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FINITENESS OF WAITING-TIME MOMENTS IN GENERAL
STATIONARY SINGLE-SERVER QUEUES

By D. J. DaLey! anp T. RoLski

Australian National University and University of Wroctaw

Conditions for the finiteness of waiting-time moments in queues with a
renewal arrival process were established by Kiefer and Wolfowitz. This
paper establishes analogous conditions, some necessary, and some suffi-
cient, in single-server queues with a general stationary ergodic arrival
process. The feature of the arrival process in contributing to delay is any
tendency to form clumps (or, clusters) of arrivals. In the more familiar
setting of a renewal arrival process, the regenerative nature of the process
severely limits any such tendency.

More generally, strong mixing conditions on the sequence of interarrival
times are used to give a sufficient condition for the finiteness of waiting-time
moments. The details are worked out for the two important examples
where the arrivals are generated by a Cox process and where the sequence
of interarrival times contains an embedded stationary regenerative phe-
nomenon. The latter example sheds light on the recent work of Wolff and
the range of examples and counterexamples used to elaborate the theoreti-
cal results presented.

1. Introduction. The existence of moments in queues is a classical prob-
lem of queueing theory. The celebrated theorem of Kiefer and Wolfowitz
(1956) deals with the waiting time in GI/GI/k queues, and there are various
more or less intricate proofs in the literature [see, e.g., Wolff (1984)]. For the
single-server case, most proofs essentially utilize properties of sums of inde-
pendent identically distributed (i.i.d.) random variables (r.v.’s). For this reason
they cannot serve as a basis for generalizations to G/GI/1 queues. To the
authors’ knowledge the only known extensions are for queues with some
special structure such as a queue with a periodic Poisson input [see Afanas’eva
(1985) and Rolski (1990)], or a queue which is one of a series of queues in
tandem [see Sacks (1960) and Wolfson (1984)]. This paper has been influenced
in particular by seeing a preprint of Wolff (1991) whose work bears particu-
larly on tandem queues.

Conditions for the existence of moments are of interest in their own right.
We found them essential for developing light traffic theorems for queues: They
enable us to state assumptions for such theorems in terms of the basic data,
that is, in terms of conditions on the input process and on the finiteness of
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988 D. J. DALEY AND T. ROLSKI

suitable moments of the service time. There are related problems concerning
bounds for queueing characteristics. Such bounds frequently entail moment
conditions in queues [see, e.g., Kingman (1970) and Lemoine (1976)]. We have
also found that the study of finiteness of moments helps us to understand
better the relevance of clumps in the point process of arrivals. It is intuitively
obvious that ‘“large” clusters of short interarrival times must somehow influ-
ence the waiting time in a queue. There are examples of this effect in other
papers as, for example, Miyazawa’s (1979) example of infinite expected waiting
time in some G/D/1 queues, or Wolff’s (1991) R/GI/1 queues.

We consider a single-server queue in which the arrivals occur at the epochs
of a stationary point process that is not necessarily a renewal process. Except
in Section 7 we work below with the Palm version of the input process.
Specifically, the interarrival times {T,,: n = 0, + 1, ...} are assumed to consti-
tute a strictly stationary ergodic sequence of nonnegative random variables
(r.v.’s) independent of the service times {S,: n =0, + 1,...} which are as-
sumed to form a sequence of i.i.d. r.v.’s. The waiting-time process we consider
has the representation

1
= sup (Sn+i_Tn+i ) n=0,i1,...,
Jz0 \i=—j

(1.1) w,
and this process {W,} is then stationary and nontrivial provided, as we assume,
that

(1.2) 0<b=ES<a=ET <

Here, S denotes a generic service-time r.v., and T a r.v. with the marginal
distribution of any T,; similarly, we write W for a r.v. distributed like any
member of the stationary sequence W,. The process can be described briefly as
a stable G/GI/1 queueing system. As defined in (1.1) it inherits stationarity
properties from the underlying processes of interarrival and service times.

In the case that the sequence {T,} is also i.i.d., so that the system is a
GI/GI/1 queueing system, Kiefer and Wolfowitz (1956) showed that for
y >0,

(1.3) when (1.2) holds, EW” < « if and only if ES?*! < o,

Our aim is to develop analogues of this results for the more general queueing
system G/GI/1. It has long been known [Kiefer and Wolfowitz (1956); cf.
Proposition 1 below] that when EW? < o, the sequence {S,} must necessarily
satisfy (1.3), and a sense in which the condition is sufficient is given in
Proposition 4. Unfortunately, earlier work on the finiteness problem gives us
no guidance as to the conditions that {T,} must satisfy. Examples and coun-
terexamples in Wolff (1991), along with the clustering phenomenon required
for positive waiting times in light traffic [Daley and Rolski (1991, 1992)], are
consistent with the conditions on {7,} that we deduce in Propositions 2 and 5.

In Section 5 we show that when the sequence {T,} is strongly mixing,
finiteness of EW?” can be related to the rate of convergence to 0 of the mixing
coefficients. This result is illustrated via processes with embedded regenerative
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phenomena, a setting that is close to what Wolff used in discussing queues
with “regenerative” arrival process, denoted R/ - /- . These results, and known
bounds on EW in GI/GI/1 systems, all serve to highlight what restrictions
are implicit in assuming a renewal arrival process.

