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ASYMPTOTIC DISTRIBUTION OF THE NORMAL
SAMPLE RANGE

BY PETER C. MATTHEWS! AND ANDREW L. RUKHIN?

University of Maryland

For a spherically symmetric multivariate normal random sample, the
asymptotic distribution of the largest interpoint Euclidean distance is
derived. The number of interpoint distances exceeding a high level is
shown to have a limiting Poisson distribution.

1. Introduction and summary. In this paper the asymptotic distribu-
tion of the multivariate normal range is determined. Let X;, X,,... be
independent k-dimensional normal random vectors with zero mean vector
and the identity covariance matrix. The sample range M is defined as the
largest interpoint distance between the first n observations:

(1.1) M=M(n)= max |X;-X]l

1<i<j<n

The asymptotic distribution of M is well known in the special case £ = 1
[see David (1981), Section 9.4]; namely, for any c,

lim P(M? < 4[2]log n — loglog n — log4m + c])

n— o

loglog n + log4m )
<c

lim P{y21 M — 2y21 +
nl—IEo ( ogn[ ogn 2y2log n

o2}

f exp(—c—e '7¢—e7t)dt;

that is, the asymptotic distribution of the range is the convolution of the
limiting distributions for the extreme order statistics. The situation when
k > 2 is considerably less studied, although the problem is interesting both
from theoretical and practical points of view.

Indeed for 2 = 2 the range is an important statistic in gun quality control,
in which a gun is accepted when its sample range of points of impact does not
exceed a given value. For instance, in the quality control program of Smith &
Wesson Co., a handgun is placed in a vise and fired 10 times at a target with
a grid on it, so that the determination of the largest distance between points
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of impact is an easy task. If this distance exceeds 4 inches, the gun is
rejected. In this situation the calculation of the sum of squares needed for the
optimal test for the dispersion of points of impact is time consuming and not
always feasible. We will discuss the distribution theory relevant to this
example in Section 4. The monograph of Grubbs (1964) discusses further
statistical measures of accuracy in bivariate samples.

In general situations the range could be used for detecting outliers [cf.
Barnett and Lewis (1984), Chapter 9.3] or to provide a quick, short-cut
estimate of the dispersion [cf. David (1981), Section 7.5, where this statistic is
described as “intriguing”].

S. Wilks obtained by the Monte Carlo method the first four moments of M
for some values of sample size n, which are reproduced in Cacoullos and
DeCiccio (1967). These authors also suggested a chi approximation to the
distribution of M and noticed that a lower bound to its distribution function
can be obtained from the distribution of the diameter of the smallest circle
covering the whole sample. The latter was derived in Daniels (1952). Siotani
(1959) discussed some bounds for the percentiles of the distribution of M.

The asymptotic distribution of the smallest interpoint distance was studied
by Silverman and Brown (1978) and Jammalamadaka and Janson (1986) by
using the Poisson limit theorem for U-statistics [see also Barbour and Eagle-
son (1984)]. A related result on the asymptotic behavior of random points
with specified nearest neighbor relations was obtained by Henze (1987).

Here is the formulation of our main result for 2 > 2. Let

lyn =loglogn and I3n =loglyn.

Throughout this paper we assume that n is sufficiently large and that
natural logarithms are used. Denote for fixed c,

(1.2) ro=[2logn + 1(k — 3)lyn + Iyn + a + c]?
with
(k — 1)2¢:-7/2
(1.3) a=a(k) =logW.
Let

C, = card{(i,j):1<i<j<n,lX,—X]|>2r)

be the number of exceedances by the interpoint distances of the given level
2r,.

THEOREM 1. As n tends to infinity, C, converges in distribution to a

Poisson random variable with parameter e™°.

This theorem has the following corollary, which is a consequence of the
equivalence of the events C, > 0 and M > 2r,.
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CoROLLARY 1. For k > 2,
n—»ow

1
limP(M2 s4[2logn + E(k —-3)lyn +ign +a +c])

0.5(k - 3)l2n + l3n + a
2y/21log n

In this paper, the term “extreme value distribution” will refer to the
cumulative distribution function exp(—e~°), possibly with location and scale
changes. The first expression, based on M2, is included because the distribu-
tion of M? in simulations is closer than the distribution of M is to an
extreme value distribution.

