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Consider a job-shop or batch-flow manufacturing system in which new
jobs are introduced only as old ones depart, either because of physical
constraints or as a matter of management policy. Assuming that there is
never a shortage of new work to be done, the number of active jobs
remains constant over time, and the system can be modeled as a kind of
closed queueing network. With manufacturing applications in mind, we
formulate a general closed network model and develop a mathematical
method to estimate its steady-state performance characteristics. A restric-
tive feature of our network model is that all the job classes that are served
at any given node or station share a common service time distribution.

Our analytical method, which is based on an algorithm for computing
the stationary distribution of an approximating Brownian model, is moti-
vated by heavy traffic theory; it is precisely analogous to a method
developed earlier for analysis of open queueing networks. The required
inputs include not only first-moment information, such as average product
mix and average processing rates, but also second-moment data that serve
as quantitative measures of variability in the processing environment. We
present numerical examples that show that system performance is very
much affected by changes in second-moment data. In these few numerical
examples, our estimates of average throughput rates and average
throughput times for different product families are generally accurate
when compared against simulation results.
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1. Introduction. This paper is concerned with queueing network models
of job-shop or batch-flow manufacturing systems. For our purposes a manu-
facturing system is a collection of “workstations,” or simply “stations,” each of
which has one or more interchangeable “servers” working in parallel. (The
“servers” may represent either machines or operators.) The entities that are
processed at the workstations will be called “jobs,” although the standard
term in queueing theory is “customer.” Depending on the particular manufac-
turing context, what we call a job might actually be referred to as a “work
order,” a “production lot,” a “manufacturing order” or a “production batch.”
In the models considered here, there are JJ distinct workstations, and each
job that enters the system requires a particular sequence of operations, each
of which must be performed at a particular station. The “route” of a job is the
ordered sequence of stations that it visits, and the time required to perform
any given operation is called a “service time.” Both the route and the service
times of a given job may be viewed a priori as uncertain, or stochastic.

The original work of Jackson [25, 26] on queueing network models was
motivated by manufacturing applications, but Jackson’s model contained a
simplifying assumption that many found objectionable: Jobs at any given
workstation i were treated as essentially identical, and the probability that a
job leaving station i would go next to station j was assumed to be some
number P;; that did not depend on the job’s previous processing history.
Later research [1, 27] showed that Jackson’s analysis could be extended to
networks with much more general routing: In the general scheme, jobs at a
given station may be of various classes, and the future routing of a job (that
is, the switching probabilities P;;) may depend on the job’s class designation.
One can represent virtually any kind of job routing within such a model
structure (see Section 2).

The extension of Jackson’s analysis to multiclass networks is crucially
important in every area of application, but unfortunately, conventional
queueing network theory is still limited in its predictive power by very
restrictive distributional assumptions. To be specific, it is assumed in conven-
tional theory that all input processes are Poisson and that each station is
characterized by either (a) a common exponential service time distribution for
the job classes served at the station or else (b) a special type of service
discipline, such as processor sharing, that causes the station to behave
essentially as if it had a common exponential service time distribution. The
net effect of these special assumptions is that estimates or predictions of
steady-state performance depend only on first-moment data; that is, on
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average arrival rates, average service times and average switching propor-
tions. In other words, conventional queueing formulas do not show how
system performance changes as one increases or decreases the amount of
variability in the operating environment, although it is statistical variability
that causes the congestion effects that are the object of study in performance
analysis.

This paper continues the work of Harrison, Nguyen and Dai [18, 19, 10] on
two-moment analysis of multiclass queueing networks. Because of their
multiclass structure, our models are very general in the job routing allowed,
and they use both first-moment information and second-moment information
(that is, both average-rate data and variability data) in estimating system
performance. What distinguishes this paper from its predecessors is that we
treat closed systems rather than open systems, or closed network models
rather than open network models. In an open network model, the arrivals of
new jobs are viewed as uncontrollable and (perhaps) random events, and the
number of active jobs fluctuates over time. At first glance this may seem like
a reasonable representation of manufacturing reality, but as Solberg [36, 37]
observed, it is clearly wrong for the kind of automated machining facility that
is increasingly common in the metal cutting industry. In such a system, one
typically has a fixed number of pallets on which workpieces are mounted, and
when a workpiece has finished its route, it is removed from the pallet and
another workpiece immediately replaces it. Thus, as Solberg pointed out, it is
really pallets that play the role of “jobs,” and the correct queueing model is a
closed network; that is, a network with a fixed set of “jobs” that circulate
perpetually through the workcenters, with no arrivals and no departures.

Solberg’s proposal of a closed network model was based on physical restric-
tions, but a much larger number of manufacturing facilities are operated with
“closed loop input control,” either exact or approximate, which leads to the
same type of model for performance analysis purposes. That is, in order to
reduce physical clutter or simplify the operating environment, management
may set a target value for the number of active manufacturing orders,
decreeing that new orders may enter the factory floor only as old ones leave
it. Such iron-fisted restrictions on work-in-process are one way in which
managers seek to implement the “just-in-time” philosophy of material flow
control. Chen, Harrison, Mandelbaum, van Ackere and Wein [6] describe a
Hewlett—Packard wafer fabrication facility operating under just such a disci-
pline, but the same sort of input control is exercised in many other plants in a
variety of industries.

In adopting a closed network model of the factory, of course, we are
assuming that there is always enough demand or enough internally gener-
ated manufacturing orders to keep the factory full. That assumption is not as
stringent as it may first appear: If management maintains a constant num-
ber of active jobs by restricting input and reducing the factory’s operating
hours in times of slack demand, one is led to the same closed network model,
but with “elapsed time” interpreted to mean cumulative operating hours. On
a different front, one may object to a closed network model of make-to-order
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manufacturing because it excludes consideration of delays suffered by cus-
tomer orders before they are released to the factory floor. That is quite true,
but it is still important to understand the performance of the factory itself,
and one may expand the analysis later in an attempt to understand overall
response times seen by customers.

Our method for steady-state analysis of closed networks is precisely analo-
gous to one described in [18] and [10], called the QNET method, for two-
moment analysis of open networks. That same name will be used here, so it
becomes necessary to distinguish between QNET analysis of open systems
and QNET analysis of closed systems. In both settings, the QNET method is
based on an algorithm for computing the stationary distribution of an approx-
imate Brownian system model, and the motivation for the Brownian approxi-
mation comes from heavy traffic theory. In the case of a closed network, this
means that one expects the QNET method to work best when the job
population is large, but the few numerical examples presented in this paper
suggest that good results can also be expected with moderate population
sizes.

In their original description of the QNET method for open networks,
Harrison and Nguyen [18] allowed the various job classes served at a given
node or station to have different service time distributions. In a later paper,
however, Dai and Wang [12] showed that the Brownian approximation
proposed in [18] makes no sense for certain multiclass networks with feed-
back routing. This perplexing state of affairs was discussed in the recent
survey by Harrison and Hguyen [19], and Whitt [39] has thrown further light
on “pathologies” that can occur with feedback routing, but much remains to
be understood at the time of this writing. To avoid foundational problems in
the current work, we will impose the following critical restriction: Each node
or station of the network is characterized by a single service time distribu-
tion, which is common to the various job classes served there. This restriction
does rule out some interesting applications, such as metal-cutting operations
where jobs following different routes may have very different processing
times at a particular machining center, but our model is still very general by
conventional standards.

For a closed network with J stations, our approximating Brownian model
is essentially a “reflected” or “regulated” Brownian motion (RBM) whose
state space is a <J-dimensional simplex. Earlier work by Chen and
Mandelbaum [7] and by Harrison, Williams and Chen [24] also identified
RBM in a simplex as the appropriate Brownian model of a closed queueing
network, but those papers considered only “generalized Jackson networks,” in
which a single job class is served at each station. By expanding the scope of
the analysis to include multiclass networks, which is necessary to get a
realistic representation of job routing, one encounters a more general kind of
RBM.

Also, in the earlier work referred to previously, no means was given for
deriving numerical performance estimates from the Brownian approximation,
whereas we develop an algorithm for practical performance analysis. On the
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other side of the ledger, Chen and Mandelbaum [7] were able to justify their
Brownian approximation by a rigorous heavy traffic limit theorem, but that
limit theory has not been extended yet to the class of networks treated here.

System performance analysis, whether based on queueing models or on
computer simulation, is more highly developed and more broadly accepted in
computer systems engineering than in manufacturing, and closed network
models are generally considered to be more important in the computer
systems domain than open network models [28, 29, 35]. Closed network
models of computer systems are typically justified by the fact that user
populations are literally fixed, and if one has several fixed and distinct user
populations, all competing for common processing resources, the appropriate
queueing network model is a so-called multichain closed network. As we have
explained earlier, closed network models arise in manufacturing primarily
because of management policies that maintain a fixed population size, not
because “customers” literally circulate forever. This suggests a type of closed
network model that is different, and in certain ways simpler, than those
commonly used in computer performance analysis. In other words, our defi-
nition of a closed queueing network is chosen with manufacturing applica-
tions in mind, and our objective is to develop a method for two-moment
performance analysis of that particular network class.

The paper is organized as follows. Section 2 describes and motivates the
foregoing multiclass closed network model. An approximating Brownian sys-
tem model is developed by stages in Sections 3-6, assuming that readers are
familiar with the corresponding analysis of open networks in [18]. Sections 7
and 8 explain how numerical performance estimates are derived from the
approximating Brownian model, with technical details relegated to an Ap-
pendix. The complete procedure for practical performance analysis is summa-
rized in Section 9, and to clarify connections with previous work, we explain
in Section 10 how our method applies to network models of the generalized
Jackson type.

Three numerical examples are discussed in Sections 11-13. To be more
precise, three families of examples are examined in those sections, where we
discuss not only the accuracy of our approximation procedures, but also
qualitative phenomena. Section 14 explains how QNET analysis can be
extended to accommodate multiserver stations, unreliable servers and non-
FIFO service disciplines, all of which are important in manufacturing appli-
cations. Finally, Section 15 contains a description of an open problem and
some miscellaneous concluding remarks.

Readers who wish to get a quick overview may first read Section 2, then
jump to Section 9 for a summary of QNET mechanics, and then peruse the
examples in Sections 11-13.

2. A multiclass closed network model. Our basic closed network
model, which is closely related to the “structured open network” described in
Section 5 of [18], is portrayed schematically in Figure 1. The notation and
terminology introduced here are mostly repeated from Section 5 of [18].
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Fi1G. 1. Schematic representation of the closed network model.

Workstations are indexed by i, j = 1,..., J and, as explained earlier, there is
a single service time distribution at each station. That is, service times at
station i are independent and identically distributed with a given general
distribution, and the service time sequences at different stations are mutu-
ally independent as well. Let 7, and b, be the mean and the coefficient of
variation, respectively, of service times at station i. (The coefficient of varia-
tion for a random variable is its standard deviation divided by its mean.) For
the time being, each workstation is assumed to have a single server and a
first-in—first-out (FIFO) service discipline. Also, servers are assumed to be
perfectly reliable, but the relaxation of these restrictions will be discussed in
Section 14.

Job classes are indexed by k,l = 1,..., K. One should think of a job’s class
designation as a complete summary of that job’s identity and past processing
history. In a manufacturing system where jobs represent production lots, for
example, the class designation might tell what product is being made, how
many units are in the lot, which operations have already been performed and
how many and what types of rework operations have been required thus far.
This example suggests that the required number K of job classes is huge,
which may be true in principle, but it is not actually necessary to list all
potential classes, because the data that ultimately describe our approximat-
ing Brownian system model are a relatively small number of aggregate
quantities.