Finally, we note that finiteness of moments of the stationary work-load
process are closely related to the moments of the stationary waiting-time r.v.
We use this connection in Section 7 to deduce properties of the waiting-time
moments in a queue with Cox (i.e., doubly stochastic Poisson) arrival process,
such as the example of a Markov modulated arrival process.

2. Necessary conditions for finiteness. The function sup{ ‘- - } in (1.1)
is convex in its arguments and (x_)” is a convex function for y > 1. Since the
sequences {S,} and {7,} are independent, we can deduce (2.1) below by
applying Jensen’s inequality to the r.v.’s {T,} and, for the equality, by appeal-
ing to the i.i.d. nature of the sequence {S,}:

Y

EWY>E
(2.1) =

sup{ E (S; - ET)}

Jz0 \i=—j
= yth moment of waiting time in D/GI /1.

Applying (1.3) then gives the following result; Miyazawa (1979) observed that
it is implicit in Kiefer and Wolfowitz (1956).

PropPosITION 1. Iffor some y > 1, EW” < o« for the stationary waiting-time
r.u. Win a stable G/GI/1 queueing system satisfying (1.2), the service-time
r.v. S satisfies E(S7*1) < w,

We can just as easily apply Jensen’s inequality to the sequence {S,} in (1.1),
in which case we have, for v > 1,
y}

= yth moment of waiting time in G/D/1/.

EW” >E

SUP{ E(ES - Ti)}

J=0 \i=—j

(2.2)

For any positive n define

(2.3) J,=sup{j: T_; + - +T_; <jn}.

Jj=0
Because {7} is a stationary ergodic sequence, J, is a finite-valued r.v. for
n < a. Then for G/D/1 we have from (1.1) that

(2.4) Wo 2, J(ES —m) =dJ,(b—m),
" and therefore ‘
(2.5) EW? <w implies E(J)<w® (alln <b).

This yields the following counterpart to Proposition 1.
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ProprosITION 2. If for some v > 1, EW?Y < « for the stationary waiting-time
r.v. Win a stable G/GI /1 queueing system satisfying (1.2), then the stationary
ergodic interarrival-time sequence {T,} satisfies (2.5) and the stronger condi-
tion
(2.6) sup (b — 1) E(J)) < .

n<b

In fact, this convexity argument demonstrates the following extremal prop-
erty of queueing systems with either regular arrivals or constant service times,
generalizing a result due to Rogozin for GI/GI/1 systems [see, e.g., Stoyan
(1983), Section 5.2].

ProrosiTiON 3. Within the class of stationary queueing systems G/GI/1
with independent service-time r.v.’s independent of the stationary ergodic
interarrival-time sequence, if there is given either the service-time d. f. and the
arrival rate A, or the distribution of the interarrival-time sequence and the
mean service time, then all moments of order y > 1 of the stationary waiting-
time r.v. W are minimized by having constant interarrival times (= A~1) or
constant service times, respectively.

That Proposition 2 is not vacuous is'shown by the following example which
Wolff (1991) refers to as well known. He gives another example, adapted from
Miyazawa (1979), of a G/GI/1 queue with ES? <  but EW = oo; this second
example also contravenes the necessary condition of Proposition 2 for EW < .

ExampLE 1 (Folklore counterexample). Consider independent sequences of
i.id. positive r.v.’s {T)*} and nonnegative r.v.’s {S*}, where the generic r.v. S§*
is a random sum of »* i.i.d. nonnegative r.v.’s {S,} and n* has a distribution
{m}} = {Pr{n* = k}} concentrated on {1, 2, ...} with finite first moment

b* = Y kwf < oo,
k=1

Such sequences {T,} and {S;*} arise from a single-server queue with batch
arrivals in which the former sequence denotes interarrival times between
batches of arrivals, the numbers in distinct batches are positive i.i.d. r.v.’s with
distribution {7}}, and service times of arrivals are i.i.d. r.v.’s {S,}. The waiting
times confronting the first-served arrivals in successive batches are then the
same in distribution as the sequence of waiting times of customers in a
GI/GI/1 queue with generic interarrival time T* and service time S*. A
stationary waiting-time r.v. W*  say, exists for such a system if (1.2) is
satisfied, that is, when ES* < ET* < x, equivalently, ES < ET*/b* < o,
Define further r.v.’s W;* by

(‘2‘7)7' Wl* =d W* and Wk*+1 =y Wk* + Sk =W* + Sl + - +Sk:

where W* and S, S,, ... are mutually independent, and each S; =; S. These
r.v.’s have the interpretation that arrival in a batch of size at least 2 and kth
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to be served from the batch, has as its waiting time a r.v. whose distribution is
that of W;*. Clearly, W;* >, W* (all k), so in order that stationary waiting-time
r.v.’s of this queueing system with batch arrivals should have finite yth
moment, it is necessary by (1.3) that E[(S*)?”*!] < ». In the simplest case
y =1, since

E[(8*)| = E(n*)ES? + E[n*(n* - 1)][EST,

finiteness of EW* requires both ES? < » and that the batch size distribution
associated with the process of arrivals should have a finite second moment.
This latter condition is just the necessary condition of Proposition 2. Con-
versely, E[(n*)?] = « implies that EW* = o, so the stationary mean waiting
time of a customer is then infinite, even when ES? < .

3. Sufficient conditions. The sense in which we can establish results
converse to those of Propositions 1 and 2 is governed in part by the tools
available for studying moments of partial sums of stationary (not necessarily
iid) r.v.’s.

