1. Ideal markets: continuous trading, infinitely divisible assets, no transaction
costs, taxes, restrictions on short sales, and so on.

2. Agents (market participants) have homogeneous beliefs of asset prices and
symmetric information. That is, @ and {%,} are common to everyone.

3. Agents are nonsatiated. That is, everyone prefers more wealth to less.

There is a savings account representing the time value of money which
appreciates at a deterministic constant rate:

(1) dBt=rBtdt’ tE[O,T],

where r € R* is the interest rate. By convention, we set B, = 1.
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To this we introduce a risky asset, a stock, whose price process is modeled
as a geometric Brownian motion,

(2) dS, = uS,dt + ¢S,dW,, te[0,T],

with S, > 0, appreciation rate u € R and volatility coefficient o € R¥, and
where W is a standard Brownian motion on the probability space.

A trading strategy in (B, S), or portfolio in the savings account and stock, is
a progressively measurable pair of processes (¢, ¢,) such that [/$3(2)B? dt <
w and [FpZ(¢)S? dt < o, almost surely. The process ¢, (¢,) represents the
amount held, or shorted, of the savings account (stock) in units. A short
position in the savings account should be thought of as a loan. The idea of
managing the savings account and stock to replicate an option is central to its
arbitrage-free pricing. However, we need to specify which replications are
allowable. A consumption process C is an adapted, continuous, nondecreasing
process with C, = 0.

A trading and consumptzon strategy in (B, S) is a triple (¢;, ¢, C), where
(¢, ¢,) is a trading strategy in (B, S), C is a consumption process and the
self-financing condition is satisfied:

i(1)B, + $2(1)S, = $1(0) + (08 + [ ‘6,(u) dB,

) + [(6(w) s, ~ C,, te[0,T] as.,
with C, = 0.

The meaning of the equation is that starting with an initial wealth, all
changes come from gains in stock appreciation and in interest from the savings
account less the amount consumed.

A new probability measure is now introduced that is critical to everything
that follows. Define the probability measure @ that is equivalent to @ by the
Radon-Nikodym derivative

dQ 1/ —r\2 w-r
——y—exp{—a( o )T_( o )WT}'
By the Girsanov theorem, the measure Q is the unlque probability so that

aQ
S/B is a martingale with respect to @ and, moreover, it is easy to see that the
stock price process must evolve according to

(4) dS, = rS,dt + 08,dW,, te<[0,T],

where

o+

~ r
wew+2 "1y selo,T),

is Q:-standard Brownian motion. All of our considerations will be with respect
to @ and the price process (4).
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To our trading strategies, we impose a mild restriction limiting the size and
speed of the position in the stock:

E[ A T62(1)S? dt] <o,

where E denotes expectation under @. These strategies are called admissible
and the class of admissible trading and consumption strategies in (B, S) will be
denoted by &7. The requirement of admissibility is placed to avoid pathologies
like doubling (see [34]), which allows unbounded losses and creates arbitrage
opportunities.

More precisely, there is an arbitrage in (B, S) if there is an admissible
trading and consumption strategy, that is,

3 (¢1’¢270) € M’
such that, starting with an initial gain (negative cost),
$1(0) + ¢5(0)S, <0,
there are no liabilities at date T, that is,
¢:(T)Br + ¢5(T)Sr =0 as.
Such opportunities represent the limitless creation of wealth through riskless
profits and ought not to exist in well-functioning securities markets.

It is due to the fundamental work of Harrison and Kreps [33] and Harrison
and Pliska [34] that, thanks to the existence of the “martingale measure” @,
there are no arbitages in (B, S). For further information, see, for example,
Duffie [20]. Defining the wealth process,

X, £ ¢:(2)B, + $5(2)S,, te][0,T],
relation (3) transforms into the wealth equation:

(5) X=X+ [X,du+ [0,(u)S,dW, - C,, te[0,T]as,
0 0

for (¢, ¢, C) € .

Now we take up the definition of an American claim and the issue of pricing
it. A reward function ¢ is a continuous, nonnegative function on R*X[0, T'].

An American claim or option on the stock with reward ¢ and maturity T
is a financial security that pays the stochastic amount ¢(S,, ¢) when exercised
at time ¢ € [0, T']. To sell such a claim means to accept the obligation to pay
the reward ¢(S,, t) to the buyer at any time ¢ € [0, T']. The horizon time T is
the claim’s expiration date.

IMPORTANT EXAMPLE. In the case of an American call option,

¥(x,0) = (- K)",
and in the case of an American put option,

) ‘/l(x’t)=(K_x)+’
where K € R™ is the exercise price.