The exceedance count C, is related to the Poisson clumping heuristic
defined in Aldous (1989). Intuitively, a vector X; with an exceptionally large
norm could lead to a clump of exceedances of 2r; when combined with vectors
of large norm and nearly opposite direction. Indeed it looks as if this
possibility prevents the moments of C, from converging to the moments of
the limiting Poisson distribution. For example, when & = 2,

= limP(\/2logn [M —2y2logn —
n-—ow

=exp(—e~°).

n

EC, = (g)P(Y> 2[21og n — 2yn + lyn +a + c]),
where Y is a chi-squared random variable with 2 degrees of freedom. Thus
lim EC, = lim(log n)"/?/l,n = .

On the other hand, clumping turns out not to be a factor in the asymptotic
distribution. Points large enough to lead to clumps containing more than one
exceedance of 2r; are rare enough to be irrelevant asymptotically. This lack
of clumping seems to be a consequence of the rapid decay of normal distribu-
tion tails. With a heavier tailed distribution we expect clumping to be a factor
in the asymptotics.

In Section 2 we eliminate some possible sources of exceedances. Consider
four possible radii: r; given by (1.2),

(14) ry=ry(n) = [2logn + 3(k — 3)lyn + 2(Iyn + a(k) + c)]l/2,
(1.5) ry = ry(n) = [2log n + klyn]"”
and A

ro=2ry —r,.

'Although they appear different at first glance, all these radii and the points
leading to exceedances are in a narrow annulus at (2log n)*/? +
O(l,n(log n)~1/2). Possible exceedances are eliminated as follows. First, it is
easy to see that there are no points X; with |X;| > r; with probability
tending to 1. Then we show that with probability tending to 1, there are no
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pairs of points whose norms are both between r, and r; with the distance
between them exceeding 2r;. Intuitively, points in this range are sparse
enough so that their angular separations are not likely to be close enough to
7 to lead to a sufficiently large interpoint distance. Finally, we show that
large interpoint distances with both points having norms less than r,, and
hence between r, and r,, are also nonexistent with probability tending to 1.

With these cases eliminated, in Section 3 we study large interpoint dis-
tances based on one point inside the sphere of radius r, and another whose
norm is between r, and r;. Here we use a Poisson limit theorem for
U-statistics from Silverman and Brown (1978). The proof of Theorem 1 is
collected from those parts at the end of Section 3. Section 4 contains some
final remarks.

For simplicity, calculatlons are done with O and o terms. At the cost of
extra space, these can be replaced by bounds from below and above.

. Elimination of some cases. We are concerned with pairs of points
satlsfymg |X; — X;| = 2r;. In this section we eliminate from consideration
three cases. The followmg statements are shown to be true with probability
approaching 1 as n — «. First, there are no points with norms exceeding r;.
Second, pairs of points both having norms between r, and r; do not lead to
any exceedances of 2r,. Third, pairs of points both within the sphere of radius
r, do not lead to any exceedances of 2r;.

By introducing polar coordinates with r? denoting norm squared and with
6 denoting angle, one can rewrite the standard normal density as

27k/2pk=20-r"/2 4r2 46 /T(k/2),

where d6 corresponds to the uniform probability distribution on the unit
sphere in R*.
Consider first the number of points with |X; 12 > r3 This has mean
n

2.1 - k/2-1 —x/2d .

(21 s
For repeated use we cite a standard formula [see formula 8.357 of
Gradshteyn and Ryzhik (1980)] for the incomplete gamma function:

(2.2) [Tettetde = xo e r (14 O(x7Y))

x

as x — «©,

ProprosITION 1. The number of interpoint distances exceeding 2r, involv-
ing at least one point whose norm is bigger than ry converges to 0 in
» probability as n — .

