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THE RUSSIAN OPTION: REDUCED REGRET

BY LARRY SHEPP AND A. N. SHIRYAEV
AT & T Bell Laboratories

We propose a new put option where the option buyer receives the
maximum price (discounted) that the option has ever traded at during the
time period (which may be indefinitely long) between the purchase time
and the exercise time, so that the buyer need look at the fluctuations only
occasionally and enjoys having little or no regret that he did not exercise
the option at an earlier time (except for the discounting). We give an exact
simple formula for the optimal expected present value (fair price) that can
be derived from the option and the (unique) optimal exercise strategy that
achieves the optimum value under the assumption that the asset fluctua-
tions follow the Black—Scholes exponential Brownian motion model, which
is widely accepted. It is important to note that the discounting is neces-
sary: If it is omitted or even if it is less than the Black—Scholes drift, then
the value to the buyer under optimum performance is infinite. We also
solve the same problem under a different model: the original Bachelier
linear Brownian market with linear discounting. This model is no longer
accepted, but of course the mathematics is consistent.

To our knowledge no such regretless option is currently traded in any
existing market despite its evident appeal. We call it the Russian option,
partly to distinguish it from the American and European options, where
the term of the option is prescribed in advance and where no exact
formula for the value has been given.

1. Introduction. Suppose the fluctuations in the price of an asset are
given by the geometric Brownian motion model
(1.1) X, =xexp(oW, + (p—30%)t), ¢=0,
where x > 0, W, = 0 and W, is a standard Wiener process. The process X,
which satisfies the stochastic differential equation dX = e XdW + uXdt,
forms the basis for the famous option pricing theory of Black and Scholes [4,
5]. The parameters u, called the drift, and o, the volatility, are assumed
known.

We solve the following mathematical problem, where r > 0 and s > x are
given and we want to find a stopping time 7 € [0, ) (which need not be a
fixed time but can depend on the fluctuations observed to date in any way) to
(1.2) maximize Ee ""S,_,
where S is the maximum value, starting at s, for X, that is,

(1.3) S, = max{s, sup Xu}, t=0.

O<uc<t

Received November 1992; revised January 1993.
AMS 1991 subject classifications. 90A09, 60H30, 60G44.
Key words and phrases. Options, Black-Scholes model, optimal strategy, linear discounting.

631

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to

The Annals of Applied Probability . ®
WWW.jstor.org




632 L. SHEPP AND A. N. SHIRYAEV

The motivation for (1.2) is the study of a new financial option that arose
first as a consequence of the probability theory developed to solve (1.2) and to
our knowledge is not currently traded in any existing market. This (Russian)
option allows its owner to choose an exercise date, represented by the
stopping time 7, and then pays the owner either s or the maximum stock
price achieved up to this exercise date, whichever is larger, discounted by
exp(—r7). In problem (1.2) the owner of the option seeks an exercise strategy
that will maximize the expected (present) value of his future reward, where r
is the interest rate for discounting. Starting with our solution to the mathe-
matical problem (1.2), Duffie and Harrison [9] derive an “arbitrage price” for
the Russian option. Their pricing analysis parallels the analysis of European
call options by Black and Scholes [4]. Of necessity, this involves a more
complete discussion of the interest rate r and drift parameter w than are
appropriate for arbitrage pricing. In the final analysis, for arbitrage pricing it
is not necessary that investors agree on the average rate of return earned by
the stock underlying a Russian option, or for that matter, on u and o ; indeed
differences may increase the potential for trading.

In this paper the value of the option [i.e., the supremum in (1.2)] will be
found exactly. In particular, it will be shown that the maximum in (1.2) is
finite if and only if

(14) r> .

Assuming (1.4), an explicit formula is given for both the maximal expected
present value and the optimal stopping rule in (2.4), which is not a fixed time
rule, but depends heavily on the observed values of X, and S,.

We call the financial option described in the preceding text a “Russian
option” for two reasons. First, this name serves to (facetiously) differentiate it
from American and European options, which have been extensively studied in
financial economics, especially with the new interest in market economics in
Russia. Second, our solution of the stopping problem (1.2) is derived by the
so-called principle of smooth fit, which was first enunciated by the great
Russian mathematician A. N. Kolmogorov; cf. [3] and [10]. The Russian
option is characterized by “reduced regret” because the owner is paid the
maximum stock price up to the time of exercise and hence feels less remorse
at not having exercised at the maximum.

For purposes of comparison and to emphasize the mathematical nature of
the contribution here, we conclude the paper by analyzing an optimal stop-
ping problem for the Russian option based on Bachelier’s [1] original (1900)
linear model of stock price fluctuations:

(1.5) X, =x+ oW, + ut, t>0.

