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ASYMPTOTIC CRITICAL VALUE FOR
A COMPETITION MODEL'

By RICHARD DURRETT AND RINALDO SCHINAZI

Cornell University

In this paper we study a model of the competition of annual and
perennial plants proposed by Crawley and May. Specifically, we calculate
the asymptotic behavior of the critical value for coexistence in the biologi-
cally reasonable limit in which annual seeds are dispersed over a large
number of sites. Our results are related to earlier work of Durrett and
Swindle and prove a conjecture made in that paper.

1. Introduction. In this paper we will discuss a slight modification of a

model of competition between annuals and perennials, which was introduced
by Crawley and May (1987). In their own words, the model may be described

as

1.

cal

follows:

There are two plant species: (a) an annual invading only by seed; and (b)
a perennial, invading only by lateral spread (through the production of
“ramets”).

. The plants exist in a spatially uniform environment in which habitable
sites (cells) are distributed in a hexagonal pattern. This is the simplest
tesselation of the plane, and is selected for convenience rather than as a
quantitatively accurate description of the spatial spread of real plants.

. The size of a cell is such that it can accommodate a single individual of

the annual species or a single ramet of the perennial species.

The time unit of the model is taken to represent one generation of the

annual plant.

In any one generation, the perennial is capable of occupying only those

cells that are immediately adjacent to it; it may, however, occupy any or

all of its 6 first order neighboring cells in one generation.

. In competition, perennial ramets always exclude the annual.

. The annual has no effect on the demography of the perennial.

. In any generation, the order of events is as follows: (a) death of the

perennial ramets; (b) birth of the perennial ramets (occupation of empty

cells); and (c) recruitment of annuals from seed.

Recruitment of annuals by seed can only occur in empty cells (i.e., into

cells not containing a surviving or newly born perennial ramet).

Received November 1992; revised May 1993.

1Both authors were partially supported by the Army Research Office through the Mathemati-
Sciences Institute at Cornell University. The first author was also supported by the NSF.
AMS 1991 subject classifications. 60K35, 60F99.

Key words and phrases. Critical value, competition model, contact process, stationary distri-

bution.

1047

%8 (€
ko)
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Applied Probability . STOR

i

®

www.jstor.org



1048 R. DURRETT AND R. SCHINAZI

10. The probability of recruitment by annuals in any given empty cell is
a function of the number of seeds produced in the previous generation.
Specifically, we assume for each cell that recruitment occurs with proba-
bility 1 — exp(—mean number of seeds per cell), and that the entire crop
of annual seeds is mixed and distributed at random over all cells whether
empty or not.

11. Death of perennial ramets occurs in each generation with probability a,
independent of the age of the ramet.

12. For each empty cell, the probability of being invaded by a perennial
ramet from a given neighboring cell containing a surviving ramet is b,
and if k£ out of the 6 first order neighbors contain surviving ramets, the
probability that a cell is invaded is given by 1 — (1 — b)*.

13. To minimize edge effects, the universe has wrap-around margins, so that
the upper neighboring row of the top row is the bottom row (and vice
versa), and the left hand neighboring column of the leftmost column is
the rightmost column (and vice versa).

The hexagonal lattice is nice because it is the geometry that allows us to
pack in the largest number of circles per unit area. However, there is very
little difference between the qualitative behavior of interacting particle sys-
tems on the hexagonal and on the square lattice, so for simplicity we will
formulate the model on the square lattice, and since there is nothing special
about two dimensions we will formulate the process in d dimensions. A
second, more substantial, change that we will make is to formulate the model
on all of Z¢, and replace item 10 by

10’. An annual plant at x will for each y with ||y — x|l. < M send a seed to
y with probability c¢/(2M)%. The birth events from each x and to each y
are independent.

With a little more work we could prove our results with 10’ replaced by the
more realistic

10". An annual plant at x will send a seed to y with probability cy((y —
x)/M)/M*, where ¢ is a nonnegative continuous function with [y(z)
dz = 1. The birth events from each x and to each y are independent.

However, we will not give the details of the proof at this level of generality.

If we replace 10 by 10’ and use the labels, 0, 1 and 2 to indicate a site that
is vacant, occupied by an annual or occupied by a perennial, then the rules
above define a discrete time Markov process ¢,: Z¢ — {0, 1,2}, which may be
described algorithmically as follows:

(1) Each 2 independently survives with probability 1 — @ and if it does,
then independently and with probability b gives birth onto each of its 2d
nearest neighbors. The sites occupied by a surviving 2 or at least one 2
offspring will be occupied by a 2 at the next time.

(ii) Independently for each x with £(x) =1 and y with [ly — x[l. < M,
there is a 1 offspring sent to y with probability c/(2M)?. Any site not in
state 2 at time n + 1 and receiving at least one 1 offspring will be in state 1.
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(iii) Sites that are not the location of a surviving 2 or an offspring 1 or 2
will be in state 0.

Let n, = {x: £,(x) = 2}. Since 2’s do not see any difference between 1’s and
0’s, 7, is a Markov process and, in fact, 0, is a discrete time version of the
contact process; see Liggett (1985) or Durrett (1988). Well known results
imply that if we let %, be the process of 2’s starting with all sites occupied by
2’s at time 0, then for all A, P(3), N A # ) decreases to a limit and hence 7,
converges in law to an equilibrium distribution that is called the upper
invariant measure. Let p = lim, ,, P(x € m,). p will be zero if a is too large
or b is too small and in this case we say that the 2’s die out. In this paper we
are interested in the question of whether 1’s and 2’s can coexist in equilib-
rium, so we will suppose throughout the paper that the 2’s survive, that is,
p>0.

