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LARGE EXCEEDANCES FOR MULTIDIMENSIONAL
LEVY PROCESSES

By AMIR DEMBO,! SAMUEL KARLIN? AND OFER ZEITOUNI

Stanford University, Stanford University and Technion

Three results on hitting a rare set by the increments of an R%valued
random process with stationary independent increments are presented:
the first time that it occurs, the duration of such a segment and the typical
trajectory during the segment.

1. Introduction. Large exceedances in Markov processes are of theoreti-
cal and applied relevance, especially in the context of biomolecular (DNA and
protein) data, for assessing statistical significance of a sequence segment
composition [11, 13]. In the context of sequential decision procedures, the
false alarm rate in detection of change points by the commonly used CUSUM
method corresponds to the location of the first segment with cumulative
log-likelihood score exceeding the decision threshold (cf. [17]). Another exam-
ple pertains to one-server light traffic queues where the event of an unusually
long waiting time for completion of service is characterized by segments of
high exceedance (cf. [1] and [9]).

It is helpful to describe the one-dimensional problem first. Let {X,} be i.i.d.
real (R-valued) random variables of negative mean and law u, and let {S,,,
n > 0} be the partial sum process induced by {X;}. Consider the rare seg-
ments {m to n} in which S, —S,, >y, for large values of y. Of special
interest are the position and duration of the first such segment and the
empirical distribution of the increments X, during these large exceedance
segments. Formally, let the position of the first exceedance above level y be

T(y) = inf{n: for some m <n, S, - S,, >y},
and determine the duration of this exceedance as
L(y) = T(y) — max{m: Sy, = S,, >y} =T(y) — 7(y).

Dembo and Karlin [4] established the a.s. convergence L(y)/y — 1/ [xe" * du,
as y — =, provided the X, are bounded and A* is the unique positive solution
of fe X* du = 1. They further ascertained the empirical measure of X ; during
these large exceedances, which converges a.s. (and in the weak topology) to
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the Gibbs law u*, where u*(B) = [ze * du, for any measurable set B. It is
proved by Iglehart [9] that T'(y)/e Xy converges in distribution, as y — =, to
an exponential law. In [3] and [12] these results are extended to describe the
behavior of large exceedances for increments governed by an irreducible
finite-state Markov chain.

In vector scoring of sequences, successive positions are vectors X, € R
with components corresponding to different attributes. For example, for
protein sequences, the components could be charge, hydrophobicity and steric
measurements of the amino acids. High-quality segments correspond to
indices 7(y) and T'(y) of the sequence such that Sy ,, — S,,, first attains a
high multivariate score corresponding to the rare set yA (y large). Such
segments reflect desirable vector scoring arrays (e.g., for DNA segments
having simultaneous high purine content and high DNA stability); in the
queuing context, such segments correspond to large waiting times in queues
with correlated customer behavior patterns; for the sequential detection
problem, they relate to simultaneous tests among three or more alternatives
using pairwise likelihood ratios. The methods of [3] and [4] fail in high
dimensions (d > 1), as soon as the set A is not a union of finitely many
half-spaces. A more amenable approach is via large deviations analysis.
Preliminary results are presented in [6], Section 5.5, based on Mogulskii’s
[14] large deviations characterization of the sample path of random walks in
R<?. Utilizing results of Freidlin and Wentzell [8] (see also [15] and [2]), we
analyze here the continuous-time version, namely, large exceedances of R4-
valued Lévy processes X, with increments satisfying Cramér’s condition G.e.,
Elexp({A, X;))] is finite for all A € R<. Hereafter, (A, x) denotes the inner
product of A, x € R?). For example, in the queuing context, these exceedances
give information about the biases of the arrival process and service times
during busy periods in which large overflow occurs (see Example 2 below).

In contrast with [6], Section 5.5, where the special case of Brownian motion
is sketched, here a more involved proof is needed due to the discontinuities
(jumps) of the process X, at random times (in particular, see the proof of
Lemma 6). We also obtain here stronger results regarding the behavior of
T(y) (see Theorem 3).

