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ASYMPTOTIC PROPERTIES OF CENTERED SYSTEMATIC
SAMPLING FOR PREDICTING INTEGRALS OF
SPATIAL PROCESSES'

BY MICHAEL L. STEIN
University of Chicago

This paper studies the asymptotic mean squared error for predicting
the integral of a weakly stationary spatial process over a unit cube based
on a centered systematic sample. For processes whose spectral density
decays sufficiently slowly at infinity, the asymptotic mean squared error
takes a form similar to that obtained by letting the cube increase in size
with the number of observations. However, if the spectral density decays
faster than a certain critical rate, then the asymptotic mean squared error
takes on a completely different form. By adjusting the weights given to
observations near an edge of the cube, it is possible to obtain asymptotic
results for the fixed cube that again resemble those for the increasing
cube.

1. Introduction. Centered systematic sampling is a natural method for
selecting observation sites for predicting the integral of a spatial process over
a d-dimensional cube. A centered systematic sample, sometimes called a
midpoint sample, is obtained by dividing the cube into an m¢ grid of smaller
cubes of side m~! and placing observations at the center of each of these m?
cubes. The usual predictor of the integral over the cube is the unweighted
average of the observations. This paper studies the asymptotic mean squared
error of this predictor obtained by fixing the size of the cube and letting the
observations get increasingly dense, as was done by Tubilla (1975), Schoen-
felder (1982), Stein (1991) and, to a certain extent, Matheron (1965). Cressie
(1991) calls this approach infill asymptotics. An alternative asymptotic regime
is to fix the distance between neighboring observations and let the size of the
cube grow with m, which, following Cressie (1991), I will call increasing-
domain asymptotics. Quenouille (1949), Matérn (1986) and Iachan (1985)
used this approach.

Using both theoretical and numerical results, I argue that the fixed-
domain asymptotic approach provides more insight into the problem of
predicting averages of spatial processes. In particular, fixed-domain asymp-
totics allows for distinctions in the rates of convergence depending on the
high frequency behavior of the spectral density, or equivalently, the smooth-
ness of the process, that the increasing-domain approach does not make. To
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CENTERED SYSTEMATIC SAMPLING 875

summarize the main ideas, for simplicity, let us assume the process is weakly
stationary and has a spectral density f satisfying f(w)lw|? — C, some posi-
tive constant, as |w| — o, although the results in the next section hold more
generally. For p < 4, Theorem 2 shows that the asymptotic mean squared
error is some constant times m P, where the constant only depends on the
behavior of f(w) as |w| = © and takes on a form similar to that obtained
using increasing-domain asymptotics. Furthermore, as a special case of re-
sults in Stein (1991), this predictor is asymptotically optimal relative to all
linear predictors based on centered systematic samples, at least if the spec-
tral density is strictly positive. However, for all p > 4, Theorem 1 shows that
the asymptotic mean squared error is asymptotically m ~* times a constant
depending on f(-) over all frequencies. In addition, this predictor is not
asymptotically optimal. Increasing-domain asymptotics makes no such dis-
tinction based on the value of p. Section 3 provides some numerical support
for the criticality of p in determining the mean squared error for moderate
m.

Stein (1991) shows that by adjusting the weights given to observations
near the edge of the cube, it is possible to obtain an asymptotic mean squared
error of order m? for p > 4. Applying those results here allows us to extend
Theorem 2 to larger p and to obtain an asymptotically optimal linear
predictor. Thus, the fixed-domain asymptotics highlights the need to use a
predictor other than the simple average when predicting integrals of suffi-
ciently smooth spatial processes.

Predicting integrals of spatial processes is a common problem in geological
applications, for which Z(x) might represent the concentration of a mineral
or the depth of a boundary between two types of soil at a place x [Journel and
Huijbregts (1978)]. Observations on a regular grid are common in these
settings [Journel and Huijbregts (1978), page 8]. The results in this paper can
also be viewed as a Bayesian approach to error analysis for numerical
integration, although the assumption that the function being integrated is a
realization of a stationary stochastic process may not be compelling in this
setting.

