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Let{X,ve 2%} be ii.d. positive random variables with
E{X§(log* X,)*"} <=
for some £ > 0 and d > 2. Define M,, and N, by

M, = max{ Y X,: 7 a self-avoiding path of length n

vET

starting at the origin} ,

N, = max{ Z X,: £ alattice animal of size n containing the orig'in}.

ve¢
Then it has been shown that there exist M < © and N < « such that
M

n

N,
>M and — - N as.andin L.
n n

In this paper we show that M = N if and only if X, has bounded
support and P{X, = R} > p,, where R is the right end point of support of
X, and p, is the critical probability for site percolation on z¢.

1. Introduction and statement of results. Let Z¢ be a d-dimensional
cubic lattice. x € Z? is called a vertex and the origin is denoted by 0. The
distance between x € Z% and y € Z¢ is defined by

d
lx —yll= Y |x; — yl.
i=1
m, a sequence (v;,...,v,) in 7% is a path if lv,,, —vll=1fori=1,...,

n—1, and n is the length of the path 7 = (v,,...,v,) and denoted by ||
Note that the length |7| of a path 7 is not defined in a usual way because we
count not the edges but the vertices that are contained in the path. If a path
m = (vy,...,v,) satisfies v; # v; for all i # j, it is called self-avoiding.

&, a subset of Z9, is a lattice animal (or connected) if there is a path
m= (v, =x,Vy,...,U,_1,U, =y)in & for any x € ¢ and y € £, and the size of
¢ is the cardinality of the lattice animal ¢ and denoted by |£|.

x € 7% is adjacent to W C Z¢ if x is not in W but there exists y € W such
that ||x — yll = 1.
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Let {Y,: v € Z% be ii.d. Bernoulli random variables with a parameter p;
that is,

Y. — 1, with probability p,
10, with probability 1 — p.

We take d > 2 to avoid trivialities, because percolation theory is trivial for
the case d = 1. Consider the random subset of Z¢ that is obtained by deleting
all vertices v for which Y, = 0. The connected component of this subset that
contains the origin is denoted by C. The fundamental theorem of percolation
theory is that there exists 0 < p, < 1 such that

0, ifp<p,,
FllCl ==} = {> 0, ifp>p,

where p, is called the critical probability for site percolation on Z? [see
Grimmett (1989), Chapter 1, for more details].

Let {X,: ve 7%} be ii.d. positive random variables, where again we take
d > 2 to avoid trivialities, because greedy lattice animal theory, which was
developed by Cox, Gandolfi, Griffin and Kesten (1993) and by Gandolfi and
Kesten (1993), reduces to the strong law of large numbers for the case d = 1.
Cox, Gandolfi, Griffin and Kesten (1993) introduce

M, = max{S(m): m a self-avoiding path of length n starting at the origin},
N, = max{S(¢): £ alattice animal of size n containing the origin},

where S(7) = £, ., X, and S(¢) = L, ; X,, and Gandolfi and Kesten (1994)
show that there exist M < « and N < » such that

1 M
(1) .
under the moment condition E{X{(log* X,)?*¢} < « for some & > 0. They
also point out that the argument of Theorem 7.4 in Smythe and Wierman
(1978) shows that

(2) EX,<M <N
when X, is not concentrated on one point. In the same paper they mention
the problem “Do there exist {X,: vE 7% such that M < N??

In this paper we give the answer to this problem. Our results are as
follows.

n

N,
- M and — -» N as.andin L'
n

THEOREM 1. If X, has unbounded support, then M < N.

THEOREM 2. Let X, have bounded support and let R = inf{ir > 0: X, <r
a.s). If P{X, = R} < p,, then-M <N <R.

THEOREM 3. Let X, have bounded support and let R be as in Theorem 2.
If (X, =R} > p,, then M = N = R.
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In the following sections we examine the three cases separately. Before we
start, it is worthwhile to point out that during the argument for Theorem 2
we get a strengthening of the following result of Kesten [(1980b), Theorem 1].

THEOREM 4 (Kesten). Let {Y,:ve 7% be i.i.d. positive random variables
with P{Y, = 0} < p,, where p, is the critical probability for site percolation on
79, Then there exist two constants a > 0 and Cy > 0 such that

there is a self-avoiding path m of length |m| > n < 9p-Con
starting at the origin such that X Y <an = ¢ ’

veET v —

Our stronger form is as follows.

THEOREM 5. Let {Y,: veE Z% be i.i.d. positive random variables with
P{Y, = 0} < p,, where p, is the critical probability for site percolation on Z°.
Then there exist two constants b > 0 and Cg > 0 such that

there is a lattice animal & of size |£| > n
P/ containing the origin such that < 4¢ Con,
Zve ¢ Yu < bn

2. Proof of Theorem 1. In this section we assume that X; has
unbounded support. Before starting our work, we need some notation. Let
be a self-avoiding path of length n starting at the origin, for which S(,)
achieves M,. There may be several such self-avoiding paths. However, by
giving a deterministic order to the set of all self-avoiding paths of length n
starting at the origin, we can choose m, uniquely as the first self-avoiding
path in the given order, of length n and starting at the origin for which S(,)
achieves M,,. From now on when we say 7,, we mean this optimal path.