To investigate the question of whether or not coexistence will occur, we
will look at what happens when the range M is large. In this context the
assumption that M is large is quite reasonable because the distance annual
seeds are dispersed is large in comparison to the distance between our sites.
To derive a condition for coexistence that will become exact in the limit as
M — o, we follow Crawley and May (1987) and observe that if we assume
that the 2’s are in equilibrium, then in the limit as M — « the fraction of
sites not occupied by 2’s that are occupied by 1’s will satisfy

(1.1) v,,1=1—exp(—c(1-p)y).
To explain this, we note that the number of sites occupied by 1’s in the
neighborhood of a fixed site x is about v,(1 — pX2M + 1)¢ and each such site
has a probability of ¢/(2M)? of sending a seed to x. Thus, if M is large, the
number of seeds/that land at x has approximately a Poisson distribution with
mean cv,(1 — p) and the probability of at least one seed landing at x is
1 — exp(—c(1 — p)v,).

Now the function f(p) =1 — exp(—ap) is increasing and concave with
f'(0) = a, and hence has a fixed point p, € (0,1) if and only if « > 1. This
leads us to our first result:

THEOREM 1. Suppose ¢c(1 — p) > 1. If M is large, then there is a transla-
tion invariant stationary distribution in which the density of 2’s is p and the
density of 1’s is close to (1 — p)p, _,), that is, within a given &> 0 of this
value if M = M.

To construct the stationary distribution we start from an initial state &3>
in which the 2’s are in their equilibrium distribution and ‘we have 1’s at all
the sites not occupied by 2’s. Repeating the proof of (2,3) from Durrett and
Moller (1991), one can see that as t — », % = £!2, a translation invariant
stationary distribution. (Here = denotes weak convergence, which in this
setting is just convergence of finite dimensional distributions.) To show that
when M is large, the density of 1’s in equilibrium/s close to its “mean field”

process as &,: Z¢/M — {0,1,2).
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PROPOSITION 1. Suppose we consider a sequence of initial conditions £ in
which the 2’s are in equilibrium and the density of 1's converges weakly
to (1 — p)u(x)dx, where 0 < u(x) <1 is continuous. That is, for any C*
function ¢ with compact support,

g7 T o)~ [0 - pu
fé”(fcifl)=l

in probability. Then as M — o,

P(gfu(x) - 1|§1M(x) ” 2) R exp(_-Zc—d l|y—xllsl(1 B p)u(y) e

and asymptotically the states of sites not occupied by 2’s are independent.

Here we have used a superscript M to indicate that we are considering a
sequence of initial conditions. In most cases below this will be true, but we
will suppress the dependence on M.

It is easy to see that the state at time 1 satisfies the assumptions on the
state at time 0, so the iteration

c
(12) Qu(=) - 1—exp(—pf (1 - pu(y) dy
lly—=xll<1
describes the evolution of the densities of 1’s up to some fixed time. Weinberger
(1982) has analyzed a class of discrete iterations that include Qu and his
results allow us to conclude that:

PROPOSITION 2. Suppose ¢(1 — p) > 1. There is a convex set D with 0 € D°,
the interior of D, so that if we start from an initial function u(x) € [0, 1] that
is positive on a set of positive measure, then for any compact E C D°,

liminf inf Q"u(x) > .
n—w xenEQ ( ) pc(l 2

If we assume that u(x) has compact support, then we can prove a con-
vergence theorem that says @"u(x) = p,;_,)1,p-

Combining Propositions 1 and 2 with a “block argument,” which we will
now sketch, gives Theorem 1. The actual details will be somewhat different
and fully explained later, so if you find this sketch confusing you can skip to
the next paragraph. Let y > 0, m = p,; _,, and suppose that u,(x) = 7 — 2y
for x € [ -1, 1]¢. Proposition 2 implies that if N is large, then QVu(x) > 7 — y
for x € [ -3, 3]%. Break space into blocks J(k) = 1_[}7’: (k;B,(k; + 1)B), where
k€ Z? and B is small, pick 8> 0 so that ¢(1 — p— 6) > 1 and say that
[—1,1]¢ is rich in I’s if in the particle system on VA /M there are at least
o1 — p— 8XBM)? I's in each J(k) contained in [ -1, 1]¢. If B is small and
M is large, an initial state rich in 1’s is like taking u,(x) = 7 — 2y in the
integral equation. Using the connection between the particle system and
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the integral equation suggested in Proposition 1, it is not hard to show that if
M is large, then with high probability —2e, + [—1,1]¢ and 2e, + [—1,1]¢
will be rich in 1’s at time N. The last conclusion shows that if we start with
one “pile of particles,” then we will have with high probability two piles of
particles at later times. A comparison with mildly dependent oriented perco-
lation, invented by Bramson and Durrett (1988) and surveyed in Durrett
(1991b) and Durrett (1993), now shows that the density of 1’s does not go to 0.
Once this is established, a standard trick (take the Cesaro average of the
distribution at times 0 to 7' and extract a convergent subsequence) produces
a stationary distribution.

Readers who are familiar with the first author’s previous work may have
already noted that: (1) if we wanted to simply conclude that when ¢(1 — p) > 1
and M is large, P(£2(x) = 1) > 0, then the methods of Durrett and Swindle
(1991) would have sufficed; (2) the result as given in Theorem 1 could be
proved using the methods of Durrett and Moller (1991). One reason for
presenting a new proof here is that, while the argument of Durrett and
Moller is based on a duality that holds only for the contact process, the proof
given in Section 2 does not rely on the structure of the process of 2’s. The
same conclusion holds if we assume that the 2 process is translation invar-
iant, finite range and attractive, if we start the 2’s in the upper invari-
ant measure and let p be its density. The second and main reason for the
existence of this paper is that we can prove a converse to Theorem 1.

THEOREM 2. Suppose c(1 — p) < 1. If M is large, then the 1’s die out. That
is, if &, contains infinitely many 1’s and 2’s, then for any x we have ¢,(x) # 1
for all t sufficiently large.