Since the exercise of the option must be based on the information accumu-
lated to date and not on future prices of the stock, we require that an agent’s
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exercise policy be restricted to a stopping time of the filtration {%,}. Denote
the value process of the American option by (V,), _, . r. Having introduced this
asset into the market, we now need to extend the definitions of trading
strategy and arbitrage. First, we introduce some notation.

NoraTioN. A tilded operator or process will denote an operator or process
having properties with respect to the measure Q. The set J; ,, denotes all
stopping times taking values in [¢,, £,].

Given a stopping time 7 € 7 1, a buy-and-hold strategy in V is a pair

(¢3, 7), where ¢, is the process

¢3(t) £ kl[O,-r](t)’ te [O,T]y
for k € R. Let II* (IT7) denote the set of all buy-and-hold strategies in V with
k>0 (k < 0). To simplify notation, we also write ¢ to stand for the triple
(¢17 ¢27 ¢3)

A trading strategy in (B, S,V) is a collection (¢, 7), where (¢, ¢,) is a
trading strategy in (B, S) and (&3, 7) is a buy-and-hold strategy in V, such
that, on the interval (7, T'], we have

$1(t) = bi(7) + d9(7)S, /B, + d3(7)¥(S,,7)/B,,

$4(t) = 0.
This particular trading strategy requires that at time 7 we liquidate the stock
and option accounts and invest the proceeds in the savings account. Notice
that we do not allow dynamic trading in the American option. Our limited
definition nevertheless will suffice for pricing the option.

The notions of self-financing and admissibility are almost as before. The
collection (¢, 7,C) is an admissible trading and consumption strategy in
(B, S,V) if (¢, 7) is a trading strategy in (B, S, V), the admissibility condition
is satisfied, C is a consumption process and the following self-financing
condition holds:

t t
i(1)B: + 62(8)S, = $:(0) + $2(0)So + [[#y(x) B, + [ $o() dS, — C,,
te[0,7]as,
[dc, =0, te(s,T)as.
Denote the class of admissible trading and consumption strategies in (B, S, V)
by &'.
There is an arbitrage in (8, S, V) if either
A(¢s,7) €™ = [I($1,6,,C)s.t:(¢,7,C) € ]

or

} V(¢s,7)€l™ = [I(¢1,6,,C)st.(¢,7,C) €],

- and we have

$1(0) + ¢2(0)S, + ¢5(0)V, <0,

¢(T)By =0 as.
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The interpretation is that by holding long an American option, it should not
be possible to find an exercise policy that will yield riskless profits. Conversely,
by selling an option, it should not be possible to make riskless profits for every
selection of exercise policy by the buyer.

The American option problem is to determine the price at which this option
might trade in the securities market that is consistent with no arbitrage. This
will be accomplished in two steps: First, we show the existence of a wealth
process that hedges, in a sense to be made precise, against the payoff of the
option. Then, we show that the option price must be the initial value of the
obtained wealth process in order to preclude arbitrage opportunities.

For concreteness, the results in the rest of the paper are presented in the
context of the American put option. The American call on a stock without
dividends is known to be equivalent to its European counterpart (see [50] and
[61).

3. Optimal stopping. The following existence result, shown by Bensous-
san [7] and Karatzas [39], [40], provides the basis for pricing the American
option.

LEmMA 3.1. The process
(6) X 2 ess;xpE-'[e"("‘)(K -8)"1% ], tefo0,T],
TE 4T

is a wealth process. That is, there exists (¢, ¢,, C) € & corresponding to (6).

Proor. This particular proof is a slight variation of Karatzas [39], [40].
Denote by o the smallest supermartingale majorant to the discounted reward
(the Snell envelope). Then, we know (see [29] and [23])

J, = esssupE'[e‘”(K -8)'% ], te[0,T]as.
€1

The process J, being a right continuous with left limits (RCLL) super-

martingale, regular and of class D, has a Doob—Meyer decomposition,
J=M - A,
where M is a square-integrable martingale (in fact, even bounded by Theorem
3.2) and A is a unique, predictable, continuous, nondecreasing process with
Ao = O. SO,
d(e™J,) = re’'d, dt + e dM, —e™dA,, te[0,T]as.
By the integral form of martingale representation, we can further write
} dM, =n,dW,, t<][0,T]as,

for some progressively measurable process n with E[ [{nZ dt] < «. Therefore,
with the identifications ¢,(2) = J, — 1,071, ¢4(t) = e"m,07'S;! and C, =
Jée™ dA,, it follows that X = (e™*J,)o ., is a wealth process. O
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REMARK 3.1. From the majorizing property of the Snell envelope, we
observe that X defined by (6) hedges against the American put option’s reward
in the following sense:

X,>(K-8,)", te[0,T)as.,
X;=(K-8;)" as.
REMARK 3.2. The optimal stopping time p, for the interval [z, T] is also

known (see [29], [23] and [59]) to be the first instant J drops to the level of the
discounted reward:

(7) p.=inf{u € [t,T]J, =e (K- 8,)"} as.