The basic idea of the proof is the following. Consider m,. There may be
several vertices v, adjacent to 7, for which X has a high value. If there is a
strictly positive frequency (at least in expectation) of such vertices along ,,
we construct a lattice animal ¢, from the optimal path =, by attaching
vertices v, adjacent to m,, for which X, has a high value. On the other hand,
there may be several vertices v € m,, for which X, has a low value and such
that m, \ {v} is still connected. If there is a strictly positive frequency (at least
in expectation) of such vertices along m,, we construct a lattice animal ¢,
from the optimal path =, by removing vertices v € m,, for which X, has
a low value and m, \ {v} is still connected. Note that ¢, is not of size n.
However, this surgery has a strictly positive impact on N because we attach
only vertices v for which X, has a high value to m, and we remove only
vertices v for which X, has a low value from 7, and from this one can easily
see M < N. So the major step in the proof is to show that there is a strictly
positive frequency along m, (at least in expectation) of vertices v, adjacent
to m,, for which X has a high value or of vertices v € m,, for which X, has a
low value and for which , \ {v} is still connected. We use a block construction
technique for this.

We start with a large deviation estimate for the binomial distribution.



AN INEQUALITY FOR GREEDY LATTICE ANIMALS 1173

LEMMA 1. There exists an s > 0 such that

there is a self-avoiding path  of length n starting at the
P{ origin in which there are more than (1/10)(1/5%) n
vertices v for which X, > s

(3)

<e ™.

Proor. For a fixed self-avoiding path 7 of length n starting at the origin,
Chebyshev’s inequality gives

( 11 ) {therearemorethan(l/lO)(1/5d)n
explt——

(4) 10 57" vertices v € 7 for which X, > s
< Ee'S» = (Ee'h)",
where I, I,,... are ii.d. with the common distribution
5) I = {1, w?th probab%l%ty P{X, > s},
0, with probability P{ X, < s},

and ¢ > 0 is chosen explicitly.
Because there are at most (2d)" distinct self-avoiding paths 7 of length n
starting at the origin,

there is a self-avoiding path 7 of length n starting at the

P{ origin in which there are more than (1,/10)(1/5%)n
vertices v for which X, > s
6
( ) < (2d)ne—t(1/10)(1/5d)n(Eet11)n

11
= exp{—n[—l-6 gt~ log2d — log(e'P(X, > s} + P{X, < s})]},

by (4). We choose ¢ > 0 such that (1/10)(1/5%)¢ — log2d — log2 = 1, and
then we choose s > 0 so large that e‘P{X, > s} < 1. For these choices of ¢ and
s, the lemma follows from (6). O

To carry out the proof we need a slightly different large deviation estimate
for the binomial distribution that can be easily justified by the argument of
Lemma 1 with certain changes for the choices of ¢ and s. We need some
definitions to state the next lemma in an appropriate form.

Let B, be the 5 X --- X 5 box of the form

B,={v=(vy,...,y) €Z% b5x, <v; <5(x; + 1) for 1 <i <d}.

We call x = (x,,..., x;) € Z% the corner vertex of the box B,. If the choice of
the corner vertex is unimportant, we abbreviate B, by B. It is important to
note that the corner vertices have to lie on (5Z)¢ and that these boxes are
pairwise disjoint; that is, B, N B, = Jif x #y.
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For each box B we define
B ={veB:v, = 5x;, orv, = 5(x; + 1) — 1 for some i},
B={v= (v, =5x; + 1,u,=5x, + 2,...,u; = 5z, + 2)},
B =B\ (4B UB)

and call these the boundary, the peak, and the interior of the box B, respec-

tively. Note that the interior B of the box B is not defined in the usual way
because we exclude one vertex, the peak B of the box B, from the “common”
definition of the interior. The peak B (see Figure 1) plays a special role in our
proof: If there exist a path segment of m, from ¢B to B and another path
segment of 7, from B to 4B, then , must contain a vertex v in B. That is
why we dastmg'ulsh the peak Vertex from the rest of the vertices in the
“common” interior.
Let 7 be a self-avoiding path. We define 75 by

mg = U{B,: B, N7+ J}.

