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ON THE DISTRIBUTION OF THE INTEGRAL OF THE
ABSOLUTE VALUE OF THE BROWNIAN MOTION

By Lados TAgAcs

Case Western Reserve University

Kac has considered the integral of the absolute value of a Brownian
motion process and determined the Laplace—Stieltjes transform of the
distribution function of this integral. In this paper explicit expressions are
given for the distribution and the moments of this integral.

1. Introduction. In 1946 Kac [5] proved that if &,¢,,...,¢,,... are
independent and identically distributed random variables for which E{¢,} = 0
and E(¢?} = land if {, =& + -+ +¢&, for n > 1, then the limit distribution
function

4]+ 8ol + - +14,]
(1) lim P{ 3 §2n3/2 ‘ sx} = H(x)
exists and if s > 0, then
(2) V(s) = [ e~ dH(x)
0
can be expressed in the following form:
(3) ¥(s) = X G
j=1
where
1+ 3/8Ai(—u)du
(4) CJ = 3d.Ai( —a ’
a;Ai(—d})
5 Ai iy N L
=— — +
(5) ' i(2) 7,-,/; cos| o + 1z
is the Airy integral, and z= —a’, j=1,2,..., are the zeros of Ai'(2),
arranged so that 0 < a; <da, < --- <da; < --- . In a note, Kac [6] describes

his motivation to find ¥(s) and Schwinger’s contribution to the solution.
Since the process {ney/ Vn, 0 <t < 1} converges weakly to the standard
Brownian motion process {£(¢), 0 < ¢ < 1}, and since the integral

(6) o= follg(mdt
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is a continuous functional on the process {£(¢), 0 < ¢ < 1}, (1) implies that
(7 P{o <x} = H(x)

also holds.

The distribution function H(x) naturally appears in order statistics and in
reliability theory, but until now we have had very little information about its
properties. The aim of this paper is to fill this gap.

2. The distribution of o. Denote by g(x) the stable density function
whose Laplace transform is given by

(8) [we'sxg(x) dx =e "
0

for Re(s) > 0. By inverting (8) we obtain that
04/3,,—/3

(9) 8(x) = — 7=

for x > 0, where

e~/ (1/6,4/3,4/(27x%))

1 e
—txy—5/6 1/6
1“(1/6)/06 t5/8(1 + )% dt

is a confluent hypergeometric function.

(10) U(1/6,4/3,x) =

THEOREM 1. Ifx > 0, then

(11) dlflix) x\/‘/g_ Z Cie uv?/?U(1/6,4/3,v;),

where C; is given by (4),

(12) v; = 2(a;)°/(27x?)
and z = —d;, j = 1,2,..., are the zeros of Ai'(z) arranged so that 0 < a; <
a'2 <L v

Proor. By (3) we obtain that
dH (x)

19) k() = T = T (e i) )

for x > 0, where g(x) is given by (9). O
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The theory of the stable distributions is thoroughly covered by Zolotarev
[16]. For the definitions and properties of the confluent hypergeometric func-
tion and the Airy integral we refer to Slater [12], Miller [7] and Abramowitz
and Stegun [1]. The first 50 zeros of Ai'(z) and Ai(—a’), j = 1,2,...,50, can
be found in Miller ([7], page 43) for eight decimals. See also Abramowitz and
Stegun ([1], page 478) for the first 10 zeros of Ai'(z) and ([1], page 450) for the
asymptotic series of the zeros.

If x > 0, then

x4 2x%% 7
Ai(—x) ~ = sin 3 t 7

<) X 3 2j
— 1)}/ -
jgo( 1) CZj( 9 5/2 )

(14)

2x3/2
— + J—
cos( 3 1

o . 3 2j+1
jgo(_l)chj-rl(W) J

as x — o, where ¢, = 1 and

L OTEj+1/2) (2j+1)(2j+8) (6 1)
%7 BT + 1/2) 216!