Moreover, the stopped process (J, »,);<, <7 is a martingale (that is, A is
constant on the interval [¢, p,]).

The previous technical result shows that the price of the American option
cannot exceed X,. We can also show the reverse inequality. The arguments
used in the next result are at the heart of all option pricing.

THEOREM 3.1. Let X be defined by (6). If V, is the initial value of the
American put option, then

(8) Vo =X,
is necessary for no arbitrage in (B, S,V).

PrOOF. Suppose that the actual market price of this option were V; > X,
Let (7, ¢) and ¢ form the admissible investment and consumption process of
(6). Consider the trading strategy in (B, S,V) given by an exercise policy
T € I, ¢ selected by the buyer and the following asset positions and consump-
tion plan:

N5 te [0’ 7],

t)y = +
) =\ v eS8 - (K-8) /B, te(nTl,

¢2(t) = §t1[0,1](t)’
¢3(t) = _1[0,1’](t)’
Ci=cin,
Then from the hedging property, that is,
n.B,+£5,2(K-8)" as,
it follows that ‘
¢(T)Br =0 as.

But, by construction, ’
' $1(0) + $5(0) S, + ¢3(0)V, = X, — V<0,
and therefore we have an arbitrage in (8, S, V).
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Similarly, suppose that V, < X,,. Again, let (7, ¢) and ¢ form the admissible
investment and consumption process of (6). Consider the trading strategy in
(B, S,V) given by the exercise policy p, (the optimal stopping time) and the
following asset positions and consumption plan:

— N, te [0’ pO]’
_nﬂo_gﬂosﬂo/ﬁpo-l- (K_Sﬂo)+/BPo’ te (po’T]’
¢2(t) = _‘ftl[o,po](t)’

¢3(t) = 1[0,p0](t)’

Ci = —Cippy

$.(2) =

But ¢ = 0 on [0, p,] by Remark 3.2, and
+
nPoBPo + fPoSPo = (K - Spo) a.s.,

S0,
¢(T)Br =0 as.
Again, by construction,
$1(0) + ¢65(0) S, + ¢3(0)Vp =V, — X, <0,
and there is an arbitrage in (8, S,V). O

REMARK 3.3. Let us note that, more generally, the value function
(9) P(x,t) 2 sup E[e""%K-8,)"],

TE 6T
where Ex denotes expectation conditioned on S, = x, is the arbitrage-free
price of the American put option at time ¢ € [0,T]. In the terminology of
potential theory, P is the r-réduite of the put option’s reward.

Although the solution is thus completely specified by (9) and (7), it is
implicit; to have a useful form we will need to characterize it by analytical
methods. For this purpose, we introduce two regions which partition the
domain of the value function.

Let

€2 {(x,t) € R*X[0, T)|P(x,¢) > (K —x)"},
and let its complement be
#2 {(x,t) e R*X[0,T)IP(x,t) = (K—x)"}.

Gi'\ren that the American put option’s reward is a continuous, convex and
nonincreasing function of the state variable, the following properties for its
value function in our model are straightforward.
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PropPOSITION 3.1. The American put value function P is continuous on
R*X[0,T]. The function P(-,t) is convex and nonincreasing on R* for every
t € [0,T]. The function P(x, - ) is nonincreasing on [0,T] for every x € R™.

ProOF. See van Moerbeke [61] and JLL [36]. O

From these properties of the value function, it is clear that . (€) is closed
(open) and that the intervals ./ £ {x|(x,¢) € .} and ¢, £ {x|(x,t) € €} are
connected for every t € [0, T). Therefore, the graph of S} £ sup{xlx € ./},
t €[0,T), is contained in . and the optimal stopping time implies that S}
provides the level at or below which optimal exercise occurs for every ¢ € [0, T').
It is now appropriate to call € the continuation region, ./ the stopping
region and S* the optimal stopping boundary.

By the Riesz decomposition theorem, we can split the supermartingale
into unique martingale and potential processes. The next theorem, an impor-
tant result for the optimal stopping problem, develops the decomposition
explicitly in terms of the stopping boundary.

THEOREM 3.2. The Snell envelope of the American put option’s reward has
the decomposition

5]
te[0,T] a.s.