2. Main results. For a stationary random field Z(-) on R? with spectral
density f(-), consider using a centered systematic sample to predict [§ Z(x) dx,
where S =[0,1]%. Specifically, let J = (jj,...,js), c; = — 3/m,...,
(g — 3)/m), L(m) ={1,2,..., m}¢ and predict [q Z(x) dx by m‘dZL(m)Z(cJ).

Letting o = (wy,..., w,), by straightforward calculation,
1
var([ Z(x)dx - — ¥ Z(cJ))
JeL(m)
1

d  sin?(w,/2)
a-1 sin’(w,/2m)

(21) -~ '[Rd

Xf(co){l - ﬁ smc( wm)}z do,
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where sinc(¢) = ¢! sin t. All of the predictors considered in this paper are
unbiased for [; Z(x) dx, so there will be no need to distinguish between error
variance and mean squared error. Hannan (1962) gives a similar expression
for the mean squared error for the predictor of the average of a lattice process
in two dimensions based on observations on a coarser lattice. Define

d  sin?(w,/2)1{lw,l < mm} }

a=1 m? sin?( w,/2m)

gm(w;J)={

Xf(w+2m7rJ){1 _ ﬁ 2(_1)JamSin(wa/2m)} ,

=1 (w, +2mmj,)

where 1{} is an indicator function. Writing the last integral in (2.1) as a sum
of integrals over cubes of width 2m# and centers at 2m=<J, where J ranges
over the integer lattice,

1
Var(f Z(x)dx — ) > Z(CJ))

(2.2) JeL(m)

= [ gn(@:0)do+ [ Y g,(0;J)do,
R R

where ©* means to sum over all elements of the integer lattice except the
origin. The value of p determines which of the two terms on the right-hand
side of (2.2) dominates asymptotically. The following two results essentially
follow by showing that the first term dominates if p < 4 and the second
dominates if p > 4 and then approximating each term separately; see Section
4 for details of the proofs.

THEOREM 1. If f(w) = o(lw|™*) as |w| = =, then

lim m var(f Z(x) — —lg Y Z(CJ))
m— m" jeL(m)
(2.3) 1

~ 576 {ﬂ smc( )}f(w)lwl do

Tubilla [(1975), Theorem 5] gives a similar result under the much stronger
condition that the covariance function is infinitely differentiable. In addition,
he writes the limiting variance in terms of the covariance function rather
than the spectral density, which yields a rather more complicated expression
‘than given by (2.3).

A function L(:) on [0, ») is said to be slowly varying at = if for every a > 0,
L(ta)/L(t) — 1 as t — «. A function U(-) is regularly varying with exponent
p if U(x)/x? is slowly varying [Feller (1971), page 276].
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THEOREM 2. Assume there exists a monotonic function B(t) andd <p < 4
such that B(-) is regularly varying with exponent p and a function f(w) such
that for fixed v, w € R?,
(24) lim B(¢)f(v + tw) = f(w).
t—>

Furthermore, assume f(w)B(|w|) is bounded. If B(t)t™* — 0 as t > =, then

1
lim B(m)var([ Z(x)dx — d h Z(CJ))

(2.5) m=ee JeL(m)
= (2m)* P L f(J).

If B(t)t™* is bounded away from 0 and ® as t — =, then

1
var(LZ(x)dx—m Y Z(cJ))

JeL(m)
2m)**t . .
(2.6) =—_B(m) Z f(J)
1 d »
+ 578 s {I:I sinc ( 2 )}f(‘")l‘"'4 do
+o(m™*)

Note that because we must have p > d for f(:) to be a density, Theorem 2 is
vacuous for d > 4. By Propositions 2.1 and 3.1 of Stein (1991), the simple
mean is an asymptotically optimal linear predictor under the conditions
needed for (2.5) and the additional condition that f(-) is positive [although as
noted in Stein (1991), this positivity condition may be unnecessary]. Indeed,
(2.5) is in some regards a special case of Proposition 3.1 of Stein (1991). The
advantage of (2.5) is that it gives a much simpler expression for the asymp-
totic variance than is possible under the more general setting considered in
Stein (1991).