Jobs of class k£ require service at some particular station s(k). The
probability that a class % job, upon completion of service at station s(k), will
turn next into a class / job is P,;, and the probability that a class & job will
exit the system upon completion of service is 1 — XX | P,,, independent of all
past processing history. The K X K Markov switching matrix P = (P,)) is
assumed to be transient, which means simply that all jobs eventually leave
the system. In our earlier example involving production lots at various stages
of completion, the great majority of the switching probabilities P,; would be
zeros, the remainder would be mostly ones and a few intermediate values
(that is, true probabilistic switching) would occur to represent-the possibility
of rework, scrapping or breakage of units within a lot, and so forth. Because
the number of classes can be arbitrarily large, with a many-to-one mapping of
classes to workstations, one can easily accommodate multiproduct manufac-
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turing and complex product routes within the structure of our multiclass
network. See Section 5 of [18] for more discussion of that point.

We define a J X K constituency matrix C = (Cj,) by setting C;, = 1 if
s(k) =j and C;, = 0 otherwise. That is, C;, = 1 if job class k is served at
station j, and Cj, = 0 otherwise. As in Section 5 of [18], define a K X K
matrix (here and later, primes denote transposes):

Q=I-P) ' '={I+P+P%+ ).

Also, specializing the notation in Section 5 of [18], let T be the K X K
diagonal matrix with

(2.1) Ty, = 7; forall k such that s(k) = .

Finally, foreach m = 1,..., K, define a K X K covariance matrix H™ = (H]})
via

P,.(1-P,), ifk=I,

(2:2) Hi=\_p p . if b+ 1.

It remains to specify the input mechanism for our closed network model.
As Figure 1 suggests, we imagine that there is an ordered queue of “replace-
ment jobs” outside the processing system itself, and that the job at the head
of this line enters the system each time an active job completes its route.
Each replacement job has an initial class designation that specifies, for
example, the quantity of product to be made and the required sequence of
operations. Taken as primitive in our model is the joint distribution of initial
class designations for jobs in the replacement queue. That is, the characteris-
tics of replacement jobs may be deterministically prespecified, or they may
depend on chance factors exogenous to the processing system itself, but they
may not depend on events internal to the processing system. This means, for
example, that we exclude from consideration systems where the choice of job
to be released next depends on which workstations are currently least
congested. In other words, the sequence of jobs to enter the system is
exogenously specified, either deterministically or probabilistically, but the
timing of those releases is endogenously determined by our closed-loop input
control rule.

To capture this notion mathematically, we take as given a K-dimensional
stochastic process ¢ = {{(r), r = 1,2, ...} whose kth component process is

{,(r) = the number of the first r replacement jobs that are of class k.

To simplify notation in the future, we extend ¢ to a continuous time parame-
ter in a piecewise constant, right-continuous fashion, which means that
() =¢(r)if r <t <r + 1. It is assumed that there exists a K-vector a and
a K X K covariance matrix A such that

(2.3) E[{(t)] ~at and Cov[{(t)] ~At ast —> .

One interprets «, as the long-run fraction of new jobs that are of class %, and
the covariance matrix A describes the statistical variability in our cumulative
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input process {. The requirement that there exist such an asymptotic mean
vector « and asymptotic covariance matrix A is a very weak stability
assumption. Two input schemes of particular interest are deterministic, cyclic
input and independent, identically distributed (iid) input. In the former case,
the class designations of successive “replacement jobs” repeat in a determin-
istic cycle, such as 1,2,1,3,1,2,1,3 and so forth. The input fractions «, are
computed from cycle data in the obvious way (in our example, «; = 0.50,
a, = 0.25, ay = 0.25), and the asymptotic covariance matrix is A = 0. In the
iid case, the class designations of successive replacement jobs are indepen-
dent and identically distributed according to a given probability vector «.
Then ¢(r) has a multinomial distribution for each fixed r, implying that
Cov] £(r)] = Ar, where

(1l —-a,), ifk=1,
(2:4) RO\ —ay ifk #1.

To justify our approximating Brownian system model, we must also as-
sume the following functional central limit theorem (FCLT) for ¢: The
centered and scaled processes {r /%[ {(rt) — art], t > 0}, indexed by r =
1,2,..., converge weakly as r — o to a Brownian motion with zero drift and
covariance matrix A. By conventional standards this is also a very weak
assumption. It is satisfied, for example,-in the case of deterministic, cyclic
input and the case of iid input (examples of both types are presented in
Sections 11-13).

The cumulative input process ( is assumed to be independent of the
service times and class switches that occur within the processing system.
Finally, as shown in Figure 1, we denote by n the fixed number of jobs within
the processing system; that is, the constant population size for our closed
network model.

Our formulation is general enough to include systems where jobs or
customers circulate forever, but only under certain restrictions. Consider, for
example, a closed network with a fixed population and K user classes. The
switching matrix P is stochastic in this case; that is, each row sums to 1. Let
us suppose that P is also irreducible, which means that all user classes
“communicate” with one another, and hence all users eventually visit all
class designations. Such a network can be mapped into our formulation by
the following artifice. Choose one class % arbitrarily and designate this the
“exit class.” A user who completes service in class %k is deemed to have
finished a “route,” and a new route begins with whatever class the user may
visit next. Because of the irreducibility assumption, all routes terminate after
a finite number of operations, and the probability that a new route begins
with a visit to class [ is «; = P,;. With this particular setup, the class
designations of successive replacement jobs are iid.

Unfortunately, the same trick does not work when P is reducible. In that
case the job population can be divided into two or more subpopulations that
never intermingle. That is, each user stays within its initial subpopulation,
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and one obtains a multichain closed network of the type alluded to in Section
1. Such a model cannot be mapped into our formulation, because if one
designates an “exit class” for each subpopulation, one finds that the probabil-
ity distribution of a replacement job’s initial class designation depends on
what has been happening in the network, and that does not conform to our
setup.

Although they are important in the computer systems domain, we believe
that multichain closed networks are relatively unimportant for manufactur-
ing applications. However, they are not completely irrelevant, as the follow-
ing example demonstrates. Consider an automated machining facility that
produces both transmission housings and clutch housings. Products in the
two families are made from castings of different sizes, and hence they are
mounted on different types of pallets while on the factory floor. Thus a
transmission housing must be replaced by another transmission housing
when it finishes its route, and similarly for clutch housings, so one is led to a
multichain closed network model, which unfortunately cannot be accommo-
dated within our formulation. Consider again a traditional closed network
where jobs circulate perpetually and switch class according to an irreducible
stochastic matrix P. Our closed network model, with its infinite queue of
replacement jobs, is more general, because it allows for such phenomena as
deterministic, cyclic input schedules in multiproduct manufacturing. The
example discussed in Section 11 will show that random input and determinis-
tic, cyclic input produce substantially different system performance.

3. Brownian models for a family of open networks. To facilitate
development of our approximating Brownian system model, let us consider
first an open network that is identical to the system described in Section 2,
except that new jobs from the “replacement queue” enter at fixed intervals of
length 1/a, where a > 0. The letter a is mnemonic for “arrival rate,” and this
parameter indexes a family of open network models of the type considered in
[18]. In that earlier paper we focused on the J-dimensional total workload
process Z(t) and the J-dimensional immediate workload process W(t), the
definitions of which are as follows. For each j =1,...,J and each ¢ > 0, let
W(¢) denote the sum of the impending service times for jobs that are queued
at station j at time ¢, plus the remaining service time for any job that may be
in service there at time ¢. If there were a new arrival to station j at time ¢,
that job would have to wait W.(¢) time units before gaining access to the
server, so one could also describe W(¢) as the virtual waiting time process for
station j. Next, let Z;(¢) denote the sum of all future service times at station
J for jobs that are present anywhere in the network at time ¢, plus the
remaining service time of any job that may be in service at station j at time ¢.
If there were no new arrivals to the network after time ¢, then Z,(¢) would
represent the total amount of work required from server j to empty the
system. In the current context, it is more natural to focus on Z(¢) and a
J-dimensional jobcount process N(t) whose jth component is

N;(t) = the total number of jobs at station j at time ¢, regardless of class.
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In these verbal definitions, of course, we are imagining that all jobs belonging
to a class % in the constituency of server j [that is, all jobs of a class 2 such
that s(k) =j] physically “occupy” station j as they await service.

If one is concerned only with Brownian approximations, the substitution of
the process N(¢) for W(¢) in one’s system description hardly changes any-
thing, because in a Brownian system model, jobcount and immediate work-
load are deterministically linked by the relationship

(3.1) Wi(t) = N/(2).

(Recall that 7; is the mean service time at station j.) Now let us define a
K-vector A and a J-vector p via

(3.2) A=Qa and p=CTA

Recalling that @ = (I — P')"!, one sees that A satisfies the “traffic equation”
A = a + PA, so ), is the average rate at which class & jobs “arrive” at station
s(k) when the external arrival rate is a = 1. Thus the vector of class-level
arrival rates for a general value of a is aA. Similarly, p; represents the total
hours of work for server j entering the system per hour if a = 1, and for a
general value of a, the vector of overall “traffic intensity parameters” (one
component for each workstation) is a p. Hereafter, attention is restricted to a
values such that ap; < 1 for each station j. If we now define

(3.3) y = CA,

then y; is the total arrival rate to station j, regardless of job class, when
a=1

Imitating the notation used in [18], let us denote by Lj(r) the sum of all
the service times at station j required by the first r jobs in the replacement
queue. Also, define a J-dimensional vector process L(r) in the obvious way,
and extend L(-) to a continuous-time-parameter process {L(¢), ¢ > 0} in a
right-continuous, piecewise constant fashion. If the external arrival rate is
a = 1, then L«(¢) represents the total amount of work for server j entering
the system before time ¢, and by specializing the results developed in Section
5 of [18], one has

(3.4) E[L(t)] ~pt and Cov[L(t)] ~Tt ast — o,
where p = CTA as before and
(3.5) I' = (CTQ)G(CTR),
(3.6) G=A+H+ (I-P)D(I-P),
K

(3.7) H= Y M, H™,

m=1
(3.8) D = diag(Albsz(l), ceey AKbsz(K))'

Actually, in [18] we assumed that the exogenous inputs to the various classes
were independent renewal processes, which gave A a certain special struc-
ture, but the argument is virtually unchanged with a general input process.
With that generalization, our formula (3.6) for G is identical to formula (52)
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of [18], but readers should be warned that formula (40) of [18], which was
said to give an equivalent specification of G, is only valid if one assumes
P,, = 0 for all £, and we do not wish to impose that restriction in this paper.

To avoid trivial complications, we will assume as in [18] that I" has full
rank J. That is, we assume that there is some randomness in the workload
input to each station, either because of service time variability or because of
routing variability, or because of variability in the initial job class designa-
tions. Moreover, given the FCLT that we have assumed for ¢, plus our
various independence assumptions, it is easy to establish the following FCLT
for L. Defining

(3.9) L(t) =L(t) — pt, ¢>0,
one can show that the scaled processes {r !/ 2IA,(rt), t > 0}, indexed by r =
1,2,..., converge weakly as r — « to a Brownian motion with drift zero and

covariance I'. As a final preliminary, let us define J X J matrices F and M
via

where A = diag(A). Our definition of F is exactly as in [18], but that of M is
slightly different, for reasons to be explained shortly.