Proor. From (2.2) we see that (2.1) is O((log n)~!). Thus the number of
points with norm larger than r;, and thus the number of exceedances of 2r,
involving them, converges to 0 in probability. O
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Before covering the two cases remaining, we give some preliminary mate-
rial used in both. We consider the distribution of the angle between indepen-
dent points, the conditional distribution of |X|® given that r, <|X| < r, or
ry < |X| < rz and the relationship between |X; — X;| and the angle between
X; and X;.

PROPOSITION 2. Suppose that U and V are independent random variables
uniformly distributed on the unit sphere in R*. If

y=cos H(U-V)
is the angle between U and V, then the distribution of { is symmetric about
w/2 and cos?  has the beta distribution B(1/2,(k — 1)/2).

This fact is well known. See, for example, Muirhead [(1982), Section 1.5]
for the relevant distributional relationships.

ProPOSITION 3. Let X and Y be k-dimensional normal random vectors
with zero means and identity covariance matrices. Let w =|X|* — r and
z=ri- |Y |%. The conditional densities of w and z are, as n — =,

(2.3) fi(wlrf <IXPP<rf) =3e?[1+0(1)], O0<w<ri-r3,

(2.4) fi(zIrg < Y? < ry3) = le-i-ri-2/2[1 + o(1)], O0<z<ri-ri.

PrOOF. The conditional density f, for 0 < w < rZ — r7 has the form
(w + r22)k/2‘1e—(w+r§)/2

(2.5) . ] .
f’3(t +r3) /27 lg-ttrrd)/2 gy
r3

The desired asymptotic formula follows from (2.2) applied to the integral in

the denominator. The derivation of (2.4) is similar. O

PROPOSITION 4. Suppose U and V are independently uniformly distributed
on the spheres of radii (r? + x)'/% and (r2 + y)'/2. If x and y both are of order
O(lyn) and

reZ+x Ve rZ+y 1/222r1,
2

then
P(lU-VI|=2r)
1
(k- 1)B(1/2,(k - 1)/2)
(2.6) % (2(l3n tate)+tx+y+ O((x? +y?)/log n) (k=12
logn
lyn
X{1+0 .
( log n ))
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ProorF. Let ¢ denote the angle between U and —V. The inequality
U — V| = 2r, is equivalent to

) (IUl +|V])? — 4r? t
cosiy>1-— =1-—.
4 201V ‘)
Because
Ul x o x2
"2 2ry rd
and
y y?
Vi=ry+ —+0|=
VI=ry 2r, 0(r23 )’
one has
t,=2r2+x+y+0 tn 41 1+0 Lan
2= 4Tz TXTY logn | ogn logn
and
x2 + y?
t;,=4(lsn+a+c)+2(x+y)+0 Tog 7

It follows from Proposition 2 that

2
Plcos? ¢ > (l—i—l) LU < 77/2)
2

1
T 2B(1/2,(k - 1)/2)

The formula (2.6) follows by standard asymptotic analysis using the formulas
for ¢; and ¢,. O

1 _
f 221 —2) 02 gz,
A-t,/t5)?

Now we consider interpoint distances exceeding 2r; arising from pairs of
points whose norms are both between r, and r;.

PROPOSITION 5.

P(there existi,j, 1 <i <j<n,withr, <|X|,|X;l <rs N|X; - X;| > 2r,)

_ 0((lan)(k_:)/2 )
(I3n)
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ProoF. Let p denote the probability that r, < |X;| < r;. Then

1 2
Tyk/2-1,-x/2 dx,

P = 9F T (& )2) f

and the expected number of pairs X;, X » 1 <i <j < n, satisfying the indi-
vidual norm requirements of the proposition is (g pl

Conditional on |X;| and |X]l, the likelihood that the points in such a pair
are at least 2r, apart is given by Proposition 4. If we integrate over the exact
conditional density (2.5) of X; and X, and multiply by the expected number

(; ) p? of such pairs, we obtain the expected number of pairs exceedng 2r; as

n(n — 1)
21T (k/2)(k — 1) B(1/2, (k — 1) /2)

2_ .2 p.2_ .2 k/2-1 k/2-1 _
Xj‘r30r2fr30r2(r22 +x) / (rzz +y) / e 1/2[r2+x+r3+y]
x= y=

(k—1)/2

o 2(lsn+a+c) +x+y+O0((x®+y%)/logn)
log n

X

14 0[N aya
+ Tog n y dax.