2. Statement of the main results. Let{X,},,, be an R%-valued random
process of stationary independent increments (infinitely divisible process)
with initial value X, = 0 and logarithmic moment generating function AN
= log Elexp ({A, X;))], assumed to be finite for all A € R¢. Specifically, for
such processes ([10], 11.4.19),

(1) AA) =<\ b) + %(2& A+ fRd\(o)(eu,n — 1 - (A, 2))v(dx),

where b = E[X,] # 0 is the drift vector of ‘the process X,, 3 is a symmetric
nonnegative definite d X d matrix (which corresponds to the covariance of'
the Gaussian part of X,) and v is a Borel o-finite measure on R¢ for which
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the latter integral is finite for all A € R% For our later needs we recall the
Fenchel-Legendre transform of A(A) defined by
A*(x) = sup {{A,x) — A(MN)}.
reR?

The domain of definition of A*(-), designated 2,., consists of all x for which
A*(x) is finite. It is also useful to introduce

x
(2)  V(x,t) = sup {{A, x) — tA(A)} =tA*(—), xR t>0,
AeR? ¢
with V(x,0) = «, for x # 0, and V(0,0) = 0, and to define, for every set
E c R4, the quasipotential
(3) Vg = inf V(x,t).

x€E,t>0
It is convenient to replace y by 1/& and to consider the rescaled process
Y’ = ¢X,,,. The increments Y — Y, are of mean (¢ — s)b and variance
O(&(t — 5)). Our aim is to estimate the probability of the rare events {Y,” —
Y? € A} for small . For this objective, we require that A (the closure of A) is
disjoint from the half-ray {rb}, , ;. The set A can be unbounded.
To formalize the results, we define the following random times:

T, = inf{¢: 3s € [0, ¢) such that Y;* — Y7 € A};
(4) 7€=sup{s € [O,TL):Yi—YjeA};
e T‘e - T

Under appropriate conditions on A, the main results of this paper are of the
following form. There exist positive finite constants V* and L* and a suitable
point x* in A such that

(5) lin(l) elogT, = V* in probability,
(6) lin(l) L,=L* in probability
and

(7) lim sup |Uf—u* =0 in probability,

£-0 0<s<I*

where U7 = Y?,  — Y7, for s > 0, and u* is the straight line u* = (s/L*)x*,
for 0 <s < L*. ’ .

The interpretation of (5) is that since the hitting probability of the segment
X, — X, to the set (1/¢£)A is exponentially small, of the order exp[ —(V* +
" 0(1))/€], the waiting time for the first such segment is of order exp[(V* +
0(1))/ ] with probability tending to 1. The limits (6) and (7) assert that the
duration of such a segment is of order 1/¢, and its (scaled) trajectory behaves
as a deterministic straight line u* = (s/L*)x*.

A sufficient condition for (5)—(7) to hold is stated next.
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THEOREM 1. Let A be a closed, convex set of nonempty interior A°, such
that A’ N {pz: p> 0, z €9,.} is nonempty. If, for § > 0 small enough, A
excludes the cone

Ky={x:{x,b) > (1 - 8)lx| |bl},
then the limit relation (5) holds with V* = V, defined in (3). If, further, A*(-)
is finite everywhere, then there exist unique x* € A and t* > 0 such that
V(x*,t*) = V,, and the limit relations (6) and (7) hold with L* = t*.

REMARK. With the exception of Theorem 1, the set A is not assumed to be
convex. In particular, in Theorem 5 we present weaker conditions on the set
A which suffice for (5)-(7) to hold.

ExaMPLE 1. Consider the measure v =0 in (1), that is, X, is a linear
transformation of the standard Brownian motion. Ignoring possible degenera-
cies, we take 3 = I. Here, A*(x) = |x — b|?/2 is finite everywhere, and Vi =
V(x, |x|/1b]) = |x| |b] — (x,b). Therefore, if A is a closed, convex set of
nonempty interior which, for § > 0 small enough, excludes the cone Kj, then
by Theorem 1 the limit relations (5)—(7) hold with V* =inf, . ,{lx||b| —
(x,b)}, with x* the unique point of A for which V* = V(x) and with
L¥ = |x*|/|bl. In the particular case of A = N ;L Ax: x; > a;}, corresponding
to the simultaneous exceedances in all d coordinates, it is easy to check that
x* = (a4, ay,...,a,) as soon as a; > b;lx*|/|b|, for i = 1,...,d.