In [18] we denoted by £(¢) the total workload netflow process for an open
network. In the current context, with a general arrival rate a, this is given by
&(t) = L(at) — et, where e is the J-vector of ones. That expression can be
rewritten as

(3.11) £(t) = L(at) — (e —ap)t

and, given the FCLT for L stated previously, it is natural to approximate ¢
as in (3.13). Let I;(¢) be the cumulative idleness suffered by server j up to
time ¢, and define a J-dimensional vector process I(¢) in the obvious way.
The Brownian approximation for the open network that was developed in [18]
is defined by the following six relationships:

(3.12) Z(t) =Z(0) + £(¢) + I(¢),
(3.13) ¢ is a Brownian motion with drift vector —(e — ap) and
’ covariance matrix al’,
(3.14) I(-) is continuous and increasing with I(0) = 0,
(3.15) I;(-) only increases at times ¢t when N;(¢) =0,
(3.16) Z(t) = MN(t),
(3.17) N(¢t) = 0.
Actually, the Brownian system model proposed in [18] differed from
(3.12)-(3.17) in two regards: W(¢) appeared in place of N(¢) in the analog of
(3.16), and the matrix M was defined via M,; = F;;/p;, whereas (3.10)

specifies M;; = F;;/v;. From (3.1) and (3.3), one sees that the two formula-
tions are in fact equivalent.
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i
As explained in [19], the approximating Brownian model for our multiclass
open network is uniquely determined by (3.12)-(3.17) if and only if M is
invertible and its inverse is completely-%, whose definition follows. For future
reference, we also define a class of “admissible” matrices and prove that an
admissible matrix must be a completely-# matrix.

DEeFINITION 3.1. A J X J matrix A is said to be an . matrix if there
exists a J-dimensional vector u > 0 such that Az > 0, and to be a com-
pletely-% matrix if each of its principal submatrices is an . matrix.

DEeFINITION 3.2. A J X J matrix A is said to be admissible if there is a
positive diagonal matrix D such that

(3.18) I'* = AD + DA
is positive definite.

The following lemma is used several times in this paper.
LeEmMmA 3.1. If A is admissible, then A is completely-%.

Proor. This lemma can be proved by quoting existing known results.
First, by Theorem 2.3 of Berman and Plemmons ([3], page 134), an admissible
matrix must be a % matrix. Next, it follows from the discussion in Section 2
of Mandelbaum [30] that a & matrix is a completely-¥ matrix. Here we
provide a direct proof that seems to be new.

Assume that A is admissible. We first show that A is an % matrix. Let D
and I'* be the matrices defined in (3.18). It suffices to prove that

R =AD
is an .¥ matrix.

Let S°={xeR’: x;>0( =1,...,J)} and S* = RS°. Then both S° and
S* are convex open cones in R, If S° N 8* # (J, then it is obvious that R is
an .% matrix. Assume on the contrary that S° N §* = &J. Because S° and S*
are two disjoint convex sets in R”, there is a hyperplane K separating S° and
S*. Let {x: n - x = 0} be the equation determining the hyperplane K, where n
is the normal direction of K. Because S° lies entirely on one side of K, the
inner product {n, y) takes one sign for all y € S°. Without loss of generality,
we assume that (n,y) >0 for all y € 8° and, therefore, by the same
argument, (n, y) < 0 for all y € S*. By the continuity of the inner product
function y —» {(n,y), {n,y) > 0 for all y € S, where S is the closure of S°.
Similarly, {z, y) < 0 for all y in RS, the closure of S*. Because {(n,y) > 0
for all y € S, we have n € S and hence Rr is in RS. Therefore, {n, Rn) < 0,
contradicting n’Rn = tn'T*n > 0. Thus R is an .¥ matrix. Applying the
same reasoning to any principal submatrix of A, we can prove that A is
completely-¥. O ’

PROPOSITION 3.1. Let matrix M be defined as in (3.10). Then M is invert-
ible and M~ is completely-¥.
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Proor. First suppose that M is admissible. Then for any x # 0,
2x'MDx = x'T*x > 0, where D and I'* are defined in (3.18). Thus MD is
invertible and, therefore, M is invertible. It is easy to check that the property
of being admissible is closed under matrix inversion. Thus M ! is admissible
and, therefore, from Lemma 3.1 M ! is completely-%.

The remainder of this proof is devoted to showing that M is admissible.
First recall that 7, is the mean service time at station i (i = 1,...,J), and
T = diag(7,y,,..., 7yx)) is the diagonal matrix defined in (2. 1) Let T=
diag(ry,...,7;). One can check that CT = TC and, therefore, F = TCQAC".
Next we show that

(3.19) A(I-P)+ (I-P)A=G*,
where
G* =diag(a) + H+ (I — P)A(I - P),

with H being defined as in (3.7), and «,’s being external arrival rates. [This
matrix G* is what one would get from (3.6) if { were a vector of independent
Poisson inputs and b, = 1 for all i = 1,..., J.] In fact, it is easy to check by
some simple algebra that (3.19) is equivalent to

(3.20) A =H + diag(a) + P'AP.
To prove (3.20), we note that

H* = diag(P}) — PP},
where P,, as before, is the kth row of P. Therefore,

H= Z‘, A, H*
1

1|

K
Ay, diag(Py) — > A, PP,
k=1

[
[\’]w

k

i

1
K
= diag( Y AkP,;) — PAP
k=1
= diag(A — ) — P'AP
= diag(A) — diag(a) — P'AP,
where, in the next-to-last equation, we have used the traffic equation (3.2). It
follows that (3.20) and hence (3.19) holds.

It follows from (3.19) that G* is a positive definite matrix. Premultiplying
by CQ and postmultiplying by @' C’ on the both sides of (3.19), we have that

C(QA + AQ)C' = CQAC' + CAQ'C' = CQG*Q'C'.
It follows that

TCQAC'T + TCAQ' C'T = TCQG*Q'C'T



QNET METHOD FOR TWO-MOMENT ANALYSIS 981

Because M = Fldiag(y)]"! = TCQAC'[diag(y)] !, we have

(3.21) M diag(y)T + T diag(y)M' = TCQG*Q' C'T = T*.

Because the constituency matrix C has the full rank J, we have CQG*Q'C’
positive definite, thus concluding that I'* = TCQG* Q' C'T is positive definite.

O
Defining

(3.22) R=M",

one can now proceed exactly as in Section 4 of [18] to eliminate Z(¢) from
(3.12)-(3.17), eventually arriving at the following more compact representa-
tion of the Brownian model:

(3.23) N(t) =N(0) + X(t) + RI(t),
X = R¢ is a Brownian motion with drift vector

(3.24) w = —R(e — ap) and covariance matrix a(},
where (0= RI'R’,

(3.25) N(t) =0,
(3.26) I(-) is contionuous and increasing with I(0) = 0,
(3.27) I;() increases only at times ¢ when N;(¢) = 0.

4. The Brownian model of a multiclass closed network. Returning
to the multiclass closed network described in Section 2, we assume that the
initial population size is ¢’N(0) = n (again e denotes the J-vector of ones)
and that new jobs are injected so as to keep the total population size fixed.
Denoting by A(¢) the total number of replacement jobs injected up to time ¢,
there presumably exists a long-run average throughput rate a > 0 such that

(4.1) E[A(t)] ~at ast > =

A fundamental purpose of system performance analysis is to determine the
throughput rate a, but for the moment let us treat it as a known constant
and define

(4.2) Y(t) =A(t) — at, t>0.

Thus Y(:) is a nonmonotone, one-dimensional process that describes fluctua-
tions of the cumulative input A(:) around its central tendency. The workload
netflow process seen by the various workstations under closed-loop input
control can then be expressed as (here and later, tildes are used to signify
processes associated with the closed network model)

£(t) = L(A(¢)) — et = L(A(t)) + pA(t) — et

= L(A(2)) = (e —ap)t + pY(2).

Given a so-called functional version of (4.1), plus the FCLT for L(-) stated
earlier, one can show that the scaled processes {r '/2L(A(rt)), t > 0}, in-

(4.3)



982 J. G. DAI AND J. M. HARRISON

dexed by r = 1,2,..., converge weakly as r — % to a Brownian motion with
zero drift and covariance al’, and thus we are led to approximate the first two
terms on the right side of (4.3) by a Brownian motion ¢ as in (4.5). As analogs
of (3.12)—(3.17), one then arrives at (4.4)-(4.9), and (4.10) is the distinguish-
ing additional feature of a closed network model:

(4.4)  Z(t) = Z(0) + £(¢) + I(t) + pY(2),
¢ is a Brownian motion with drift vector — (e — ap) and

(4.5) . .
covariance matrix al’,

(4.6)  I(-) is continuous and increasing with I(0) =0,

(4.7) I;() increases only at times ¢ when ]\7J(t) =0,

(4.8)  Z(t) = MN(2),

(49) N(¢) =0,

(4.10) e'N(t) =n.

It is not obvious, of course, that (4.4)-(4.10) uniquely determine the processes
Z, I, N and Y, but in the remainder of this section and in Section 5 we will
show that to be the case.

Proceeding exactly as in Section 3, we can now simplify the Brownian
model (4.4)—(4.10) by eliminating Z. Defining R = M ! as before and

(4.11) u=Rp,

one can premultiply (4.4) by R and then equate RZ(t) to N(t) because of
(4.8), to obtain

(4.12) N(t) = N(0) + X(¢t) + RI(t) + uY(¢),
where

X(t) = R¢(t) is a Brownian motion with drift vector —R(e — ap)

(4.13) and covariance matrix a(), where = RI'R'.

Equation (4.12) is analogous to (3.23), and (4.13) is identical to our earlier
definition (3.24) of the Brownian motion X. To summarize, the Brownian
approximation for our closed network model is defined by (4.12), (4.13), (4.6),
(4.7), (4.9) and (4.10). Equations (4.4) and (4.8) have been incorporated into
(4.12) and thus will not be needed hereafter.

5. Reduction to RBM in a simplex. We continue to treat the through-
put rate a, which appears in our Brownian system model through (4.13), as if
it were a known constant. To further simplify the Brownian model, premulti-
ply (4.12) by ¢’ and then set e'N(¢) = ¢’ N(0) = n because of (4.10), to obtain

(5.1) eX(t) + ¢RI(t) + cY(t) =0,
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where
(5.2) c=¢eu=¢eRp.

One can show that ¢ > 0. In fact, noting that diag(y)T = diag( p) and (3.21),
one has

(5.3) R diag( p) + diag( p)R' = RT*R'.
Premultiplying (5.3) by €' and postmultiplying by e, we have
2c = 2€'Rp = 2¢'R diag( p)e = eRI*R'e > 0,

because RT*R’ is positive definite. Of course, one can use (5.1) to solve for
Y(2):

(5.4) Y(¢t) = - % [eX(t) + RI(2)].

When (5.4) is substituted into (4.12), one obtains yet another simplification of
the Brownian system model. To express the result compactly, let us define the
J X J matrices

1 -
(5.5) B=I- —ue and R =BR.
c

From (5.5) and the definition (5.2) of ¢, it follows that

(5.6) Bisofrank J —1 and B =0.

Recalling that R is invertible, one then has from (5.5) and (5.6) that
(5.7) Risofrank J —1 and eR =0.

Also, using (4.11), (5.2) and (5.5), readers may easily verify that
(5.8) Rp=0.

By substituting (5.4) into (4.12) and then using:(5.5), one obtains
(5.9) N(t) = N(0) + X(t) + RI(t),

where X = BX = R ¢ is a Brownian motion with drift vector —R(e — ap) and
covariance matrix aRT'R’. However, (5.8) says that Rp = 0, and thus

(5.10) X is a Brownian motion with drift vector i1 = :I?e and
covariance matrix a{), where () = RI'R’.

