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The goal of this paper is to assess the improvement in performance
that might be achieved by optimally scheduling a multiclass open queueing
network. A stochastic process is defined whose steady-state mean value is
less than or equal to the mean number of customers in a queueing network
under any arbitrary scheduling policy. Thus, this process offers a lower
bound on performance when the objective of the queueing network schedul-
ing problem is to minimize the mean number of customers in the network.
Since this bound is easily obtained from a computer simulation model of a
queueing network, its main use is to aid job-shop schedulers in determining
how much further improvement (relative to their proposed policies) might
be achievable from scheduling. Through computational examples, we iden-
tify some factors that affect the tightness of the bound.

When viewed from a dynamic and stochastic standpoint, the job-shop
scheduling problem is often modeled as a scheduling problem for a multiclass
network of queues. Despite the recent development of effective heuristics for
scheduling queueing networks in heavy traffic [see, e.g., Harrison (1988),
Harrison and Wein (1990), Laws and Louth (1990) and Wein (1990a)], the
exact problem remains mathematically intractable and the primary mode of
analysis by scheduling researchers [see, for example, Panwalkar and Iskander
(1977)] and practitioners is computer simulation. In these studies, a detailed
computer simulation model of the queueing network (or job-shop) is developed,
different job-shop scheduling heuristics are tested and the resulting perfor-
mance measures are usually compared to a straw policy (such as the first-come
first-served rule) in order to identify effective scheduling policies. One problem
with this approach is that the scheduling analyst is unable to determine the
proximity to optimality of the proposed scheduling policies.

In this paper, we derive a bound on the achievable performance of an
optimal scheduling policy in a general open queueing network. In particular, a
stochastic process is defined whose steady-state mean is less than or equal to
the steady-state mean number of customers in the network under any possible
scheduling policy. Moreover, this stochastic process is easily obtained from a
computer simulation model of the queueing network, and thus offers a lower
bound on performance when the objective of the job-shop scheduling problem
is to minimize the mean work-in-process inventory on the shop floor (or the
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mean sojourn time, by Little’s formula). This bound is useful in helping
job-shop scheduling analysts determine the effectiveness of their policies.

The queueing network under study consists of a finite number of single-
server stations and is populated by a variety of different types of customers,
where each type has its own arrival stream and its own arbitrary deterministic
route through the stations. Three bounds are derived in this paper, each under
a different set of distributional assumptions. First, we assume that each stage
of each type’s route has a different exponential service time distribution and
allow the arrival processes to be arbitrary. A pathwise lower bound is derived
in Section 1 for this network; this bound is a stochastic process that is less
than or equal to the number of customers in the network under any schedul-
ing policy for all times ¢ with probability 1. This simple bound ignores the
interference at a station due to customers of different types, as well as the
interference due to customers at different stages of a given type’s route and is
primarily used as a basis for comparison.

In Section 2 we maintain arbitrary arrival processes but assume that the
processing times for all operations performed at a given station are indepen-
dent and identically distributed (iid) exponential random variables. A pathwise
bound is derived in a two-step procedure; first, we use linear programming to
derive a lower bound on the total number of customers in the system at time ¢
in terms of a vector whose ith component is the number of customers present
in the network at time ¢ that require at least one more service from station i
before exiting. Then, a pathwise lower bound on this vector process is derived
by constructing a pathwise upper bound for the cumulative departure process
of exiting customers at each service station under an arbitrary scheduling
policy.

In Section 3 we allow each stage of each type’s route to have a different
exponential service time distribution. However, the arrival streams for the
various customer types are now restricted to be independent Poisson pro-
cesses. For this network, we are only able to obtain a lower bound on
steady-state, rather than pathwise, performance; that is, we define a stochastic
process whose steady-state mean value is less than or equal to the steady-state
mean number of customers in the network under any scheduling policy. A
similar two-step procedure is used here, but steady-state mean value bounds,
not pathwise bounds, are derived in each step.

All the bounds derived in this paper are valid for any nonpreemptive
scheduling policy that is nonanticipating with respect to the service times of
the various operations; that is, although the service time distribution of each
operation is known by the scheduler, the actual service times do not become
known until they are realized. The scheduler is also allowed to observe the
vector queue length process at each point in time, and to observe each
customer’s deterministic route at the moment of their arrival.

In Section 4, we perform a simulation experiment on three two-station
networks and a three-station network under a variety of load conditions. Three
stochastic processes are simulated for each example: the total number of
customers in the network under the first-come first-served (FCFS) policy, the
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total number of customers in the network under a proposed scheduling policy
(which is derived by various analytic and ad hoc methods), and the stochastic
process (which leads to the bound) derived in Section 2 or 3 (depending on the
particular network).

The numerical results are moderately encouraging, with the time average
value of the bound averaging (over the 32 simulated scenarios) 78.0% of the
mean number of customers in the network under the proposed policy. Since
the pathwise bound derived in Section 2 is more effective than the steady-state
bound derived in Section 3, the bounds tend to be more effective for networks
in which service rates depend on the station, rather than the customer class.
Also, the bounds tend to become less effective as the amount of feedback in the
routes increases. For all four examples, the bounds were tightest when the
load on the network was very heavy and imbalanced across the stations.
However, for three of the four examples, the bounds performed worst when
the load on the network was heavy and balanced across the stations. For these
same examples, the proposed policies offered a significant improvement in
performance over FCFS when the load was heavy and imbalanced, and the
lower bounds showed that most of the possible improvement from scheduling
(relative to FCFS) had been obtained by these proposed policies. Although we
did not test the bound on any network with a large number of stations, we
suspect that the efficiency of the bound will deteriorate as the number of
stations increases. We hope the slackness in these bounds will motivate others
to further study this problem area.