A corollary of this result is that there are no stationary distributions in
which 1’s and 2’s are both present.

REMARK. The proof of Theorem 2, after some minor modifications, proves
the converse of the result in Durrett and Swindle (1991); if 8; < 8 and M is
large, then the 1’s die out. We get explicit information about the limiting
critical region in this case since both contact processes have long range
interactions.

The first ingredient in the proof of Theorem 2 is the following observation,
which we formulate for the scaled process &,: Z4/M - {0,1,2}. Pick 6>
0 so that w =c(1 — p + 8) < 1. We say that the space time region & =
[—2M,2M1¢ X [kM?2/2,2kM?] is good for 2’s (here k is a small positive
number to be chosen later) if in each cube [x; — 1, x; + 1] X - X [x, — 1,
x4 + 1] X {¢} contained in Z there are at least (p — 6)2M + 1)¢ 2’s. The
equilibrium distribution for the 2’s has exponentially decaying correlations.
So by computing a high enough moment and using Chebyshev’s inequality, it
is easy to see that when the 2’s are in equilibrium, then with high probability
the region % will be good for 2’s. Now when % is good for 2’s, the 1’s are
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dominated by a subcritical branching process and an easy estimate shows
that, even if we suppose that there are 1’s at all the sites outside % at all
times, then when M is large, with high probability there will be no 1’s in
[-M,M]% X [«kM?,2xM?].

The last paragraph gives one key ingredient in our block construction. The
second is a consequence of work of Bezuidenhout and Grimmett (1990) and
Durrett and Schonmann (1987): if ¢/ is a large integer and if somewhere in
[—1,1]¢ there is a translate of [ —J /M, J /M ]? that is completely occupied by
2’s at time 0, then with high probability (a) % is good for 2’s and (b) for each
vector v with components € {—1, 1} there is a translate of [—J /M, J/M]?
in M +[—1,1]¢ at time xM? that is completely occupied by 2’s. The last
result and a block construction give us a linearly growing region with no 1’s
and prove Theorem 2.

At this point the reader may be wondering: How do Theorems 1 and 2
relate to the work of Crawley and May? The main difference is that they
considered a system that satisfied 10 rather than 10’ and hence were not
concerned with the existence of stationary distributions. By considering the
limit of large systems and reasoning with the Poisson distribution, Crawley
and May derived equation (1.1) and concluded that ¢(1 — p) > 1 was needed
for the annuals to survive. Unfortunately, they also applied the mean field
reasoning that led to (1.1) to the contact process of 2’s and computed the
critical value and equilibrium density of the discrete time contact process, not
realizing that their computations were incorrect.

The rest of the paper is devoted to the proof of Theorem 1 in Section 2 and
of Theorem 2 in Section 3. These sections are independent of each other and
can be read in any order.

2. Proof of Theorem 1. Let Y =Z%/M ={x/M: x € Z%} and consider
£:Y - {0,1,2} so that we can more easily let M — ». We begin by construct-
ing the process from a collection of 0, 1 random variables, that we will refer to
as a graphical representation. For x in Y let {U*: n € Z} be a collection of
ii.d. 0,1 random variables with P(U* = 1) = 1 — a. If U = 1, then we draw
a 2-arrow from (x, n — 1) to (x, n); this means that if there is a 2 at x at time
n — 1 it survives to time n. For x,y € Y, with |x — yll = 1/M, let {T>*7:
n € Z} be a collection of i.i.d. 0, 1 random variables with P(T>*? = 1) = b. If
T2%Y =1 we draw a 2-arrow from (x,n — 1/2) to (y, n); this means that if
x is occupied by a 2 at time n — 1 that survives up to time rn, then there is a
birth from x to y at time n. We put the tail of the arrow at height n — 1/2
rather than at height n to prevent particles just born at time n from giving
birth at time n.

For x,y € Y with |ly — xll. < 1, let {T)"*?: n € Z} be a collection of i.i.d.
0, 1 random variables with P(T}'*? = 1) = c/2M)?. If T} *Y = 1 we draw a
1-arrow from (x,n — 1) to (y, n); this means that if x is occupied by a 1 at
time n — 1, then there is a birth attempted to y at time n, which will succeed
if y is not occupied by a 2 at time n. We assume that the {U*} and {7} *?}
(i = 1,2) are mutually independent. Note that this construction allows us to
start the process at any integer (possibly negative) time.
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We will prove Theorem 1 by using a block construction. To do so, we need
the following definitions. Let . = {(m, n) € Z2?: m + n is even} be the renor-
malized lattice. Let e; = (1,0,...,0) be the first unit vector. Let L, N and T
be positive integers to be chosen later, and define

¢(m,n) = (2mLe,,nN) for(m,n) €2,

I=[-L, L)%, I,=2mLe, +1,
#=[-3L-N,3L+N]*%x[0,N], &, ,=d(m,n)+3,
#=[-8L—-N-T/M,3L+N+T/M]*x[-T,N],
Sy = ¢d(m,n) +.

We will show that the parameters of our construction can be chosen so that:
(1) if I,, is “rich in 1’s” (a phrase we will define later) at time nN, then with
probability > 1 — 6 the cubes I,,_, and I,,,; are “rich in 1’'s” at time
(n + 1)N, and (ii) the events we use to guarantee this are measurable with
respect to the graphical representation ., ,. The box %, , intersects only
finitely many other boxes, so if 6 is small enough, then results in Durrett
(1984) imply that the sites rich in 1’s will dominate the wet sites in a
supercritical oriented percolation on &, and as we will explain at the end of
this section, well-known percolation results will then allow us to construct
the desired stationary distribution.