LEMMA 2. There exists an s > 0 such that

there is a self-avoiding path m of length n starting at the
(7) P{ origin such that there are more than (1/10)(1/5%)n <e ™
vertices v € my for which X, > s

ProoOF. For a fixed self-avoiding path 7 of length n starting at the origin
and ¢ > 0, Chebyshev’s inequality gives

exp(t_l— 1 ) {there are more than (1,/10)(1/5%)n

<(E tl; 5n
10 5d —( e )

vertices v € 7y for which X, > s

because |75| < 5%n and Ee'* > 1, where I, is as in (5). Now the argument is
exactly the same as that of Lemma 1 except for the choices of ¢ and s. This

P
[} [ J o o [ J
[} o o o L J
[ J [} [ J [} [}

Fic. 1. An illustration of a good box for d = 2. P is the peak, @ represents a high value of X,
[> (5%s,) v (5¢N)] and O represents a low value of X, (< E{X,}). Note that we require a high
value at the peak.
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time we choose ¢ > 0 such that (1/10X1/5%)t — log2d — 5% log2 = 1, and
then we choose s > 0 so large that e’P{X, > s} < 1. O

We next define good boxes B, and use Lemma 2 to show that there is a
strictly positive frequency (at least in expectation) of good boxes that m,
meets.

Fix an s, > O that satisfies (7). Let B be a 5 X -+ X 5 box. We say that X,
has a good configuration on B (or B is a good box) if

X,> (5%,) v (5°N) forve JB U B,
X, < E{X,} forv e B.

LEMMA 3. There exists a constant C; > 0 such that

(8) Y P{m, meets Band X, < s, forallve B} > C;n.
B

ProoFr. For large n, say n > n,,

there is a self-avoiding path 7 of length n
starting at the origin such that there are
more than (1,/10)(1/5%)n vertices

v € my for which X, > s,

1
P S
(9) <5

by Lemma 2. Because Yz P{m, meets B and X, <s, for all v € B} is the
expected number of 5 X -+ X 5 boxes that 7, meets and in which X, < s, for
all v, and because 7, meets at least n/5¢ boxes B, we have for n > n,,

10) Y P ts B and X fllBlnll
< €B)>—|— - ——
(10) 2 {m, meets B and X, < s, for all v }_2 =~ 105"’
by (9). Clearly there exists a constant C, > 0 such that
(11) Y P{m, meets B and X, < s, forall ve B} > Cyn
B

for n < n,. The lemma follows from (10) and (11) with C; = (1/2)9,/10) X
1/5% A Cy. O

LEMMA 4. There exists a constant C3 > 0 such that

m, meets B and B has a m, meets Band X, < s
o S

good configuration forallve B
for any box B. Moreover, there exists a constant C, > 0 such that

(13) Y P{m, meets B and B has a good configuration} > C,n.
B
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Proor. Fix n and B, and let {X): ve Z% be iid. positive random
variables that are also independent of {X: ve 7%} and that have the same
distribution as {X,: v € Z%}. Define {X*: v € Z%} by

X, forve (Zd\B),
14 X* = v
(14) v X, forveB.

Let @} be the optimal path for the X* values; that is, the first self-avoiding
path in our given order, of length n, starting at the origin and for which
S*(m}) == ¥,c.» X} achieves M, := max{¥L, ., X;: 7 a self-avoiding path of
length n starting at the origin}. Assume that 7, meets B and X, < s, for all
v € B for the X, values. Moreover, assume that B is a good box for the X
values; that is,

X, > (5%,) A (5°N) forve B U B,
X! < E{X,} forve B.

We claim that in this situation 7 still meets B. To prove this, consider any
self-avoiding path 7 of length n starting at the origin that does not meet B.
By (14) and by the definition of m,,

(15) LX=YX< ¥ X,

vew veET ve m,

On the other hand, because 7, meets B, X, < s, for v€ B and X > 5%, for
v E /B,

LX= Y X+ Y X

vE m, ve m,\B veEw,NB

< Y X, +5%,

ve 7, \B
(16)

< L X+ LX)
ve 7,\B veEw,NB

= Z X,
vE m,

by (14). Combining (15) and (16), we see that 7* meets B. Therefore, we
get (12):

P{m, meets B and B is a good box for the X, values}
= P{m* meets B and B is a good box for the X* values}

m, meets B and X, < s, for v € B for the X, values,
= \and Bisa good box for the X, values

= CyP{m, meets B and X, < s, forv € B},

where C; = P(X, > (5%,) V (5¢N)}*'"3“*1P{X, < E{X,}}*"~!. Equation (13)
follows from Lemma 3 and (12) with C, = C,C;. O
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Lemma 4 shows that there is a strictly positive frequency in expectation of
good boxes B that m, meets. When m, meets B and B is a good box, two
possible cases arise. The first case is that m, does not contain all vertices in
dB U B, and the second case is that =, does Note that if m, contains all
vertices in dB U B, if m, does not start from B and if @, does not end in B
then there exist a path segment of =, from B to B and another path
segment of 7, from B to 4B and m, must contain a vertex v in B, and hence
must pick up a low value of X, at such a vertex v. In the ﬁrst case we
construct a lattice animal 7, from the optimal path =, by attaching one
vertex v in JB U B with a high value of X,, and in the second case by
removing one vertex v in B with a low value of Xv. After surgery it should be
clear that N > M because we attach only high-valued vertices to =, and
remove only low-valued vertices from ,.