ExampPLE 2. Let the arrival process into a service station, denoted N;, be a
compound Poisson, nonnegative integer-valued random process, with finite
moment generating function (i.e., b = 0, 3 = 0 and the measure » in (1) is
supported on the positive integers). Suppose the service times are exponen-
tially distributed with parameter w > E[N;] and that the service station
allows an infinite queue. The number of customers waiting for service at time
t is sup, . A(N, — W,) — (N, — W,)}, where W, is a Poisson( u) process. Note
that X, = (X}, X2) = (N, — W,, N,) is an R?-valued Lévy process. Let A =
{(xy, x5): x, > 1}. It is straightforward to check that (P-1)-(P-3) of Theorem
5 hold, with (5)-(7) in force. The second component of U? corresponds to the
(scaled) arrival process during a busy period in which the number of cus-
tomers exceeds the high level 1/¢. The information implied in (6) and (7) may
help in overflow prevention.

The key to the proof of the limit relations (5)—(7) depends on the following
conditions (fixed time estimates), whose scope of validity is discussed in
Section 4.

CONDITION (C-1). There exist L*¥ € (0,»), x* € A and V* € (0,%) such
that )
(8) linaslog P(T,<T)=-V* forall T > L*,

9 limsupelog P(L, — L*| > 8and T, < T) < -V*
9 e—0
forall 6> 0,T > L¥,
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and

(10) lim sup ¢ log P( sup |Uf —u*|>6and T, < T) < =V,

e—0 O0<s<L*

where u* = (s/L*)x*.

CONDITION (C-2).

lim lim limsup supe¢ log P(Y;° € A") < —2V'*,
n20C->® .50 ¢>2C

where A" = {x: inf, . ,ly — x| < n}.

The estimates of Condition (C-1) describe the most likely occurrence of a
“one-shot” hit of A by the increments process Y, — Y,° during a finite time
interval, as well as an assessment of the probability of such an event (at least
on an exponential scale). Condition (C-2) provides for the confinement of L,
to a bounded time interval, by virtue of which the problem can be decoupled
to a sequence of independent one-shot attempts at hitting A. In detailing
these steps (Lemmas 1-4) we establish the following two theorems.

THEOREM 2. Assume that both Conditions (C-1) and (C-2) apply. Then the
limit relations (5)—(7) hold.

THEOREM 3. Assume that both Conditions (C-1) and (C-2) apply. For
n, — « such that £ log n, — 0, let p, = P(T, < n_). Then n;*p,T, converges in
distribution to an Exponential (1) random variable. If also
(11) x€A={yx:y>1} CA,

then the limit relation (5) holds almost surely.

3. Proofs of Theorems 2 and 3. The main difficulty in proving Theo-
rem 2 is that it involves events on an infinite time horizon; this precludes
using directly the fixed time estimates of Condition (C-1). The proof proceeds
by reducing the infinite time horizon to finite time intervals which are loosely
coupled and applying the estimates of Condition (C-1) on the latter intervals.
The first step is the following upper bound on T, [see (4)].

LEmMMA 1. For any 6 > 0,
lim P(T, > eV"*%)/¢) = 0.

e—0

Proor. Split the time interval [0, exp [(V* + 8)/¢] into disjoint intervals
of equal length A = (L* + 1) each. Let N, be the (integer part of the) number
"of such intervals. Observe that

P(T,> exp [(V* + 8)/¢])
<P(Y,, — Y, €A, 0<s<t<A,k=0,...,N,— 1).
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These events are independent for different values of %, as they correspond to
disjoint segments of Y’ Moreover, by the stationarity of the increments of
Y?, they are of equal probability. Hence,