J,=E[e"T(K-S;)"|# | + E[[Te"“rKl(Su<Sm du
t

(10)

Proor. The proof is adapted from El Karoui and Karatzas [25], [26] (see
also [27]). If we introduce the optimal stopping time (7) for the interval [z, T']
as

p,=influ € [t,T)IS, < S!} AT,
then, by the optimality of p,, the Snell envelope is
J,=E[e(K-S,)"1# ], telo,T].
Write
J,=E[e (K - 87)"| % | + E[e(K - 8,)" ~ e (K~ 80) "1 |,
te[0,T],

where the second conditional expectation (the potential) is the so-called early
exercise premium process and notice that, from the generalized It6 rule for
convex functions,

J,=E[e""(K - S7)"| % |

+E| [T rK 1, <y du — [Te dL{f(S)l,z }

Pt Pt

te[0,T]as,
where LX(S) is the local time of S at level K in the interval [0, u].



10 R. MYNENI

Define the anticipating, finite variation, right continuous process

D, = fpte‘”‘rKl(s,KK) du — fpte_ru dL{(S), te][o0,T],
Po

Po

so that,
J,=E[e""(K-Sp)"|% | +E[D;-DJ% ], telo,T].

From Dellacherie and Meyer ([18], 75.b), there exists a unique predictable
process D? such that

(11) E[Dt-DP|I% | =E[Dy - D)% ], te€[0,T]as.

and D§ = 0. The process D? is the dual predictable projection of D. By the
Doob-Meyer decomposition, we see that A = D? and so DP is a nondecreasing

process.
Now, separate the integrals into two pieces:
D=A+B,
where

P —-ru P —-ru
A, é[ e rKl(Su<K)1(S,,sS,’f) du “f e 1(s,,ss,’;) dL{f(S)» te[0,T],
Po

Po

Pt L~
Bté/ € rKl(su<K)1(su>s,’:)du_f e "Ls,>sp dLi(S), ¢t<[0,T].

Po Po

Since S;* < K for ¢t € [0,T) and dL¥ does not charge {S < K},

Pt
At=[ e "™“rKlg _gxdu as.
Po

= j:e‘”‘ rKlg .sxydu as,
and we have that A is a predictable process. Therefore, A? = A and easily can
be seen to be nondecreasing. The dual predictable projection of B does not
come as cheaply. The proof is made simpler if we assume continuity of S*, as
we shall, although it is really not necessary to assume this; see [26].
Let yx(w) denote the excursion intervals of the stock price process into the
continuation region:

x(w) £ {t € [po(w), T)IS(w) > Si}.

From the almost sure continuity of the price process and the continuity of the
optimal stopping boundary, the random set y will be the countable union of
open sets almost surely. Choose ¢ > 0 and note that, for every choice, the
number of excursions (N¢) in y with duAration exceeding ¢ is finite. Label

these intervals by (a,,b,) and put N/ £ sup{l <n < N°¢la, < t}; see Fig-
ure 1.
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an

Fic. 1. Excursions of the stock price process into the continuation region.

By dominated convergence, the approximate process

NtE
Bi & ). [/-b,, e "rKls g du—fb" e_mde(S)]’ t<[0,T],

n=11"a,+e a,+te

converges for every ¢ € [0,T) to B, in L' and for almost all w € Q. Now, B®
is constant off {¢ € [0, T')|S, > S;*} and so the dual predictable projection [ B°]?
of B® will be constant away from there. It can also be shown (see [26] and [27])
that [ B°]? is nonincreasing due to the martingale property of (J, ,,); <, <7
In the limit, the process B” inherits both of these properties. Since D? =
AP + B? is a nondecreasing process, the dual predictable projection of B is
null. Therefore,

E—[ng - Diulg; ] = E[[Te_rurKl(Su<S:) du
t

97], te[0,T]as. O

REMARK 3.4. In effect, the supermartingale property of the Snell envelope
requires B? to be a process with nondecreasing sample paths, whereas the
minimality of the Snell envelope (as manifested in its martingale nature on the
continuation region) requires B” to be a process with nonincreasing sample
paths. To satisfy both constraints, B? = 0 and the only contribution is from
the interior of the stopping region.

ReEMARK 3.5. The relation (11) gives the dual predictable projection D? the
financial interpretation as an exact “hedge”’ against the (nonadapted) reward
‘process D. To see this a bit more clearly, we can rewrite (11) as

°D - D? =N,
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where N is a martingale and the process °D, £ E[D,|.%,], ¢t € [0, T], is the
optional projection of D. The conclusion is that the difference between the
“observable” part of D and its dual predictable projection is a martingale
begun at 0, and so has null value. Furthermore, the consumption process of
Lemma 3.1 is identified as

C = ftrKl(s,,<S,f) du, te][0,T]as,
0

and C is absolutely continuous, nondecreasing, and constant off
{t €[0,T)IS, < S}).

Closely related to the supermartingale property of J is the r-excessivity
(Lemma 5.1) of the value function P. The Riesz decomposition for excessive
functions is provided immediately by Theorem 3.2. The decomposition is also
known as the early exercise premium representation.