To completely specify our Brownian approximation for the closed network
model, one still needs conditions (4.6), (4.7) and (4.9), and for ease of reference
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we repeat those conditions:

(5.11) N(¢t) =0,
(5.12) I(+) is continuous and increasing with [(0) = 0,
(5.13) I;() increases only at times ¢ when N;(¢) = 0.

To review, our original seven conditions (4.4)—(4.10) that defined the Brown-
ian system model have been reduced to the equivalent five conditions
(5.9)—(5.13), first by using (4.8) to eliminate Z(¢) from the system of equations
and then by using (4.10) to eliminate Y(¢). It will be proved in the next
section that N is uniquely determined by (5.9)-(5.13), which defines N as a
reflected or regulated Brownian motion (RBM) whose state space is the
simplex

S(n) ={x€R’: x > 0and e'x = n}.

Let us consider its sample path behavior. Recall from (5.7) that eR =0, or
equivalently, each column of R lies in the hyperplane H = {x € R7: ¢'x = 0}.
It then follows from (5.10) that the one-dimensional Brownian motlgn eX
has zero drift and zero variance, which is to say that sample paths of X lie in
the hyperplane H. Thus, because we assume that e N(0) = n, the sample
path of N remains in the simplex S(n), at least until the boundary of S(n) is
hit. According to (5.13), the cumulative idleness process I, ' increases only
when the boundary surface {N = 0} is hit, and according to (5.9), each such
increase “pushes” N(-) in a dlrectlon given by the jth column of R; the
magnitude of that “push” is the minimal amount required to assure that
N (¢) = 0 for all ¢. Because each column of R lies in the hyperplane H, it
follows that N remains always within the simplex S(n).

In this section and its predecessor, we have developed a Brownian system
model that approximates the multiclass closed network described in Section
2, treating the throughput rate a as if it were a known constant. In Section 7,
again taking a to be given, we will explain how one can compute steady-state
quantities associated with the jobcount process N defined by (5.9)-(5.13).
Finally, in Section 8, a general method will be described for approximate
steady-state analysis of the original multiclass closed queueing network,
where a is actually an output from the analysis rather than an input to it.

6. RBM in a simplex. As discussed in the previous section, the jobcount
process N will be approximated by an RBM in the simplex S = S(n). In its
most compact form, our Brownian model of a multiclass closed network is
specified by the five equations, definitions and auxiliary conditions numbered
(5.9)-(5.13). One must show that the Brownian system model is well posed,
which amounts to showing that the process N exists and is unique in
distribution. Our formal definition of an RBM is analogous to the one given in
Dai and Williams [13]. Because relations (5.9)—(5.13) capture the main ingre-
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dients in the definition, we do not repeat their formal mathematical definition
here. In order to establish existence and uniqueness, we first reduce N to an
RBM in the solid simplex

(6.1) S=8(n)={zeR{ hez<n},

where e is the (J — 1)-dimensional vector of ones. In this section, we use e to
denote both the J-dimensional and the (J — 1)-dimensional vector of ones.
Denoting the projection of N onto RY~ 1. by N, we now argue that N and N
can be constructed from each other and therefore, the existence and unique-
ness of N is equivalent to that of N. (The letters N, I, X, R, u and ) were
given one meaning in Section 3, and they will be reused with a different
meaning here and in the Appendix, but that should cause no confusion.) Set

m=C(f)icics-1s Q= (Qij)lsi,jsJ—l and

(6.2) k- (#)

l<i<d-1,1<j<dJ"

Notice that Q) is positive definite by definitions (8.5), (5.5) and (5.10). Recall
the definitions of X and [ in (5.9)-(5.13). Let N(¢) —N(t) X () = X(t)
G=1,...,J -1 and I,(t) = I(t) (G=1,...,d) for each t>0 Then we
have

(6.3) N(t) =N(0) +X(t) +RI(¢t),
(6.4) X(t) is a Brownian motion with drift x and covariance (2,
(6.5) N(t)eS,
(6.6) I(-) is continuous and increasing with I(0) = 0,
I;(+) increases only at times ¢ when N;(¢) =0(j=1,...,J — 1);

6.7
(6.7) I;(-) increases only at times ¢ when e¢'N(¢) = n.

Equations (6.3)-(6.7) define N as an (S, u, Q, R)-RBM. Conversely, suppose
that there is given an RBM N, together with X and I, satlsfylng (6.3)-(6.7).
By deﬁmng N(t) N(t) and X(t) =X,(t) (= - 1), Ny(t)=n —
(N, + - +NJ () and XJ(t) (Xl(t) + - +XJ_1(t)) and I(¢) = I(¢),
then

N,(t) =n —eN(t) =n — eN(0) — eX(t) — ¢RI(t)
= N,(0) + X,(t) + R, I(¢),

where R is the Jth row of R. Readers can easily check that N, X and T
satlsfy (5.9)-(5.13), with the minor change that Xisa Brownian motion with
drift i and covariance matrix ). That is, N is an (S, ,u,Q R) RBM. The
foregoing arguments show that an RBM N in the simplex S with data
(S, it, O, R) is equivalent to an RBM N in the solid simplex S with data
S, u, Q, R).
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Having shown that N is equivalent to an RBM N whose state space is the
(J — 1)-dimensional solid simplex S(n), one needs to prove the following
foundational result:
the process, putatively defined by (6.3)-(6.7),

6.8
(6.8) exists and is unique in distribution.

Dai and Williams [13] have recently shown this to be true if and only if the
“reflection matrix” R appearing in (6.3) satisfies a natural generalization of
the “completely-¥” condition that appeared in the foundational work by
Reiman and Williams [34] and by Taylor and Williams [38] on RBM in an
orthant.

To check that the conditions in Dai and Williams [13] hold, define
(6.9) J={(z1’---,ZJ—1)eS:ZjZO}, Jj=1,...,J -1,
' F,={ze€8:¢z=n}.

It is clear that F; is the jth boundary piece of S. For j =1,...,J — 1, ¢;isan
inward normal to F; and —e is an inward normal to F;. There are J vertices
for the state space S givenby N ;. F,fori=1,...,J. Foreach j =1,...,d,

JEILTJ

let R be the (J — 1) X (J — 1) pr1nc1pa1 submatrlx of R obtained by delet-
ing the jth row and the jth column of R. To show that the RBM associated
with (S, u, Q, R) exists and is unique in law, we first prove the following
lemma.

LEMMA 6.1. For each j=1,...,d, Iiu is admissible and hence is com-
pletely=%.

Proor. We first show that

(6.10) R diag( p) + diag( p) R’ = RT*R,
where I'* is defined by (3.21). From (5.3) we know that

R diag( p) + diag( p)R' = RT*R'.
It follows that

BR diag( p)B' + Bdiag( p)R'B' = BRT*R'B’,

or equivalently,
(6.11) R diag( p) B’ + B’ diag( p)R' = RT*R'.
Because B =1 — (1/c)ue’,

. ~ 1.
R diag( p) B’ = R diag( p) — —C—R diag( p)ev’
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where in the last equality we have used equation (5.8). Equation (6.10)
follows from (6.11) immediately. Because the rank of R is J — 1, each
(J = 1 X (J — 1) principal submatrix of RI"*R' is positive definite. There-
fore, it follows from (6.10) that R is admissible and hence is completely-% by
Lemma 3.1. O

We end this section by proving that the RBM associated with data
(S, u, Q, R) exists and is unique in law. Readers are referred to Dai and
Williams [13] for the precise meaning of the statement. Let v; be the ith

column vector of R, i = ,J.Ifforeach i = 1,..., J, corresponding to the
vertex N ;. ,;F;, one can show that

n
(6.12) A (v, 0y, 05)

is completely-%, where n; is an inward normal to F; and the symbol © means
the deletion operation for vector v, then by Theorem 1.1 of Dai and Williams
[13] the RBM associated with data (S, u, Q, R) exists and is unique in law.

For i = J, expression (6.12) is equal to R ;, which is completely= by
Lemma 6.1. For i = 1,..., J — 1, the matrix in (6.12) reduces to

e

...

! (V5o uy1,95),

€y
which is equal to Ru’ because ¢'R = 0. Thus by Lemma 6.1 and [13], Theorem
1.1, the RBM exists and is unique in law. That is, (6.8) has been proved.

. Stead-state analysis of RBM in a simplex. The process N = {N(@),
t> O} defined by (5.9)-(5.13) is a reflected Brownian motion in the J-dimen-
sional simplex S(n) ={x eRY: e'x = n}, with drift vector & = —Re, covari-
ance matrix a{) and reﬂectlon matrix R, where a is the unknown through-
put rate of the queueing network. We have shown that such an RBM exists
and is unique in the weak sense of Taylor and Williams [38] and Dai and
Williams [13]. This section and the Appendix are focused on steady-state
analysis of the RBM N. In QNET analysis of the network (see Section 8), the
unknown throughput rate a will be estimated before steady-state analysis of
N is undertaken, and, therefore, the covariance matrix is simply denoted as
) throughout this section and the Appendix. Recall that a probability mea-
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sure 7 on S(n) is said to be a stationary distribution for the RBM N if N(¢)
has distribution 7 for each ¢ > 0 whenever N(0) is randomized with distribu-
tion 7.

PROPOSITION 7.1. The RBM N has a unique stationary distribution i, and
7 has a density function with respect to the surface Lebesgue measure on S(n).

PROOF. Because the state space S(n) is compact, the existence of a
stationary distribution 7 follows easily. See Theorem 5.3 of [24]. The unique-
ness follows the arguments in Theorem 5.14 of [24]. Notice that in L24], the
authors considered a special class of RBM’s with reflection matrix R = (I —
P’), where P is an irreducible stochastic matrix. However, their arguments in
Section 6 directly apply here. O

In the corollary to Proposition 7.3, we will show that for each j € {1,..., J},
the limit

(7.1) lim E[I(t)] =5

exists. The limit 5j is interpreted as the long-run average idleness rate for
server j in a queueing network. For the purpose of this paper, steady-state
analysis of the RBM is confined to finding the stationary distribution 7 and
the vector & of idleness rates.

Obviously, in order for our Brownian approximation to have any practical
value, one must be able to find 7. To that end, we reduce N to an RBM N in
the solid simplex S = S(n) as described in Section 6. Because the state space
S of N is compact, similar to the proof given in Theorems 5.3 and 5.14 of [24],
we have the following proposition.

PROPOSITION 7.2. The RBM N has a unique stationary distribution m, and
7 has a density function p,(x) with respect to Lebesgue measure dz on S.

REMARK. It is easy to see that the stationary distribution 7 of N relates
to the stationary distribution 7 of N by a simple projection: For any Borel
set B in S,

J-1
(72) #(B) = fslB 21y 2y, n — L 2, |w(d2).
j=1

Before we state the basic adjoint relationship for p, and its associated
boundary densities, let us introduce some additional notation. Define the
second-order elliptic differential operator £ via

1J-1J-1 2

(7.8) Zf(x) = —Z rQ

L1J1

ij 9%, (9 f(x) + Z lu’z—_f(x) fECZ(S)’
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where C2(S) is the set of functions which, together with their first- and
second-order derivatives, are continuous and bounded on S. Also, for each
j=1,...,d, define the directional derivative

9;f(x) = R7-Vf(x),

where R’ is the jth column of the reflection matrix R. The following
proposition depends on Lemma 8.4 of [21], which can be proved by using
Theorem 3.2 of Dai and Williams [13].