ProrosiTION 4 (Sufficient conditions via decomposition). If the stationary
waiting-time r.v. W, of a G/D/1 queueing system with mean service time
n < a satisfies EWJ < o, then the stationary waiting-time r.v. Wofa G/GI/1
system with the same arrival process and for which b = ES < n and ES”"*! <
o, satisfies EW?Y < o,

Proor. For any pair of infinite sequences of reals {x;},{y;}, we have
sup;{x; + y;} < sup{x;} + sup;{y,;}. Apply this inequality to the partial sums
in a representation like (1.1) for W =; W, written as

-1 -1

W=, Sup{ Y(Si-m+ X (n- Ti)}
Jz0 \i=—j i=—j

(3.1) ) )

< sup{ (S —n)} + sup{ Y (n- T,-)}~

Jjz0 \i=—j Jj=0 \i=—j

For any y > 1, the moment EW?” is finite if the yth moment of each of the

terms of the right-hand side is finite. But these terms are just representations

of stationary waiting-time r.v.’s W', W, say, in D/GI/1 and G/D/1 systems

respectively and both these systems are stable because b <1 < a. Since

ES"! < w, E(W')’ <o by the Kiefer—Wolfowitz result, and EW} < © by

assumption, proving the proposition. O

«+We shall see in Example 2 that in general the proposition cannot be
extended to cover the case ES = 7.

The decomposition underlying the upper bound at (3.1) is not unlike the

decoupling technique used in Wolff (1991), Section 4. Indeed, decompositions
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are the major tools in studying finiteness questions, at least for tandem queues
[Sacks (1960) and Wolfson (1984)].

A heuristic argument indicated in Section 4 suggests that the condition (2.6)
on the interarrival-time sequence may be sufficient as well as necessary for the
finiteness of EW”. However, as shown below in Example 3, this is not so: We
have to be content instead with weaker sufficient conditions, and even the
necessary and sufficient condition in (4.8) for the finiteness of EWJ in G/D/1
is little more than a tautology, and is not so readily applied as either (2.6) or
3.2).

PropPOSITION 5. If the sequence of interarrival times of a stable G/D/1
queueing system with mean service time b satisfies

(3.2) supE(J)) < o,

n<b

then the stationary waiting-time r.v. Wy, satisfies EWJ < oo,

Proor. Observe from (1.1) that W, has the representation

Wy = sup (b - T ;- -T_y
Jj=0

=vb-T_,— -+ -T_,
<vb,

for some nonnegative integer-valued r.v. v, where if equality occurs then
T_,+ - +T_, =0. From (3.3) we have

(3.4) ' E(W,/b)" < Ev"
and also

(3.3)

supd, = supsup{j: T_; + --- +T_; <jn} 2 »,

n<b n<b j=0
because either equality holds at (3.3) and we have already noted that then
Jo = v, or else when strict inequality holds we have JJ, = v for some (random)
n < b. Thus v < sup, ., J,. Using this in (3.4), then monotonicity, and finally
the monotone convergence theorem, gives

E(Wp/b)" < E[sup(Jg)] - E[ lim(JnV)] — LmE(J7),
n<b ntd ntd
proving our assertion. O

4. Two counterexamples and a summary theorem. Both the coun-
terexamples that follow are variations of the same idea from Miyazawa (1979)
as used in Wolff (1991). First define the sizes K; of clumps of arrivals in which
" the K, — 1 interarrival times within each clump are the same (but may
depend on the size of the clump), while the interarrival time between the last
and the first members of adjacent clumps are such as to ensure that the mean
interarrival time equals the prescribed value ET, say. By making the r.v.’s K;



FINITENESS OF WAITING-TIME MOMENTS 993

iid, but with a sufficiently heavy tail, by making the “interclump” distance
depend on the preceding clump only (and thus, independent of the ensuing
clump), and by having a service-time r.v. that is less than the mean interar-
rival time, we obtain a process in which the system regenerates at certain
arrival epochs. This property makes certain algebraic computations possible in
closed form, and it is then an easy step to choose the distribution for K ; in
such a way that it has the finite or infinite properties dictated by the
requirements of the counterexample.

Let {K;: i =0, + 1,...} be a doubly infinite sequence of independent posi-
tive integer-valued r.v.’s which, apart from K|, are identically distributed as

(4.1a) Pr{K,=Fk}=m,, k=1,2,...(alli=+0),
for some distributions {w,} satisfying

(4.1b) EK= Y km, <o;
k=1

K, has the distribution

4.1 Pr(K, =k} = Tt po12

(4.1c) r{K, = }_EK’ =1,2,...,

with EK as at (4.1b). Given K, let K; be a r.v. uniformly distributed
on (1,..., K.}, independent of the other K,, and define random indices
{N:i=0,+1,...} by

(4.2a) N, =K, N;,,=N;+K,, i=1,2,...,

(4.2b) Ny= —(K,-K;), N_,=N_,,,-K_,, i=12,....