Let 0 < 8,8 < 1 and for any & in Z¢ define J(k) = [17_,(k; B,(k; + DB).
Our first step is to show that with high probability there are not too many 2’s
in &, ,. Let G* (“good for 2’s”) be the event: on each space-time region
J(k) X {t} included in %, , we have at most (p+ &)X BM)? 2's, even if at
time nN — T we had 2s at all the sites of Z<.

LEMMA 2.1. Let ¢ > 0, N, B and 8 be fixed. We can pick T so that if M is
large, then

P(G%)>1—e.

ProOF. Let 1, 7Y be the set of 2’s at time ¢ when the configuration at
time —7 has a 2 at each site of Z?/M =Y. We can pick T so that at time 0,
P(x € nyT'Y) < p + 8/2. It is important to note that 7 depends on & but
does not depend on M. For a fixed & in Z¢, let [n; 7*Y N J(%)| be the number
of 2’s in J(k) at time ¢. We have that

E(lo; ™Y nd(k)[) = L P(xenTY)
xed(k)

+ Y Plxen "V yeq ).
x,yeJd(k)
x#y

(2.1)

Since this is a nearest neighbor discrete time model on a lattice with spacing
1/M, if |x, —y,| > 2(T + t)/M for some i, then the events {n,‘T’Y(x) = 2}
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and {n; 7-Y(y) = 2} depend on two space-time regions that do not intersect
and are therefore independent. So the right-hand side of (2.1) is less than

(p+8/2)( B/M)* + (4t + 4T + 1)*( BM)*

+ Y P(xe n, TY)P(y e n TY).
x,yed(k)

Since the last sum is the square of Ely, T-¥ N J(k)|, it follows that
Var(|n, "Y nJ(k)|) < (p+ 8/2)( BM)* + (4T + 4t + 1)*( M)°.
Now Eln, T ndJ(k) < (p+ 6/2(BM)¢ so it follows from Chebyshev’s

inequality that
P(ln- " 0 d(k)| > (p+ 8)(BM))
(2.2) (p+8/2)(BM)? + (4T + 4t + 1) (ﬁM)

) ((8/2)( BM)®Y’

Let K; be the number of regions of the type J(k) X {¢} in . K, does
not depend on M, so if we pick M large enough, the right-hand s1de of
(2.2) is less than &/K,. Applying the inequality P(N; A;) = 1 — ¥, P(A9)
with A, = “the ith region does not have too many 2’s” ﬁnishes the proof
of Lemma 2.1. O

The next step is to show that if G? occurs in a box, then the 1’s are
supercritical there. Inspired by Proposition 1, but not relying on the truth of
that result, we define for a measurable function u taking values in [0, 1],

c
Quix) = 1=exp g7 (1=p-oyutn ).
lly—=xll<1
Intuitively, Qu(x) gives a lower bound on P(&(x) = 1/¢,(x) # 2) when the
configuration at time 0 is good for 2’s and a site x not occupied by 2’s at time
0 is set equal to 1 with probability u(x). To get a lower bound on the
evolution of the 1’'s we will use a closely related operator R defined for
functions « that are constant on each J(k), for & € Z¢. For k in Z%, let
K(k) =TIL (B, + DB — 1,k; 8+ 1) and note that each site in J(k) can
receive blrths from any site in K(k). If x € J(k) we set

c
Su(x) =1~ exp(—;[}{(k)(l —p—d)u(y)dy| - a,

Ru(x) = (Su(x))" = max{Su(x),0},

where o > 0. The next lemma will explain these definitions.

Suppose that u(x) is supported in [—-L, L]%. Let G, 0 <m < N, be the
event that at time m there are at least (BM)%(1 — p — 8)R™u(k) 1’s in each
J(k) c[-8L — N,3L + N]¢, where R™u(k) is short for the value of R™u on
J(k) and we set R%u = u.
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LEMMA 2.2. Let ¢ > 0, N, 6, B and « be fixed. If M is large, then
P(GI{,IG}),GQ) >1-e&.

Proor. It suffices to show that for 0 <m <N — 1,

(2.3) P(G,,1lG*,G)) =1~ ¢/N,

for then it follows that

P(GyNG*NGy) N-1P(G,,,NnG*NG,)
renay > AL T Pernan

e\ N
Z(l_ﬁ) >1-e,

the last inequality following from the inequality P(NA;) > 1 — X, P(AS)
applied to independent events with probability (1 — &/N).

Given G}, the number of 1’s at time m in each J(k) is at least
(24) (BM)(L = p = 8)R™u(k) =M*[ (1 -p=8)R"u(y)dy,
since R™u(y) is constant on each J(k). For x in J(k), the set of sites that
may attempt to give birth onto x includes K(k). So given G\, the total

number of 1’s at time m that may send a 1 to x is larger than the right-hand
side of (2.4) with J(&) replaced by K(%), and hence

P(&,i1(x) = 1é,.1(x) # 2,Gy,)

P(GyIG?,GY) =

Me (1-p—-8)R™u(y)d
c fK(k) ’ wnyey

(2M)*
Since (1 — x) < e™* it follows that
P(‘fm+1(x) =1/, (%) # 2,G,}1)

2.5 ¢
(2.5) > (__f (1-p—8)R™u(y)dy].
K(k)

Now let F, = {x € J(k): &,,,(x) # 2}. If we condition on the number of 1’s
in K(k) at time m and ignore births from outside that set, then the events
{¢,.1(x) =1} with x € F, are independent and have a probability that is
estimated in (2.5). Given G2, there are at least (1 — p — §)(BM)? sites not
occupied by a 2 in each J(%k) X {m + 1} included in &. Let N,(k) be the
number of 1’s in J(k) at time ¢. (2.5) implies that

E(N,.,(k)IG},G?)