Although some of the ideas employed here have been used by Harrison and
Wein (1989) and Laws and Louth (1990) to derive pathwise bounds for
particular scheduling problems, this paper appears to contain the first attempt
to offer a systematic procedure to develop performance bounds for general
multiclass queueing networks operating under arbitrary scheduling policies.
Readers are also referred to Weiss (1990), who derives worst-case bounds for
Smith’s rule (that is, the weighted shortest expected processing time rule) for
parallel machines serving a fixed set of jobs with stochastic processing times.

1. A naive pathwise bound for each customer type. The networks
considered in this paper have I single-server stations and are visited by a
variety of different customer types, each with their own arbitrary deterministic
route (that is, sequence of stations to be visited) through the system. As in
Kelly (1979) and Harrison (1988), we define a different class of customer for
each stage of each customer type’s route. In this section, we describe an
obvious pathwise bound that can be obtained by assuming that customer
classes do not compete with each other for the network’s service resources and
by analyzing each customer type in isolation. In particular, if a given customer
type visits a sequence of stations, for example, 1 - 2 - 3 - 2 — 4, then we
create a modified tandem queueing system for which there is a separate station
for each visit; in the example, the tandem system would include five stations,
with station 2 repeated. A different tandem system is created for each cus-
tomer type and thus the modified systems ignore the interference at a station
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due to customers of different types, as well as the interference due to different
classes arising from the same type. Clearly, the times at which customers of a
given class arrive at their station in the original system is pathwise lower
bounded by the arrival times in the modified systems of tandem queues; to
avoid unnecessary notation in this section, the proof of this observation is
deferred until Proposition 2 in the next section.

In order to write down this bound precisely, we need to specify the stochas-
tic processes underlying the queueing network. Customers of class £ = 1,..., K
arrive according to independent arbitrary arrival processes {N,(t), t =0},
where N, is assumed to be nondecreasing, RCLL (that is, its sample paths are
right continuous and have left limits with probability 1) and satisfy N,(0) = 0;
thus, N,(t) = 0 for all ¢ > 0 for any class that does not correspond to the first
stage along some customer type’s route. For & = 1,..., K, let {S,(¢), ¢ > 0} be
a Poisson process with parameter u,, which is the service rate for customers of
class k and suppose S,(0) = 0. We interpret S,(#) as the number of service
completions up to time ¢ if a server was continuously serving class & cus-
tomers during [0, ¢].

Suppose a certain customer type has n stages on its route and let class &
correspond to the kth stage of this route, for £ = 1,...,n. Then consider an
n-station FCFS tandem queueing system with arrival process {N(t), ¢ > 0} to
the first station and let station 2 = 1,...,n have a service time distribution
characterized by the potential service process {S,(¢), ¢t > 0}. As in Harrison
and Wein (1989), we assume the tandem queueing system is run according to
the following modified service mechanism that was introduced by Borovkov
(1965). The potential service processes S;, & = 1,...,n, are always turned on,
and whenever a potential service completion occurs in S, then a customer is
allowed to depart station % if at least one customer is present at this station. If
a customer arrives at station % at time ¢ to an idle server, then its service time
is the residual portion of the potential service time that is in progress at time
¢; thus, the service time is still exponential with parameter u,. The pathwise
performance bound is relative to the probability space introduced by the
processes {N,(¢), t > 0} and {S,(¢), ¢ > 0} and Borovkov’s service mechanism.

Let {A%(2), t > 0} denote the arrival process of class k customers to station

k of the tandem queueing system, for £ = 1,...,n. These processes can be
defined sequentially starting with k = 1. In particular, for ¢ > 0, we have

(1) Ai(t) = Ny(2)

and

(2) A5(8) = Sp () + inf (A3 (s) = Sy_i(s)} fork=2,....n.

Notice that A% in (2) is the cumulative departure process from station & — 1,
which is expressed as the potential number of departures from station £ — 1
minus the lost number of departures due to an empty queue; readers are
referred to Chapter 2 of Harrison (1985) for a full development of this
approach. It follows that the number of customers in the tandem queueing
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system at time ¢ is

(3) Ny(t) = S,(¢) — inf {A7(s) = 5.(s)} fort=>0,

which is a lower bound on the total number of customers of this type in the
actual queueing network at time ¢ for all ¢ > 0. If we index the customer types
in the network by j = 1,...,J, and let Z,(¢) be the number of customers in
the jth tandem system at time ¢ [as calculated from (3)], then {£Y_,Z;(®),
t > 0} is a pathwise lower bound on the total number of customers in the
original queueing network under any scheduling policy.

The main advantage of this bound over the bounds that will be derived in
the next two sections is that each customer class contributes to the bound at
each point in time, since we are summing over the number of customers of
each class in a set of tandem queueing systems. However, the bound derived in
this section ignores all of the queueing effects between the various classes at a
station and hence this bound will not be useful unless the original network has
low traffic intensity, or the majority of the offered load at each station is due to
one customer class.

2. A pathwise bound. In this section, the arrival processes are allowed
to be arbitrary, but the service times at each station are required to be iid
exponential random variables. We also assume that Borovkov’s service mecha-
nism dictates the timing of customer departures from each station, although
the particular exiting customer depends on the scheduling policy used at each
station. Let @,(¢) be the number of class & customers in the network at time ¢,
and let @ = (@,) be the vector queue length process. The goal of this section is
to derive a lower bound for © ¥_,@,(¢) under any scheduling policy for all times
t with probability 1.

Let s(k) denote the particular station that serves class % customers for
k=1,...,K, and define the I X K matrix M =(M,,), where M;, =1 if
customers of class & require at least one more service from station i before
exiting, and let M;, = 0 otherwise; this definition implies that M, = 1 for
k =1,..., K. Define the I-dimensional process W = (W,) by

(4) W(t) = MQ(¢) forall >0,

so that W,(¢) is the number of customers present in the network at time ¢ that
require at least one more service from station i before exiting.