. We again introduce the running maximum as in (1.3):

(16) S, = max{s, sup X;},

O<ucxt
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where u, o, x, and s are as before except x,s can be negative, x < s, and
solve the problem (in Section 3) to

(1.7) maximize E(S, — r7),

where discounting is now also applied linearly (the case of exponential
discounting seems to have no simple solution). The simple explicit value in
(1.7) is given in (3.8) along with the optimal stopping rule 7, which is rather
different. In the geometric case, S,/X_ = a, for some «, is the form of the
stopping time, while in the linear case S, — X, = 6, for some 6.

2. Derivation of the optimal pricing formula for the Russian op-
tion. Let x, s, u, o, r, X,, and S, be as in (1.1) and (1.3) and define

(2.1) V*(x,s) =V*(x,s,u,o,r) =supk, .e”'S,

where the sup is taken over all stopping rules. We will first give a rigorous,
but rather deus ex machina proof that V*(x, s) agrees with V(x, s). Then we
supply some motivation (or derivation) from the principle of smooth fit as to
how V was actually guessed. Because the optimal free boundary here turns
out so simply, in a sense this example does not show the full power of the
principle, although the form of V suggests it is not so trivial after all. If one
intuits that the optimal rule 7 is of the form in (2.14), one could try to
optimize the choice of « and so derive (2.3) and (2.4). We do not see how to
carry this out (even in the case u = o2/2), although maybe it can be done,
and this might give an alternate derivation of (2.3) and (2.4) as has been
suggested by several readers. (Note added in proof: See our new papers [19]
and [20].)

So assume r > max(0, u) as in (1.5) and let y =y, and y= vy,, v; <0 <
1 < v,, be the two roots of the quadratic equation

1 a?
S0y + 7(# - —)=r,

2 2
(2.2) .
0%/2 — u+ \/(0’2/2 - p) +20%r
Y1,2 = ) ’
o
and set
1-1 1/Cya—v1)
23) «- (_”)
1-1/v,
and
s ( ax\M ax\"? s
— 72(——) —71(—) , — <x<s,
(24) V(x,s)={ "2 "M y s * \
s, 0<x<—.
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To prove V* =V, verify that V(x,s) in s/a <x < s satisfies, by direct
observation (V € C2),

(2.5) rV(x,s) = uxV,(x,s) + 30%x*V,,(x,s),
(2.6a) V(x,s) = s,
vV
(2.6b) V.(s,s) =g(x,s) x=s=0.
Now X, has Itb differential, from (1.1),
(2.7) dX, = X,(pdt + o dW,)
and so the process '
(2.8) Y, =e"'V(X,,S,)
is a supermartingale; that is, in the region 0 < X, < S,/a,
(2.9) dY,=de 'S, = —re”"'S,dt < 0.

In the region S,/a <X, <8, because S, grows only when X, =S, and

V.(s, s) = 0 in (2.6b),

ay, - ei[V,(X,,S,) dX, + 1V,.(X,,S,)(dX,)* = rV(X,,S,) dt]
=e "'V (X,,8,) X, 0 dW,,

using (2.5). So in (2.10), Y, is a positive local martingale, hence again a

supermartingale and

(2.11) E, ,dY, <0, t>0.

Thus for any stopping time 7 (i.e., which does not anticipate the future in
the sense that at the time of stopping only information independent of future
increments of W is usable), by (2.6a), we can write

Ex,se_”S‘r =< Ex, se_rTV( X‘r ’ Sr)
(212) = Ex,sYT < Ex,sYO
=V(X,,8S) =V(x,s),
where we used the fact that Y is a supermartingale [(2.9) and (2.11)] to

obtain the second inequality. If we sup over all such 7 we obtain for all
0<x<s,

(2.10)

(2.13) V*(x,s) <V(x,s).
To prove the reverse inequality, let 7 be the first ¢ for which
(2.14) X, =85,/

starting from X, = x, S, = s, x > s/a. It is clear that P(7 < ) = 1 because

P{r>T} =P{f0r0su <t<T,o(W,-W,)
(2.15)

2

o 1
+ M—? (t—u)zlog; ,
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which tends to zero as T' — « no matter what the sign of u — 0%2/2 is. The
first inequality in (2.12) is thus an equality because of (2.15) and (2.4). The
second inequality will also be shown to be an equality if we can prove that Y,
0 <t < 7, is a uniformly integrable martingale [15]. We supply a (simpler)
direct proof by showing that

(2.16) E sup Y, <o,

0<t<»

which will directly prove the equality we need.
To prove (2.16) we note that

Y, =e'V(X,,S,)
(2.17) <e "V(S,,S,)
=Ke™"'S,,
because V(S, S) = KS, where the constant K is given from (2.4) by

(2.18) K= (yea™ — y,a2).