This construction gives us a stationary renewal point process on the integers
with lifetime distribution {r,} (i.e., a stationary process of “recurrent events”
as in Volume 1 of Feller’s treatise), namely, there are unit atoms at the
random “times” N;, designating regeneration epochs, and --- < Ny<0<
N; < -+, and for all integers n = 0, + 1,..., a unique sequence of random
indices i = i(n) = i(n, w) is determined such that N; <n < N,,,. Then for
k=12,...,

Pr{K{ =k} = ) Pr{(K,=FklK,=1}Pr{K,=1)
=k
(4.3a) _ i 1 l'ﬂ'l _ Zolo=k7Tl
/S lEK  EK
and

) Pr{KO—K{)=k—1} Z
(4.3b) 1=
Ly,

EK

Pr{K; = K, + 1 — kK, = [}Pr(K, = I}
k
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ExampLE 2. This example supports our assertion following Proposition 4.
With i(n) as just given, determine a stationary ergodic interarrival-time
sequence {T,} with ET, = a by

b, if Niuy <7 < Ninys1,

4.4 T, = .
(44) K;ya - (Ki(n) - l)b’ if n= Zvi(n)+1’

for some positive constant b < a. Observe that a G/D/1 queueing system
with such {T,} as its interarrival time sequence and service times equal to b is
trivially stable, provided the distribution {m,} satisfies (4.1), and that its
stationary waiting-time r.v. equals 0 a.s.

Let nonnegative i.i.d. r.v.’s {S,} have mean b and finite second moment.
Consider a G/GI/1 queueing system with such {S,} as the service-time
sequence and interarrival-time sequence {7} as in (4.4). Suppose that b =
ES <ET = a. For the (nonstationary) sequence of waiting times W* de-
- fined by W;* = 0 and otherwise satisfying the recurrence relation W* , =
(W + S, — T,),, we necessarily have W* <, W, where W denotes the sta-
tionary waiting-time r.v. of such a system. For 1 < r < N,, we also have

W’r* = maX{O, Sr—l - b, Sr—l + Sr_z - 2b,"., Sr_]_ + - +S]. - rb}

O<j<r-1
Now
(4.5) EW > E(I, W*,)=—1— iEW*§W«=‘1— 3 w*ﬂéiw.
= &y >1K EK =, kj=k i~ EK =, k = i
where
w*=iE( max {S;+ - +8 —rb}).
" Vn \osrza-1' ! 4

Choose 7, = C/k?* for some « in 0 <a < 0.5 and suitable normalizing
constant C. Then because

. . 2Var(S)
limw} =1 —— >0
n—o o

[this follows from (8.5.13) and Exercise 6.4.2 of Chung (1974)], the right-hand
side of (4.5) is infinite while both (4.1) and ES?2 < « hold.

Refer again to (3.3) where the random index » = v(w) is defined. Define
n(w) as follows. Either v(w) = 0, in which case set n(w) = 0, or else v(w) > 0
and

T—V(w)(w) + 0+ T (o)
v(w)

is well defined, with n(w) <, b. We assert that

(4.7 (@) = v(w).

(4,6) n(w) =
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To see this, it is clear from (3.3) that J (w)> v(w), so suppose that
(w) <j <d,, (o). Then

(48) & -T_ ((0) = -T_j(0) <bv(o) - T () - —T_,, (o).
Since (n(w) — b)j < (n(w) — b)v(w), we have by (4.8) that
Jn(e) —T_((w) = -T_j(w)
=Jj(n(w) =b) +jb - T_y(w) =+ =-T_j(w)
<v(o)(n(w) —b) +bv(w) =T_; = - =T_,,(w)
=v(o)n(w) —T_ (o) = =T_,,(0) =0,

which shows that we cannot have J, (&) > v(w). Then for all w we have the
representation

Wp(w) = v(@)(b — n(@)) =45 Iyw)(b = n(w))
and
EW3 = E([b - n(0)]"J},)-

This suggests that (2.6) may be sufficient as well as necessary—after all, since
the r.v. J, is well defined and finite and nondecreasing in 7, it is a small step
to replace n(w) here by 5. The following example underlines the failure of this
heuristic approach. What we do is to show that both (2.6) can hold and
EW = o,

ExampLE 3. In place of T, as in (4.4), define now
b—ex,, if N;<n <N,

(49) T, = .
K,,ET — (Ki(n> - 1)(b - EK,-(,,,), if n =Ny,

where {¢,} is a monotonic sequence decreasing to 0 with &, < b and, together
with {7,} which necessarily satisfies (4.1), satisfies also

o k o
(4.10) Y k%7, = oo, sup {sk Y@(G-1 Zwi} < oo,
k=1 k j=1 i=j
Then for n < b,
0, if0£n<b—sK0,
(4.11) Iy = Ky—Kj, ifb—eg <mn<b;

note that it is possible to have J, = 0 in the latter case as well because
K, — K{, may equal 0.
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Define k(n) = sup{k: b — ¢, < n}. Referring to Proposition 5, first calculate
EJ, = E[E(K, - KylKo)[{K, < k(n))]

—E[lK -1DHKK, <k ]
(4.12) = 2( 0 ){ 0= (77)}

k(n)

T SRR

Then condition (2.6) holds if and only if

(4.13) Sup{ekZ(j—l)Z‘lT} < o,

=J

On the other hand, b — n(w) = &g , so in a G/D/1 queue with service times
S, =b,

k=1
(4.14)

1
_E—E'_K" Ek(k_l)zﬂ'

For an appropriate constant C and b = 1, {C/k?} is a distribution satisfying
(4.10) when ¢, = (1 + log £)~*. For this distribution, (4.13) is satisfied, and
hence (2.6), but from (4.14) we have EW = oo,

Surveying these results and counterexamples, we summarize as in the
following theorem.