CoroLLARY 3.1. The value function of the American put option has the
representation

(12) P(x,t) =p(x,t) +e(x,t),
where
p(x,t) 2 B [e7" ™K - 8p) "],

<[ (T
e(x,t) 2 Ex[j; e "ETOrK s s du],
with S, = x.

The terms p(x,¢) and e(x,t) are the European put option value and the
early exercise premium, respectively. The European put option value measures
the option’s reward assuming it is realized on the horizon date T’; it can be
verified directly that the map (x, ) — p(x, ¢) defines an r-harmonic function
with respect to the space-time stock price process on R*X[0,T). The early
exercise premium accumulates the advantage of being able to stop at any time
over the period of the option. Indeed, the term e~™rK has the interpretation
as the discounted gain for exercising relative to continuing when the stock
process belongs to the stopping region ./ over the instant [z, u + A]. Imagin-
ing an asset with this payoff structure, the early exercise premium of an
American option is the value of this asset.

REMARK 3.6. It is left as an exercise (without consulting [26] or [35]) to
show that, from the representation formula, we have
P(-,t) e CY(R*), te]0,T).

This characteristic property of the value function plays a crucial role in the
next section, where we study the problem as a differential system.
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RemARK 3.7. Had we effected the decomposition differently,
J,=e(K-8) +E[e(K-8,) —e(K-S)"|#]|, te]o,T],

then we would define the conditional expectation as the delayed exercise value
process, which, by the Itd rule, becomes

~

Pe —-ru Pe —ru
E[—[t e rKl(Su<K)du+ft e dLX(S)

.

Carrying the computations through, we arrive at the delayed exercise value
representation (see [13]):

P(x,t) = (K-x)"
(13)

[T T

+ Ex[/ e 7O dLE(S) — [Te T OrK 15y s, ) du].
t t

The delayed exercise value references the gain for stopping from the current

reward, whereas the early exercise premium references the gain for stopping

from the terminal reward.

Thus far, the optimal stopping boundary is unknown. For its determination,
we can apply the optimality property of this curve to generate a nonlinear
integral equation [see equation (20)]. Unfortunately, there appears to be no
hope of solving the integral equation explicitly. A more fruitful effort would be
to investigate the behavior of the optimal stopping boundary in this
parametrization.

4. Free boundary formulation. We would like now to formulate the
optimal stopping problem as a particular free boundary problem for the value
function. The relationship of optimal stopping to free boundary problems was
discovered by Mikhalevich [51], Chernoff [14] and Lindley [47]. A little later, it
was rediscovered and applied to the American option problem by McKean [49].
The free boundary formulation consists primarily of a partial differential
equation and its Dirichlet conditions plus a Neumann condition to determine
the unknown stopping boundary S*. This approach, interesting in itself, will
provide a ‘“simple’” way to derive the Riesz decomposition of the American
option and will serve to clarify that result.

For later use, we need the following facts (here subscripts refer to partial
derivatives with respect to that variable):

LeEmMMA 4.1. The American put value function P is smooth on € and for
everyt €[0,T), P(x,t) € [—1,0] for x € €,. The optimal stopping boundary
S* is continuously differentiable and nondecreasing on [0,T), and S} 2
lim, . S} = K.

Proor. See McKean [49] and van Moerbeke [61]. O
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From the martingale property of (J,, ., ); <, <r and the smoothness of P on
the continuation region follows a partial differential equation for the value
function of the American put option (see [61], Lemma 5).

LEMMA 4.2. The American put value function is r-harmonic to the
space—time stock price process on the continuation region and therefore on €:

(14) Z|e "P(x,t)] =0,
where
2 2
A 9 9
LTt Y

Now, associated with the partial differential equation are the Dirichlet and
optimality conditions given by the following proposition.

PROPOSITION 4.1. The American put value function satisfies

(15) xl}lgt*P(x,t) =K - S}, te[0,T),
(16) tli_)n%P(x,t) =(K-x)", x € R,

(17) lim P(x,¢) =0, te[0,T),
(18) P(x,t) 2 (K-x)", (x,t) € R*X[0,T).

Proor. See also McKean [49] and Jacka [36]. The first two conditions are
true thanks to the optimality of stopping at S* and the continuity of the value
function (Proposition 3.1). For the third cond1t10n merely note that P(x,?) <
Ele K] for x > K and ¢ € [0, T), where 7* is the first hitting time to the
level K and E [e""™] ~ x ! ([20], page 253), which uniformly tends to zero as
x tends to lnﬁmty The last condition is again the hedging property. O

From this information alone, we cannot determine the boundary S*. One
additional condition is needed to ‘“close” the system. This is the condition
which, in the theory of optimal stopping, is known as the principle of *“smooth
fit.”” Alternative derivations to this lemma can be found in Grigelionis and
Shiryaev [33], Bather [6] and van Moerbeke [62].