21—(1—

c
>(1—-p—96 M) |1 - exp| - — 1-p—68)R™"u d
(1=p= 0B (1= exp g2 [ (1=p- D)R"ul) |
and since a 0, 1 valued random variable has variance < 1/4, we have

Var(N,,, (k)IGL,G?) < (BM)? /4.
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Using Chebyshev’s inequality it follows that
P(N,,1(k) < (1—p—8)( BM)“SR™u(k)IG*,G},)
(2.6) (BM)“ /4
< 7 2
(1 - p - 8)(BM)’a)
and since N,,, (k) > 0, the last inequality holds with SR™ replaced by
R™*1 If M is large enough, then the upper bound in (2.6) is smaller than

g/N divided by the number of J(k)in[—3L — N,3L + N1, proving (2.3) and
completing the proof of Lemma 2.2. O

REMARK. The proof of Lemma 2.2 generalizes easily to prove Proposition
1.

The next step is to analyse the behavior of the iterates @™, using results of
Weinberger (1982). His basic assumptions are given on pages 361-362. Most
of these are trivial to verify for . The only one that requires any thought at
all is his (3.1): there are constants 7, < 7; such that Qw, = 7y, Qmw, = 7,
Qy > vy for y in (m, ;). For our operator @, m, is always 0 and 7, exists if
and only if ¢(1 — p — §) > 1. Taking & sufficiently small so that the preced-
ing inequality holds [we are assuming that ¢(1 — p) > 1], Theorems 6.2 and
6.4 in Weinberger (1982) imply that:

PRroOPOSITION 3. Suppose c(1 — p) > 1. There is a convex set D with 0 €
D°, the interior of D, so that for any o> 0 there is an L such that if
inf, c;_ ¢ w(x) = o, then for any compact E C D°,

(2.7) liminf inf Q"u(x) > .
n—» xenk

PROOF. Once it is established that D° is not empty, convexity and sym-
metry imply 0 € D°, and the convergence result follows from Theorem 6.2 in
Weinberger (1982). To show that D° #+ J, we use Theorem 6.4, which states
that D° # J if there is a positive y such that for all continuous u with
0 < u < v, we have that

(2.8) Qu(x) > [u(x —y)l(dy),

where [ is a nonnegative bounded measure on R¢ which does not concentrate
on any hyperplane of R? and such that [I(dy) > 1.

To check that (2.8) holds, let ¢, = ¢(1 — p — 8) and b € (1, ¢). It is easy to
see that there is a y > 0 such that if 0 < x < vy, then

(2.9) 1 —exp(—cyx) = cofxe_cox dx > bx.
0

If u takes values in [0, y], then 0 < (1/2‘i)f"y_x”S L u(y) dy < vy and it follows
from (2.9) that

b
Qu(x) = — u dy,
( ) 2d lly—xllsl (y) y
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which is an inequality of the type (2.8) with a measure I(dy) having total
mass equal to b > 1. This checks (2.8), which proves that D° # & and
completes the proof of Proposition 3. O

REMARK. By working harder, one can improve Proposition 3 to the conver-
gence result given in Proposition 2 in the Introduction. We content ourselves
to sketch the proof since we will not use the stronger result in what follows.

PROOF OF PROPOSITION 2. By looking at Qu we can suppose that the initial
function is continuous and u(x,) > 0 at some point x, which without loss of
generality we can suppose is 0. The first step in proving the result in this case
is to construct a continuous function v supported in (—v,y) with 0 < v <
v so that v < @Qu. Iterating, we get that @™ increases to a limit w with
inf w(x) > 0. Arguments via contradiction allow us easily to conclude that
infw(x) = w; and that the convergence occurs uniformly on compact sets.
Now if u is continuous and u(0) > 0, then for small vy, u is larger than v.
Monotonicity implies that @*z > @*v and hence Proposition 3 can be applied
to Q*u for some k. O

Proposition 3 gives us valuable information about @™ u. To get from this to
information about R™u we will use the next result:

(2.10) sup |@™u(x) — R™u(x)| < (cdB+ a)(L+c+ - +c™ ).

xeR?

Proor or (2.10). First note that since

fye‘z dz

x

(2.11) le™® —e7 Y| = <lx —yl forx,y€[0,®),

we have

- p—9)

c(1
Qu(x) ~ Ru(x)| = 2

+ «.

J

lx—yll<1

u(y) dy - fK(k)u(y) dy

For x € J(k) we have K(k) C{y: |ly — x|l < 1} and the difference between
the volumes of these two subsets is less than (2d)2¢~ 8. Therefore,

sup |Qu(x) — Ru(x)| <cdB + a,

x€eR?

proving the result when m = 1.
To do the inductive step we note that a second application of (2.11) implies
that if |u(x) — v(x)| < y for all x, then for y € J(&),

| Ru(y) + Ru(y)| <[Su(y) — Sv(y)|

c(l—p—26
L——zg————)—fmk)w(x) —v(x)|dx < cy.
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So using the triangle inequality and the result for 1 and for m — 1,
@™y — R™ul <1QQ™ 'u — RQ™ 'u| + |RQ™ 'u — RR™ 'u|
<(cdB+ a) +cf(cdB+ a)(l+c+ - +c™ 2)},
completing the proof of (2.10). O

Let y > 0, 0 = 7, — 2y, pick L as dictated by Proposition 3 and let

uo(x) = {7 when x € [-L, L]%,
0 0, otherwise.