THEOREM 6. Let W be distributed as the stationary waiting-time r.v. in a
stable stationary G/Gl/1 queueing system with stationary and ergodic inter-
arrival-time sequence and i.i.d. service-time r.v.’s. If

(4.15) EW? < w,

then

(4.16) E(S") <

and, with b = ES,

(417) ([b 77(“))] 'q(w)) < ©,

where the r.v. n(w) is determined by (4.6). Conversely, if (4.16) holds and
EJ) <  for some n > b, then (4.15) holds.
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5. Mixing conditions. In this section we impose some mixing conditions
on the interarrival times. Recall that a stationary sequence {T,: — © < n < «}
is strongly mixing with mixing coefficients p,, if

(5.1) sup|Pr(A N B) — Pr(A)Pr(B)| = p,,,

where the supremum is taken over all A € ofT,: r <n} and B € of{T.:
r>m+n}and p,, = 0.

LEMMA 7. Let the strongly mixing stationary nonnegative sequence {T,}
have mixing coefficients {p,} satisfying

(5.2) Ynlp, <o,
n=1
for some vy > 0. Then EJY < » forall n <a = ET.

Proor. Suppose first that T, < M for some finite constant M. We have
EJ) < »if and only if

Y kY IPr{J, >k} <.

k=1
Now
{J, 2k} = {ZT_,»sjn}= U{Z(T_i—a) <j(n—a)
Jjzk \i=1 Jjzk \i=1
(5.3) = {ii(a—T_,)za—n
jzk \J i=1
1 J

{sup{—_ Y(a-T_)=a- n}}
jzk \J i=1

Set M, = max(a, la — M) and ¢; = (e — T_;)/M,, so that |£;| < 1. From (5.3)
it follows that EJY < « if and only if

® 1/ a—n
kY"1 Pr{sup{— > < oo,
kgl {sz{J iglf} M, }
By Theorem 1.2 of Berbée (1987) this last sum is finite when (5.2) holds, which
proves the lemma in the case that {T}} are bounded.

For the unbounded case start by observing that, given n < a, we can find M
such that the sequence {TM } = {min(T};, M)} has E(T)>n. For such a
sequence the analogous r.v.’s J; M >d,, so by the first part of the proof it is
enough to show that the statlonary nonnegatlve sequence {T'} is strongly
" mixing with mixing coefficients p,, » < p,, as in (5.1). But the backwards and
forwards o-fields in (5.1) are sub-o-fields of the corresponding o-fields gener-
ated by the sequence {T}}, so (5.1) holds with p,, ,, <p,, as required. (We
thank Professor M. R. Leadbetter for this argument.) O
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REMARK 1. There is a parallel theory for a GI/G/1 queue with a sequence
{T,} of iid. interarrival times and a sequence {S,} of service times that
constitute a strictly stationary ergodic sequence, with the two sequences
mutually independent. For such a system a decomposition analogous to Propo-
sition 4 holds. It is also possible to prove an analogue of Lemma 7, provided
that we can assume that the service times are bounded. The problem of
unbounded service times is more difficult.

CoroLLARY 8.  If the interarrival sequence {T,} of a stable G/GI/1 queue is
strongly mixing and satisfies (5.2) for some given y > 1, and ES”*' < «, then
the stationary waiting-time r.v. W satisfies EW” < co.

Proor. Choose nin b = ES < n < a = ET. Then the result follows by the
theorem and Lemma 7. O

ExampLE 4 (Renewal arrival process). In a stationary stable GI/D/1
queueing system, so that {7} is an i.i.d. sequence of r.v.’s with ET > b =,_ S,

(5.4) Jy =g sup{j: Ty + - -+ +T; < jb}.

In order to apply a general result on partial sums of i.i.d. r.v.’s [e.g., Chow and
Teicher (1978), Section 10.4, Theorem 3], consider the iid. r.v.’s {X,} =
{ET — T,}, for which a generic such r.v. X has zero mean and E(X?*') <
(ET)**! < (all y > 0). Then

(5.5) Jp =4 sup{n > 0: X; + -+ +X, > (ET - b)n},

and by equation (23) in the cited theorem, E(J}) < . The condition (3.2) is
satisfied, and Proposition 5 applies.

A much shorter proof is available via Proposition 8 because a renewal
process is strongly mixing with mixing coefficients all 0.

ExampLE 5 (Markovian interarrival times). Suppose the interarrival times
form a Harris-recurrent Markov chain on R, with transition kernel p(-,-)
and stationary distribution 7(-). As usual let p™ denote the m-fold convolu-
tion of p. Set

K, (y) =lp™(,) = =)
From the proof of Theorem 1 of Athreya and Pantula (1986), we have

Pm < Bm = 2Sllme_1(y).‘
y=0

Then by Proposition 8, we have EW” < = if

(5.6) Y vl <
n=1
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Condition (5.6) is automatically satisfied for chains satisfying the Doeblin
condition, in which case the B,’s decrease exponentially.

Strong mixing of Harris-recurrent Markov chains dates back at least to
Davydov (1969, 1973). Aspects of Davydov’s results are developed further by
Davies and Griibel (1981) using Banach algebra methods (as did Davydov).
Harris-recurrent Markov chains are known to be regenerative in a generalized
sense [see, e.g., Asmussen (1987)]. This notion contains regeneration in the
classical sense, meaning that there exists a discrete-time renewal sequence
{N,} such that consecutive cycles

€, ={N,,, - N, {X;:N,<i<N,,}}, n=0+1,...,

are independent and identically distributed for n # 0. The results of Miyazawa
(1979) or Wolff (1991) also motivate the study of queues with interarrival
times having a regenerative structure.