The derivation of the pathwise lower bound is a two-step procedure. First, a
pathwise lower bound W*(¢) is found for W(¢), meaning that

(5) W*(t) < Wi(t) fori=1,...,]Tandt>0

for all scheduling policies. (We will construct such a bound shortly.) Then, by
(4) and (5), a lower bound on the number of customers in the network at time
¢t under any scheduling policy can be obtained by solving the following linear
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program parametrically for all nonnegative values of W*(¢):

K
6 min t
(6) min 3 Q(1)
subject to
K
@) Y M,Q.(t) = Wx(t) fori=1,...,1,
k=1
(8) Q,(t) =0 fork=1,...,K.

If we let f(W*(2),...,W;*(¢)) denote the optimal objective function value of
this linear program, then for any scheduling policy,

K
9 F(WEE),..., Wi (D)) < kZ Q,(t) fort > 0.
=1

In (9), the right side depends on the scheduling policy and the left side is
independent of the scheduling policy and is a pathwise performance bound for
the network. The function f in (9) is monotone nondecreasing and, as noted in
the following proposition, has a very simple form in a special, but not uncom-
mon, case.

ProposITION 1. The inequality
(10) F(WE@),. ..., W (1)) = 1m{:lxIWi*(t) fort >0
i<

always holds, and is satisfied with equality if there is a customer type who
visits every station in the network.

Proor. Since M;, takes on the value of 0 or 1 for all i =1,...,I and
k=1,... K,

K K
(11) Y Qu(t) = kZ_:IMika(t)

k=1
and thus for any feasible solution (@,(2),.. ., Qx(?)) to (6)—(8), we have

K
(12) Y Qu(t) = Wr(t) fori=1,....1,
k=1

which implies (10). If some customer type visits every station in the network,
then the class, say j, corresponding to the first stage of this type’s route,
satisfies M;; = 1fori = 1,..., I. Then Q,(#) = max, _; ., W*(¢) and @,(¢) = 0
for k + j is a feasible solution to (6)-(8) that achieves the lower bound in (10).

O

In summary, a pathwise performance bound (9) [and a weaker bound, (10)]
have been derived in terms of a hypothetical vector process W* that satisfies
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(5). The remainder of this section is devoted to finding the pathwise lower
bound W*. The key to constructing W* is to derive an upper bound on the
cumulative departure process from each station (that is, customers visiting
this station for the last time) under an arbitrary scheduling policy. In order to
derive this bound, we find it useful to consider a modified network where each
customer, upon arrival to the system, immediately splits into a number of
different customers, one for each of the different stations that are visited by
the original customer. Each customer in the modified network is served
exclusively at one station. In particular, if a certain customer type in the
original feedback network visits a certain station [ times on its route, then the
customer created for that station in the modified network will immediately
(that is, without any delays) feedback [ — 1 times after the first visit to that
station; thus we are ignoring the time it would actually take to feedback to
that station after visiting other stations along its route. Under this construc-
tion, each station in the modified network will behave as a multiclass queue
with feedback.

If a customer arrives to the original queueing network at time ¢, then the
corresponding customers (one for each station on the original customer’s
route) in the modified network will not necessarily arrive at their respective
stations at time ¢; instead, we will delay the arrivals in the modified network in
order to obtain a tighter bound. This delay is constructed as in Section 1;
namely, the time at which a given customer first arrives at any particular
station along its route can be given a pathwise lower bound by tracing the path
of this customer along its route through the stations while pretending these
stations form a tandem queueing system (repeating stations visited more than
once) and ignoring customers of other types.

By appropriate scheduling and insertion of idle time, it is fairly obvious that
one can obtain a sample path of the departure process for the feedback queue
of the modified network that is identical to any achievable departure process in
the corresponding queue of the original system. Therefore, if the scheduler of
the modified system inserts no idle time and always serves a customer having
the least number of feedbacks remaining at that station, then the cumulative
departure process from each station in the modified system is pathwise larger
than in the original system.

As in Section 1, we assume that customers of class £k =1,..., K arrive
according to independent arbitrary arrival processes {N,(¢), ¢ > 0}. For station
i =1,..., 1, let the potential service process {S;(¢), ¢ > 0} be a Poisson process
with parameter w;, which is the service rate for station i. Although these two
vector processes are the only primitive stochastic processes of the network, we
will need to define several more processes to precisely define the bound W*.
Let A,(¢t) be the number of arrivals of class % customers to station s(k)
(which is the station that serves them in the original network) up to time ¢ in
the original network under any arbitrary network scheduling policy. Let D,(¢)
be the number of service completions by server i in [0, ¢] that constitute the
last visit by a customer to station { under any arbitrary scheduling policy.
Since N,(¢) = 0, ¢ > 0, for all classes that do not correspond to the first stage
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along some customer type’s route, it follows that

K
(13) Wi(t) = ElMika(t) = Di(2).

As mentioned earlier, the key to obtaining a pathwise lower bound W;* of W,
is to find a pathwise upper bound of {D,(¢), ¢ > 0}.

We will also define a K-dimensional vector A* = (A%) of delayed arrival
processes in a similar manner to definitions (1)-(2), where A%(¢) is the number
of class % arrivals in [0, ¢] to station s(k) in the modified network. However,
we essentially ignore A% if class & does not correspond to the first visit to a
station by a customer type. Thus, let I(k) =i if class k corresponds to the
first visit to station i by the corresponding customer type, and let I(k) = 0 if
class k£ is not the first visit to a station by some customer type. Then for
classes {k: I(k) > 0}, the process A% will be constructed so that A%(¢) is
greater than or equal to A,(¢) for ¢ > 0. For ease of notation, we assume
without loss of generality that the classes are ordered so that consecutive
stages of each customer type’s route are also consecutively numbered classes.
If class k corresponds to the first stage along some customer type’s route, then

(14) A%(t) = Ny(t) fort >0,

and otherwise, let
(15) #(2) = Syp-1)(2) + 0i<2£t{ *o1(s) — Ss(k—l)(s)} for ¢ 2 0.
Notice that A% is nondecreasing and RCLL for £ = 1,..., K.