(15)
for j =1,2,.... We have

1(. 5
(16) ¢ =3 j—1+£} Cio1

for j > 1. (See Abramowitz and Stegun [1], page 448.) Also we can prove that if
x> 0 and x — «, then

fOxAi(—u)du

2 x84 2x%2 o
— = COS( + Z

© ; 3 2j
an "3 Vx 3 EO(_I) hzj(2x3/2)

2x3/2 T 5 ) 3 2j+1
+si + — —Vhyii|l =5
ol gl ]
where h, = 1 and
2/ -1

for j > 1. By using the above formulas we can calculate C; for j > 0. Table 1
contains C; for j < 10.
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TaBLE 1

The constants C,

J a Ai(-a}) /& Ai(—u) du C;
1 1.01879297 0.53565666 0.47573996 1.48257073
2 3.24819758 —0.41901548 0.70083344 —0.75983287
3 4.82009921 0.38040647 0.65122852 0.53695654
4 6.16330736 —0.35790794 0.67580399 —0.45747262
5 7.37217726 0.34230124 0.66048490 0.39382448
6 8.48848673 —0.33047623 0.67119622 —0.35809002
7 9.53544905 0.32102229 0.66316740 0.32553770
8 10.52766040 —0.31318539 0.66947361 —0.30414730
9 11.47505663 0.30651729 0.66435092 0.28365033
10 12.38478837 —0.30073083 0.66861921 —0.26901755
We note that .
o (3m(4j - 3)\*"
(19) a;~|————
and
j-1 .\y1/2
(20) C;~ (=17 (2/(3)))

as j — o. If in calculating A(x) by (11) we stop at the nth term, then the
magnitude of the error is about

R, (x) ~e ™" /Cnn /x2.

If n =10 and x = 2, the error is about 2 X 1078, Table 2 and Figure 1
contain the density function A(x) for 0 < x < 2. The calculations have been
made by utilizing the program Mathematica of Wolfram Research [15]. In this
program Ai(x) and U(a, b, x) are built-in functions.

(21)

TaABLE 2
The density function h(x)

x h(x) x h(x) x h(x) x h(x)
0.05 0.000000 0.55 1.092241 1.05 0.277296 1.55 0.038464
0.10 0.016130 0.60 0.960699 1.10 0.235011 1.60 0.030330
0.15 0.558418 0.65 0.846447 1.15 0.197797 1.65 0.023741
0.20 1.447401 0.70 0.746032 1.20 0.165309 1.70 0.018446
0.25 1.884812 0.75 0.656629 1.25 0.137176 1.75 0.014226
0.30 1.930870 0.80 0.576235 1.30 0.113017 1.80 0.010890

" 0.35 1.798081 0.85 0.503549 1.35 0.092441 1.85 0.008275
0.40 1.609401 0.90 0.437764 1.40 0.075064 1.90 0.006241
0.45 1.418331 0.95 0.378363 1.45 0.060510 1.95 0.004673
0.50 1.244365 1.00 0.324978 1.50 0.048421 2.00 0.003472




190 L. TAKACS

h (x)
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Fic. 1. The density function h(x).

3. The moments of o. The moments

(22) w, = [ %" dH(z)
0
for r=0,1,2,..., are determined by the following theorem.

THEOREM 2. We have
L.r!

(23) Kr = 9720 ((3r + 2) /2)

forr=20,1,..., where Ly =1 and

n (6j+1
(24) L,=8,+ El 26%%0@,,_,
forn = 1, where ay =1,
(25) o, = I"J(.3‘j +.1/2) _ (2j+1)(2j+33;~(6j—1)
(36)°j!II'(j +1/2) (144)° ;!
forj=1,2,..., By=1and ‘
(26) Br = "‘ %ﬂﬂkq

fork=1,2....
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Proor. Cifarelli [3] proved that if {¢(x), 0 < u < 1} is a standard Brownian
motion, and o is defined by (6), then

dt B Ai(z + \/glxl)

(27) jje_z‘E<e'”‘/2‘_3'\/Z§(l)=x>¢(%)ﬁ—— A

for z > 0, where

-x2/2

(28) o(x) = =
and Ai(z) is the Airy integral defined by (5). If we integrate (27) over
x € (—o, ), we obtain that
3/§Ai(u)du -1

3Ai'(2)

(29) [:e-zt\lf(\/'zF)d

for z > 0. By analytical continuation we can extend (29) for Re(z) > 0. Hence
if s > 0,