We now introduce another concept of regeneration, for which we are able to
characterize mixing coefficients in terms of moments of lifetime distributions.
This notion of regeneration again contains regenerative sequences in the
classical sense. Our setting uses the notion of a regenerative phenomenon as
in, for example, Kingman (1972).

Let (Q, &, &) be a probability space supporting a discrete-time process
{X,}. We say that the process {X,} contains an embedded regenerative phe-
nomenon ® = {E }ifforanyA e &, =0{X,:r <m}land Be ¥, ,, =o{X,:
r>m +n},and any E, with m <s<n + m,

(5.7 P(ANE,NBYF(E,) = P(ANE)P(BNE,).
Equivalently, provided #(E,) > 0 (all s),
(5.7) P(ANBIE,) = P(AIE,)#(BIE,).
Let ® have lifetime distribution {f,} so that
(5.8) fo=AEE:_,...E{I[E)}, n=12,...,
set g, =/f,+ f.s1+ ', and define its associated renewal sequence {u,} by
1, n =0,
(59)  w,=P(EJE)={ T,  a-12...
m=1
Put
Z,(0) = {1, if @ EE'H
0, otherwise.

Assume that:

(@) ((X,,, Z,)} forms a jointly stationary sequence,
* (ii) the regenerative phenomenon is positive recurrent (i.e., Lnf, < ©),
(iii) the regenerative phenomenon is aperiodic (i.e., the highest common
factor of {n > 1: f, > 0} equals 1).
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When we consider processes {X,,} containing an embedded regenerative phe-
nomenon below, we shall assume that conditions (i)-(iii) are satisfied.

When conditions (ii) and (ii) hold, the Erdés—Feller—Pollard theorem
[see, e.g., Feller (1968), Volume 1, or Kingman (1972), Chapter 1, for discus-
sion] implies that

: ) »
(5.10) u,>m=%PE) = ( Y mfm) >0, n — oo;
m=1
equivalently,
(5.11) a,= suplu,, -7l -0, n-o o
m=>=n

The following lemma coupled with Proposition 8 is essentially a form of a
result of Wolff (1991) on R/GI/1 queues.

LemMmA 9. If an interarrival-time sequence {T;} contains an aperiodic re-
generative phenomenon for which the lifetime distribution {f,} has

(5.12) Y mtif, < oo,
m=1 ‘

for some y > 0, then (T,} is strongly mixing with coefficients {p,} satisfying
(5.2) for such y.

Proor. We use Lemma A in the appendix and a result of Davydov (1973),
Theorem 5(iii), stating that for given § > 0, the renewal sequence {«,} gener-
ated by the lifetime distribution {f,,} of an aperiodic discrete-time renewal
process satisfies

(5.13) Y lu,—u,_;im® <« ifandonlyif Y m?*lf <o
m=1

m=1

(we have expressed Davydov’s result in terms of {f,,} rather than {g,}).
Directly from (A.1) of Lemma A, (5.2) is satisfied if both

(5.14) () Y m"'G,<» and (b) Y m' la, <,

m=1 m=1

‘%o

where G,, = 7(g,,.1 + &nsia+ ). Since «, < X7, |Au,] where Au, =
Uy = Uprys

{

]Autl < C,y Z mylAumla

s

© -
vy—1 y—1
mTla, < Y m
1 m=1 t

Efil\ﬂss

m=1

i

m
for some positive constant C, provided here that y > 0, and this is finite by
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(5.13) when (5.12) is satisfied. Since G, in part (a) of (5.14) is a sum of tail
sums of { f,}, finiteness of the sum in (a) is certainly implied by (5.12). O

REMARK 2. Because a regenerative phenomenon of period greater than or
equal to 2 cannot be ergodic [i.e., (5.11) cannot hold], it cannot be strongly
mixing, so the assumption of aperiodicity is made without loss of generality.
Nevertheless, as is implicit in example (b) of Wolff (1991), the finiteness of
waiting-time moments for R/GI/1 with periodic arrival processes can be
considered outside the context of mixing.

ExampLE 6 (M/GI/1 — GI/1 tandem queue). Customers arrive at the
first system which is an M/GI/1 queue, and upon completing their service
they proceed to the second system, which also consists of one server. The
characteristic of interest is the stationary waiting time at the second system.
We assume that Poisson arrivals at the first queue are of intensity A, that the
service times {S{"}, {S®)} at the first and second system respectively consist of
ii.d. r.v.’s, and that the input and service sequences at the stations are all
mutually independent. The interarrival times {T,} at the second system are
interdeparture times from the first one. Suppose that customers initiating

busy cycles have indices ..., N_;, Ny, N;,... . Using the definition of i(n)
from Section 4, we have
S, if Ny,y <n < Niwy+1s

4.4 T, =
(44) " M;,,+8SP, ifn= N;ny»

where {M,} is an i.i.d. sequence of exponentially distributed random variables
with parameter A. The length K of a generic cycle is equal in distribution to
the generic number of customers in a busy cycle. Thus EK”*! < o
if E(S®)"*! < », Appealing to Proposition 9, we deduce that for the sta-
tionary waiting-time r.v. W® at the second station, E(W®)” < » provided
E(S@®)**1 < , This is implicit in Wolfson (1984) and is also shown in Wolff
(1991). Note that generalizations to systems like GI/GI/1 — GI/1 are not
straightforward because, following work of Nummelin (1981) or Sigman (1988),
the “‘regenerative phenomenon’’ that is involved is not immediately the pro-
cess under study.