ProprosiTION 2. Forall t > 0,

(16) A(t) < Aj(t) for all scheduling policies and all classes {k: I(k) > 0}.

Proor. As explained in Section 1, if {#: I(k) > 0}, then {A%(?), ¢ > 0}
represents the departure process from a tandem queueing system (not to be
confused with the original or modified queueing network) consisting of n — 1
single-server exponential stations, where customers arrive to the system ac-
cording to the process {A%,_,,,(¢), ¢ = 0} (which equals {N;_,.1,(?), ¢ = 0},
since class £ — n + 1 is the first stage along this customer type’s route) and
the service rate at station i = 1,...,n — 1 of the tandem system is u,;_, ;)
Thus, A% represents the arrival process of class k customers to station s(&) in
the original network if they received preemptive priority at each previous stage
of their route. Since each customer class in the original queueing system may
be competing with other classes at their respective stations (and perhaps even
with customers of its own type which have fed back to the same station), A%(¢)
is an upper bound on the number of class & arrivals in [0, ¢] to station s(%) in
the original network under any scheduling policy, for all ¢ > 0, and thus (16)
holds. O
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The arrival process to station i in the modified network is {Z ;. y)-;yA%(¢);
¢t > 0}, which is a superposition of the delayed arrival processes for the various
classes that visit this station for the first time. The potential service process
for station i in the modified network is the same as in the original network,
namely {S;(¢), ¢ > 0}. Define {F(¢),t > 0}, i = 1,..., I, to be the cumulative
departure process of exiting customers (that is, customers visiting station i
for the last time) from station i (which is a multiclass feedback queue) in the
modified network under the shortest expected remaining processing time
(SERPT) policy; this policy gives nonpreemptive priority to the customer class
that requires the least expected remaining amount of work at station i before
exiting. Since all service operations at station i of the modified network are iid,
this policy awards priority to the class that has the least number of remaining
feedbacks to station i on its route. Then define W*(¢) for i =1,...,I and
t > 0by

K
(17) W*(¢) = ElMika(t) - Fy(¢),

which represents the number of customers arriving to the original queueing
network in [0, ¢] requiring at least one service at station i minus the number
of customers departing (for the last time) station i of the modified queueing
network in [0, ¢] under the SERPT policy.

ProposITION 3. For all t > 0 and all scheduling policies, W*(¢) < Wi(2),
i=1,..., 1L

Proor. We begin by proving the result for the special case where no
feedback exists; that is, customers do not visit any station more than once on
their route. In this case, station i of the modified network is a single-server
queue with no feedback and

(18) F()=S(t)+ inf { T A’;(s)—Si(s)} for ¢t > 0.
0ot \ . 1ay=i)

Although the departure process D;(¢) in the original network depends on
the scheduling policy employed, we have, for i = 1,...,I and ¢ > 0,

(19) D;(¢) < S;(¢t) + inf { Y Au(s) - Si(s)}
0<s<t \ (4. I(k)=i)
(20) < F(t) by (16)and (18).

Notice that the inequality in (19) is tight if the server at station i in the actual
queueing network services customers whenever the queue is not empty. Our
result follows by combining (13), (17) and (20).

Now let us consider the general feedback case. By (13) and (17), it suffices to
show that D,(t) < F(¢) for ¢ >0, i =1,...,I, and all scheduling policies.
Observe that if customers in the original feedback network, after visiting
station i for the first time, skip subsequent stages of their route that are not
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at station i, then the same sequence of customer services at station i could be
realized and hence the same departure process {D,(¢), ¢ > 0} could be observed,
by possibly including inserted idle times. Moreover, if the actual arrival process
of first time customers to station i { ;. ;4)=;A:(2), ¢ > 0}, was replaced by
our delayed arrival process {Z ;. yz)-;A%(?), ¢ > 0}, then, by Proposition 2, the
same departure process of exiting customers could be realized, again by the
possible insertion of idle times. Thus, any departure process of exiting cus-
tomers that is feasible for station i of our original feedback queueing network
is also feasible for the corresponding multiclass feedback queue in the modified
network.

Therefore, a pathwise upper bound (for any scheduling policy) on the
departure process of exiting customers for station i of the modified network
will also be a pathwise upper bound on D,(¢). For customer classes
{k: I(k) = i}, let m, denote the number of remaining visits to station i before
exiting the network. The maximum number of service completions up to time ¢
at station i of the modified network is

(21) sqny+ inf { T myais) -85},

0<s<t \(3. (r)=1)

which is realized by any scheduling policy that always serves customers when
the queue is not empty. Moreover, among this class of policies, the SERPT
policy maximizes the departure process of exiting customers for all ¢ > 0.
Thus, F(t) > D{(t), for all scheduling policies and all times ¢ > 0, which
completes the proof. O

3. A steady-state bound. In this section, each customer class is allowed
to have a different exponential service time distribution, but each customer
type is constrained to have a Poisson arrival process; that is, N,, k = 1,..., K,
are now independent Poisson processes. We will use a similar procedure as in
the last section (and will retain most of the notation), but will develop a
steady-state, rather than pathwise, bound; thus, we will need to assume that
the arrival rates, service rates and customer routes are such that the traffic

intensity at each station in the network isless than 1. For £ = 1,..., K, let ¢,
be defined by
1
(22) 0= tim 7| ["Qu0 &t
T - 0

so that it represents the long run expected number of class & customers in the
system under an arbitrary policy. Similarly, for i = 1,..., I, define

(23) w, = lim lE[[OTW,.(t) dt],

T -

which is the long run expected number of customers in the network who
require at least one more service at station i before exiting. Thus, it follows
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from (4) that

K

24 w; =Y M,q, fori=1,...,Jandk=1,...,K.
f ik1k
-1

Suppose we can find an I-dimensional stochastic process W* such that
(25) * & hm E[[ W*(t)dt]<w i=1,...,1,

for all scheduling policies. Then a lower bound on the mean number of
customers in the system in steady-state can be found by solving the following
linear program parametrically in w*:

K
(26) min )} g,
9 k=1

subject to

K
(27 Y Myq,2wf fori=1,...,1,

k=1
(28) 9, =20 fork=1,... K.