It is straightforward to check that this expression has the indicated
asymptotic magnitude as n —» «. O

Finally consider interpoint distances exceeding 2r; from pairs of points
whose norms are both smaller than r, and hence are between r, and r,.

ProPoOSITION 6.

P(there existiandj,1 <i<j<n,

l
with {IX,| < r} 0 {1 X1 <} 0 {IX; - X1 > 2r1}) B 0(%)
2

PrOOF. We proceed as with Proposition 5 except that now the restriction
| X, —le > 2r; puts a constraint on |X;| and IXJ.I. If X, = \/rz2 —x and

IX;| = y/r3 — v, then | X;| + |X;| > 2r, implies

+ x2 + y?
(= y)+0( y

3
2r, r;

2ry

>2r,




NORMAL SAMPLE RANGE 461

or
2(lgn +a +c)+0 ———lzzn
< n a C -
Y ’ (log n)l/2

Let s denote this upper limit on y. As in Proposition 5, the integral for the
expected number of pairs 2r; or more apart is

n2

28412 (k/2)(k — 1) B(1/2,(k — 1)/2)

2_rp2 rS k/2-1 k/2-1 _ _ _
X/‘rz roj‘ (r22 _ x) / (rzz _y) / e 1/2[r§—x+ri—y]
x=0 y=0

(k-1)/2
(1+ 0(1)) dydx.

o 2(lzn+a+c) —x—y+ O0(l3n/logn)
logn

Let u =2(l3n+a+c)—x—y and v =x —y. The preceding integral be-
comes

K 2(1 1) r21 -
f (Ian+a+c)+ol )f (gn+a+e)—u exp{lsn + a + ¢ — u/2)
v

(lzn)z u=o0(1) =—[2(Ign+a+c)—ul
X(u +0(1)* P? dvdu
l
= 0(3_n) O
lon

3. The interesting case. We consider interpoint distances exceeding
2r, where one point has a norm between r, and r; and the norm of the other
is less than r,. We will use a Poisson limit theorem for U-statistics [Silver-
man and Brown (1978)] to show that the number of such interpoint distances
has asymptotically a Poisson distribution. This, combined with the results of
the previous section, is used to give a proof of Theorem 1 at the end of this
section.

The main result of this section is the following.

PROPOSITION 7. Let
c, = {(i,j): 1<i,j<n, {IXiI <ry<IXjl<ryor|Xjl<r,< X, < 7‘3},
and |X; — X;| = 2r1}.

Then |c,| converges in distribution to a Poisson random variable with param-

eter e °.

ProOF. We use Theorem A of Silverman and Brown (1978), which is a
Poisson limit theorem for U-statistics. Note that |c,|, effectively a sum of



462 P. C. MATTHEWS AND A. L. RUKHIN

symmetric indicator variables over pairs (i,j), is a U-statistic. Thus by
Theorem A it suffices to show that

(3.1) (Z)P((Lz) €c,) e
and
(3.2) (g )P({(l,z) ec,) N {(1,3) €c,}) > 0asn - .

First consider (3.1):
(3)P(1,2) € <)
(3.3) - 2(’21 )p(r2 <1X,] < rg) P({IX; — X,| = 2r,)

N{IX,| < rllry < 1X5] < rg).
The first probability is

raorp (13 + x)k/z_l exp{—(r} +x)/2}
A 2 72T (k/2)

(log n)*/*71 1 k-3
= ——————exp{— = 2logn+( 7 )l2n+2(13n+a+c)

5.4) T(k/2) ’ 2
Klon _ X
X x/2 —_—
/;=o ¢ 2

3 e " °(log n)(k_l)/4
v G O

The conditional probability in (3.3) can be computed as follows. Equation
(2.3) gives the conditional density of X, given it is in the required range.
Equation (2.6) of Proposition 4 gives the relevant conditional probability
given both |X;| and |X,|. Thus the conditional probability in (3.3) is the
double integral of (2.6) against the conditional density of |X;| and the
unconditional density of |X,|. For later use in proving (3.2) we first calculate
the integral with only the density of | X,|. Call the result A(x).