LEmMMA 4.3 (Smooth fit). P, is continuous a.e. across the stopping bound-
ary S*. That is, for almost every t € [0, T'], )

1 lim P,(x,t) = —1.
(_’ 9) S, (%,1)

Proor. This proof is essentially from McKean [49]. The value function is
r-excessive to the space—time stock price process (Lemma 5.1), so in the sense
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z/
/

Fic. 2. Integration across the optimal stopping boundary.

of distributions,
Z[e"P(x,t)] <0, (x,t) € R*X[0,T).
Introducing the new scale ¢ 2 In(x) and letting B(¢, ) & P(&(x), t) gives
g 2 g 2 A A
5 Pee< - (r - ?)Pg —-B,+rP.
The arguments of P and its derivatives have been suppressed for notational
easISI.OW integrate this expression on a region 3 of width 2¢ over the log

stopping boundary ¢£*, defined by ¢* £ In(S*), from ¢, to ¢, as shown in
Figure 2. We have

_[ttz%_[pf(f* +e,t) — B(&* - s,t)] dt

< _[:(r - %2)[15(5" +,8) — B(&* —¢,8)] dt - [2[1% +rB| dé¢ dr.

Defining the horizontal strips of 2,3, which start at time ¢7(¢) and end at
time ¢*(¢), this becomes

fttz%[lﬁg(f* +e,t) — B (& - g,t)] dt
< _]:2(7'—'%—)[15(5* +¢,t) _p(f* —E,t)] dt

—fzf[ﬁ(g, t*) — P(¢,t7)] dE + fzrﬁdg dt.
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As ¢ | 0, by dominated convergence and since P; = —e¢ on the stopping region
., we have

[ 1im B, + ef*] dt < 0.
t LELEF

Observing that the spatial derivative of P is bounded from below by Lemma
4.1,

Isfz _ef,

we conclude that the slope must exhibit “smooth fit”” across the boundary ¢*.
O

ReEMARK 4.1. In words, the integration was performed to pick up any jumps
across the boundary. Excessivity forces the jump to be nonpositive and mini-
mality forces the jump to be nonnegative. Therefore, the jump size must be
null. (Compare this with Remark 3.4.)

The results from Lemma 4.2, Proposition 4.1 and Lemma 4.3 constitute a
free boundary or Stefan problem for the American put option. From this
characterization, we can construct the value function and the optimal stopping
boundary as the solution of an integral equation. McKean’s original formula
involved the stopping boundary in a complicated way. The following result
recovers the Riesz decomposition or the early exercise premium representation
as a candidate value function.

THEOREM 4.1. The function P = p + e, where the European put value p
and the early exercise premium e are given as in Corollary 3.1, and the
boundary S* determined by the integral equation

(20) P(S¥,u)=K-S8, ueltT),
along with S} = K, solve the free boundary problem (14)—(19).

Proor. Damien Lamberton (private communication) offers this proof; see
also Jacka [36]. By Proposition 3.1 and Lemma 4.3, the function (x, t) = P(x, t)
is C1° and piecewise C%! on R*X[0, T'). Now, in general, the time derivative
may suffer a discontinuity across the stopping boundary. But with the regular-
ity we have for the boundary in Lemma 4.1, one can show that P, is actually
continuous across S* and, hence, everywhere (see [60], Lemma 5, and [6]). It is
also seen that the spatial derivative is absolutely continuous and, because of
this, an extension of It6’s rule (for example, [44], Theorem 2.10.1) enables us
to write

e TOP(8y,T) = P(5,,t) + [ 7“8, P(S,,u) dW,
t

+fT/[e"("“)P(x,u)](Su,u)du, te[0,T]as.
t



THE PRICING OF THE AMERICAN OPTION 17

By Lemma 4.2, e "™ 9P(x,u)] = 0 for (x,u) € ¢, and a simple calcula-
tion shows that
./[e"‘"“)P(x,u)] = —e " OrK, (x,u) € S.
So,

e OP(S7,T) = P(S,,t) + [ e 008, P(5,,u) W,
t

T
—f e " OrKlg csndu, t€[0,T]as.
t

Because P, is bounded, the stochastic integral is a martingale. Therefore,
setting P(x,T) = (K — x)* and taking expectations, we have

P(x,t) = Ex[e"(T“)(K - ST)+] + Ex['/;Te"("")rKl(su<sm du|.

The integral equation (20) for the boundary S* follows from applying (15)
with the boundary condition in Lemma 4.1. O

REMARK 4.2. Following the proof closely, we notice the réle played by
“smooth fit” in providing enough differentiability to avoid singular pieces such
as Dirac measure (local time). In financial terms, ‘“smooth fit’’ enables us to
adjust continuously the hedging portfolio across S* so that there are no
“costs” for transitions through the boundary. This is why the early exercise
premium takes on such a particularly simple form.