P(T, > exp [(V* + 8)/&]) < [1 - P(T, < M)]™,

while
N >cexp[—(V* + 8)/¢],
for some 0 < ¢ < » (independent of &). Since, for all £ > 0 small enough, (8)
implies
P(T,<L*+1) 2exp[—(V* + §/2)/¢],
it follows that, for all £ > 0 small enough,

V* + 8 —(V* + 8/2 cexpl(V*+8)/¢l]
P|T > exp(g)) < (1 - exp[———(——————i—)— )
e

(12)

&

< exp(—cexp[8/(26)]) >0 ase— 0.
O

Lemma 1 is not enough yet, since the upper bounds on 7T, are unbounded
(as & = 0). To continue we need the following short time estimate, which
allows for discretizing Y°.

LEMMA 2. For any n > 0,
(13) lim sup ¢ log P( sup |Y7| > ”fl) - —o.

e—0 O<t<e

ProOF. Note that

{ sup Y7 > n} c { sup |Z| > a_ Ibl},

O<t<e 0<7<1 €
where Z_= X_— 7b is a martingale. Bounding the latter event by the union
of 2d one-dimensional events involving thresholding the coordinates of Z_, it
suffices to show that, for every A € R¢,

1
(14) lir%alog P( sup {(,\,ZT>} > _) = —o,
e &

0<7<1
To this end, fix A and note that, for every 8, M, = exp[ 6{A, Z,)] is a positive
submartingale. Hence, by Doob’s maximal inequality, for every 6 > 0,

P( sup (KA, Z)) > %) =P( sup M, > exp[—g])

O0<7<1 0<7<1

"))

&

< exp(

= exp[—g + A(6)) — 0<A,b)].
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Since A(‘) is finite everywhere, (14) follows by letting first £ = 0 and then
60— o O

The following lemma provides for the confinement to the increments
within finite time lags.

LEMMA 3. There exists a constant C < » such that
lirr(x)P(L‘e >C)=0.

ProOF. Choose n and & small enough and C large enough for Condition
(C-2) to yield

(15) lim sup ¢ log (KzsupP(Y‘s € A”)) <0,

-0
where K, = |lelexp[(V* + 8)/e]l + 1. Now cover the time interval
[0,exp[(V* + 8)/¢]] by K, nonoverlapping subintervals of size ¢ each, and
let Y,° be the piecewise constant process obtained by considering Y, 1t/)- Note
that the event {L_ > C} is contained in the union

V*+ 6 — n
T. > exp U sup Ye - Y7l > —
¢ t<expl(V*+38)/¢] 2

U{TB(C,'O) < eXP( V*: 8)},

T.(C,n) = inf{t: ds e [0,¢ — C) such that Y — Y¥.° EA”}.

Consequently, by the union of events bound and the stationarity of incre-
ments of Y?,

+ KsP( sup |Y?| > —) + KzsupP(Ys €A").
O<t<e t>C

Using (12), (13) and (15), one has that, for some constant ¢, > 0 and all & > 0

small enough,

where

V*+ 6

P(L,>C) sP(Te > exp

6 c
(16) P(L,=C) < exp[—cexp(2—)] + exp(——-l-) -0 ase—0. O
& &

LEMMA 4. Let C be the constant from Lemma 3, and for each fixed integer
n define the decoupled random times

T, , = inf{t: Y — Y? € A for some s, where t > s > 2nC|t/(2nC)|}.
Then
lim hmP(T #T,) =

n— o g——)
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ProoF. Divide [C, ) into the disjoint intervals I, = [(2! — 1)C, (2] + 1)C),

!l =1,.... Define the events
J,={YF - Y e Aforsomer<t;t,7€I}
and the stopping time
N =inf{l > 1: J, occurs}.