1 e | asy-1s [8/¢Ai(u) du — 1]
(30) ¥(s) = 2_wif_iwe 3Ai'(z)

In the integrand the denominator has zeros only on the negative real axis. The
rootsofAz’(z)—Oare z2=-dj, j=12,..., where 0 <a, <d;< - <
a; < --- .Since Ai"(2) = zAz(z) by using the theorem of residues, (30) yields

Kac’s formula (3).
The moments u,., r = 0,1,..., defined by (22), exist for all r =0,1,2,...

and
r/2
(31) L < V8 ( )
if r > 1. This follows from the fact that
1
(32) [ 1€(u)du < max |£(u)|
0 O<ux<l

and

N 2UT((r + 1) /2) (-1*
(33) E{[oﬁf‘iﬁ'g(u)ll }= o z (2k + 1)

for r=1,2,.... Thus

" (39) V()= L (~1) s7/r!

r=0

and the series is convergent on the whole complex plane. If we put (34) into
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(29), then by term integration we obtain the following asymptotic series:
(35) z[je'”‘l’(@) dt ~ rio(—l)rL,z‘z”/z
as z — », where L, is defined by (23).
If z > «, then in (29),
gV/iem %Y /8 = G P

LD e

Jj=0

(36)  Ai'(z) ~ —

where «; is defined by (25). We can calculate «; by the recurrence formula

3(. 5
(37) aj=Z J—1+%‘; a;_q
for j = 1,2,...; @y = 1. Furthermore, if z — , then
z 1 2—3/4e—2z3/2/3 ©
38 Ai dy ~ — - —— —1)* -3k/2,
(38) [ Ai(w)du~ g o L (T Bz

where B, =1 and B,, k = 1,2,..., are determined by (26). By (29), (35), (36)
and (38) we obtain that

[ oz £ -t e

(39) -0 /0 =~

~ X (- 1)k.3kz_3k/2~
E=0

By comparing the coefficients of z~3"/2 on both sides of (39), we obtain that

z (6 +1)
(40) Y —a;L, . +B,=0
j=0 (6j—1) " ’
for n=0,1,2,.... This proves (24). Table 3 contains L, and u, for

r<10. 0
The limit behavior of w, is given by the following theorem.

THEOREM 3. We have
\/_ r \r/2
41 ~ V2| —
(41) b~ V2[5
asr — o,
Proor. First we note that by (37) it follows that

(42) a; < (3))1
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TABLE 3
The moments of o

. L, Wr Wy
0 1 1 1
41
' ! 3V 0.5319230405
9 3
2 4 3 0.375
263 263 1
’ 32 315 vam 0.3330851420
2709 903
‘ 64 2560 0.352734375
578487 2119 1
> 2048 1980 Vo 0.4269488344
2370249 - 37623
° 1024 85536 0.5740814209
1472890279 11074363 1
! 65536 5250960 y2r 0.8413759825
1032772671 114752519
5 T 4096 86507520 1.3265033953
26915124080747 3845017725821 1
T 8388608 688400856000 or 2.2282658808
11968136957889 189970427903
10 T 262144 17982837760 © 3.9591328227
if j > 1 and by (25),
! i 15! J
(43) a(j)=(f) o (BOY ( 1 )
3) (2/ -1 (3/)(2/)(2/)!\ 216
for j > 1, and
<]
(44) 1+ ¥ a(j) = F(1/6,5/6;1/2;1/2) = V6 /2,
Jj=1

where F(a, b;c;z) is the Gauss hypergeometric functlon See Bailey [2] and
Abramowitz and Stegun [1].
By (26) we obtain that

@ (e

(2 — 1) (25 - -
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Hence by (44),
4\* B, V6
im = | —— =
(46) k‘f‘l(3) k-1 2
or
k k/2
47 ~ V2| —
(47) B~ 2| 5]
as k — o,
Now we shall prove that the limit
48 li ) L
(48) 5‘1(3) (2r— )N
exists and
(49) v3/2 <L <4/3.
It is proved in Takécs [13] that if D, = 1, D, = 1/4 and
3r—2 1r-1
(50) Dr=(_'_)Dr—1__ ZDiDr—i
4 23
for r > 2, then (4/3)'D,/(r — 1!, r =2,38,..., is a decreasing sequence of
positive real numbers and
od Ai(2)z'?
51 Y (-1 ’Drz—3r/2 ~——

as z — . By (29) and (35),
3/§Ai(u)du — 1
3Ai'(z)