PrOOF OF THEOREM 1. For each n we say B is type 1, if m, meets B, B is
a good box and 7, » dB U B. We say B is type 2, if m, meets B, B is a good
box and 7, > 9B U B. We denote by K™ the number of boxes of type i, that
T, meets. Then Chebyshev’s 1nequal1ty gives

(n — 3Cn)P{K{” < 3C,n and K§ < }Cyn} < E{n — (K{ + K§)}

<n-Cyn
for n > 1 by (13). Consequently, for n > 1,
(17) P{K{”) < iC4n and K§¥ < lC4n} < :—2—Ci.
3 3 1-3C,

Now let us do surgery as outlined just before starting the proof. If type 1,
is dominant, that is, K{™ > 3C,n, then choose the first [1C,n] boxes B of
type 1, appearing as we travel through m,. For each such box B, give a
deterministic order to the vertices in B and choose the first vertex v € (B U
B\ m,) in this order that is adjacent to m,, and attach this vertex v to T If
type 1 is not dominant but type 2,, is, that i is, K{" < 1C,n and K{® > C4n
then choose the first [$C,n] — 1 boxes B of type 2, appearing as we travel
through m,. For each such box B there exists a Vertex ve (BN m,) such
that, when we remove it from m,, 7, \ {v} is still connected. To see this,
observe that because B is at the mlddle of the path 7, (note that we choose
not the [2C,n] boxes B of type 2, but the [1C,n] — 1 boxes B of type 2, and
that 7, does not start from B and @, does not end in B ), that is, there ex1st a
path segment of 7, from 9B to B and another path segment of 7, from B to
dB, and because there is only one vertex in ¢B that is adjacent to B, there is
a vertex ve (B N m,) just before or just after B along . If we remove this
vertex v from m,, m, \ {v} is still connected because 7, > 9B U B. For each
such box B, give a determlnlstlc order to the vertices in B and choose the
first vertex ve (B N m,) in this order such that, when we remove it from m,,
a, \ {v} is still connected and remove this vertex v from m,. If neither type 1
nor type 2, is dominant, then just leave m, alone. After surgery we get a
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lattice animal ¢, from the optimal path m,. Note that £, is not of size n in
general.
Choose ¢ and 6 such that

(M—-¢)+ (5‘130 \% 5dN)%C4 (M - &) — E{X,}3iC,
A

) T+ 1c, ~ I, >M + &,
1-C,
I——%a +6<1,
and then choose n; such that
n N, 1 _C4
(19) P{ -M <eand7—N <8}>I_—%‘a+6

for n > n,. The choices of such ¢ and § are possible because
M + (5%, vV 5°N)3C, M — E{X,}5C,
1+1¢, "o,
1-C,
- 3C,
In (20) we use E{X,)} <M and M < 5N [see (2)]. Also the choice of such n,
is possible because of (1). By (17) and (19),
IM,/n —M|<e¢&,|N,/n —N|< ¢ and

21 p )
(21) either K{(® > 1C,n or K{» > 1C,n

> M,
(20)

< 1.

for n > n,;. Now choose n, > n; such that
(M — &)n + (5%, v 5N )[3Cyn|
n + [3C,n]
(M — &)n — E{X,}([3C4n] - 1)
n— ([3C4n] — 1)
for n > n,. The choice of such n, is possible because of (18).

Now fix n > n,. If [M,/n — M|<e, IN,/n — N|<e& and K™ > 3C,n,
then by (22),

(22)
>M+ e

lvlgnl > Eve.fn Xv
S R F
)y
(23) - &,
(M — &)n + (5%, v 5N )[3C,4n]
n+ [%CU’]

veET, Xv + ZvEfn\'nn Xv

>

>M + &.
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If IM,/n —M|<e¢g, IN,/n —N|<e, K< 3Csn and K{™ > 1C,n, then
again by (22),

N, Yoee X,
[€nl > veé,
EUEW'" Xv - Zuéﬂ"\§n Xv
(24) 1€l
(M —&)n — E{Xo}([%CUﬂ - 1)
n = ([3Csn] 1)

>

>M+ e.