PROPOSITION 7.3. For each j € (1,..., J}, there exists a nonnegative inte-

grable function p; on F; such that for each bounded Borel measurable function
fon F,,

(7.4) lim %E[fotf(N(s)) dlj(s)] = fFprj doj,

where o; (j=1,...,J — 1) is surface Lebesgue measure on F; and o; is
(J — 1)71/2 times Lebesgue measure on F;. Furthermore, p = (p,, py1,-.-, P.s)
satisfies the following basic adjoint relationship:

J
(7.5) fsgfpo dz + El jFJQJ,pr. do;=0 forallfe C*(S).

Proor. See Theorem 8.1 of [21]. O

COROLLARY. Forj=1,...,d,
1
(7.6) lim —E[I,(2)] = Ljpj do, = 8;.

Because I = I, (7.1) is true and

(7.7) 5=35.
PRrROOF. Specializing (7.4) by setting f = 1, we have (7.6) immediately. O

In light of (7.2) and (7.7), our focus is on computation of the stationary
density po(z) on S and its associated boundary densities p; (j = 1,..., J).
The following proposition states that it is enough to work on the basic adjoint
relationship (7.5).

PROPOSITION 7.4. Let p = (py, py,--., py) be any positive integrable func-
tions, with p, being a probability density, satisfying the basic adjoint rela-
tionship (7.5). Then p, is the stationary density of the RBM and p; (j =
1,...,J) are associated boundary densities.
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ProoF. See Dai and Kurtz [11]. O

In the Appendix, an algorithm will be described to compute p from the basic
adjoint relationship (7.5). This algorithm makes our entire QNET method
practically feasible.

8. Naive QNET analysis and refined QNET analysis. To simplify
notation, let us assume that the stations of our closed network are numbered
so that
(8.1) p1 = max{ py,..., ps}.

That is, no station of the network is more heavily loaded than station 1 (note
that relative loadings of the various stations are not affected by the average
throughput rate a). This state of affairs is often expressed by saying that
station 1 is the “bottleneck station,” or at least is tied for bottleneck status.

Rather than supposing that the throughput rate a is somehow known, let
us simply assume that it has been estimated a priori as a = z, and that the
covariance matrix in_our Brownian system model (5.9)-(5.13) has conse-
quently been set at z{). From (7.1) and (7.7) we know that

1 ..
(8.2) —t—E[I(t)] -8 ast— o,

where § is computed via (7.6) from the stationary distribution of an RBM
whose state space is the solid simplex S(n). Recall that the drift vector of the
Brownian motion X in (5.10)is o = —Re and that (5.9) is the main equation
N(¢) = N(0) + X(¢) + RI(¢). Thus, taking expectations in (5.9), dividing both
sides by ¢, letting ¢ — « and using (8.2), one obtains

(8.3) — Re + R5 =0, orequivalently, R(e— §) = 0.
Now recall from (5.7) and (5.8) that R is of rank J — 1 and its one-dimen-

sional null space is spanned by the positive vector p. Combining this with
(8.3), we have that

(8.4) e — 6 =ap forsome constant a.

On the left side of (8.4), the jth component represents the average utilization
for server j, so the constant a appearing on the right is obviously interpreted
as the (initially unknown) average throughput rate for the closed network, as
our choice of notation suggests. To repeat, (8.4) follows from the mathemati-
cal structure of our Brownian system model, regardless of how its elements
may be interpreted, but our interpretation of the constant a derives from the
original queueing context.

To derive a computational procedure from (8.4), let us write §,(z) to mean
the value of 8, calculated via (7.6) when the covariance matrix of the RBM is
set at z{). The computed value of a will then be determined by the first
component, say, of (8.4):

1-84(2)
P1 ‘

(8.5) 1-64(2)=ap; or a=
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If the job population is large, then one would expect idleness at the bottleneck
(station 1) to be relatively rare, so one might plausibly set z initially at the
theoretical maximum throughput rate:

(8.6) d =max{a >0:ap<e} = —.
1

Having set z = @, one then obtains from (8.5) what we will call the naive
QNET estimate of a:

1- 81( d)
P1 .

(8.7 a=

If one terminates with the naive estimate @, one has a computational
procedure precisely analogous to that proposed by Harrison, Williams and
Chen [24] for analysis of closed networks of the generalized Jackson type (see
Section 10).

However, if the algorithm described in the Appendix can be run quickly
enough (remember that the entire stationary density function must be reesti-
mated for each new value of z), then one can obviously refine the foregoing
procedure in iterative fashion. That is, one can set a® = ¢ and then compute

P1

(8.8) aktl fork=0,1,...,

in the expectation that
(8.9) a* > a* ask - =

The limiting value a*, if it exists, will be a fixed point of the relationship
(8.4), meaning that

e — 8(a*) = a*p.

Assuming that the fixed point a* exists and is unique, we will call it the
refined QNET estimate of the unknown throughput rate a.

We conjecture that the function §,(-) is continuous and strictly increasing
on (0, »), with §,(2)]0 as z | 0. If this is true, then there does indeed exist a
unique fixed point a*, as shown in Figure 2. Even more structure on §,(-) will
be required to prove convergence of the previously described iterative proce-
dure, but practical experience to date suggests that effective convergence is
obtained in just a few iterations, at least for population sizes large enough to
give bottleneck utilization rates in the vicinity of 90%. Figure 2 also gives a
graphical representation of the naive QNET estimate a. In our limited
computational experience, the difference between the naive estimate @ and
refined estimate a* can be significant, especially for small and moderate
population sizes. For example, with a moderate population size one might
find that & = 0.80 whereas a* = 0.83 (see Section 10), and such a difference
is significant in most manufacturing applications. Hereafter, the term “re-
fined QNET estimate” will be used to mean any estimate of system perfor-
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61(2)
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0 a a* a z

F1G. 2. Schematic representation of the naive estimate G and refined estimate a*.

mance derived from the Brownian model (5.9)-(5.13) with the system
throughput rate a set equal to a* in (5.10), not just to mean the throughput
estimate a* itself.

A closed network model is said to be perfectly balanced if p = ke for some
k > 0, or equivalently, if p; = - = p; = k. Because Rp = 0 in general by
(5.8), one then has Re = 0 for a perfectly balanced system, and hence the
Brownian motion X in (5.10) has zero drift. For this special case there is an
easy argument, involving a rescaling of time, to show that

8(z) =26(1) forall z> 0.
Thus the fixed point a* in (8.8) can be computed without iteration via

1

(810) a* = p1—+gl—(T)_

Note that 0 < a* < d = 1/p;.

9. Summary of performance analysis procedures. In principle, the
data of our multiclass closed network are a population size n, a K X K
switching matrix P, mean service times 7,,..., 7, and the associated coeffi-
cients of variation b,,...,b5,, plus a K-vector @ and a K X K covariance
matrix A that provide first- and second-moment information, respectively, on
the job replacement process (see Section 2). Using the various formulas
displayed in Sections 2 and 3, those data are eventually compressed into a
J X J covariance matrix I', a J X J matrix M of routing information and a
J-vector p of relative load factors, as in (3.5), (3.10) and (3.2). Given the
interpretations for I', M and p provided in Section 3 and earlier in [18], one
may be able to estimate these aggregate quantities directly from historical
data, or through some theoretical shortcut, without a full elaboration of
class-level information.

Now I', M and p are transformed to a J X J routing matrix R and a
J X J covariance matrix (), each having rank J — 1, using the formulas in
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(3.22), (5.5) and (5.10). It is R, Q) and n that serve as input data for the
QNET method. -
Given any initial estimate z for the unknown throughput rate a, one uses
the algorithm described in Section 7 and the Appendix to compute (that is,
approximate) the stationary distribution of an RBM with state space

S(n) = {x eR7: e'x = n},

drift vector o = —Re, covariance matrix z{) and reflection matrix R. (Recall
that e is the J-vector of ones.) It is summary statistics derived from that
stationary distribution that become our steady-state performance estimates
for the original system. In particular, for a given value of z the algorithm
returns a corresponding value, denoted in Section 8 by §,(2), for the idleness
rate at station 1. From this, one can compute an improved estimate of the
unknown throughput rate a via (see Section 8)

1-64z
(0.1) o= 1282
P1
As in Section 8, let the stations be numbered so that p; = max(p,,..., p;). In

the QNET method we use an iterative procedure, beginning with the upper
limit value z = & = 1/p,, to compute a fixed point a* for (8.1), meaning that

1 —8y(a¥)

(9.2) a* =
P

It is a* that becomes our final estimate, or refined QNET estimate, of the
throughput rate a. Finally, running the algorlthm described in Section 7 and
the Appendix with state space S(n), drift vector i = —Re, covariance matrix

a*Q and reflection matrix R, one obtains an approximation for the stationary
distribution of the jobcount process N. This is our QNET estimate of the
steady-state jobcount distribution, and summary statistics derived from it,
such as average jobcounts at the various stations, are called QNET perfor-
mance estimates. As we will show by example in Sections 11-13, one can use
the queueing formula L = AW (Little’s law) to derive estimates of average
throughput time from average jobcount estimates.

10. Closed network models of the generalized Jackson type. To
clarify the relationship between the QNET method and previous work in
queueing theory, let us consider a simple model of the type introduced by
Jackson [26] and by Gordon and Newell [14] in their original treatment of
closed networks. In their model one has a single job class served at each
station (thus K = J), and jobs change station in Markovian fashion. That is,
we are given a J X J stochastic matrix P = (P, ;), and a job completing
service at station i goes next to station j with probablhty ;;» independent of
all previous history. Because the switching matrix P is stochastic, jobs never
leave the system, and the population size remains constant at n. In Jackson’s
original paper on closed networks, service time distributions were assumed to
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be exponential, whereas we continue to allow general distributions. In other

- words, the model discussed in this section is the same as Jackson’s with
respect to job routing, but is more general with respect to service time
distributions.

To map such a generalized Jackson network into the framework described
in Section 2, we arbitrarily designate station J as the “exit station.” A job
leaving station J is considered to have completed a “route,” and in accor-
dance with that convention, we define a reduced switching matrix P = (P,;)
via

0, ifi=4d,
(10.1) - Pyi=\PB,, otherwise.

To avoid trivialities, we assume that P is irreducible, and from this it follows
that P is transient, as required in our general setup. Of course, the “exit” of a
job after service completion at station o/ is followed immediately by insertion
of a “replacement” job, and that replacement job enters the network at
station j with probability

(10.2) a =Py, j=1,..,d,

independent of all previous history. Because the class designations of “re-
placement jobs” are independent and identically distributed, (2.4) gives us

(10.3) Cov[ ¢(r)] = Ar,

where

a(l — «; ifi=j
(10.4) A= (=), iE=,

-, ifi #j.
To review, (10.1), (10.2) and (10.4) show how the data P, a and A, required
for our general formulation in Section 2, are determined from the original
switching matrix P of a generalized Jackson network. The other data re-
quired for our general formulation are the population size n, the mean
service times 7,,..., 7, and the associated coefficients of variation b,,...,b;.
In the remainder of this section we show how various formulas presented in
Sections 3—5 specialize in the case of a generalized Jackson network to give
relatively simple expressions for the routing matrix R and the covariance
matrix () that ultimately serve as input data for the QNET method.

Set @ =(I — P')"! as in Section 2 and A = Qa as in (3.2), so that A;
represents the average number of stops at station j that a job makes on one
“route.” Readers may verify that, because station < is designated as the “exit
station,”

(10.5) Ay;=1.
The defining characteristic of a generalized Jackson network is that C = I,
and hence (3.10) specializes to give M = TQ, from which we obtain

(10.6) R=M1=(I-P)T
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Next, using (10.6) we reduce the definition (4.11) to
(10.7) u=Rp=(I-P)TYT\) = (I - P)Qa = a.