Y2 — Y2
So it is enough to show that sup, exp(—r¢)S, is integrable; that is,

(2.19) fwdyP{ supe 'S, > y} < oo,
0 ¢

By a well-known theorem of Doob [15, 17] for a« > 0, 8 > 0,
(2.20) P(W,<at+B,0<t<ow}=1-—e¢ 2%

If we choose
1 y
(2.21) a= o, B = —log(—),
o x

roet g

then from (1.3) for y > s, y > x,

P{ supe 'S, > y}
¢

(222) o e o] - ol (2) < )

Now if W, < at + B for all ¢, then from (2.21),

o2
sup (aWu + (,u — —2—)u)

O<ucx<t

sup
t

}>0.

sup (aWu +

O<uc<t

(2.23)

IA

sup |o(au + B) +

O<uc<t

Yy
sup (log(;) + ru),

O<uxt

=
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and because r > 0, the right side is growing in z and is maximized at u = ¢.
It follows from (2.22) and (2.23) using (2.20) that for y > s, y > «,

y -A+QGr-p)/c?)
(2.24) P{supe‘”St >y} <e 2f = (—) .
t x
Thus for r > u, the integral in (2.19) converges and so (2.16) is proved. Now
suppose 7 is the stopping time in (2.14). Because Y, is a martingale (local) for
any fixed ¢,

(225) Ex,syvt/\r = Ex,sYO‘
Letting ¢ — «, using dominated convergence and (2.16), we see that
(2.26) E, Y =E, Y,.

Note that (2.16) also shows that Y, is a martingale, which implies (2.26)
directly. Thus equality holds also in the second inequality in (2.12) for the
choice of 7 in (2.14). However, this 7 is included in the sup in (2.1) so that

(2.27) V*(x,s) = V(x,s)
as well. By (2.13) and (2.27) we have proved
(2.28) V*(x,s) =V(x,s) forO<x<s

as promised.

The proof is unrevealing: How were (2.2)—(2.4) derived? The answer is that
we used the “principle of smooth fit.” This principle goes back to A. N.
Kolmogorov, who discovered it in Russia in the 1950’s, and it was later
independently found by Chernoff [6] in the United States and also by Lindley
in Great Britain. It was used by Grigelionis and Shiryaev [10] and others [2,
18], though even now it is not appreciated widely. A new application to
Burkholder-Gundy inequalities is in a paper in preparation [8]. It often
enables one to obtain (see especially [2, 3, 6, and 18] explicit closed form
solutions to optimal stopping or optimal control problems in continuous
problems where the discrete versions cannot be solved in explicit form. See
references 3 and 18 for more details on the technique. In this problem we see
that (2.2)-(2.4) were guessed by seeking a C? function V(x, s) that satisfies
V(x,s) =s for x > g(s). Note that the continuation region is intuitively
guessed to be of this form; that is, we should not exercise the option if the
maximum process, S,, is just about to take an increase. However, for 0 < x <
g(s) we exercise the option, so V(x,s) = s in this region. The differential
equation (2.5) holds in the continuation region, and the principle of smooth fit
says, only heuristically of course, that the free boundary g will be determined
by V € C2. This heuristic is only used to guess V as in (2.2)-(2.4); once
guessed, the rigorous proof is given in (2.5)-(2.28), in an almost crank-turn-
ing way. :

Let us look closer at how to guess, because it has some new features in this
problem. The differential equation (2.5) for V given in (2.4) is obtained by
observing that if we elect to continue letting the option run for a small time
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h > 0, then by (2.7), for g(s) < x < s,
(2.29) V(x,s) =EV(x +xph + ovhn,s)e""

and expanding by It6 calculus gives (heuristically) (2.5). The condition of the
principle of smooth fit, that V should be in C?, makes Itd’s rule applicable
and, at least heuristically, is sufficient to determine the free boundary g(s).
Let us see how it works in the present case.

If V(x, s) satisfies (2.5) in g(s) < x < s, then
(2.30) V(x,s) =a(s)x” + b(s)x,
where vy,, v, are as in (2.2). Because V(x, s) must fit smoothly at x = g(s)
with s we must have

(2.31) V(g(s),s) =s, V./(g(s),s)=0.