By the stationarity and independence of the increments of Y, the events oJ;
are independent and equally probable. Let p = P(J;). Then P(N =1) =
p(1 —p)~1 forl € Z,. Hence,

PUTL <) 0 (5, <) <P U (V= bn)]

k=1

_ >z _ En-1 _ p(l _p)n_l
_kglp(l ?) 1-(1-p)"

Since by definition T, < T, ,, the proof is completed by applying Lemma 3. O

1
< —.
n

Returning to the proof of Theorem 2, it is enough to consider the rare
events of interest with respect to the decoupled times for n large enough.
This procedure results in a sequence of i.i.d. random variables corresponding
to disjoint segments of Y of length 2nC each. The fixed time estimates of
Condition (C-1) can then be applied. In particular, with N, =
[(2nC) L exp((V* — 8)/&)] + 1 denoting the number of such segments in
[0, exp((V* — 8)/¢)], the following lower bound on T, , is obtained:

N,-1 T
P(T,,, <exp[(V* - 8)/¢]) < Z P([2 C =k)
< NsP(TE,n <2nC) < N,P(T, < 2nC)
o |l — 01/
- 2nC

Therefore, with n large enough for 2nC > L*, the estimate (8) implies that
) exp[(V* — 8)/¢]

lim P(T, , <eV' =%/ lim

sl—l;n ( ¢ ) = e—>0 2nC

Hence, for all § > 0, by Lemma 4

limP(T‘e <exp[(V* - 8)/¢e]) = lim limP(Tsyn <exp[(V* - 8)/¢]) =0,

+ I)P(Te <2nC).

exp[—(V* — 8/2)/¢] = 0.

and (5) results in view of the upper bound of Lemma 1.
Define now

= sup{s: s€[0,T, ,), Yr Y¢S eA}.

Clearly, T, , > T, and if T, , = T, then also 7, , = 7,. Moreover, for all » and
all ¢, the distribution of {Y‘sB 4~ Y? :0<s<T,, — 1, ,}is the same as the
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conditional distribution of {Y€+ s — Ye 0<s<T —1}given T, < 2nC. The
estimates of Condition (C-1) imply that for all § > 0 and any n large enough,

hn})P(ILS - L¥|>8|T,<2nC) =0
and

limP( sup |U¢ - ufl = 81T, < 2nC) = 0.
£-20 \o<s<I*

When combined with Lemma 4, the limit relations (6) and (7) are confirmed.
O

PrOOF OF THEOREM 3. Let T, , be defined as in Lemma 4, but with n,
instead of 2nC. By the same arg'ument as in this lemma, P(T, , # T,) —» 0 as
e—>0.Fix y>0,and let m_=|y/p.]l and y, = p,m,. The event {n 'p,T, ,
>y} is merely the intersection of m, independent events, each of Whlch
occurs with probability (1 — p,). Consequently,

P(nglpsTe,ns > ys) = (1 _ps)ms‘

Since ¢logn, — 0, it follows from (5) that p, —» 0 and y, — y. Therefore,
(1 — p,)™ — e and the exponential limit law of n 'p,T, follows.

Our assumption (11) implies that the stopping times 7./& are monotoni-
cally nonincreasing in & (samplewise). Consequently, the almost sure conver-
gence in (5) follows as soon as, for every fixed 6 > 0 and every y> 0
arbitrarily small,

(17) limsuple, logT, — V*| <& almost surely,

n—o
where ¢, = (1 — y)". By (12), for some ¢, < x,
(V* +8)

s

&

* é
<cp+ Y exp[—cexp(—z—(—l_—y)n)] < o

n=1

n

P(Ten > exp
(18) 1

Let C = max(C,(L* + 1)/2), where C is the constant from Lemma 3. Let

k, = l(2(_3')_1exp[(V* - 8)/a]l'+ 1,

and note that the event {T, < exp[(V* — §)/e] N L < C} is contained in
U 2k _1 &z, where

&, = {Yu8+t Y,

u+ts,

eAforsome252t>320}.

By the stationarity of increments of Y, one has that P(«],) = P(%) =
P(T, < 2C). Therefore,

P(T, < exp[(V* — 8)/¢]) < P(L,>C) + 2k, P(T, < 2C).
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For all £ > 0 small enough, (8) implies that

(19) P(T, < 2C) < exp[—(V* - 8/2)/¢].