Combining (21) with (23) and (24), we see that P{N,/n > M + &} > 8/2
for infinitely many n, because either P{N, ., 3c,,/(n + [3C,nD
>M+ e} >8/2 or PIN,_q 3c,n+1/(n —[5Cn1+1) > M+ &} > §/2 for
n = ny. This is impossible if M = N because of (1). Therefore, M < N. O

3. Proof of Theorem 2. In this section we assume that X, has bounded
support and P{X, = R} < p,, where R = inflr > 0: X, <r asl}. If P{X, =
R} = 0, we get Lemma 2 with no extra work. However, to get Lemma 4 we
need some additional conditions that are not important in our further discus-
sions. So if P{X, = R} = 0 with the additional conditions, we can apply the
argument of Theorem 1 and reach the conclusion by Theorem 5 and Lemma
5. To get rid of the additional conditions we try to modify the argument of
Theorem 1 by replacing a 5 X - X 5 box by a £ X - X k box, for some large
k, in which we require high values on the thick boundary and the peak, and
low values on the interior. However, the argument of Theorem 1 does not
work well for the general case of Theorem 2 because there may be a positive
mass P{X, = R} > 0 at the right end point R of support of X, and Lemma 2
is not true in this case. It turns out that a suitable modification for the
general case is the replacement of a 5 X «-- X 5 box by a 5 X :-- X 5 box with
a path attached in which we require high values on the boundary, the peak
and the attached path, and low values on the interior (see Figure 2). Let us
start with proving Theorem 5, which is used in showing M < N < R.

Let B be the L X --- X L box of the form

Bl ={v=(vy,...,v) €Z% Lx; < v, <L(x; + 1) for1 < i <dj},
and let D3L be the 3L X -+ X 3L box of the form
D= \J BL

|yz_x1|£ 1

So B,, which is defined in Section 2, is B in this new notation, and D3* is
the disjoint union of B boxes with the center box BZ that forms a box of
size BL)?. We call x = (x,,..., x,) € Z? the corner vertex of the L-box BE.If
the choice of the corner vertex is unimportant, we abbreviate BL by BZ.
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[ J [ J [ J [ J [ J
[ J o (o} o L J
P
[ J [ J o o [ J
[ J o o (o} [ J
[ J [ J [ J [ J [ J [ J [ J [ J [ J [ J

Fic. 2. An illustration of an excellent box with an attached excellent path for d = 2. P is the
peak, @ represents a high value of X,, (> ry) and O represents a low value of X, (< E{X,}). Note
that we require a high value at the peak.

Again we note that BF N Bl = & for x # y. The distance between B} and
B/ is defined by

d
IBE = BH = lx =yl = X lx, -,

ProOF OF THEOREM 5. For a fixed lattice animal ¢ of size |£| > n contain-
ing the origin, we cover ¢ by p (= n/L?) boxes Bl of size L% {x € 7%
@f N & # &) form a lattice animal & of size p. Construct a spanning tree r for
¢ with a root 0. Then 7 has p vertices and hence p — 1 edges. Construct a
path 7 = (v; = 0,v,,...,v,) (which is not necessarily self-avoiding) starting
at the origin that contains all vertices in 7 with (at most twice as many edges
as 7, and hence) at most 2p — 1 vertices [see Durrett, Kesten and Waymire
(1991), Section 2, for the explicit construction of such 7]. Because 7 visits all
p vertices in £ and any box D? contains exactly 3¢ vertices, we can deter-
ministically construct a sequence x,,..., x,,, m = | p/3¢], such that BL N ¢
# for i=1,...,m, and D3 n D3L & for i #j, in the followmg way:
Choose x; = v, = O Assume x =y, is chosen. Then x;,1 is the first vertex
in 7 after v; such that D}" n U  DIF = . So for large n, say n > ng

with [(n4 /Ld)/6d I <(ng /Ld)/ 37|, we can deterministically construct a se-
quence xi,...,%;, I =[p/6%], such that BLl NéE+ for i=1,...,] and
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D} N DF = B for i +j by taking the initial piece of the sequence x,..., x,,
of length | p/6¢]. Define t(dBE, 9D3L) by

t(9BE, oD3") = inf{S(): 7 a self-avoiding path from JB~ to D3 in D3*}.

Because there is a self-avoiding path 1, from dB} to ¢D}* in £ N D*, and
because L, Y, < bn implies £}_, t(dB/, dD") < bn by D3* n D}l = & for
i # j, we have for n > ng,

there is a lattice animal ¢ of size |¢| > n
P/{ containing the origin such that
L,ee Y, <bn
' !
< Y Y P{

p=n/L% x1,..., %

4

t(anLi, aDjf) < bn}.
1

Furthermore, because {¢(dB}, JD3"): i = 1,...,1} are i.i.d. random variables
with the common distribution ¢(dB¢, dD3%), for n > ng,

there is a lattice animal ¢ of size |£| > n
P{ containing the origin such that

Zue £ }7” < bn
1

< Y Y P{ Y t(oBE, oD3F) < bn}

p=n/L% X1,..., x; i=1
l

< ) Yy exp{Abn}Eexp{—A Zt(deLi,deiL)}

p=n/L% X1,..., x i=1
(25) L 3L\1]¢

< Y Y exp{ Abn}[Eexp{—)\t(aBO ,dD} )}]
p=n/L% X1,..., x

< Y (2d)*" 7% exp| )\bn}[Eexp{—)\t(aBé‘, 8D3L)}][p/6dl
p=n/L?