However, (5.2) then gives ¢ = ¢ = 1, and the definition (5.5) simplifies to
give

(10.8) B=1-ae
and
(10.9) R=BR=(I-ae)(I-P)T '

According to (10.1), P is identical to the stochastic matrix P except that its
Jth row is set to zero and, hence, ¢'(I — P') = (0,...,0, 1). Also, (10.2) says
that « is the Jth column of P’, so (10.9) reduces to

(10.10) R=(I-P)T .

Recall that in Section 2 we defined covariance matrices H!,..., H” in terms
of P by means of formula (2.2). To derive a simplified expression for () in the
case at hand, it will be convenient to define J X J covariance matrices
HY,..., HY via the same formula (2.2), but using P in place of P. From (10.4)
and the definitions (10.1) and (10.2), one then has

(10.11) H/i=H/ forj=1,...,J —land A = H’.
Combining this with (10.5) and the definition (3.7) of H gives
(10.12) A+H=H,
where
~ J ~ .
(10.13) H= Y \H.
j=1

Substituting (10.12) into the general formulas (3.5) and (3.6) gives
[ =(TQ)[A+H+ (I-P)D(I-P)(TQ)
= T(QHQ + D)T'.

Of course, )} = RTR' in general by (5.10), so (10.10) and (10.14) together
imply that

(10.14)

(10.15) Q=RTR =H+ (I - P)D(I - P).

Having computed R and ) from system data by means of (10.10) and (10.15),
one can now apply the computational scheme outlined in Section 9 to esti-
mate steady-state performance for a closed network of the generalized Jack-
son type. This method of performance analysis is the same as that proposed
by Harrison, Williams and Chen [24] for generalized Jackson networks,
except in the following regard. In [24], load factors or traffic intensity parame-
ters py,..., p; were defined in such a way that max p; = 1. In the language of
this paper, that scaling convention is equivalent to fixing the
a priori estimate of a in (5.10) at the upper limit value 4 (see Section 9);
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hence, the scheme proposed in [24] is equivalent to what we have called naive
QNET analysis. Unfortunately, readers who wish to verify the equivalence of
our formulas and those in [24] will have to fight through formidable differ-
ences in notation that have arisen over a span of years in the development of
Brownian models for ever more general classes of systems.

11. QNET analysis of a symmetric cyclic queue. Consider a J-sta-
tion cyclic closed network. We assume that the network is populated by n
homogeneous jobs circulating perpetually. This is a generalized Jackson
network as discussed in Section 10. In such a network each server or station
serves a single class of jobs, and thus the number of job classes K is equal to
the number of stations J. We further assume that all servers are identical,
having the same service time distribution with mean 1 and squared coeffi-
cient of variation 52. This “simple” network is not amenable to exact analysis
except when all the service time distributions are exponential.

The Brownian approximation for this network is particularly appealing
because it can be analyzed exactly, without using numerical methods. We
start by deriving the data for the Brownian model, a reflected Brownian
motion in the simplex S(n) First the routing matrix P is given by PL a1 =1
fori=1,...,J —land P 7,1 = 1. Because all the routing is deterministic and
all servers are identical, from (10.10) and (10.15) one has the reflection

matrix

and the covariance matrix

aQ = ab?(I - P')(I - P),
where a is the unknown throughput rate. Because, P'P = I, one has
(11.1) aQ) = ab?(I — P) + (I — P')ab?,

which is exactly the “product form” condition (4.10) of [24]. Thus the station-
ary distribution of the reflected Brownian motion is of exponential form and
because the drift vector i = —Re = 0, the stationary distribution is uniform
over the simplex S(n). From (4.21) and (4.22) of [24],

E[f(t)] ~ 8t ast >,
where
8, =ab’n"1(J - 1), i=1,...,d.

Therefore, the refined throughput estimate a* can be solved as a fixed point
from (8.8) without iteration:

(11.2) a* = [1+b2nY(J-1)]"

Let us denote by T the long-run average time between consecutive entries
into station 1 for any given job, calling this the average cycle time for the
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system. An application of Little’s law (L = AW) to the case at hand tells us
that n = aT and, hence, our QNET estimate of the average cycle time is

(11.3) T=n/a*=n+ (J — 1)b%

To assess the numerical accuracy of (11.2) and (11.3), let us consider a
system with J = 4 stations (the case J = 3 has also been investigated, and
the results are very similar) and ask the following question for different
values of the squared coefficient of variation 52 of the service time: How large
must one make the number of active jobs n in order to achieve a throughput
rate a = 0.9091, or equivalently, a server utilization of 90.91% at each
station? (We are interested in parameter combinations that give server
utilization of about 90%. A nearby uneven value was chosen in order to get
round values of n corresponding to round values of 2. Setting J = 4 and
a* = 0.9091in (11.2), we estimate the required population size to be n = 3052,
and (11.3) estimates the corresponding average cycle time to be 3352. Those
estimates are compared against simulation results for four different values of
b?%, ranging from 0.5 to 10, in Table 1. The simulations were performed using
SIMAN 3.5 [31]. In all cases, 10 replications were run and in each replication
statistics were collected based on the first 30,000 cycles of jobs. In the
simulation, we used an Erlang distribution for service times when 5% = 0.5,
and used a hyperexponential distribution with balanced mean when 52 > 1.
That is, when b2 > 1 the service time distribution is exponential with mean
0.5/p with probability p and is exponential with mean 0.5/(1 — p) with
probability 1 — p, where

p=05+05[(b%—1)/(b2+1)]"%
In Table 1 and in all subsequent tables, as suggested by Reiman [33], the
number in parentheses after each simulation result is the half-width of the
95% confidence interval, expressed as a percentage of the simulation average.
The number in parentheses after each QNET estimate is the percentage error
relative to the simulation average. This format makes it easy to determine
the statistical significance of the errors. Table 1 indicates that QNET esti-
mates of utilization are extremely accurate when compared with simulation
estimates. Incidentally, we did not list the case where the common service

TABLE 1
Simulation estimates and QNET estimates of the utilization rate and mean cycle time for a cyclic
network
Utilization Cycle time
n b? QNET SIM QNET SIM
15 0.5 0.909 (1.01%) 0.900 (0.56%) 16.50 (—0.60%) 16.60 (0.60%)
60 2.0 0.909 (—0.54%) 0.914 (0.66%) 66.00 (0.61%) 65.60 (0.46%)
120 4.0 0.909 (—0.75%) 0.916 (0.76%) 132.00 (0.76%) 131.00 (0.76 %)

300 10.0 0.909 (-0.75%) 0.916 (0.98%) 330.00 (1.23%) 326.00 (1.23%)
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time distribution is exponential, in which case formula (11.2) is exact. Also
listed in Table 1 is the QNET estimate and simulation estimate of mean cycle
time. Again QNET estimates are quite accurate. Note that, to achieve the
same utilization rate of 91%, the mean cycle time is 20 times longer for
b2 = 10 than for 5% = 0.5.

For the cyclic queue studied in this section the upper limit throughput rate
is @ = 1/p; = 1. Thus, if we use the naive QNET estimate (8.7) of a, we will
have an estimated throughput rate

a=1-b4(J—-1)n1t,

which is not accurate when the actual utilization rate a is below 85%, even
for the case of exponential service time distribution. For example, when
n =15, J = 4 and the common service time distribution is exponential, our
refined QNET estimate of server utilization (exact in this case) is 83%,
whereas the naive QNET estimate is 80%.

12. A multiproduct two-station example. Pictured in Figure 3 is a
system with two machines producing three types of parts: part A, part B and
part C. As indicated in Figure 3, the route of part A is: machine 1, machine
2, machine 1, machine 2. After the second service at machine 2, part A exits
the system. Part B begins processing at machine 2 and then moves to
machine 1, and then exits. Part C visits machine 1 and exits. The service
discipline at each machine is assumed to be first-in—first-out (FIFO). To
maintain a constant number n of active jobs, we will consider two different
input control rules, referred to as cyclic input and random input, respec-
tively. Under the former rule, as parts complete processing they are deter-
ministically replaced by new parts of types A, B,C, A, B,C, A, B, C and so
forth. Under the latter rule, each part that completes processing is replaced
by a new one whose type is randomly determined, independent of all previous
history, with the three different types being equally likely. The total number
of parts n in the system is set at either 15 or 30 in our study.

Machine 2

b

E— Machine 1 "

N

Fic. 3. A two-machine system producing three types of products.
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To facilitate discussion, let us define different classes of jobs. Parts of type
A at the first visit to machine 1 are called class 1 jobs, and at the first visit to
machine 2 are called class 2 jobs. Parts of type A at the second visit to
machines 1 and 2 are called class 3 and class 4 jobs, respectively. Parts of
type B at machine 2 and machine 1 are called class 5 and class 6 jobs,
respectively. Parts of type C belong to class 7. With this definition of job
classes, the constituency matrix is given by

C=1010011
01 0 1 1 0 0)

The transition matrix among classes is a 7 X 7 matrix P, with P, = Pyg =
Py = Py = 1, and P;; = 0 otherwise. The service times for jobs at station i
are assumed to have a general distribution with mean 7, and squared
coefficient of variation b2. We choose 7, = 0.75 and 7, = 1. With this choice of
mean service times, the loads on the two machines are balanced, with
p1 = pg = 1.0, so the upper limit throughput rateis ¢ = 1/p, = 1/p, = 1. We
consider different cases for this model. The service time at station 2 is
assumed to be exponentially distributed (hence b, = 1). The service time at
station 1 is either exponentially distributed (b, = 1.0) or constant (5, = 0.0).
The total number of jobs allowed in the system is either n = 15 or n = 30.
Rather than reporting the throughput rate a, one may equivalently speak in
terms of the common utilization rate of the two machines, which is given by
u = a/d = a. The performance measures that we consider are the common
utilization rate u and the mean throughput time for each type of part,
denoted by T,, Tz and T,. (The throughput time for an individual part is
defined as the elapsed time between its entry to and exit from the system.)
Both simulation results and QNET estimates for the various performance
measures are shown in Table 2. The QNET estimates of machine utilization
are extremely accurate for all cases, and the QNET estimates of mean
throughput times are also very good in general. Both the QNET estimates

TABLE 2
Simulation estimates and QNET estimates of performance measures with random input and with cyclic
input
n/b Input Utilization T, Ty Tc
30/1 Cyclic QNET 0.972 (0.02%) 54.00 (0.00%) 27.00 (0.00%) 11.55 (1.31%)
SIM 0.972 (0.51%) 54.00 (0.56%) 27.00 (0.37%) 11.40 (1.75%)
Random QNET 0.968 (0.07%) 54.25 (0.28%) 27.12 (0.09%) 11.62 (- 0.65%)
SIM 0.967 (0.10%) 54.10 (0.37%) 27.10 (0.37%) 11.70 (1.71%)
15/1 Cyelic QNET 0946 (-0.12%) 27.75(-0.18%) 13.88(—0.18%) 5.95 (3.30%)
SIM 0.947 (0.21%) 27.80 (0.36%) 13.90 (0.72%) 5.75 (1.39%)
Random QNET 0.938 (0.05%) 28.00 (0.00%) 14.00 (0.00%) 6.00 (0.33%)
SIM 0.937 (0.32%) 28.00 (0.36%) 14.00 (0.71%) 5.98 (1.17%)
15/0 Cyclic QNET  0.968 (0.14%) 27.11(-0.71%) 13.55(1.13%) 5.81 (0.32%)
SIM 0.967 (0.21%) 27.30 (0.37%) 13.40 (0.75%) 5.79 (1.90%)
Random QNET 0.960 (0.16%) 27.36(-0.16%) 13.68(0.57%) 5.86 (—2.52%)
SIM 0.958 (0.21%) 27.40 (0.36%) 13.60 (0.29%) 6.01 (1.16%)
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and simulation estimates predict that the mean throughput times are longer
for the system with random input than that with cyclic input. However, the
differences are small. Also notable is that the QNET estimates are generally
better when n = 30 than when n = 15.