6. The limited effect of clumping in renewal arrival processes. We
stressed in Daley and Rolski (1991) an interpretation of delays in single-server
queues with renewal arrival process arising from the combination of the two
influences of the tail behaviour of the service-time distribution and any
clustering tendency in the interarrival-time distribution. What our Proposi-
tions 2 and 5 and Examples 1-3 show is that, more generally, waiting times
are influenced by clumping behaviour of the interarrival times, though this
effect can never be strong enough to give infinite mean waiting times with the
independence structure of a renewal arrival process [Kiefer and Wolfowitz
(1956); Example 4 above]. We consider Kingman’s (1962) upper bound on
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mean waiting times which in its simple form
Var(T) + Var(S)

<
=" ET-ES
(6.1)
_ Var(T-8) Var(T - S) " ES b
T2E(T-8)  2a(l-p) PP TET T @

is a function of T — S alone, and hence “almost” symmetrical in S and T,
unlike the Kiefer and Wolfowitz result at (1.3); this symmetry disappears in
refined forms such as
p(2 — p)Var(T) + Var(8)
2ET(1 - p)

[Daley (1977)]. Here we can interpret the term involving Var(S) as arising
from the (occasional) occurrence of large service times and the consequential
delays to subsequent arrivals; indeed, there exists a sequence of stable station-
ary D / GI/1 systems, with the same interarrival time and first two moments
of S, in which EW can be arbitrarily close to the bound

Var(S)
2ET(1-p)’
To interpret the other term in (6.2), observe that in a GI/D/1 system it takes
the form

(6.2) EW <

(6.3)

p(2 — p)Var(T)
2ET(1 — p)

Consider a family of GI/D/1 queues, all with the same b = ES, a = ET and
ET?, and indexed by x in 0 < x < a, for which the iid. r.v.’s T, satisfy

Var(T)
Var(T) + (a —x)*’

(6.4) EW <

x, with probability w, =

(65) T,=T=
Var(T) .
a+ p— with probability 1 — w,

For all such x, arrivals occur in clumps of iid. random sizes that are
geometrically distributed. As x increases from 0 to a, the mean number in
each clump increases but both the distance between clumps and the distance
between adjacent elements within clumps increase. Visually, the pattern of
arrivals tends to look more highly clustered the smaller the value of x. For all
x > b, we have W =, 0, while for smaller x intuition suggests [and this is
: supported by direct computations noted in Daley (1990)] that EW should
increase as x | 0. Note that for such a system, J, =, 0 for n <x; further
inspection shows that

(6.6) Pr{J, =j} = (1 - @,)w], Jj=0,1,...,
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and J, 2,4 J,, * <n <a. Then from (2.4), for 0 <x <,

6.7) EW > (b —2x)w, _ (b —x)Var(T) .

l—wx (a—x)2

We infer from this relation that the presence of the term Var(T') in the bounds
(6.1) and (6.2) is attributable to its being a surrogate for a measure of
whatever clumpiness is possible in a queue with a renewal arrival process: It
gives a uniform bound on the effect of such clumping on EW when Var(T) < .
Some elementary algebra shows that the maximum in 0 <x <b of the
right-hand side of (6.7) is at least % times the upper bound at (6.4) for all p in
0<p<l

7. Queues with Cox input. Suppose that N is the stationary point
process which corresponds to the Palm version (or, synchronous process) of
N°=1%,5, where

ST T _To,'TO=0,71=T1,72=T1+T2,...

[see, e.g., Rolski (1981) or Daley and Vere-Jones (1988) for these notions on
stationary point processes and facts used below]. Parallel to (1.1) the work-load
process {V(¢): —» <t < «} has the representation

N(0,t]
(7.1) V(t) = sup{ Y S, - (t- s~)}.
s<t | i=N(0,s]+1

From Miyazawa (1979) we know that in a stable G/GI/1 queueing system, the
stationarity work-load r.v. V has EV” < « if and only if EW?” < c.

Let {A(?): t € R} be an ergodic stationary nonnegative process. Suppose
further that it is the arrival rate process of a queueing system into which
customers arrive at the epochs of a Cox (i.e., doubly stochastic Poisson) process
directed by this process as its arrival rate. From (7.1) it follows easily that

Mo A™()
(7.1’) VE V(O) =d Sup{ Z Si - t},
t=0 i=1

where T1(¢) denotes the number of points in (0, ¢] of a stationary homogeneous
Poisson process with unit rate and

A (t) =f0‘,\-(s)ds E[Ot)t(—s)ds.

Following Section 3 of Rolski (1990), set
(7.2) D =sup{A~(¢) — (1 + e)A(t)},

20
where A = EA~(1) and ¢ > 0 is such that (1 + £)AES < 1. We tacitly assume
that A(#) is locally integrable and such that D is a r.v. Note that D is finite
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because A~ is stationary and ergodic. Then for any A > 0,
D= sup{ sup  {A(1) — (1+ g)Xt}}
n>0 ‘nh<t<(n+1h

< sup{A~((n + 1)h) — (1 + £)Anh}

n=0

.