Combining (16) and (19) it follows that

(20) Y P(T, <exp[(V*-8)/s,]) <.
n=1

Applying the Borel-Cantelli lemma, (17) follows from (18) and (20). O

4. Large deviations and the set A. We turn now to using the large
deviations principle (LDP) associated with sample path of Y? in order to
establish Conditions (C-1) and (C-2) as soon as the set A satisfies certain
geometrical conditions. To this end, let D(0, ¢]) be the space of functions
continuous from the right and having left-hand limits, equipped with the
uniform (sup norm) topology. The laws u, of the processes Y?, s € [0, ¢], are
supported on this metric space and satisfy the LDP with the following rate
function:

I(¢) = ,/:A*(qss)ds, if ¢ e¥%,, ¢ =0,

00, otherwise,

where &%, is the space of absolutely continuous functions ¢: [0,¢] - R¢. In
the present context the LDP is summarized in the following theorem.

THEOREM 4.

(a) For any t < @ and any a < ©, ¥,(a) = {¢: I,($) < a} is a compact set
with respect to the sup norm topology.
(b) For any measurable set of functions T € D([0, t]),

(21) limsupe log u,(I') < — inf I,(¢),
e—0 peTl

(22) liminfe log u,(T') = — inf I,(¢).
£—0 ¢er?

Here “measurable” is with respect to the o-algebra generated by the
coordinate maps s — f(s), completed by the common null sets of { u,: & > 0}.

Part (a) is referred to as I,(-) being a good rate function. The bounds of (b)
are called the large deviation upper and lower bounds. Note that the notation
w, does not indicate the value of ¢ considered. In our applications this value
will be clear via the definitions of the relevant sets.

Proofs of Theorem 4 can be found in [8], [15] and [2]. It can also be easily
deduced by modifying either the proof of Schilder’s theorem in [5], Section
5.2, or the alternative proofs of Schilder’s theorem presented in [6] and [18].

~ The cost associated with a termination point x € R¢ at time ¢ € (0,) is
defined as

23 J(x,t) = inf I .
(23) (x,¢) wewe 2Ly o (#)
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LEMMA 5. Forall x € R%, ¢t > 0,
s
(24) J(x,t) =It(;x) =V(x,t),

where V(x,t) is defined in (2). Moreover, V(x,t) is a convex, nonnegative,
lower-semicontinuous function on R? X [0, ®).

ProoF. By its definition, A*(-) is a convex function. Hence, for all ¢ > 0
and any ¢ € 4%, with ¢, = 0, by Jensen’s inequality,
t . ds t . ds d)t - ¢0
— * - * ) oAk 27O
() = t[A*(d,) = oA (fo¢s . ) tA( - )
with equality for ¢, = sx/t. Thus, (24) follows by definitions (2) and (23).
Since A*(-) is nonnegative, so is V(x, ¢). By the first equality in (2), which
holds also for ¢ =0, V(x,t), being the supremum of linear functions, is
convex and lower semicontinuous on R? X [0, ). O

Recall that the quasipotential associated with a set E C R? is defined as
V= inf V(x,t).

x€E,t>0
The following theorem relates properties of the function V(:, -) and of the set
A to Conditions (C-1) and (C-2).

THEOREM 5. Suppose that A is a closed set with the following properties:

(P-1) V, = V,0 € (0, %), where A° denotes the interior of A.

(P-2) There is a unique pair x* € A, t* € (0,%°) such that V, = V(x*,t*).
Moreover, the straight line u* = (s/t*)x* is the unique path with respect to
(23) for which the value of V(x*, t*) = V, is achieved.

(P-3)

lim lim ‘fco(A)"n(x: |x|>r} > 2VA’

n—=>0r->w»
where co( A) denotes the closed convex hull of A.
Then Conditions (C-1) and (C-2) hold with V* =V,, L* = t* and x* and u*
as stated above.

PrOOF. Proceeding to the verification of (C-1), set
¥ ={yeD([0,T]): ¢, — ¢ € Aforsomer < ¢t < [0,T]},
®; = {y€D([0,T]): ¥, — ¢, €A forsomer <t €[0,T],
t—re[0,t*-8]U[t*+5,T]}
and
¥, = (e D([0,T + 1) ¥, — i, €A, sup Iy, — by~ ull = 5

O<s<t*

for somer <t € [0,T]>.
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Observe that
P(T,<T) = p(¥),

P(L,—t*26and T, <T) < u(P;),
P( sup U7 -uil28andT, < T) < m,(%).