< Y (4ad®»’ exp{Adep}[E exp{ —At(9B¢, o'?DgL)}] e
p=n/L?

Il

P
Y [4d2 exp{AbL?} [ E exp{— At(4B}, o'?DgL)}]l/Gd] .
p=n/L?
Because P{Y, = 0} < p, it follows from Menshikov (1986) or Aizenman and
Barsky (1987) that P {there exists a path n from 0 to ¢D3. with ¥, =0,

v € 1} decreases exponentially in L [see Grimmett (1989), Chapter 3, for
more details]. Therefore, we can choose L so large that

ad?[ P{t(sBE, aD3L) = 0)] V% < 1,
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and by the dominated convergence theorem we can choose A so large that
d
4d?[ E exp{—At(9BE, aD3M)}] Ve <1

Finally, we can choose b > 0 so small that

4d? exp{ AbL?} | E exp{—At(4B{, (?DSL)}] /6 o 2.
For these choices of L, A and b, we have for n > ng4,
there is a lattice animal ¢ of size |£| > n
P/{ containing the origin such that
(26) LyeeY,<bn
log4/3
<4 exp{ - —L—d—n} ,

by (25). Clearly there exists C; > 0 such that

there is a lattice animal ¢ of size |£| > n
(27) P{ containing the origin such that < 4e Cm

Y,ee Y, <bn
for n < n,. Theorem 5 follows from (26) and (27) with C¢ = (log4,/3)/L? A C,.

O
LEMMA 5. M <N <R.

ProoOF. Choose 0 < r < R such that P{r <X, < R} < p,. Define {Y,: v e

Z% by
(28) Y, = 0, 1fr<XUSR,
1, otherwise.
By Theorem 5, there exist 0 < ¢ < 1, Cg > 0 such that

there is a lattice animal ¢ of size €] > n
(29) P{ containing the origin such that < 4e Com
Y .Y <cn

vET v —

for n > 1. So for large n, say n > n,,

P{N _(n- [anlR + [cnjr}

n =

there is a lattice animal ¢ of size n containing
= p/ the origin such that X, . , X, >

(n —|en])R + |cn]r

there is a lattice animal ¢ of size n containing
= £ the origin such that Y,ecY,<cn

A IA

4eCon
1
2
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by (28) and (29), because for each v & ¢ with Y, = 1 we can only pick up a
contribution X, <r to L, X,. By (1), this proves N < (1 — ¢)R + cr and
hence N <R,because 0 <c<land0<r<R. O

Lemma 6 corresponds to van den Berg and Kesten [(1993), Lemma (5.2)]
with a slight modification, and it can be easily verified by an argument of
Peierls. We skip the proof.

LEMMA 6. Suppose that for each L all L-boxes are randomly colored black
or white in such a way that the process (colors of BE, x € 7?) is translation
invariant. Moreover, suppose that there is Cy > 0 (independent of L) such
that for each L and x the color of BL is completely determined by the values of
X, on U{Bj‘: llx — yll < Co}. Finally, suppose that

I}im P{B({‘ is black} = 1.
Then, for sufficiently large L there exist € = (L) > 0 and D = D(L) > 0 such
that

there is a self-avoiding path w of length n starting at the
(30) origin that visits at most en distinct black L-boxes
<e Dr,

We next use Lemma 5 to define excellent boxes B and excellent paths
7, and use Lemma 6 to show that there is a strictly positive frequency (at
least in expectation) of excellent boxes with an attached excellent path that
meets .

Fix M < N < ry, < R; this can be done by Lemma 5. Let Bbea 5 X -+ X 5
box. We say that X, has an excellent configuration on B (or B is an excellent
box) if

X, >ry forve B U B,
X, < E{X,} forveB.

Also we say that X, has an excellent configuration on m (or 7 is an excellent
path) if
X, >r, forve .

LEmMMA 7. There exist Ly, ny and C,, > 0 such that

(31) ). P{m, meets B* and B contains an excellent box B} > Cyon
Blo

for n = ng.

ProOF. We color BL black if BL contains an excellent box B. Clearly

lim P{BOL is black} = 1.