The uniqueness and regularity of the stopping boundary from this integral
equation remain open. In a different setting, Jacka [35] and especially
van Moerbeke [61] are able to address these issues in their framework.

Having now a candidate for the value function, we need to verify that our
solution is in fact the American option value. The next theorem, whose proof is
given by van Moerbeke [61], shows that the free boundary setup does capture
faithfully the optimal stopping problem.

DEFINITION. A function g € C>Y(R x [0, T )) has Tychonov growth if g, g,,
8z) 8xx) 8= a0d g, have growth at most e°* ® uniformly on compact sets as
|x| tends to infinity.

THEOREM 4.2. Suppose a continuous function (x,t) — f(x,t), defined on
R*X[0,T), and an open domain 2 c R*X[0,T) with continuously differen-
tiable boundary b and such that f € C>'! on 9 with g(x,t) £ f(e*,t) having
Tychonov growth, satisfy the following conditions:

./[e‘"f(x,t)] =0 on 9,
f(x T)y={K-x)", xeR*
f(x t)>(K-x)" on2 and f(x,t)=(K-x)" on2°,
hmf(x t)y=-1, te][0,7).
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Then f is the American put value function P, 9 is the continuation region €
and b is the optimal stopping boundary S*.

Assuming the integral equation (20) has a continueusly differentiable solu-
tion, it is easily checked that our previous result in Theorem 4.1 satisfies the
conditions of this theorem. Now we turn to the variational formulation of the
problem as a way of avoiding the need for the properties of the boundary.

5. Variational inequalities. This section provides the variational in-
equality approach to the American option. The formulation in terms of varia-
tional inequalities allows us to treat the domain of the option as an entire
region. An advantage of this approach over the free boundary method is the
lack of need to introduce the stopping boundary S* and to treat its regularity
properties as well as the uniqueness of the solution to the integral equation
(20). This advantage is valuable, in particular, when studying the stopping of
multidimensional (diffusion) processes. On the other hand, this leads to a
somewhat less explicit characterization for the option value.

On the domain, we need an extension of the harmonic property of the value
function.

LEmMMA 5.1. The American put value function P is r-excessive to the
space—time stock price process and therefore on R*x[0, T'],

(21) Z[eP(x,t)] <0,

in the sense of Schwartz distributions.

Proor. The proof follows Dynkin and Yushkevich [22] in showing that, for
every t €[0,T],

P(x,0) > E,[e"P(S,,1)],

which implies (21) since any excessive function is the increasing limit of a
sequence of infinitely differentiable excessive functions (for example, [54]).
Choose ¢ > 0 and a stopping time 7, from the set,

{re Z,T|E[e—r<f—t>(x ~8,)7I8,] 2 P(S,,t) —¢}.

This set is necessarily nonempty for all ¢ € [0, 7). Then, letting E, denote
expectation conditional on S, = x,

E'x[e'"e(K - S,,e)+] = E’x[e"‘E[e‘f(fe—t)(K - S,€)+|St”
> E [e"P(S,,t)] — ce "
But, for any stopping time 7,

P(x,0) 2 E,[e"(K-S,)"],
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so,
P(x,0) > E,[e *P(S,,t)] — ee ™.
Letting ¢ | 0 yields the desired result. O

Furthermore, from the hedging and continuity properties of the value
function, we have the following proposition.

PropOSITION 5.1. The American put value function satisfies the following
conditions:

(22) P(x,t) > (K-x)", (x,t) € R*X[0,T),
(23) lim P(x,t) = (K-=x)", x € R*.

The condition expressing the minimality of the value function, which was
the “smooth fit’’ relation in the free boundary method, is now given by the
following lemma.

LeEmMMA 5.2. The American put value function satisfies the following partial
differential equation on R*X[0,T]:

(24) (Z]e"P(x,t)])((K - x)" - P(x,t)) = 0.

Proor. We merely indicate that, from the free boundary formulation, the
value function is r-harmonic on the continuation region ¢ (Lemma 4.2) and is
equal to its exercise value (K — x)* on the stopping region /. O

REMARK 5.1. The ‘“smooth fit”’ condition (19) can be derived from the
results (21) and (24). (See [36], Corollary 3.7.)

The following theorem due to JLL [36], based on the work of Bensoussan
and Lions [8], shows that the preceding system of inequalities and equalities
determines the value of the American put option. For the technical conditions,
we need the following definition.