O<s<t*

Therefore, in view of the LDP of { u_}, the estimates of Condition (C-1) are
consequences of the following lemma.

LEMMA 6. Assume (P-1)—(P-3). Then, for all T > ¢*,

(25) Vo = inf In(¢) = inf I:(4),
ye¥ yev
while, for all 6 > 0,
(26) inf Ip(¢) >V,
pe®;
and
(27) inf I, (%) > V.
yeT;
ProoF. Throughout, let ||-|| denote the sup norm over the relevant

bounded time interval. Starting with the proof of (25), determine y" € ¥
such that |y — ¢|| - 0 with & € Cy([0, T']. Accordingly, there exist 7, < ¢,

€[0,T] and x, = (¢ — ¢") € A. With [0,T] a compact set and pOSSlbly
passing to a subsequence we may take 7, > 7€ [0,T]and ¢, » ¢t € [7,T]. It
follows that y, —y, where y, =(¢, — ¢ ) and y = (¢, — ). Moreover,
lx, — ¥, = 0 and since A is a closed set, y € A, implying that ¢ € .
Consequently, ¥ N Cy([0,TD c ¥, and since {¢: I (¢) < =} is a subset of
Co(0,T], we have

(28) inf Ir(¢) = inf Ir(4).
Yyev yev

Since T > t*,

V,= inf V(«x,t)= inf inf I, (o).
x€A,te0,T] x€A,7<t€(0,T] {¢: ¢,_,=x}

Let the map S_: D(0,¢ — 7)) = D([0, T'D be defined via ¢ — ¢, where
Sb, s € [0, T)’
W, ={¢,_,+7b, se€|[r,t),
¢, + 70+ (s—12)b, se[¢,T].
Then, with A*(d) = 0, clearly I,_.(-) = I(S,(:)) and hence also

V, = inf “inf (S = inf I, .
4 xEA,-rlste[O,T] (¢: by, =x) r(8.(¢)) z/llE‘I’ r(¥)

T'he set
={y e D([0,T]): ¢, — ¢, € A° for some r < ¢ € [0,T]}
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is open, for if ¢ € ¥, then there exist r < ¢ € [0,T], x € A° and n > 0 such
that x = ¢, — ¢, and B, ,, C A°, and consequently
Il —gll<n = e
Since ¥ c ¥ it follows that
inf In(¢) < inf I;(y) =  inf  V(x,¢),
yew? ye¥ x€A° te[0,T]
and the proof of (25) is complete by showing that, for all T > ¢*,
(29) inf  V(x,t) = V,.
x€A® te[0,T]
To this end, observe that VA(0) = E(X;) = b and hence A*(z) > 0, for z # b.
Moreover, A*(-) is a good rate function, so also
a= inf A*(z)>0.
lzl<lbl/2
Hence by (2), for all r > 0,

x 2ra
(30) inf inf V(x,t)> inf  inf tA*(—) >
lxlsr t=2r/Ib] t=2r/16 lxl<(bl/2)t t |b]
Consequently, by (P-1) and (P-3), there exists an r < © such that
(31) VA = VAO = inf V(x, t).

x€Al |x|<r, t<r
Consider an arbitrary sequence (x,,¢,) satisfying x, € A°, |x,| <r, ¢, €
[0,7] and V(x,,t,) = V,. Such a sequence admits at least one limit point
[say, (x, #)] and, by the lower semicontinuity of V(-,-),

Vy=1lmV(x,,t,) > V(x,t).

However, x € A and ¢ < », implying by (P-2) that x = x*, ¢ = t* (and, for all
T > t*, eventually ¢, € [0, T]). When combined with (31) the conclusion of
(29) is assured.