From Proposition 3, it follows that there exists N so that

(2.12) min  QNuy(x) = 7, — v.
x€[-3L,3L]%

Picking a and B small enough we get from (2.12) and (2.10) that

(2.13) min  RNu,(x) = m — 2y.
xe[-3L,3L]¢

We are now ready to compare with oriented percolation on ¥ = {(m, n) €

Z2 m + n is even}. Recall the cubes I, = 2mLe; + [—L, L]? and J(k) =

1(k B,(k; + 1B) defined at the begmnmg of the section. We say that I,
is rzch in I's at time ¢ if there are at least o(1 — p — 8)(BM)? 1’s in each
J(k) contained in I,,. Combining (2.13) with Lemmas 2.1 and 2.2, we see that
if M is large and I, is rich in 1’s at time nN, then with probability at least
1-06,1,,,and I,,_, are rich in 1’s at time (n + 1)N, and furthermore that
our good events are determined by the coin flips in the graphical representa-
tion in &, ,. A standard argument [see the end of Section 3 in Durrett and
Neuhauser (1994) or part C of Section 4 in Durrett (1991b) or Section 4 of
Durrett (1993)] now shows that the (m, n) for which I, is rich in 1’s at time
nN dominates the set of wet sites in a supercritical oriented percolation.

To construct our stationary distribution, we let £!? denote our process
starting with 2’s in equilibrium, and 1’s filled in on the sites not occupied by
2’s. Now a result of Durrett and Moller (1991) mentioned in the Introduction
implies that as n — o, § 12 = ¢12 Since the density of 2’s in equilibrium is p
and o =7, —2y<1-—p— 8, the set W, = {m € 2Z: the interval I, is rich
in 1’s in £}?} contains a pos1t1ve fraction of the even integers. Let Wk be the
set of sites at time % in the comparison percolation process. It follows from
results in the last paragraph and in Durrett (1984) that if M is large, then
(2.14) liminfP(0 € W,,) > 1 — v.

n—so
Now £,2 is translation invariant, so it follows from (2.14) and what it means
to be rich in 1’s that

(2.15) P(fan(x) = 1) 2(1-p—38)(m —2y)P(0EW,,).



CRITICAL VALUE FOR COMPETITION MODEL 1059

Combining (2.14) and (2.15) we have
(2.16) P(&(x) =1) > (1 - p—8)(m; — 2y)(L - 7).
Now m; is what we called p,;_,_;, in the Introduction and § and y are
arbitrary, so we have shown that the equilibrium density is not much less
than (1 — p)p,;_,, when M is large.

The asymptotic upper bound on the equilibrium density is easy to prove.
Define a sequence q, by g, = 1 and

q,=1—exp(—c(l1-p)g, ;) forn=1
From Proposition 1, it follows easily that
lim P(£2(x) =1)=(1- :
lim P(£°(x) =1) = (1 - p)a,

Since P(£2(x) = 1) is a decreasing function of n and gq,, | Pei - py» it follows
that

limsupP(fmm(x) = 1) < (1= p)Pea-p)
M- »
completing the proof of Theorem 1. O

3. Proof of Theorem 2. As in Section 2, we will let Y = Z¢/M = {x/M:
x € Z%} and consider ¢,: Y — {0, 1, 2}, so that we can more easily let M — .
Before we can explain the idea behind the proof we need to introduce some
notation. We will describe the intuition and give the proof first in the case
d = 1 and then at the end of the section indicate the modifications needed to
treat the general case. Let « > 0 be a constant to be chosen in the proof of
Lemma 3.1, let T = kM2 and define

F=[-2M,2M] x [T/2,2T], @ =[-M,M]x[T,2T].

We will show that we can pick < so that if M is large and some translate of
I=[-J/M,J/M] that lies in [ — 1, 1] is fully occupied by 2’s at time 0, then
with high probability (i) there are no 1’s in & and (ii) there are translates of
I'in[-M—-1,-M + 1]l and in [M — 1, M + 1] that are fully occupied by 2’s
at time T'. (See Figure 1.) Let = {(m, n): m + n is even} and say that (m, n)
is wet if there is a translate of I in [mM — 1, mM + 1] that is fully occupied
by 2’s at time nT', and the events in (i) and (ii) above occur translated by mM
in space and by nT in time. The events we use to guarantee that (i) and (ii)
occur will be chosen to have a finite range of dependence, so results from
Durrett (1984) imply that if M is large, then the points on the renormalized
lattice . at which these good events occur are sufficiently dense so that
oriented percolation occurs. Our events have been chosen so that when
percolation occurs, the dead regions (mM,nT) + <2 overlap and it follows
easily that the 1’s die out. In d = 1 this can be done by noting that on the
renormalized lattice the leftmost and rightmost sites of the wet region at time
n go to infinity linearly and there can be no 1’s inside the vee-shaped region
made by the dead strips corresponding to the leftmost and rightmost paths.
In d > 1 this simple argument breaks down but can be replaced by a lemma
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-2M -M M oM
2T
2 9 - A
L e ot L A T
coupling above this line
T/2
Joviot 0
-1 1

Fic. 1.

from Section 3 of Durrett (1992). We will give the details of these arguments
at the end of the section.

To turn the last paragraph into a proof, we will first estimate the probabil-
ity of our good event and then give the details of the comparison with
oriented percolation on .Z. Let n/> 4 be the set of sites occupied by 2’s at time
t when we start with A occupied at time ¢,. When ¢, = 0 we omit it from our
notation. The key to our construction is to prove the following.

(%) Let £ > 0. We can find a constant k and large integers J and M, so
that for all M > M, and all translates I of [—J /M, J/M] that lie in [—1,1],
the following events happen with probability at least 1 — 10¢. If we start with
2’s on I at time 0, then:

@) nf(x) = nf(x) for all (x,t) in[-2M,2M] X [T/2,2T1;
(ii) there are translates of [—J/M,J/M] in [-M — 1, —M + 1] and in
[M — 1, M + 1], that are contained in nt;
(iii) at all times between T'/2 and 2T there are at least (p — 8)2M + 1)
2’s in each interval [x — 1, x + 1] included in [—2M,2M];
(iv) even if there is a 1 at each site of [—2M,2M] N I¢ at time 0 and 1’s
at all the sites outside % at all times < 2T, then there are no I's in 9.
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Proor. Let G,, Gy, G5 and G, be the good events described in (i), (id), (i)
and (iv). We will estimate the probabilities of these events in Lemmas
3.1-3.4. To prepare for our remarks at the end of the section, we would like to
observe that all these proofs easily generalize to d > 1 if we replace the
intervals by suitable cubes.