Denoting the solution to the linear program by f(w3,...,w}), it follows that
for any scheduling policy,

K
(29) f(wt,...,w}) < lim E[[ ZQk(t)dt].
k=1

By the convexity of f [for a proof of convexity, see, e.g., Proposition 4.1 in
Wein (1990b)] and Jensen’s inequality, it can be shown that

1
(30) f(wh, ..., wF) < %i_r)r:oTE[f()Tf(Wl*(t),...,W,*(t))dt]

and thus the steady-state bound is not as effective, in general, as the pathwise
bound derived in Section 2. Our inability to find a pathwise bound W*
satisfying (5) for the network described in this section has led us to resort to
the less effective steady-state bound. Also, observe that Proposition 1 still
holds, with w} in place of W*(¢) for i =1,..., 1.

In order to derive a stochastic process W* satisfying (25), we again consider
the modified queueing network described in Section 2; however, the network
will be defined slightly differently, since each customer class can have its own
exponential service time distribution. In particular, let S,, £ =1,..., K, be
the Poisson process corresponding to the number of potential service comple-
tions in [0,¢] if class % customers were served continuously during that
interval. The delayed arrival processes A%, £ = 1,..., K, are defined exactly as
in (14) and (15), except the service processes S, in (15) are replaced here by
S,; that is, if class % corresponds to the first stage along some customer type’s
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route, then let

(31) %(t) = N,(t) fort =0,

and otherwise, let

(32)  AL(8) = Sui(t) + inf {45 i(s) — Sy i)} fort=0.
<s<t

The arrival process to station i of the modified network is L ;. ;)i A%-
Since N = (N,) are Poisson processes, it follows by the explanation of equa-
tion (15) in the proof of Proposition 2 and by Burke’s theorem [Burke (1956)]
that A% is a Poisson process for all k. Since A} are independent for all £ such
that I(%) = i, it follows that each station in the modified network behaves as a
multiclass M/M /1 feedback queue. Furthermore, Proposition 2 holds true for
this network, where, for all {&: I(k) > 0}, {A,(¢), t > 0} is the arrival process of
class k& customers to station s(%) in the original feedback network under any
arbitrary scheduling policy. We also need to observe that the cumulative
number of customers who have arrived at station i in the modified system is
no more than the total number of customers who could have entered the
original system and will eventually need service at station i. This observation
clearly follows from the way the arrivals in the modified system were defined,
and we state it without proof in the following proposition.

ProrosiTION 4. Forallt > 0,

K
(33) Y AL(t) < ¥ M,Ny(t) fori=1,...,L
{k: I(k)=1i} k=1

As in Section 2, we let {F(¢),t > 0}, i = 1,..., I, be the cumulative depar-
ture process of exiting customers from station i (which is a multiclass M/M /1
feedback queue) in the modified network under the shortest expected remain-
ing processing time (SERPT) policy, and define W;*(¢) for i = 1,...,1 and
t >0, by

(34) Wr(t) = f M;, N, (2) — Fi(2).

Thus, for i = 1,..., I, the sbead;:tlate bound w} is given by

(35) wf = lim %E[/;T(kélMika(t) - Fi(t)) dt].
ProrosiTiON 5. For all scheduling policies, wf < w;,i=1,..., 1

Proor. Notice that (34) can also be expressed as

K
W (¢) = [Z My N(t) - ¥ A":Z(t)]

+

T AN - F}(t)],

{k: I(k)=1}
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where the second bracketed term on the right side represents the number of
customers in a multiclass M/M /1 feedback queue under the SERPT policy.
For the original feedback queueing network, we again define D,(¢) to be the
number of service completions in [0, ¢] that constitute the last visit by a
customer to station i under any arbitrary scheduling policy. Then we have

K
kX_‘.lMika(t) — Di(2)

37 W()

K
(38) ElMika(t)— L AN+ X AN - D).

{k: I(k)=1i} {k: I(k)=1}

If station i services m different customer types in the original network, then
by (31)-(32),

3
(39) IILILTE

TK
fo kglMika(t)— Y Ay adt

{k: I(k)=i}

is the mean steady-state number of customers in a set of m different tandem
queueing systems (readers are referred to the proof of Proposition 2 for the
interpretation of A*); this quantity is finite, since the traffic intensity at each
station in the original queueing network is less than 1. Thus, by (23), (35)-(36)
and (38), it suffices to show that, for all scheduling policies,

T—w T (k: IR)=1)

lim E[f Y A%(t) - Fy(¢) dt]
(40) X
< lim ?E[[T Y A%(#) — Di(¢) dt],

0 (k: I(k)=1)
where the right side is dependent on the scheduling policy used in the original
queueing network.

By the argument in the second to last paragraph in the proof of Proposition
3, any scheduling policy (and hence any corresponding departure process) that
is feasible for station i of our original feedback queueing network is also
feasible for the corresponding multiclass M/M/1 feedback queue in the
modified network. Thus, inequality (40) follows by the fact that the SERPT
policy minimizes the long run expected average number of customers in a
multiclass M/M /1 feedback queue [see Klimov (1974) for a derivation of this
classic result]. O

By (83) and (35)-(36), it follows that

(41) wf 2 lim — [ Y A%(t) — Fy(¢) dt|,
0 (k: I(k)=1)

which is the mean steady-state number of customers in a multiclass M/M/1
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feedback queue (under the SERPT policy) that has the same traffic intensity as
station i in the original queueing network. Thus, if the traffic intensity p; > 1
for some station i in the original queueing network, then w} will be infinite,
as will our steady-state lower bound. Therefore, scheduling is unable to
prevent an open queueing network from instability when max; _; _;, p; = 1.