The QNET estimates displayed in Table 2, like those appearing in Table 1,
were actually derived without recourse to numerical methods, because we are
dealing with another special case where explicit formulas are available for
steady-state analysis of the Brownian system model. (As the following discus-
sion will reveal, the special feature of the current example is that it involves
only two workstations and their workloads are balanced.) In the remainder of
this section we will explain how the parameters of the Brownian system
model were derived and how the performance estimates in Table 2 were
computed from those parameters when the service time at station 1 is
exponentially distributed.

The vector of average input rates in (2.3) is obviously « = (3,0,0,0, 1,0, 1),
regardless of whether one has cyclic input or random input. The associated
covariance matrix is simply A = 0 if input is cyclic. If input is random, then

(2.4) gives
1 2 -1 -1
A{17577)=§ -1 2 -1},
-1 -1 2

where A 57 is the 3 X 3 submatrix composed of rows 1, 5 and 7 and
columns 1, 5 and 7; all the other elements of A are zero. The mean service
times 7; for two stations were specified earlier, and the associated coefficients
of variation are b, = b, = 1, because each service time distribution is expo-
nential. The 7 X 7 switching matrix P was specified earlier. Substituting
these data into the general formulas in Sections 3 and 4, one eventually
obtains

11.25 6.00

1
(12.1) M=E( 9.00 16.00

) regardless of the input scheme,

(9 o O
(122) T = = ( 0 0 12) if input is cyclic
and
1
(123) TI'= 1—2( 1gg 238) if input is random.

As noted earlier, the vector of relative load factors is p = (1.0, 1.0), regardless
of the input scheme. Applying formulas (3.22), (5.5) and (5.10), one then
obtains

(12.4) R=M"1-= ( 0.9375 —0.5000)

—0.7500 1.3333

R=( 0.9796 —0.9796),

(12.5) —0.9796 0.9796
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(12.6) a-= ( ~ igggg - ig?/gg) if input is cyclic
and
(12.7) Q= ( B igggg a igggg) if input is random.

Finally, because p = e, we know from (5.8) that
(12.8) f=—Re = 0.

As explained in Section 5, the two-dimensional jobcount process N is to be
approximated by an RBM with state space S(n), drift vector i = 0, reflection
matrix R and covariance matrix a{}, where a is the unknown throughput
rate and S(n) = {x € R?: x; + x, = n}. But this simply means that either
component of N (that is, the jobcount at either station) is to be approximated
by a one-dimensional RBM on the finite interval [0, n] with drift parameter
zero, reflection matrix (r, —r), where

(12.9) r=R, =09796,
and variance parameter ao 2, where
(12.10) o?=0, 1.6793, if input is cyclic,

~ 119592, ifinput is random.

(Note that o2 is larger with random input than with cyclic input.) Let us
suppose that the throughput rate is estimated as a = z. Then known results
for one-dimensional RBM (see Chapter 5 of [16]) tell us that the stationary
distribution is uniform, independent of z and the corresponding estimate of
the steady-state idleness rate for machine 1 is §,(z) = zo'?/(2rn). Because
the RBM has zero drift, one can use formula (8.10) to compute the refined
QNET estimate

1 1
pL+02/(2rm) 1+ o2/(1.9592n)

*=

for the system throughput rate, and then our estimate of machine utilization
is u* = a*/2.

From the uniform stationary distribution of the foregoing RBM, the QNET
method estimates the average total jobcount at each station to be n /2, so by
Little’s law the average number of jobs waiting at either station is estimated
at n/2 — u*. Then another application of Little’s law gives an estimate of the
mean waiting time per job visit at each station:

1 (n . )
(12.11) W, = a*y(E —u ), i=1,2,

where v, is the total arrival rate at station ; when a = 1, calculated by
means (3.2) and (3.3). (Readers may easily verify that y, = 4/3 and y, = 1.)
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Finally, our QNET estimates of the mean sojourn times are given by

T, = (W, + W,) + 1.0,
TC = Wl + 10.

13. A three-station example inspired by Solberg. Figure 4 depicts a
three-station manufacturing system composed of one mill, one drill and one
inspector. A unit of product A is milled first (mean service time 1.1) and then
drilled (mean service time 1.5). After drilling there is a 50% chance that
product A will require inspection (with a long mean service time of 5.0), and
whether it is inspected or not, a unit of product A returns to milling (with
mean service time of 1.1) before leaving the system. Type B jobs do not
require any inspection. They are drilled first (mean service time 1.5) and then
milled (mean service time 1.1). The number of active jobs is held constant at
20, and the replacement scheme is cyclic and deterministic (A, B, A, B,...).
A similar manufacturing model was considered by Solberg [37], who also
included a very lightly loaded transport station. Because the lightly loaded
station has little effect on the performance of the entire system, we consider a
simplified version with the transport station deleted.

Enumerate milling, drilling and inspection as stations 1, 2 and 3, respec-
tively. From the traffic equation (3.2), we see that p = (1.65,1.5,1.25), so
milling is the bottleneck station. The upper limit throughput rate is 4 =
1/1.65 = 0.6061. We consider two cases for such a manufacturing system. In
the first case, all the service times are exponentially distributed (case 1). In
the second case, the service time at the bottleneck station (milling) has
squared coefficient of variation 4 and the rest of the service time distributions
are still exponential. In simulation, we used a hyperexponential distribution
with balanced mean (case 2) and a gamma distribution (case 3) to fit the
service time distribution at the milling station. Table 3 gives the QNET

E .

<E___ ft———————
Mill Drill
—_——
A t O 0'5 O y
- Q
Iov.5
Inspector

Fic. 4. A manufacturing model inspired by Solberg.
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TABLE 3
Simulation estimates and QNET estimates of mean sojourn times and the utilization rate at the
bottleneck station

Mill Mean throughput time
Case utilization Type A Type B
1 QNET 0.980 (—0.08%) 44.38 (—0.26%) 22.95 (0.65%)
SIM 0.981(0.10%) 44.50 (0.22%) 22.80(0.44%)
2 QNET 0.928 (—1.29%) 45.72 (0.92%) 25.40 (3.53%)
SIM 0.940 (0.21%) 45.30 (0.22%) 24.50 (0.82%)
3 QNET 0.928 (—-1.51%) 45.72 (0.70%) 25.40 (2.75%)
SIM 0.942 (0.21%) 45.40 (0.66%) 24.70 (0.81%)

estimates and simulation estimates of the mean throughput time for each
product, as well as the utilization rate of the mill. Simulation results for cases
2 and 3 show that the invariance principle approximately holds, which says
that steady system performance is insensitive to the actual distribution used
to fit the service time distributions as long as the first two moments are fixed.
However, the QNET and simulation estimates both show that high variabil-
ity of the service time at the bottleneck station will substantially reduce the
utilization rate of the system.

14. Extension to more general manufacturing systems. In Section
2, we described a closed network model that is quite general with respect to
processing requirements (that is, the mix of jobs to be handled, their routes
and their service times) but very restrictive with respect to processing
capabilities. To be specific, it was assumed that each workstation consists of a
single perfectly reliable server, but current work by Pich [32] shows how the
model may be extended to allow what he calls “general workstation capabili-
ties.” To explain Pich’s important generalization, let us suppose that each
station consists of one or more identical machines (that is, machines play the
role of servers) and that the service times of jobs are expressed in machine
hours. It may be that machines break down from time to time and that
machines are occasionally idled while they wait for technicians to become
available for setup or repair activities, but three key assumptions allow one
to cut through this complexity, at least for purposes of approximate analysis.
The first is that workstations operate independently, which means, for exam-
ple, that each station has its own dedicated operators and repair technicians.

To express the other two assumptions, let us suppose for the moment that
station i is provided with an infinite queue of jobs to be processed, each
belonging to some class k2 such that s(k) = i, and denote by S,;(¢) the total
machine hours applied to the service requirements of those jobs up to time ¢,
taking into account interruptions of all kinds. If the station consists of p
machines and there are no service interruptions to be dealt with, then
S,(t) = pt with probability 1, but in general S;(-) is a stochastic process. The
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second key assumption is that the distribution of S,(-) does not depend on the
classes of jobs to be processed, which is reasonable in many circumstances. In
a model with machine breakdown, for example, it is not required that jobs of
different classes have the same service time distribution, but one must
assume that breakdown frequency is independent of the job class being
processed.

The final assumption in Pich’s treatment of general workstation capabili-
ties is that the cumulative service process S;(-) satisfies a functional central
limit theorem. That is, for each station i there exists a long-run average
processing rate 3, and an associated variability parameter w; such that

E[S;(¢t)] ~ Bt and Var[S,(t)] ~ w?t

as ¢ — » and, moreover, the centered and scaled processes {r~/2[S,(rt) —
rB;tl, ¢t = 0}, indexed by r = 1,2,..., converge weakly as r — « to a Brown-
ian motion with drift zero and variance w?. The pair ( 8;, ;) provides a crude
two-moment characterization of processing capabilities at station i. Pich [32]
explains how these parameters are incorporated into a generalized Brownian
approximation for a multiclass open network, and the story is virtually
identical for our multiclass closed network. This generalization of the basic
model developed in Section 2 is crucial for manufacturing applications, but to
avoid excessive length, we will omit detailed further discussion. It should be
mentioned in conclusion, however, that Pich’s generalized Brownian model
provides a rather crude approximation for stations with many servers. Such
stations are less common in manufacturing than in communication systems
and computer networks, but they do occur in some industries and, hence,
there is a need for more research on refined approximations for many-server
stations.

Another potential generalization of the model described in Section 2 con-
cerns the incorporation of non-FIFO service disciplines. Harrison and
Williams [23] explain in the Appendix of a recent paper how the Brownian
model of a multiclass open network may be modified, at least in principle, to
allow non-FIFO disciplines of a certain restrictive type, and that account
carries over without change to multiclass closed networks. In broad terms,
changes in service discipline manifest themselves as changes in the coeffi-
cient matrix M that relates the total workload process to the jobcount
process in (3.16) or (4.8). The only non-FIFO disciplines that Harrison and
Williams discuss in specific terms, however, are static priorities and proces-
sor sharing, and their proposed approximations are not supported by a
rigorous heavy traffic limit theorem. Their attention is restricted entirely to
local scheduling rules, which means that decisions about which job to take
next at station i may depend only on the current composition of the job
population at that station. This rules out the kind of global optimization that
one might hope to accomplish with real-time computer control of a manufac-
turing system, where scheduling decisions (that is, sequencing decisions) at
one station are based on congestion levels elsewhere in the network. On the
other hand, decades of research on jobshop scheduling have yielded very little
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insight as to how such global information can be used effectively, so the
restriction to simple local rules is usual in network performance analysis.
Also, the analysis and numerical results in Harrison and Wein [20] and
Chevalier and Wein [8] suggest that a static priority rule can be quite
effective for maximizing the throughput of multiclass, single chain closed
queueing networks.

15. An open problem. There is the open question of whether one can
justify our approximating Brownian model of a multiclass closed network by
a rigorous heavy traffic limit theorem like that proved by Chen and
Mandelbaum [7] for closed networks of the generalized Jackson type. To do
so, one must consider a sequence of multiclass closed networks with popula-
tion size n — © and such that the loadings of the various stations are
asymptotically balanced in an appropriate sense. We conjecture that the
multidimensional jobcount processes for this sequence of networks converge
after appropriate scaling to the jobcount process associated with a corre-
sponding Brownian system model.