It follows from Proposition 4 that

2(Ugn+a+c)+x+o0(l E/2-1 2.
M x) = /(;(3n ate)tatol )(rzz—y) 7271 o(rg=y)/2

[2(l3n +a+c)+x—y+o(1) ](k_l)/z
X dy

log n

X 2’@/21“(;)3(%, f;—1)(k - 1)]_1(1 +0(1)).
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Setting u = 2(I3n + a + ¢) + x — y, we obtain
2(k=8/22/2(1 + 0(1))
nvar (log n)* YT ((k + 1) /2)

(3.5) x["+2’3"+°‘1’e-u/2(u +o(1)* V2 dy
o(1)

9k=3)/2,%/2

- nV7 (log n)(k_ v/
Now we integrate against the conditional density of | X,| to get

1 r2_r2
S [T 2 A(0)] (1 + o(1)) dx
2/
2(k=3)/2 E-1
= n‘/;(log n)(k—l)/4( 4

Multiplying these formulas, one obtains (3.1).

Computation for (3.2) is similar. The event {(1,2) € ¢,} N {(1,3) € ¢,} can
happen in two different ways, depending on whether |X;| > r, or not. Con-
sider first the case r, < |X;| < ry. Then

P({(1,2) €c,} n{(1,3) €c,)lry, <IXil <rj5)

Mx) =

7 (1 +0(1)).

)lzn(l +0(1)).

36 _ 5[0’32"3e—x/2)t2(x)(1 + 0(1)) dx = O(n"%(log n)~*~V/%).

Multiplying by n® and P(r, < |X,| < r,) gives a term of order O((I,(n))™?) for
(3.2).

Next consider the case |X,| < r,. The probability that (1,2) € ¢, and
(1,3) € ¢, is bounded above by the product

P({IXyl < ry) n{IX, = Xyl = 2r5)lry <Xl < rg) X P(ry <1X| <73)
(ry +rg)* — 4rf

¢
X P(ry <|Xsl <rg) XP cos 2 1- Sryrs ,

where ¢ is the angle between X, and X;. Straightforward geometry, that is,
argument as in the proof of Proposition 4, shows that this condition is
necessary for there to be any point of magnitude at most r, that is at least
2r, from both X, and X,.

The first term, computed previously, is O(l,n /n(log n)*~1/4) The next
two are each O((log n)*~1/*/nl,n). For the final term, the formula

, cos2x = 2cos?x — 1
implies

cos >
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or

n
cos?¢y>1—2(k +3)

Iy
Tog 7 (1+0(1)).

Using Proposition 2, we see that this event has probability at most

1 /1
B(1/2,(k — 1) /2) J1_ 23k +3)i,n /108 n(1+0(1)

l.n (k-1)/2
o) )
logn

and the product of these probabilities has order O((l,n)*~3/2/
n3(log n)k-1/4,
This completes the proof of Proposition 7. O

w121 - u)* 2 du

(3.7)

The proof of Theorem 1 is easy to collect now. Propositions 1, 5 and 6 imply
that C, = lc,| + op(l) as n — «; Proposition 7 implies that C, therefore is
asymptotically Poisson distrbuted with parameter e °.

4. Concluding remarks. Instead of interpoint distances |X; — le one
could consider interpoint averages |X; + X;|/2. An examination of the proof
of Theorem 1 shows that it also holds for card{(i, j): 1 <i <j <n, |X; + X||
< 2r}

The observation that asymptotic clumping does not occur can be made
rigorous. The proof of Theorem 1 shows that for any fixed j with probability
tending to 1 as n — «, the j largest interpoint distances involve 2; distinct
points. This observation gives an informal test for outliers in a spherically
symmetric normal point cloud. Any point that is involved in several of the
largest interpoint distances could be flagged as a potential outlier.