4. Examples. In this section, we test the bounds derived earlier on three
two-station networks and one three-station network; the routing complexity
for these examples ranges from a tandem network to a network with symmet-
ric routing. For each network, we consider eight different scenarios, which
consist of two levels of load balance (referred to as balanced and imbalanced
in the tables and discussion to follow) crossed with four levels of load intensity
(light, medium, heavy and very heavy). Let p; be the traffic intensity at
station i, which is the fraction of the time over the long run that server i is
busy. For the balanced networks, the traffic intensity is the same at each
station, and is 0.3, 0.6, 0.9 and 0.99 for the four respective load intensities. For
the two-station imbalanced networks, the vector p of traffic intensities is
(0.3,0.2), (0.6,0.4), (0.9,0.6) and (0.99, 0.66) for the four load intensities and
for the three-station imbalanced networks, the respective vectors are
(0.3,0.2,0.1), (0.6, 0.4, 0.2), (0.9, 0.6, 0.3) and (0.99, 0.66, 0.33).

For each scenario of each network, we simulate and record the time average
values of three stochastic processes: (i) the number of customers in the
network under the FCFS policy, (ii) the number of customers in the network
under a proposed policy (which is derived either from previous analysis or on a
trial-and-error basis) and (iii) the lower bound (from either Section 2 or
Section 3, depending on the particular network). The three stochastic pro-
cesses are driven by the same customer arrival and service processes for a
given scenario. The pathwise bound from Section 1 was also tested for each
scenario, but it performed poorly, as expected. However, this bound is tighter
than the Section 3 bound in the imbalanced light scenario for Example 3,
although the two bounds are nearly identical in this case.

For each scenario, 20 independent runs were made, each consisting of
11,000 time units in Examples 1 and 2 and 91,000 time units for Examples 3
and 4. The observations in the first 1000 time units of each run were discarded
to reduce the initialization effect. In Table 1 we provide the mean (and 95%
confidence interval) over the 20 runs of the time average value of the three
stochastic processes, where these means are abbreviated by FCFS,
PROPOSED and BOUND, respectively.

Ideally, the effectiveness of our bounds should be measured by their proxim-
ity to the number of customers in the network under an optimal scheduling
policy. Unfortunately, this is impossible to assess, since the optimal scheduling
policy for each of these problems is unknown. Instead, Table 2 records the
efficiency of the lower bound, which we define as

42 1 bound effici BOUND 100%
(42) ower bound efficiency = Zo-5-com X b.
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TABLE 1

Detailed results of simulation experiments

Example Scenario FCFS Proposed Bound

1 Balanced light 0.856(+0.010) 0.856(+0.008) 0.775(+0.010)
Balanced medium 2.99(+0.058) 2.92(+0.051) 2.47(+0.046)
Balanced heavy 17.9(+0.912) 15.5(+0.872) 13.2(+0.824)
Balanced very heavy 114.(+24.8) 91.5(+23.3) 85.9(+23.0)
Imbalanced light 0.677(+0.007) 0.677(£0.007) 0.621(+0.007)
Imbalanced medium 2.16(+0.058) 2.14(+0.034) 1.85(+0.031)
Imbalanced heavy 10.7(+ 0.565) 10.4(+0.548) 9.46(+0.544)
Imbalanced very heavy  74.6(+24.6) 74.1(+24.8) 72.8(+24.6)

2 Balanced light 0.864(+0.014) 0.838(+0.015) 0.698(+0.010)
Balanced medium 3.02(+0.058) 2.78(+0.053) 2.07(+0.030)
Balanced heavy 18.5(+1.67) 13.6(+0.664) 7.99(+0.422)
Balanced very heavy 97.2(+15.5) 56.2(+6.57) 34.7(+5.85)
Imbalanced light 0.673(+0.011) 0.665(+0.010) 0.569(+0.008)
Imbalanced medium 2.16(£0.042) 2.02(£0.036) 1.63(+0.032)
Imbalanced heavy 10.4(+0.734) 7.53(+0.394) 6.03(+0.352)
Imbalanced very heavy  56.0(+11.3) 28.8(+4.91) 26.2(+4.88)

3 Balanced light 0.951(+0.015) 0.900(+0.013) 0.734(+0.011)
Balanced medium 3.76(+0.093) 3.06(+0.068) 2.18(+0.045)
Balanced heavy 23.9(+1.98) 15.1(+£1.14) 8.48(+0.611)
Balanced very heavy 141.(+34.8) 102.(+25.5) 43.8(+12.9)
Imbalanced light 0.742(+0.011) 0.709(+0.010) 0.560*(+0.006)
Imbalanced medium 2.64(+0.060) 2.22(+0.044) 1.47(+0.031)
Imbalanced heavy 13.2(40.906) 8.67(+0.475) 6.94(+0.451)
Imbalanced very heavy 81.9(+22.0) 45.9(+11.9) 43.5(+11.9)

4 Balanced light 1.37(+0.023) 1.35(+0.017) 1.17(+0.013)
Balanced medium 5.15(+0.095) 4.68(+0.075) 3.32(+0.055)
Balanced heavy 32.7(+2.89) 24.2(+1.79) 12.2(+0.702)
Balanced very heavy 207.(+34.2) 151.(+27.1) 71.4(+22.0)
Imbalanced light 0.860(+0.012) 0.840(40.012) 0.717(+0.008)
Imbalanced medium 2.79(+0.061) 2.51(+0.046) 1.78(+0.023)
Imbalanced heavy 14.1(+1.40) 10.3(+0.903) 8.33(+0.890)
Imbalanced very heavy 80.9(+23.1) 53.3(+14.8) 50.9(+14.8)

*Section 1 bound.