(7.3)
<A (h) + sup{f”hr(s) ds — (1+ s)th}
n=1\"h
= A~ (h) + sup{é; + -+ +&, — (1 +&)Anh}.
nx>1
Rolski (1990) proved the special case y = 1 of our next result.

ProPOSITION 10. IfEDY < @ and ES"*! < o, then EV” < ,

Proor. Use the inequality

(D) (1 +&)t)
(7.4) V<, Z S,f+sup{ Z Si—t},
i=1 t>0 i=1

where all S;’s, all S;’s, II'(D) and {II((1 + ¢)¢): ¢t > 0} are independent, with
each element of the first two sequences distributed like S and IT'(D) =, II(D)
[see (3.4) in Rolski (1990)]. From the standard theory of queues, the second
term on the right-hand side of (7.4) is the waiting time in M/GI/1 queues, so
its yth moment is finite provided ES”*! is finite. The yth moment of the first
term is finite because

mwom) \”
E( Yy S,f) sESVE([II’(D)]y) < o,
i=1
Define the strong mixing coefficient function of the stationary process
AT@®) =A(—8),t =0, by
p(t) = sup| P(A N B) — P(A)P(B)|,

where the supremum is taken over all A€ o{A (v), 0 <v <s} and Be
oA~ (v),v>=s+t} O

ProproSITION 11. For a stationary queue with Cox input with a bounded
arrival rate process, let the mixing coefficient function satisfy

N Z-ny_lp(nh) < oo,

n=1

for some h > 0. IfES'”1 < o, then EVY and EW? are both. finite.
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Proor. The sequence {{;} is strong mixing with mixing coefficients p, =
p(nh) satisfying (5.2). Hence by Remark 2,

E(sup {fl + oo+, - (1 + S)th})v < oo,

nx>1

The proof is complete now by Proposition 10. O

Proposition 11 contains as a special case the G/GI/1 queue with periodic
arrivals [cf. also Rolski (1990) and  Afanas’eva (1984)]. Another important
example is the following.

ExamPLE 7 (Markov modulated arrivals). Arrivals occur at the epochs of a
doubly stochastic Poisson process with a random arrival rate function of the
form f(X(t)), where {X(¢)} is an irreducible finite-state Markov process and
f(+) is a nonnegative function defined on its state space. For such an arrival
rate function, the mixing coefficient function decreases exponentially, so for
the finiteness of the yth moment of the waiting time it is sufficient that
ES7*1 < oo,

APPENDIX

Strong mixing of a process containing an embedded regenerative
phenomenon. The counterexamples in Section 4 above and some examples
in Wolff (1991) fall into the framework of processes containing an embedded
regenerative phenomenon as defined in Section 5. The following lemma relates
strong mixing coefficients p, with G,’s and «,’s defined also in Section 5.

LEmMMA A. A stochastic process {X,} containing an embedded regenerative
phenomenon is strongly mixing with mixing coefficients p, satisfying
(A1) P, <2(G, + G,) + a,/m,
where r, s and t are any positive integers withr + s + t = n.

ReEMARK 3. For (A.1) we use only the joint stationary property as in
assumption (i) of Section 5.

Proor oF LEMMA A. Because of stationarity, take m = 0 without loss of
generality. We have to show that for any A € %, and B € .%,, the right-hand
side of (A.1) is a bound for [#(A N B) — P#(A)F(B)|. Define

S c 3
Na-.Eq, ifr<s,

A2 DS =
(4.2) " {Q, otherwise,
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so that each of the equations
(A3) Q=E, UDINnE,u---UD"'NnE,uD;]
' =DSUE,NDjU--UE,_,NDSUE,

represents () as the union of mutually exclusive events. Then for any 0 < r <
n — s we have

r S
PANB)=Y Y P(AnDI'NENE, ;nDr}, NB)

i=1j=-1

(A.4) + Y P(ANDi"'NE,NDI-l N B)

i=1

+ Z P(AND[NE,_;D;},; N B)

Jj=1
+P(ANDND;-l N B)

Observe that by the stationarity property of the regenerative phenomenon,
(5.10), and the identity

0

i ifJ= Zgi=

i=1j=i i=1
we have
P(D7)=1- i —Z P(E;NEj, N NE;ND{" NE;)
i=1j=0
=l-m(g+ ' +8)=G
Thus #(A N D] N B) < #(D]) = G,. Then
0<8S,+83+8,<85,+8;+28,
=#(AnNnD;NnB)+P(AND;-}NB) <G, +G,.
Use (5.7) twice to rewrite the typical term in the double sum S; at (A.4) as
(A6) P(AND{YE)P(E)P(E,_E)P (D"_J+1 N BIEn_j).
Recall «, in (5.11). Then the expression in (A.6) bounded by
(A7) (tea,, ,/m)P(ANDE, )7,-9(1)"_“1 N BIEn_J-)w.
It follows therefore that the sum S, lies in the range
(A8) (lta, , .,/mPAN(Q-D])P(2-Dy7})nB),
wilere 'the product of probabilities lies between
(A9)  (P(A)-G,),(P(B)-G,), and P(A)P(B).

(A.5)
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Thus,
(A.10) |2(ANB) - #(A)P(B)| <2, +G,) +a,_,_,/m,

proving the lemma. O
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