L oo
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So by Lemma 6 there exist L,, ¢ = e(L,) > 0 and D = D(L,) > 0 such that

there is a self-avoiding path 7 of length n starting at the
origin that visits at most en distinct black L-boxes

< e—Dn

for n > 1, and hence the lemma follows with e 2" < 1 and C;, = 3&. O

LEMMA 8. Let L, and ny be as in Lemma 7. There exists a constant
Cy; > 0 such that

m, meets BLo, BLo contains an excellent box B

P{ and there is an excellent path m in B0
rom B to
(32) fi ,
m, meets BLo and BLo

> C11P{ contains an excellent
box B

for n > ns and for any Ly-box B*o. Moreover, there exists a constant C;, > 0
such that

m, meets BYo, BLo contains an excellent
)" P{ box B and there is an excellent path m

33
(33) B™ \in B from B to m,

> Cpn

for n > n;.

ProoF. Fix n > ng and B%. Assume that 7, meets B* and B%° con-
tains an excellent box B. There may be several such excellent boxes in Blo,
However, by giving a deterministic order to the set of all boxes in B%?, we can
choose B uniquely as the first excellent box in the given order. After the
choice of B we choose vertices x € 9B and y € m, N B0\ (B U B) such that

l = yll = min{llu - vll: u € 9B and ve m, N BLo\ (B U B)}.

There may be several such pairs. However, by giving a deterministic order to
the set of all pairs in B% X BLo we can choose (x, y) uniquely as the first
such pair in the given order. Note that x = y € dB is possible. Finally we
choose the path 7 = (u; = x,uqg,...,u,,_1,u,, =y)oflength m =|lx —yll + 1
from x to y in which we first move |x, — y,| steps parallel to the first
coordinate axis, then |x, — y,| steps parallel to the second coordinate axis
and so on (see Figure 3). Note that 7 consists of the single vertex x if
x =y € JdB. Also note that B N 7 = {x}: If there 1s ze€BNa with z #«x,
then ||z —yll<|7|—1=|lx —ylland so z € (B U B) by the choice of (x, y)
Furthermore, the path segment of = from z to y must meet JB because
ze€(BUB) and y € BLo\ (B U B). Therefore, there exists w € 9B such
that llw —yll <llz —yll <|w| — 1 =llx — y|l. This contradicts our choice of
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FiG. 3. An illustration of a type (B, w, W), Ly-box BLo for d = 2. The small box represents an
excellent box B, and the big box represents BLo which contains B. The thick line represents m,
and the thin line represents an excellent path m from B to m,. Remember the string W of 0’s and
1’s is attached to .

(x,y). For the chosen path 7= (u; =x,u,,...,u,,_1,u,, =y), we define
W= (w,,...,w,) by

1, if X, >r,

0, otherwise

w; = wi(X,) = {

fori=1,...,m.

We say that BLo has type (B, w, W), if =, meets BLo and B%o contains an
excellent box, and if B, m and W are the uniquely chosen excellent box,
excellent path and string of random variables, respectively, as described
before.

There exists a type (B, w, W), such that

(34) P )
contains an excellent box

Bl has type - 1 P{ m, meets B and BLo }
(B,m,W)a | = (L8)’2% ’
because there are at most (L¢)32L% distinct types.

For our given n > ns and Ble fix a type (B,, 7y, W,), that satisfies (34)
and assume that B%o has type (B,, 7y, W,),. Let {X!: v € Z%} be i.i.d. positive
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random variables that are also independent of {X: ve Z 9} and that have the
same distribution as {X,: v € Z%). Define {X*: v € Z%} by

35 X% X,, ifvenyand X, <r,,
(35) v 1 X,, otherwise.

v

Note that {X*: v e By} = {X,: v € By} because B, N 7, = {x,}, x, € dB, and
B, is an excellent box.

Let 7 be the optimal path for the X* values; that is, the first self-avoiding
path in our given order, of length n, starting at the origin and for which
S*(mf) = L,c,+ X achieves M} = max{ZvE » X.J: 7 a self-avoiding path of
length n starting at the origin). Assume that BLo has type (B,, 7y, W), for
the X, values. Moreover, assume that X/ > r, forve =, and X, < r,. Then
in this situation m* still meets B, U m, by the same argument as that
of Lemma 4. Furthermore, B, U 7, is an excellent box with an attached
excellent path for the X* values. Therefore,

m, meets B, BLo contains an excellent box B and there is
an excellent path 7 in B%o from B to m, for the X, values

{ m} meets B%, BLo contains an excellent box B and there is }

an excellent path 7 in B%° from B to 7* for the X* values

(36) . p B%o has type (B,, 7y, W,) , for the X, values
~ |and X > r, forve 7y and X, < r,

> P{X, > ro}" P{B has type ( By, 7y, W,), )

P{X, > r,}* | m, meets B* and B

2 d\3o L contains an excellent |-
(L5 ) 2m box B

by (34) and (35) Equation (32) follows from (36) with C;; = (P{X, >
r }LO)/((Ld)32L°) Equation (33) follows from Lemma 7 and (32) with C,, =
CyCyy- O