APPENDIX

Computing the stationary distribution. Continuing from Section 7,
we are given a (u, 1, R) RBM N in the solid complex S = S(n) ={z € R &
e'z < n}. This Appendix is concerned with an algorithm for computing the
stationary distribution 7 and its associated vector § of idleness rates. By a
simple scaling argument, we can restrict the state space to be the unit solid
simplex

S*=8(1)={zeR{ hez<1}

In fact, let 7* and 8* be the stationary distribution and associated vector of
idleness rates for a (nu, Q, R) RBM N* in the unit solid simplex S*. One
can show that

E3

5
(A1)  8=— and m(B)= [ 1p(nz)m*(dz) for B €,
n S*

where % is the Borel o-field of S. In the remainder of this Appendix we will
consider an RBM with data (nu, Q, R) and state space S = S* = S(1), but
the asterisks will be dropped in our notational system. Readers must bear in
mind that the output 7 and 6 eventually obtained are actually the quantities
7* and 8* identified previously. First notice that Propositions 7.2 and 7.3
still hold and, therefore, our task is to find stationary density p, of 7 and its
associated boundary densities p;, (i = 1,...,J) of a (nu,Q, R) RBM in S
from the basic adjoint relationship (7.5).

The algorithm. Analogous to a general algorithm in [9] and [10], where
the state space is a two-dimensional rectangle and a J-dimensional nonnega-
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tive orthant, respectively, we convert (7.5) into a compact form. Given an
fe Ci8), let

(A.2) Sgf=(&f, 2:f,..., D;f).

Also, let

(A.3) dm = (dz,doy,...,doy),

where dz is Lebesgue measureon S, o; (j = 1,..., J — 1) is surface Lebesgue

measure on F; and o, is (J — 1)'/? times Lebesgue measure on F;; see
Proposition 7.3. For a subset E of RV !, let %, be the Borel o-field of E and
let B(E) denote the set of functions that are %-measurable. Let

LJ(S,dm) = {g = (g07g17""gJ) Egj’(S)

(A4) XB(Fy) X - XB(Fy):
J
flgolde+ Zflgtljd0-1<oo}’ j=1’27"‘7
S i=1"F,

and for g € L(S, dm), let

J
fsgdm Efsgo dz + i=21[FLgi do,.

For g, h € #(8S) X #(F,) X -+ X B(F;) we put
& h=(8o0ho,81h1,-.-,8,05),
and for 4 > 0 we put
&/h = (80/ho,81/P1,-..,85/hy).

With this notation, the basic adjoint relationship (7.5) can be rewritten as
(A.5) [ (f-p)dm =0 forall fe C(S).
s

Let ¢ = (g¢,¢4,---,q,;) be some given positive element in L(S, dm). That
is, ¢; >0 =0,...,J), [sq,(2)dz < © and [rqido; <»(i=1,...,J). The
function q is called a reference density, whose role will be explained later.
Given a reference density g, we define the reference measure

(A.6) dn=gqdm = (q,dz,q,doy,...,q;doy),

where the measure dm is defined in (A.3). Similar to the definition of
LX(S,dm) and [ggdm for g € L(S, dm), we can define L(S, dn) and [qgdn
for g € LX(S, dn). If we introduce a new unknown r = p/q, then the basic
adjoint relationship (A.5) takes the form

(A7) J(f-r)dn=0 forall fe CE(S).
S
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In the following, we actually develop an algorithm to solve for this new
unknown r. Of course, once one has r, one can get the stationary density p
via p=r-q.

We denote by L? = L%(S, dn) all the square integrable functions on S with
respect to dm, taken with the usual inner product {-,-) and norm |-|l.
Unless specified otherwise, all inner products and norms are taken in
L?(S, dn). Because 7 is a finite measure and %/ is bounded, we have &/f € L?
for each f € CZ(S). Assume for the moment that

(A.8) re L*(S,dn);

the basic adjoint relationship (A.7) dictates that we need only to find a r € L?
that is orthogonal to «/f for each f € CZ(S), or, equivalently, we need only to
find an r that is orthogonal to H, where H is the closed subspace of L?
defined as

(A.9) H = the closure of {/f: f € CZ(S)}.
Let A° be the element of L? defined by
(A.10) RO = (1,1,...,1).

An easy calculation gives

J
(r,h% =fp0(z) dz + Y, fpida'i
S i=1"F,
> 1.

Therefore, r is not orthogonal to A°. Because r is orthogonal to H, therefore
h° is not in H and thus A° — ° is nontrivial, where %° is the projection of A°
onto H. Obviously, h° — A° is orthogonal to H; therefore, there is a constant
k such that

(A.11) r=x(h®—ho).

In getting (A.11), we have used Proposition 7.4 and the conjecture that
h® — h% > 0. We do not have a general proof of this conjecture, and we

assume this conjecture is true for the rest of this section.
Let

(A.12) {fi,-.

be a basis of an s-dimensional subspace of C2(S). Define Al =o/f, (i =
1,...,8). Then {hl,...,h°} spans a finite-dimensional subspace H, of H.
Functions A!,..., 2° might be linearly dependent, depending on whether or
not a constant is a linear combination of f},..., f,. Assume that is the case.
Then {A!,..., h* '} is a basis for H, that has dimension s — 1. We still use A°
to denote the projection of A° onto H,. By a standard approach to find a
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projection onto a finitely dimensional subspace, there exists x =
(x4,...,x,_1) such that
_ s—1
R =Y xh!
i=1

and x is the unique solution of the normal equation
(A.13) Kx =0,

where K,;; = (h',h’) for 1 <i,j<s—1and b;=(h',h%) i =1,...,s — 1).
The matrix K is symmetric and positive definite; therefore, (A.13) has a
unique solution. Thus the sth approximation of r is

(A.14) r= K(ho - Silhi),
i=1

where « is a normalizing constant such that [sr,(2)g,(z) dz = 1. Finally, the
stationary density p,(z) is given by

po(2) =ro(2)q0(2)
and the idleness rate § is given by
8, =<(r,¢", i=1,...,d,

where ¢’ € L%, whose only nonzero component is ¢; = 1.0. Obviously, the
choice of reference density ¢ and the basis function f; (i = 1,..., s) will affect
both the accuracy and efficiency of the algorithm. To present the one choice of
g we used for this paper, we first give the condition under which the
stationary density is of exponential form.

Exponential solutions. Define a J X (J — 1) matrix

B I
L= _(J_l)—l/Ze,),

where e is the (J — 1)-dimensional (column) vector of ones and I is the
(J — 1) X (J — 1) identity matrix. Let D = diag(LR) and A =
diag(Q; 1,...,Q, 1 ;_1,(J — D7 'e'Qe). By Lemma 6.1, the diagonal ele-
ments of R are positive. Thus D is a positive diagonal matrix and hence is
invertible. Performing the linear transformation exactly in the same way as
in Harrison and Williams ([21], Section 9) or in Harrison, Williams and Chen
([24], Section 8) and then applying Theorem 6.1 of Harrison and Williams
[22], one can show that p, is of exponential form if and only if

(A.15) 2LOL =LRD A + AD"'R'L.
Using the fact that &R = 0 and €'Q) = 0, one can check that (A.15) is in turn
equivalent to

(A.16) 20 =RD'A + AD'R,
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where D = diag(R) and A = diag(Q}). Furthermore, under condition (A.16),
the stationary density p,(z) is of exponential form exp(—6'z). Here,

(A.17) 0 = —2n[diag(Q)] 'D,R;u,
R, is the first J — 1 columns of R and D; = diag(R,). Notice that by Lemma

~

6.1, R, = R,; is admissible and hence is invertible.

Choice of reference density and basis functions. For the reference density,
one may simply choose ¢ = 1. However, that is not desirable most of the time.
One reason for choosing a reference density g is to make condition (A.8) be
satisfied. In theory, there is always such a choice. For example, if one chooses
q = p, the resulting » = 1 € L? can be recovered immediately. However, p is
unknown a priori, so such a choice is unrealistic. Nevertheless, one may get
some qualitative behaviors of p, such as the order of the singularities at the
nonsmooth part of the boundaries, by some other means. Then one may build
this information into the construction of ¢. In the two-dimensional case
where J = 3, such information can indeed be obtained, at least for the
driftless case; see [17]. Unfortunately, there are no analogous results for
higher dimensional cases. Therefore, building singularities into the reference
density ¢ is not practical in general at this moment. However, there is a more
important aspect that makes it necessary to introduce a reference density.
The stationary density p, has large gradient when the drift vector nu is
large. (nu is large whenever the network is not totally balanced and active
job level n is large.) In fact, under a skew symmetry condition (A.15) on Q
and R, or equivalently (A.16) on () and R, the stationary density p, is of
exponential form

(A.18) po(2) = kexp(—0'z), z €8,

where « is a normalizing constant such that p, is a probability density and 6
is given in (A.15). In general, 0 is large in magnitude when nu is large in
magnitude, making the gradient of p, be large. Numerical experience shows
that if we choose g = 1 for these cases, the convergence of the algorithm is
very slow or it never converges at all. Formula (A.18) suggests that if we
choose g to be the exponential in (A.18), then r = 1 or near 1 if the skew
symmetry condition (A.15) or (A.16) is satisfied or nearly satisfied, and hence
the convergence is very fast. Numerical experience thus far shows with this
choice of g that the algorithm performs reasonably well in general, whether
the condition (A.15) is satisfied or not.

Depending on the nature of the base functions f; in (A.12), the algorithm
can be further classified. If the f’s are piecewise polynomials, then the
algorithm is called a finite element algorithm. On the other hand, if the f’s
are global polynomials, then the algorithm is called a spectral algorithm.
The finite element method has been used to solve a variety of PDE problems
that have a variational formulation or, more generally, a Galerkin formula-
tion; see [2]. The spectral method has been gaining increasing popularity in
solving PDE’s arising from meterology and fluid dynamics; see [15] and [5].
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With the finite element approach, the normal matrix K in (A.13) is sparse,
meaning that most of the entries in K are zeros, whereas with the spectral
method, the matrix K is full. Further numerical investigations are needed in
order to compare the efficiency and accuracy of these two approaches. For the
purpose of this paper, we have implemented a spectral version of our algo-
rithm by choosing
H,,, = spanof {&/f: f=zit = 25-1,0 <ij +iy+ - +i, , <k}

Even for this particular subspace, how to choose a basis to get a well
conditioned matrix K is quite an art. A basis naively chosen as
{z0,..,25.1,22,2129,...,25_927_1,2%_1,...,} is known to produce a K that
has a big conditioning number, making the numerical solution of (A.13)
unstable. However, it appears that for the test problems in Section 13, this
implementation (with 2 = 4) performs reasonably well if we are interested in
8 and the mean values of 7, even with this poor choice of basis. However, it is
known that a very high order of accuracy cannot be achieved with this basis.

No matter how one chooses a basis for the spectral method, one must be
able to evaluate the following integrals efficiently:

[ sy an
S

(A.19)

f Z{l coe Z:]J:i exp(—e’z) dO'J.
F

J

When 6 = 0, which is the case when the network is fully balanced, it is easy

to get

‘ ‘ igleeiy ! _ ‘ il iy y!
S N and Zi e -1 d ==

fszl J-1 (lil + J — 1)! fp PR A = i g - )

where |i| = i; + - +i;_;. In general, recursion formulas based on the diver-
gence theorem can be found to compute these integrals.
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