As an, example of when (2.5) of Theorem 2 applies, consider f(w)=
(a® + |w|®)79, for +d < q < 4. We can then take B(¢) =t2? and f(w) =
|| ™29, However (2 4) does not uniquely define B(-), as we can just as
well take B(t) = ¢ + t?9 for any constant c¢. As another example,
consider f(w) = log(1 + |w))/(a? + |w|*)? with 1d < g < 4. Because log x is
slowly varying, we can, for example take B(¢) = t29/log(2 + t) and f(w) =
lw| ™24

The boundary case covered by (2.6) includes an important special case in
two dimensions. The spectral density f(») = (a? + |w|*)~2, with correspond-
ing covariance function 7alx|K(alx[), where K, is a modified Bessel func-
tion, was recommended by Whittle (1954) as a natural model for a process in
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two dimensions. If we take B(¢) = ¢* and f(w) = |w|™*, then (2.6) holds with

) 1
@m)* L A(I) = 5 X117 = 0.188.

The value of the second term in (2.6) depends on a: for a = 0.5, 1 and 2, the
corresponding values for the constant multiplying m~* in this term are
0.0607, 0.0500 and 0.0332.

Quenouille (1949), Matérn (1986) and Iachan (1985) studied the asymp-
totic variance of systematic sampling when the distance between neighboring
observations is a fixed distance A and the region of integration grows with
the number of observations. Under some regularity conditions, the asymp-
totic variance is [Ripley (1981), page 24, gives the result in two dimensions]

2w \¢ ., (2md
(2.7) (=) = A 555)
This result does not require that the observations be centered, in contrast to
the results given here. Theorem 2 is written so as to highlight the similarity
between it and (2.7). Indeed, taking A = 1/m, (2.7) is asymptotically equiva-
lent to the right-hand side of (2.5) divided by B(m) when the conditions of
Theorem 2 hold. However, for the fixed-domain setting, Theorem 2 is simpler
than (2.7) in the sense that it gives the asymptotic variance as a simple
function of m times a term not depending on m.

It is possible to extend Theorem 2 to p > 4 by changing the weights
assigned to the observations near the edges. For example, the predictor
denoted by Z,(r; ty, ¢4, ..,t,) in Section 4 of Stein (1991) can be used for this
purpose. Because the values of ¢y,..., ¢, and r are irrelevant in the setting of
this paper, I will write the predictor as Z,(¢,). This predictor adjusts the
weights assigned to observations within (¢, + 1)/m of a boundary of the unit
cube, leaving a weight of m ¢ for all observations farther than that from the
boundary.

THEOREM 3. Assume there exists a monotonic function B(t) and d < p <
2(ty — 1) such that B() is regularly varying with exponent p and a function
f(w) such that for fixed v, w EARd, (2.4) holds. Assuming f(w)B(w) is
bounded, (2.5) is valid if we use Z,(t,) to predict [¢ Z(x) dx.

Moreover, Z, (t,) is asymptotically optimal for p < 2(¢, — 1) under the addi-
tional condition that f(:) is positive.

3. Numerical results. Table 1 reports some numerical results for cen-
tered systematic sampling in two dimensions with f(w) = (1 + lw®)~¢ for
g = 1.5 and 3.0. For ¢ = 3.0 and m large, by Theorem 1, the term [g,,(»;0)dw
should dominate the mean squared error and the right-hand side of (2.3)
divided by m* should provide a good approximation to this term. We see that
even for m = 5, (2.3) provides a reasonably accurate approximation of the
mean squared error. For ¢ = 1.5 and m large, by (2.5) of Theorem 2,
[X*g,.(w;J)dw should dominate the mean squared error and, taking
B(t) = t29, we have that (27)2~29m =29 *|J| 2¢ should approximate this
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TABLE 1
Exact and approximate mean squared errors using centered systematic sampling in two dimen-
sions with m? observations and spectral density of the form f(w) = (1 + |0|*)~9. For ¢ = 3.0,
[8m(w;0) dw dominates the mean squared error; this integral is approximated using (2.3) of
Theorem 1. For g = 1.5, [L*g,.(w; J) dw dominates the mean squared error and is approximated
using (2.5) of Theorem 2