LemmaA 3.1. For M large enough, P(G,) > 1 — &.

PrOOF. This result is true because “in the supercritical contact process
starting from a finite set, we get exponentially rapid convergence in the
complete convergence theorem inside a linearly growing set.” The remark in
quotes is at the same time well known and also unknown, that is, it cannot be
found in print. For completeness, we will indicate how it can be proved by
combining, in a straightforward way, ideas from Bezuidenhout and Grimmett
(1990) and Durrett and Schonmann (1987). It would take several pages to
write out all the details, so we will content ourselves just to sketch the proof.

Since we are trying to prove a statement about the process of 2’s, we can
and will suppose that we are dealing with the ordinary discrete time contact
process on Z, which we denote by A,. Bezuidenhout and Grimmett (1990)
proved that if the contact process is supercritical then we can pick a K, L
and S so that if we start with a translate H of [—K, K] occupied in [—L, L],
then with high probability at time S there will be translates of [—K, K]
occupied in [—3L, —L] and in [ L, 3L] even if no births are allowed to occur
on sites outside [ —4L,4L].

Let A’ B be the usual dual process for the contact process starting from B
occupied at time ¢ and working backward s units of time, and recall that this
has the same distribution as AZ. Using the result quoted in the last para-
graph and a “restart argument,” as is done in Durrett and Schonmann
(1987), one can show that there is an a > 0 so that for any finite set A and
|x| < at,

(3.1) P(Myy # @, Ao # @, My 0 AP = @) < Ce

Here and in what follows C and y are positive finite constants (which in this
case will depend on A) whose values are unimportant and will in general
change from line to line. Let 7 = inf{¢: )\A J} and )\A(x) =1lif x e /\f‘, 0
otherwise. Now A2(x) < A%(x), {A%(x) =1} = {/\t/2 n /\i/(g} + @), {\(x) =
1} = {)\t ) = &} and P(¢/2 < 1< t) < Ce™?'. Combining the last four results
with (3.1), it follows that

(32) P(Af # @, M (%) # A(x)) < Ce ™"

when |x| < at. The last result says that, except for a set with exponentially
small probability, either A* = & or A agrees with AZ on [ —at, at]. This is a
precise version of the statement in quotation marks at the beginning of the
proof.
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To complete the proof at this point, we have to improve (3.2) to a statement
about the space—time box, but this is easy. Since there are only Ct? sites in
[t,4t] X [—at, at] and P(t < 7 < 4¢) < Ce™ "}, it follows that

P(A} + D, A2 (x) # AZ(x) forsome t < s < 4¢, |x| < at) < Ce .

Let A =[—d, J] and pick J large enough so that P(A? + Jforall ) > 1 —
e/2. Letting k = 4/a and setting ¢ = T/2 = kM?/2, we have the desired
result. (Recall that we have to scale space by M to go from A, to 1,.) O

LEMMA 3.2. For M large enough, P(G,) > 1 — 4e.

PROOF. Again, since we are trying to prove a statement about the process
of 2’s, we can and will suppose that we are dealing with the ordinary discrete
time contact process on Z, which we denote by A,. Let u, be the upper
invariant measure for A,. By the ergodic theorem, if A{? has distribution u,,
then

1 L
(33 Jim iy T e = P9I X0 >0
Returning to the process on the lattice Z/M, we note that on G,, at time T,
n! is coupled to ”'hY whose law is “larger” than u, in the sense that we can
construct n and a process 1/? with distribution u, on the same probability
space so that
(3.4) n' 2 el
Combining (3.4) and (3.3) with Lemma 3.1, we see that with probability at
least 1 — 2¢ we can find the interval we seek in [M — 1, M + 1]. The same
argument applies to [—M — 1, —M + 1] and the proof is complete. O

LEMMA 3.3. For M large enough, P(G3) > 1 — 2e¢.

PrOOF. In view of the result in Lemma 3.1, it suffices to show for the
system started from all sites occupied that the event in (iii) happens with
probability at least 1 — .

As in the proof of Lemma 2.1, we will do a moment computation to
estimate |n” N [—1, 1]|, but this time (a) there are CM* intervals to deal with
and (b) the times involved are larger, so we have to (a) compute high
moments to make the error probabilities small enough and (b) we have to use
a trick to make the correlations small. The computation we are about to do is
a straightforward generalization of one done in Section 13 of Durrett (1984).
(There I = 4). We start with the trick referred to above: Let s(M,¢) =t —
alog M and let ™ 9Y be the process starting with all sites occupied at
time s(M,t). Monotonicity implies 7™ 9Y(x) > n¥(x) and it follows from
duality and known results that

P(,r'ts(M,t),Y(x) = 1) - P(Thy(x) = 1) <P(alog M < 7% < )

< Ce7(@ls M) - Cpf-5
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if a is large. The last bound implies that with high probability we have
MY (x) = n¥(x) for all (x, £) in our space—time box, so using translation
invariance in space and time and recalling that there are CM* intervals we
are concerned with, the proof of the lemma will be complete when we show

that
(3.5) P(|ndgm N [-1,1]| < (p— 8)(2M + 1)) < M5,

Let 1(x) = 110 (%) — P(0) 10 (%) = 1). If there is an x; so that |x, — x| >
(2alog M)/M for all j + i, then 7(x;) is independent of the 7(x;) and
ETI;L  m(x,) = 0. Let Sy = £, c(_1,1;M(x). As we will now explain, the last
conclusion leads easily to

(3.6) ESY < C,(2M + 1)’ (4lalog M)".