(52) Y (1) L,z /2
r=0

as z — «. Hence

-3 ; (—1)'L,(3r + 2)z~@r+9/2
r=0
(53) Ai(z) [3/¢Ai(u) du — 1] zAi(2)

) 34i'(2) Ai'(z2)

as z — », Here we used that Ai"(z) = zAi(z). Accordingly,

1 <)
- 5 Z (_l)rLr(Sr + Z)z—(3r+3)/2
; =0 .
(54) ‘

0

(£ v £ e
-0

r r=1
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as z — . Consequently,

(3r—1) r=1
(55) 2 Lr—l = ZODJL"_J
j=

for r > 1or
(3r—-1) r—1

(56) r 2 Lr—l - Z Der—j
j=1
for r > 2. By (56),
(3r — 1) 1 3(2r — 1)
(57) Lys——Lo-gLi=—7—L

for r > 2 or

) () e = (47 e
3] (2r-1!t 3 (2r = 3)!

for r > 2. Accordingly, the limit

) (5 = -

195

exists and L <4/3. On the other hand, by (24) L, >, for n > 1 and

therefore by (46), L > V6 /2. Now we shall prove that in (24),
( 4 )" 1 n o (6j+1)

3 X

(60) fim (2n - DIl = (65— 1) 97"

n—o

=0

and this implies that L = V6 /2. By (58),

61 4\" L, 4
(61) (_3') 2r-1)Il =3
for r > 1. If we use (42) and (61), then we obtain that

4" 1 n (6j + 1)
' 03(5) (2n—1)!!j§1 (6] — 1) nd

(62) 28 n!l(2n — 2j)!
15 /7 2n)l(n —j)!
as n — «. This proves that L = V6 /2.
Finally, by (23),
L.r!
T 2/((3r + 2)/2)

r )r/Z

(63) “, «’2‘(3—

asr— oo O3
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4. Expansions in Laguerre series. As an alternative, we can express
the distribution function H(x) and the density function h(x) = H'(x) by
Laguerre series. The generalized Laguerre polynomials,

64 L@ Y (-pnte l
(64) e = (5
defined for n =0,1,2,... and a > —1, are orthogonal on the interval 0 <
x < o with respect to the weight function
(65) g.(x)=ex*/T'(a+1).
We write
X
(66) Go(x) = [ gu(u) du
0
for x > 0.

By using the results of Uspensky [14] and Nasarow [8] (Sansone [10],
Chapter IV) we can prove that

* c
(67) H(x) = G,(bx) +a ) fgaﬂ(bx)L‘,i’ll(bx)

n=1
and
(68) h(x) = g,(bx)b Y ¢, Lt~ D(bx)

n=0
for x > 0, where a > 0, b > 0 and
n+a-1)_ v (_l)r n+a-—1\x-

(69 A R e (e L

for n =0,1,2,... . The moments u,, r > 0, are defined by (23).
We have ¢, = 1, and if we choose

64
(70) a= m = 3.073524225046
and
‘ 48V27
(71) b= P —yy = 5.778137043948,

then ¢; = ¢; = 0. In this case the coefficients ¢,, 1 <n < 10, are given in
Table 4.

Even if we add only a few terms in the expansions (67) and (68), we can
obtain good approximations for H(x) and A(x).

Finally, it should be mentioned that the analogous problem of finding the
distribution of the integral of the absolute value of the Brownian bridge was
solved in 1975 by Cifarelli [3] and independently in 1982 by Shepp [11]. In this
case the density function was determined by numerical integration by Rice [9]
and the explicit form of the distribution function by Johnson and Killeen [4].
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TABLE 4
The coefficients c,,

n c, n c,
1 —0.000000000000 6 —0.020663009369
2 —0.000000000000 7 —0.013188716669
3 —0.011584328208 8 —0.007518446236
4 —0.027178915962 9 —0.003542017611
5 —0.027729182039 10 —0.000784228414
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