Further smoothness conditions [e.g., V,(g(s), s) = 1] now follow automatically
and give no further information to determine (guess) the function g. Instead,
we must obtain a condition along the known (nonfree) boundary x = s. This is
apparently a novel feature of this problem and is due to the appearance of the
process S, = max, _, . ,(X,). Along this boundary we needed the condition
(2.32) V.(s,s) =0

in (2.10) at X, = S, in order to prove that Y, is a local martingale there. The
conditions (2.31) and (2.32) give a differential equation for g =g(s) by
eliminating a(s) and b(s):

_Yn(s/8)" — 1/ve(s/8)"

(s/g)"" " = (s/g)"""

It is hard (but possible) to find the general solution to (2.33) for g, but there is
one simple solution to (2.33)—the one we need. At this point one can merely
guess at this solution:

(2.34) g(s) =s/a

with « as in (2.3). One might try to develop a further heuristic that will give
the extra boundary condition needed:

(2.35) g(0) =0,

but the principle of smooth fit is only a heuristic anyway, so we are content to
merely “guess” (2.34). However, we remark that (2.33) can be solved explicitly
for other values of g(0). If we make the substitution

(2.36) g(s) = m

(2.33) g

then (2.33) separates into '

ds Rl — g7l

—= dh

s (1-1/y)h" = (1= 1/y,)h"

and an explicit integration is possible, although not elementary.

(2.37)
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3. The Bachelier version. For purposes of comparison we also obtain
the pricing formula that the option seller should use to find his break-even
point should he believe in the Bachelier rather than the Black—Scholes model
of asset fluctuation. We will use primes to denote this model, where the price
or value of the asset follows the nonexponential evolution

(3.1) X, =x+ut+ oW, t>0,
where o > 0, x and u are given parameters. Again analogous to (1.3), we set
(3.2) S, = max(s, o‘l’fﬁtx“)‘

The buyer is allowed to exercise his option at any time ¢ > 0 and obtains the
payoff [analogous to (1.4)]

(3.3) S, —rt,

where r > 0 is the cost of retaining the option for time ¢. Analogously to (1.5),
we assume r > 0 and s > x and

(3.4) r> .

The problem of determining the price of option (3.3) is simpler than that of
(1.4), but has apparently not been solved before despite its simplicity, al-
though very similar problems have been discussed [7]. If we overlooked a
prior solution, perhaps it has not been solved with the smooth fit principle,
but the elementary solution could have been simply guessed in some other
way. Again the full power of smooth fit is perhaps better shown in examples
where the free boundary is more difficult to guess than this one.

So we want to determine

(35) V*,(x, 3) = V*l(x, S, 1, 0',7‘) = supEx,s[Sr - rT]’

where the sup is taken over all stopping rules 7 with the important proviso
that
(3.6) Er < o,
to avoid © — ® in (3.5).
The answer is shown to be V¥ = V', where we first define 6 > 0 by

2

. = — log———
(3.7) 0 2M0g1—u/r

and then take
~( 0)
s+ —(x—s+
M

3.8) V'(x,s) = ra? | 2
‘( ) ( ) __i_(l—exp(——%(x—s—l-0))),8—03x33,
T

2 u?
s, —o<x<s—6.
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It is easy to check that V' € C? in —» < x < s, that

oV’
(3.9) —&—s—(s, s) =0
and that V'satisfies the O.D.E.
(3.10) r=uV/(x,s) + 202V, (x,s), x—0<x<s.
Because exp(—y) > 1 — y, it is easy to see that
(3.11) V'(x,s) >s.
Thus if we define the process _
(3.12) Y, =V'(X],S}) —rt, t>0,
and note that X’ has the It6 differential
(3.13) dX, = pdt + o dW,,

we see that
ro
3.14) dY/=—dW, inS,-0<X,; dY=—-rdt inX, <S,-86,
t t t t t t t
m

so that Y, is a supermartingale [note (3.9) is needed at X, = S,]. Thus we can
write for any stopping rule 7, by (3.11) and (3.12),

(3.15) E, (S,—rr)<E, Y

and because Y' is a supermartingale and (x,, s,) = (x, s), we have
(3.16) E, Y <EY;=V'(x,s)

so that

(3.17) V¥(x,s) <V'(x,s).

Now letting 7 be the first ¢ for which

(3.18) X,=S,—-90

gives equality in (3.15) and (3.16) by arguments analogous to those in Section
2 for W and so V*(x,s) = V*¥(x, s). The choice of V' in (3.8) can be (and
was) “derived” or guessed by using the principle of smooth fit in a similar way
as V in (2.4).
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brought to several other papers with related methodology and direction
[11-14]. However, these papers do not contain any of our results.
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