Mean squared  Approximation Approximation

q m error using (2.3)* using (2.5)" [T*g . (w; ) do

3.0 5 8.52 x 10~¢ 8.17 x 1078 191 x 1077 2.10 x 1077
10 5.16 X 1077 511 % 1077 2.99 x 10~° 3.14 x 1079
20 3.20 x 1078 3.19 x 10~8 467 x 10711 479 x 10~ 11

15 5 1.20 x 1072 * 1.15 x 10~2 1.16 x 1072
10 1.47 x 1073 — 144 x 1073 144 x 1073
20 1.82 x 1074 — 1.80 x 104 1.80 x 10~4

*(1/576m*) [ga{I12_; sinc2(w,/2}f(w)|w|* dw. See Theorem 1.
"(Q7)2~29m =297 J|~29. See Theorem 2.
*Theorem 1 does not apply for qg=15.

term. Again, even for m = 5 these approximations are quite good. The last
two columns of Table 1 show that (27)2 29m~29L*J| 27 provides a good
approximation of [L*g, (w; J) dw for both values of g; however, it is only for
q = 1.5 that this integral dominates the mean squared error. We see that
even for moderate sample sizes, the asymptotic results of the previous section
regarding which term on the right-hand side of (2.2) dominates the mean
squared error are clearly applicable. The approximation using increasing-do-
main asymptotics given in (2.7) gives essentially the same results as the
second to the last column in Table 1. Thus, the increasing-domain approxima-
tion does not capture the qualitative difference in results depending on
whether f(w) decays faster or slower than |w| ™.

4. Proofs. To prove Theorem 1, first note that for fixed o,

lim mig, (©0) = — { I sinc2(f°i)}f(w)|w|4 =, G(w).
s, T Em 576 | o 2

Furthermore, m*g, (w;0) is dominated by some constant times G(w) and
G(w) is integrable over R%. So, by dominated convergence, m*/g, (»;0) dw —
J/G(w) dw. Theorem 1 follows by showing that f(w) = o(| o™ implies
[T*g, (w; J)dw =o(m™™).

To prove (2.5) of Theorem 2, it suffices to show

zim B(m) [ T (03 d) do = (2m)* 7 £ /(D)

because in this case, [g,(w;0)dw will be asymptotically negligible. Using
f(w)B(lw)) bounded and B(t) regularly varying with exponent p > d, for
J # 0 there exists a constant C independent of J such that for all m
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sufficiently large,
d

gm(w;d) < ———— sincz(io—a)
m AT B(2mw| ) a=1 2 )

This bound along with the assumption on B(-) can be used to show that for
any ¢ > 0 there exists R such that for all m sufficiently large,

B(m)f Z gn(w;J)dow<e

|J|>R

X f(J)<e.

|JI>R
Because ¢ is arbitrary and there are only a finite number of terms with
|J| < R, to obtain (2.5) it suffices to show

(4.1) lim B(m)_/[;&dgm(w; J)dw = (2m) PR(I).

Now B(m)g, (w; J) is dominated by some constant times IT%_, sinc*(w,/2),
which is integrable over R? Furthermore, for fixed o, setting t = 27wm,
w=dJ and v = w in (2.4),

and

a7 {nsmc( )}f(J)

so (4.1) and hence (2.5) follow by dominated convergence. (2.6) just combines
the results of Theorem 1 and (2.5).

lim B(m)g,(w;J) =
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