DEFINITION. The space H™?* is the set of measurable, real-valued func-
tions f on R whose distributional derivatives of order up to and including m
belong to L%(R, e ~*!“! dx) for some positive A. This space is given the norm

1/2
£l [2 [Rlaif(x)l"’e-*ixl dx‘] :

i<m
The space L%([0, T']; H™*) is the set of measurable functions g: [0, T] - H™*
such that i r,lg®I* dt < .~

THEOREM 5.1. Suppose a continuous function (x,t) — f(x,t), defined on
R*X[0, T, such that f(e*,t) € L?(0, T1; H*>*) and f,(e*,t) € L%(0,T], H**),
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satisfies the following system on R*X[0, T']:
ZLef(x,t)] <0,
f(x,8) 2 (K-x)",
f(x,T)=(K-2x)",
(Z[e"f(x,D)])(f(x,t) - (K—x)") =0.

Then f is unique and is the American put value function P.

The existence of the solution is proved in Bensoussan and Lions [8], but, of
course, it is not known explicitly. Despite this, the system provides a useful
characterization of the option value from which one can derive many proper-
ties of the value function. Moreover, the above setup lends itself to an
important algorithm for pricing the American option. All of the details can be
found in JLL [36].

APPENDIX

This section contains notes and additional references.

Section 1. For an introduction to option theory, see Cox and Rubinstein
[19] and Duffie [20]. Chapter 1 of Bensoussan and Lions [8], and Zabczyk [62]
provide a nice discussion of the problem of optimal stopping and its characteri-
zations as a free boundary problem and in terms of variational inequalities.
Serlet [57] is a promising exposition of American option results.

Section 2. The modern framework for arbitrage-free pricing of securities
is due to Harrison and Kreps [33] and Harrison and Pliska [34]. Our approach
is a reconciliation of Karatzas [39], [40] to Harrison and Pliska. General
semimartingale models require greater care; see Stricker [58].

Section 3. The result establishing the solution to the American option
problem in terms of optimal stopping is due to Bensoussan [7] and Karatzas
[39], [40]. These papers develop the more general model. Extensions to a
semimartingale framework can be found in Schweizer [55] and an application
to a model of stochastic interest rates in Amin [1]. The sufficiency for no
arbitrage in Theorem 3.1 has not been treated in the literature. What might be
more interesting is the generalization to discrete dividends. El Karoui [23] and
Shiryayev [57] are authoritative on the subject of optimal stopping.

Section 4. McKean [49] and van Moerbeke [61] are standard references in
this section. Other good sources for the mathematics of the free boundary
“"approach are Grigelionis and Shiryaev [32], Bather [6] and Kotlow [43]. An
' extension of the ‘“smooth fit” condition to the problem of stopping more
general processes can be found in El Karoui [24] and Chitashvili [15]. The



THE PRICING OF THE AMERICAN OPTION 21

equivalence of McKean’s original solution to the early exercise premium
representation is demonstrated in Carr, Jarrow and Mpyneni [13], and
El Karoui et al. [28] and Jamshidian [37] provide applications for bond options.
In the perpetual case (T = +x), the value function for our model is known
explicitly (see McKean [49]). Not surprisingly, it is also in this highly symmet-
rical instance that the first passage time density for the optimal stopping
boundary (a level) can be computed.

Section 5. For the theory of variational inequalities, see Bensoussan and
Lions [8]. Extensive connections to the free boundary problem can be found in
Friedman [30]. The application of variational inequalities to American options
is due entirely to JLL [36].

Numerical methods. The most intuitive, and perhaps the most widely
used, numerical approach for determining the American option value is through
dynamic programming. A particular discretization of this technique is com-
monly known as the binomial or Cox, Ross and Rubinstein [16] model in the
finance literature. Here, one recursively solves the Bellman equation P, =
max{(K — S,)*,e ™E[P,,,| %] with P, =(K — S;)*, using a binomial lat-
tice of stock prices. Similar in spirit to this is Parkinson [53]. The convergence
of the discrete rule for dynamic programming is discussed in Kushner [45] and,
more recently, Lamberton and Pageés [46].

In addition, there are two common numerical recipes in use: the Brennan
and Schwartz [12] method and the Geske and Johnson [31] method. The
Brennan and Schwartz algorithm turns out to be justifiable for the American
put option, and only in this case, through the use of variational inequalities
(see JLL [36]). As yet, there is no rigorous formulation of the Geske and
Johnson algorithm.

Finally, various approximations to the value function or the optimal stop-
ping boundary have been proposed by Johnson [38], MacMillan [48], Blomeyer
[10], Omberg [52], Barone-Adesi and Whaley [4], [5], Kim [42] and Barone-Adesi
and Elliott [3].

Acknowledgments. I am grateful to Darrell Duffie, Nicole El Karoui,
Ioannis Karatzas, Damien Lamberton, Henry P. McKean, Jr. and the Courant
Institute of Mathematical Sciences.
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