Since the main use of these bounds is to aid a job-shop scheduler in determin-
ing how much further improvement (relative to their proposed policy) might be
achievable from scheduling, the efficiency seems like an appropriate measure
for consideration. However, the gap between the proposed policy and the lower
bound equals the gap between the proposed policy and an optimal policy plus
the gap between an optimal policy and the lower bound and it is difficult to
assess how much of the total gap is due to either portion; that is, some of our
recorded gap may be due to our inability to specify a scheduling policy that is
close to optimal.

Since scheduling analysts often compare their proposed policy to a straw
policy, such as FCFS, Table 2 also includes the effectiveness of the proposed
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TaABLE 2
Summary results of simulation experiments

Lower bound Proposed policy
Example Scenario efficiency (%) effectiveness (%)
1 Balanced light 90.5 0.0
Balanced medium 84.6 2.3
Balanced heavy 85.2 134
Balanced very heavy 93.9 19.7
Imbalanced light 91.7 0.0
Imbalanced medium 86.4 0.1
Imbalanced heavy 91.0 2.8
Imbalanced very heavy 98.2 0.1
2 Balanced light 83.3 2.8
Balanced medium 74.5 7.9
Balanced heavy 58.8 26.5
Balanced very heavy 61.7 42.2
Imbalanced light 85.6 2.7
Imbalanced medium 80.7 3.7
Imbalanced heavy 80.1 27.6
Imbalanced very heavy 91.0 48.6
3 Balanced light 81.6 54
Balanced medium 71.2 18.6
Balanced heavy 56.2 36.8
Balanced very heavy 42.9 27.7
Imbalanced light 79.0* 4.4*
Imbalanced medium 66.2 15.9
Imbalanced heavy 80.0 34.3
Imbalanced very heavy 94.8 44.0
4 Balanced light 86.7 1.5
Balanced medium 70.9 9.1
Balanced heavy 50.4 26.0
Balanced very heavy 47.3 27.1
Imbalanced light 85.4 2.4
Imbalanced medium 70.9 10.0
Imbalanced heavy 80.9 27.0
Imbalanced very heavy 95.5 34.1

*Section 1 bound.

policy, which is defined as

FCFS — PROPOSED
(43)  proposed policy effectiveness = X 100%.

FCFS
This quantity tells us the percentage reduction in the mean number of
customers in the network achieved by the proposed policy relative to the FCFS
policy.
We will describe the four example networks and their respective proposed
policies before presenting the simulation results. The detailed network param-
eters for all 32 scenarios are listed in Table 3.
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TABLE 3

Data for simulation experiments

Load balance Load intensity
Example Balanced Imbalanced Light Medium Heavy Very heavy
1 B =20 p=20 A =03 A,=06  A,=09  A,=099
pe=10 pp;=15 Ag=03 A5=06 Ag=09 =099
2 p=10 py=10 A=32/105 A=64/105 A=096/105 A =105.6/105
Mo = 1.0 Mo = 1.5
3 Bar=1/4 pp=1/4
Hao =10 pas=2/3 Ap,=3/140 A, =6/140 A, =9/140 A, =99/140
wp1=1/8 up =1/8
Upe=1/6 upa=1/4 Ag=3/140 Ap=6/140 Ag=9/140 Ag= 99/140
uBs=1/2 ppsy=1/2
Bpe=1/T7 ppy=3/14
4 pa1=1/2 pp=1/2
bas=1/4 map=1/2 A,=1/30 A,=2/30 A,=01  A,=011
raz=1/6 up3 =10
[LBl=1/7 [LBl=1/7 AB=1/30 /\B=2/30 /\B=0.1 AA=0’11
ppe=1/5 ppp=1/4
pps=1/3 ppz3=1/2

ExampLE 1. This simple network appears in Figure 1, where type A
customers visit station 1 and then exit and type B customers visit station 1,
proceed to station 2 and then exit. Type A and type B customers arrive at
station 1 according to independent Poisson processes with rates A, and Ag,
respectively. The exponential service rates u, and u, are associated with the
two servers, not the three classes and thus the pathwise bound derived in
Section 2 is valid for this network.

The cnly real scheduling decision in this problem is to dynamically decide
which customer type to serve at station 1. Harrison and Wein (1989) studied
this scheduling problem by analyzing an approximating Brownian control
problem under balanced heavy loading conditions and proposed the following

Aa
lCIass 1
Station Station
A Class 2 Class 3
B = L >
1 2

l

Fic. 1. The network for example 1.
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scheduling policy, which is our proposed policy for this example: higher
priority is awarded to type A customers at station 1, unless there are ¢ or
fewer customers in queue and in service at station 2. In the latter case, priority
is given to type B customers in order to avoid idleness at station 2. The most
effective value of the parameter ¢ was chosen via computer simulation.

ExampLE 2. This example, which appears in Figure 2, is a simplified
two-station version of the nine-station symmetric job-shop studied in Chapter
11 of Conway, Maxwell and Miller (1967). Customers arrive according to an
independent Poisson process at rate A to each station. When customers
complete service at a station, they visit the other station with probability 3
and exit the network with probability 3, independent of all previous history.
As in Conway, Maxwell and Miller (1967), a customer’s entire route is chosen
at the time of its arrival to the network and is made known to the scheduler.
For ease in developing the simulation model, we did not allow a customer to
have more than six operations on its route; hence there are 12 possible routes
through the network. Since we assume that the exponential service rates are
the same for each service operation performed at a given station, only 12
customer classes are required and the pathwise lower bound derived in Section
2 is employed. .