Returning to the gun quality control problem that motivated this work, a
practical question is whether the distribution of the range is well approxi-
mated by an extreme value distribution with appropriate moments. We have
performed simulations that suggest two things. First, the distribution of the
range is not well approximated by an extreme value distribution for small
sample sizes. Second, the distributions of the squared range is very well
approximated by the extreme value distribution, even for small samples. The
fact that extreme value distribution approximations are often more accurate
for squares of extreme order statistics is actually well known in the classical
asymptotic theory of normal order statistics [see Haldane and Jayakar (1963)].
The case discussed in the introduction has n = 10 and %2 = 2. Figure 1is a

' @ — @ plot of the sample quantiles of M 2(10) in two dimensions versus the
quantiles of the standard extreme value distribution. This plot is based on
1000 replications. In the 1000 simulated squared ranges, M 2(10) had average
14.75 and standard deviation 5.97. Using these moments (or the moments
from a larger future simulation) and the extreme value distribution, it is
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50 1 >
40 *
+++++++
44+
307
207
10 1
"

e e

-3 -2 -1 0 1 2 3 4 5 6 7 8

Sample quaT

tiles of 1000 squared ronges for 10 points 1n 2 dimensions
plotted against the standor

extreme value Quantlles

Fic. 1.

straightforward to do statistical inference about an unknown variance o2

based on M 2(10).

Note that the asymptotics do a poor job of predicting moments. The
asymptotic result of Corollary 1 suggests a mean of 9.15 and a standard
deviation of 5.13 for M 2(10) in two dimensions. This type of difference could
be expected based on the way the results were derived. Asymptotically, pairs
of points of all the types considered in Section 2 will not lead to the maximal
interpoint distance. However, these types of pairs can have an effect for any
reasonable n. Ignoring these possibilities is undoubtably a major factor in the
difference in means. We have done simulations for samples as large as
n = 300. The asymptotic moment approximations do not fit much better
there. This is to be expected, as the error terms in Section 2 go to zero quite
slowly, as slowly as O(l;'nlyn).
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REFERENCES

Avrpous, D. (1989). Probability Approximation via the Poisson Clumping Heuristic. Springer,
New York.



466 P. C. MATTHEWS AND A. L. RUKHIN

BARBOUR, A. D. and EAGLESON, G. K. (1984). Poisson convergence for dissociated statistics. /.
Roy. Statist. Soc. Ser. B 46 397-402.

BARNETT, V. and LEwis, T. (1984). Outliers in Statistical Data, 2nd ed. Wiley, New York.

CacouLros, T. and DECIccio, H. (1967). On the distribution of the bivariate range. Technomet-
rics 9 476-480.

DanieLs, H. (1952). The covering circle of a sample from a circular normal distribution.
Biometrika 39 137-143.

Davip, H. A. (1981). Order Statistics, 2nd. ed. Wiley, New York.

GRADSHTEYN, I. S. and RyzHIK, I. M. (1980). Table of Integrals, Series, and Products. Academic,
New York.

GruBss, F. E. (1964). Statistical Measures of Accuracy for Riflemen and Missile Engineers.
Edwards Broths, Ann Arbor, MI.

HALDANE, J. B. and JAYAKAR, S. D. (1963). The distribution of extremal and nearly extremal
values in samples from a normal distribution. Biometrika 50 89-94.

HEeNzE, N. (1987). On the fraction of random points with specified nearest-neighbor interrela-
tions and degree of attraction. Adv. in Appl. Probab. 19 873-895.

JAMMALAMADAKA, S. R. and JansoN, S. (1986). Limit theorems for a triangular scheme of
U-statistics with applications to inter-point distances. Ann. Probab. 14 1347-1358.

MUIRHEAD, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York.

SILVERMAN, B. and BrownN, T. (1978). Short distances, flat triangles and Poisson limits. /. Appl.
Probab. 15 815-825.

S10TaNI, M. (1959). The extreme value of generalized distance of the individual points in the
multivariate normal sample. Ann. Inst. Statist. Math. 10 183-208.

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF MARYLAND

BALTIMORE COUNTY CAMPUS

BALTIMORE, MARYLAND 21228