To prove this, note that [T ,7(x,)l <1 and in order for there to be a
nonzero contribution, the points x,..., x,;, must satisfy: (¢) each x; must
have some other x; within distance 2a log M of it. To see that the right-hand
side gives a bound on the number of sets of points that satisfy (¢), note that if
we draw an arc from i to j when |x; — x;| < 2alog M, then we get a graph
with at most [/ connected components, and the triangle inequality implies
that any two points in the same component are within a distance (27 —
1)2a log M. The number of sets that give rise to graphs with £ components is
at most C,(2M + 1)*(4lalog M)?'~* and k <!, so we have the desired
bound. Taking ! = 5 in (3.6) and using Chebyshev’s inequality gives

P(Sy < —8(2M + 1)) < (CM®(log M)°)/M™® < M~*45

for large M. Since P(n)), (%) =1) > p, we have proved (3.5) and the
desired result follows. O

LemMmA 3.4. For M large enough, P(Gy) = 1 — 3e.

ProoF. Pick 6> 0 so that u=c(1 — p+ 8) <1 and fix a space-time
configuration of 2’s that satisfies (iii). In view of Lemma 3.3, it suffices to
show that for each such configuration we have P(G) < &. To do this, we note
that by virtue of (iii) it follows that for each site in the space—time box a 1 at
that site will produce an average of u < 1 children that land in the box. The
last observation suggests that we compare the set of 1’s with a branching
process. Let b, be a process that evolves like ¢, (with the same birth and
death probabilities) but is more restrictive in that no births outside the
space—time box % are allowed, and more liberal in that within the space-time
box #, a 1 for the process b, can give birth to a 1 on a site already occupied
by a 1. Let b ?(x) be the number of 1’s at x at time ¢ for the process b,
beginning at time s with one 1 at y. We claim that for (x,¢) €9,

(3.7) P(¢(x)=1)< ) Ebj(x),

(y,s)e?
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where
&=(-2M-1,-2M] x[T/2,2T]) U ([2M,2M + 1] X [T/2,2T])
U([-2M,2M] x {T/2}).

To see this, note that a particle at x at time ¢ must have a last ancestor in &,
and after that ancestor the line of descent stays in %. To estimate the sum,
note that E(b;?(x)) =0 unless s <t — M (or s = T/2) since at least M
births are needed to get a particle from outside (—2M,2M) to inside
[-M,M]. Now T/2=kM?/2>M for large M, so if we let N>Y =
X, by ?Y(x), then for all the possible values of (s, y) we have

E(by7(x)) <ENf?Y < u'~% < uM.
The number of (s, y) pairs is smaller than CM? so
P(&(x) = 1) < CM3M

and the probability of a 1 somewhere in & is smaller than CM u™, complet-
ing the proof of Lemma 3.4 and of (k). O

PROOF OF THEOREM 2. Let = {(m,n). m + n is even} and say that
(m, n) is wet if: (a) there is a translate of I in [mM — 1, mM + 1] that is fully
occupied by 2’s at time nT'; (b) there are no 1’s in (mM, nT) +2; and (c)
there are translatesof 7 in[(m — DM — 1,(m — DM + 1]landin[(m + DM
— 1,(m + 1M + 1] that are fully occupied by 2’s at time (n + 1)T. Lemmas
3.1-3.4 have shown that if (a) holds, then with high probability (b) and (c)
also occur. To check that the events that we have used to guarantee that (b)
and (c) occur have a finite range of dependence, suppose without loss of
generality that m = n = 0. Now the evolution of n/ for 0 < ¢ < T is deter-
mined by the coin flips in the space—time box [—-1 — QT/M),1 + QT/M)] =
[-1-2kM,1 + 2kM], so all of our statements about 2’s involve a finite
range of dependence. As for the 1’s, they are discussed only in Lemma 3.4,
and that result is proved by considering a branching random walk that lives
in & U &.

(%) implies that for any & > 0, the events that guarantee (b) and (c) have
probability at least 1 — 106 when M is large. Let W, be the set of m so that
(m, n) can be reached from (0, 0) by a path of wet sites that can only jump
from (j, k) to (j—1,k+1) or to (j+ 1,k + 1). Let [, =infW, and let
r, =supW,. If & is small enough, then results in Section 10 and 11 of
Durrett (1984) imply that with positive probability W, = & for all n (e,
percolation occurs) and when this occurs we have

limsupl,/n < —a <0, liminfr,/n > a > 0.

n—o n— o

Suppose that W, # O, let (i, 0),(iy, 1),...,(,, n) be the leftmost path from
(0,0) to (I,,n) and let (j,,0),(j;,D,...,(j,,n) be the rightmost path
from (0,0) to (r,,n). The definition of a wet site implies that the regions
(i, M,kT) +2 and (j, M, kT) + 2 do not contain any 1’s, and they overlap to
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form a connected vee-shaped region 7. Now 7°° N {R X (0,(n + 2)T")} con-
sists of two unbounded components (the outside) and one or more bounded
components (the inside). Since 1’s can be dispersed at most a distance one
and cannot appear spontaneously, there can be no 1’s in the inside of 7°°.

The results in the last paragraph imply that if we can find a translate of
the interval I in the initial configuration that is fully occupied by 2’s, then
with positive probability the 1’s will die out. Now, if there are infinitely many
2’s in the initial configuration, then by waiting J units of time we are sure to
find an interval of 2’s to begin our construction. If our initial try fails, then by
waiting J units of time after it dies out we can find another interval to try
again. Each trial has a positive probability of success independent of what
happened earlier; so eventually we will succeed in creating a linearly growing
region in which there are no 1’s.

In d > 1 we cannot use our edge argument to show that the 1’s die out, but
must instead compare with a (d + 1) dimensional oriented percolation to
show that if ¢ is small we get with positive probability a linearly growing
cone that contains no 1’s. The necessary percolation lemmas can be found in
Section 3 of Durrett (1992). O
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