Our proposed policy for this example is a dynamic policy developed by Wein
and Ou (1991) using a Brownian approximation procedure. For i = 1,2 and
k=1,...,12,let A;, be the expected remaining processing time for a class %
customer at station i before that customer exits the network and define {Vi(¢),

t > 0} by
12

(44) Vi(t) = Y A, Q,(¢) fori=1,2,
k=1

where @ is the vector queue length process. Thus, Vi(¢) represents the total
amount of work remaining in the network for station i at time ¢. When
Vi(2) > V,(t), the proposed policy awards priority to classes with smaller values
of A,,, and if there is a tie among classes, then priority is given to larger
values of A,, at station 1 and smaller values of A,, at station 2. Similarly,
when Vi(¢) < V,(¢), priority is given to classes with smaller values of A,, and

A A

' 05 [
Station //__—- Station
1 2
.‘____()_.L_/

lo.s lo.s

FiG. 2. The network for example 2.
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Class A1 Class A2
A p—————n] .
Station Station
Class B1 Class B2
Ag — >} -

1 2
Class B3
Class B4
-

Fi1G. 3. The network for example 3.

Class A1 Class A2 Class A3
A—] Station Station Station e
Class B1 Class B2 Class B3
1 2 3
B al

Fig. 4. The network for example 4.

when ties exist, priority is awarded to smaller values of A,, at station 1 and
larger values of A,, at station 2.

ExampLE 3. This two-station example, which appears in Figure 3, not only
allows customer feedback, but also allows each customer class to have its own
exponential service rate; thus, the steady-state bound derived in Section 3 is
required. There are two customer types, A and B, with two and four stages on
their respective routes, and the six customer classes will be referred to by their
type-stage pair. Although effective scheduling policies have been developed
under balanced heavy loading conditions for two-station closed [that is, con-
stant population size; see Harrison and Wein (1990)] networks and two-station
networks with controllable inputs [see Wein (1990a)], the general two-station
open network problem has not been successfully analyzed. We tested several
static and dynamic scheduling policies by computer simulation and found that
the simple shortest expected remaining processing time (SERPT) rule, which
gives priority to customers who are closest to exiting the network, was most
effective. Thus, our proposed policy is the SERPT policy.

ExaMpPLE 4. Our last example is the three-station tandem queueing system
pictured in Figure 4. The steady-state bound derived in Section 3 is required
for this example, since each customer class has a different service rate. After
testing several static and dynamic policies in trial simulation runs, we have
used the shortest expected processing time policy, which gives priority to the
class whose upcoming operation has the shortest expected processmg time, as
the proposed policy.

The simulation results for the four examples are summarized in Table 2,
which displays the efficiency of the lower bound and the effectiveness of the
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proposed policy, which are defined in equations (42) and (43), respectively. The
average efficiency of the lower bounds over the 32 scenarios is 78.0%. The
bounds are most efficient for Example 1, where the efficiency averages 90.2%
over the eight scenarios, and the average efficiency for Examples 2, 3 and 4 is
77.0%, 71.5% and 73.5%, respectively.

The large amount of feedback present in Example 2 is probably the main
reason why the pathwise bound is less effective in Example 2 than Example 1.
However, it is possible that the proposed policy is closer to optimality in
Example 1 than in Example 2, which would also contribute to the discrepancy.
Similarly, the simple structure of the three-station network in Example 4
probably allows its steady-state bound to be more efficient than the steady-state
bound of the two-station feedback network in Example 3. The lower efficien-
cies in Examples 3 and 4 relative to Examples 1 and 2 may be partially due to
the fact that, as explained in (30), the steady-state bound derived in Section 3
is not as efficient as the pathwise bound derived in Section 2.

The bound efficiencies in all four examples exhibit similar dependencies
with respect to the magnitude and balance of the network’s load. In particular,
the bounds are generally more effective for imbalanced networks: The average
efficiency for the 16 balanced and imbalanced scenarios is 71.2% and 84.8%,
respectively. For the balanced networks, the bound efficiencies in Examples 2,
3 and 4 deteriorate as the load becomes heavier, although the efficiency
increases slightly at very heavy loads for Example 2. For the balanced network
in Example 1 and all four imbalanced networks, the bounds were least efficient
under the medium load and most efficient under very heavy loading.

Most of this behavior is not difficult to explain. When the load on the system
is light, there is little congestion in the network and one would not expect a
large difference between our bounds and the proposed policy (or the FCFS
policy). Moreover, since f(x,, x,) = x, V %, for our four examples by Proposi-
tion 1, it is clear why the bounds are most effective when the load on the
network is very heavy and imbalanced; in this case, most of the congestion
occurs at one station in the network and this congestion is captured by the
function f. However, a smaller portion of the total congestion is at one station
when the network becomes more balanced or the network becomes more
lightly loaded; thus, the bounds become less effective in these cases. The
function f also implies that our bounds will deteriorate as the number of
stations in the network increases; in particular, it would appear that the
bound would perform poorly in a well-balanced network with many stations.
However, the bound may still be useful in a network with many stations if the
network is heavily loaded and possesses a decisive bottleneck station.

Example 1 is the only network that possesses an efficient bound under
balanced heavy loading conditions. When the pathwise bound derived in
Section 2 is applied to the version of this network considered in Harrison and
Wein (1989), it reduces to the bound denoted by wlFFT(¢) v wiFFT(¢) in
Proposition 2 of that paper. Harrison and Wein show that a pathwise bound
that is smaller pathwise than wIFT(¢) v wiFT(¢) weakly converges (under
the standard heavy traffic scaling) to the optimal objective function value of a
Brownian control problem that approximates this scheduling problem under
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heavy traffic conditions. Thus, it is not surprising that our bound performs
well when the load on this network is very high.

As expected, the effectiveness of the proposed policy generally increases with
the system’s load for the various networks, although the effectiveness dips at
very heavy loads for the imbalanced network of Station 1 and the balanced
network of Station 3. The proposed policy achieves the smallest improvement
relative to FCFS in Example 1. However, we can infer from the relatively tight
bounds that this lack of effectiveness is not due to our inability to find an
effective policy, but is intrinsic to the scheduling problem. When Examples 2, 3
and 4 are subject to an imbalanced and very heavy load, the proposed schedul-
ing policies achieve substantial improvements in performance relative to FCFS
and the lower bounds imply that only slight improvements beyond this are
possible.
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