ProoF oF THEOREM 2. Fix L, and nj as in Lemma 7 and Lemma 8 and
let n > ny. Assume that 7, meets BZo, B contains an excellent box B and
there is an excellent path 7 in BL® from B to m,. Again we can pick a unique
excellent pair (B, 7) by ordering the pairs in some deterministic way. We say
(B, 7) has type 1, if 7, does not contain all vertexes in 4B U B U m, and we
say (B, 7) has type 2, if m, does. We denote by K™ the number of pairs of
type i, that m, meets. If type 1, is dominant, that is, K{" > 1C,,n, then
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choose the first [5C,n] pairs (B, m) of type 1, appearing as we travel
through ,. For each such pair (B, m), give a determlmstlc order to the
vertices in B U 7 and choose the first vertex v € (¢JB U B U 7\ m,) in the
given order that is adjacent to m,, and attach this vertex v to . If type 1, is
not dominant but type 2, is, that is, K{" < $C;,n and K§® > 3C,n, then
choose the first [3C,,n] — 1 pairs (B, 7) of type 2, appearing as we travel
through m,. For each such pair (B, w), give a determlmstlc order to the
vertices in B U 7 and choose the first vertex v € (B N m,) in the given order
such that, when we remove it from =, 7, \ {v} is still connected and remove
this vertex v from =, (note that we choose not the [$C,,n] pairs (B, ) of
type 2, but the [3C,,n] — 1 pairs (B, m) of type 2,, and that this choice
guarantees the existence of such v; see the argument of Theorem 1). If
neither type 1, nor type 2, is dominant, then just leave m, alone. After
surgery the rest is the same as that of Theorem 1. O

4. Proof of Theorem 3. In this section we assume that X, has bounded
support and P{X, = R} > p,, where R = inf{r > 0: X, <r a.s}. The proof
is a straightforward application of percolation theory and first-passage
percolation theory.

PrOOF OF THEOREM 3. If P{X, = R} > p, hold, there is an infinite cluster,
that is, a connected subset of Z¢, in which X, = R for v with probability 1.
So we can construct an infinite self-avoiding path @ starting at the origin
that stays in the infinite cluster after a fixed finite number of steps with
probability 1. Therefore, M = N = R.

If P{X, = R} = p,, define {Y,: v Z% by

(37) Y,-R-X,.

The time constant u corresponding to {Y,: v € Z%} is 0 by Kesten [(1980a),
Theorem (6.1)] and by the equality p, = p; because P{Y, = 0} = P{X, =
R} = p,. Now fix 8 > 0. Because u = 0, there exists with probability 1 a finite
(but random) ng such that for each n > ng there exists a self-avoiding path 7
of length n, starting at the origin, with

ZUEWKI

(38) -

< 6.

Indeed, by definition of the time constant w, there is for large n a path ,
from the origin to (n,0,...,0) with © Y, < &n, and we can take for 7 the

‘Ue‘ﬂ v

initial piece of length n of . From (37)"and (38) we get
Z:ue - X, Zve ™ R - Yv

v

(39) M, > = >R -5,
n n

for n > ng. Now let n — » in (39). Because § is arbitrary, we get M > R and
hence M =N =R. O



1188 S.LEE

Acknowledgment. The author would like to acknowledge numerous
helpful discussions with Harry Kesten.

REFERENCES

AIZENMAN, M. and BARsSKY, D. J. (1987). Sharpness of the phase transition in percolation models.
Comm. Math. Phys. 108 489-526.

Cox, J. T., GANDOLFI, A., GRIFFIN, PH. S. and KESTEN, H. (1993). Greedy lattice animals I: Upper
bounds. Ann. Appl. Probab. 3 1151-1169.

DURRETT, R., KESTEN, H. and WAYMIRE, E. (1991). On weighted heights of random trees. J.
Theoret. Probab. 4 223-237.

GANDOLFI, A. and KeSTEN, H. (1994). Greedy lattice animals II: Linear growth. Ann. Appl.
Probab. 4(1).

GRIMMETT, G. (1989). Percolation. Springer, New York.

KESTEN, H. (1980a). Aspects of first passage percolation. Ecole d’Eté de Probabilités de Saint-
Flour XIV. Lecture Notes in Math. 1180 125-264. Springer, New York.

KeSTEN, H. (1980b). On the time constant and path length of first-passage percolation. Adv. in
Appl. Probab. 12 848-863.

MENSHIKOV, M. V. (1986). Coincidence of critical points in percolation problems. Soviet Math.
Dokl. 33 856-859.

SMyYTHE, R. T. and WIERMAN, J. C. (1978). First-Passage Percolation on the Square Lattice VIII.
Lecture Notes in Math. 671. Springer, New York.

VAN DEN BERG, J. and KesSTEN, H. (1993). Inequalities for the time constant in first-passage
percolation. Ann. Appl. Probab. 3 56-80.

DEPARTMENT OF MATHEMATICS
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853