Now suppose that (26) is false for some & > 0. Then, since I;(-) is a good
rate function, there exists ¢ € ®,, with I .(¢) < V, < ». Consequently, para-
phrasing the reasoning leading to (28), one may find a ¢ € ®; such that
I(¢) < V,.Fix 7 <t €[0,T] such thatboth |t — 7 — ¢*| > 6 and ¢, — ¢, € A.
Then

VA = IT(d)) = It—‘r(¢s+‘r - ¢‘r) P V(¢t - d),.,t - T),
and hence, by (P-2), ¢ — 7 = t* resulting in a contradiction.

Fix 6 > 0, " € ¥; and ¢ € C,((0,T + ¢*]) such that ||y — | — 0. There
exist 7, <t, € [0,T] such that ¢ — ¢ € A, and

Sup ,l/,srfl—fn - dl‘rr: - utl = 8.'
O<s<t*
The same argument as above yields (on a subsequence) ¢, — ¢, 7, > 7 and
W — ") > (Y, — ¥,) =y € A. Moreover, since § € C,(0,T + t*]) and
T, T,

- 0.

sup |l/ls':_7," - Th - (¢s+‘r - l,/‘r)

O<s<t*

Therefore, sup, ., o+ 1, , — ¢, — u¥| = §, that is, y € ;.
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Suppose that (27) is false. Then, since I, ,«(-) is a good rate function, there
exists ¢ € ¥, with I, «() <V, <o and, by the above argument, also

¥ € ¥,. Fix 7 < t € [0, T] such that both i, — §, € A and
(32) Sup |§Zs+7_&r—u:| 28

O<s<t*
Consequently,

Viz IT+t*(‘/;) = It—r(‘i’s+f - Jl‘r) = V(J’t - Jl'r’t - 7)-
Thus, by (P-2), t — 7=¢t*, i, — ¢ = x* and ¥, — ¢, = u*, contradicting
(32). It follows that (27) must hold. O

Turning now to the proof of Condition (C-2), observe that by Chebyshev’s
inequality, for any A € R¢ and any compact, convex K c R?,

xeK &

(A, x)
P(YF€K)=P(eX,,,€K) <E[exp((/\ X,,,> — inf )]

( tA(A) —inf, . (A, x) )
= exp
£
Hence, by the min—max theorem (cf. [7], page 174),
elog P(YF€K) < — sup 1nf [<A, x) —tA(AN)] = — inf V(x,¢).
AcRd X€ xeK

This inequality extends to every convex, closed K by intersecting it with a
sequence of balls centered at the origin and of radii that monotonically
increase to . In particular, applying the above to the closed, convex sets
co( A"), it follows that Condition (C-2) holds as soon as

lim lim inf V(x,t) > 2V,.

>0 C> o xeco(A"), t=C
The latter inequality holds by combining (80) and (P-3) [recall that co(A™) c
co(A)"]. O

REMARK. As is evident in the above proof, even when (P-2) fails, both
Condition (C-2) and the estimate (8), for all T large enough, hold as soon as
(P-1) and (P-3) hold. Hence, these suffice for (5) to hold true.

PRrROOF OF THEOREM 1. In view of Theorems 2 and 5 and the above remark,
it suffices to show that the conditions of the theorem imply that (P-1) and
(P-3) hold true, and if A*(:) is finite everywhere, then (P-2) holds as well.

We shall start by proving (P-1). The existence of a point pz € A° such that
A*(2) < » implies that V, < V,0 < V(pz, p) < ©. With A*(z) having compact
level sets and a unique minimum at z = b, it follows that a, =
inf, ¢ g, A*(2) > 0, for all p > 0, where B, , denotes the ball of radius p
centered at b. As b # 0, for p > 0 small enough, B, , C K;. Consequently, for
some a = a,,

V(x,t) >at Vxe€A.
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Moreover, by (2),

V(x,t) > |x| — t sup A(A),
Al=1

and hence V(x,t) > 2V, + 1), for all ¢ < (2V, + 1)/a, once |x| > r, for some
r large enough. Combining the above estimates it follows that V, is the
infimum of V(x,¢) over (x,t) € AN EO’, x [0,C], for some finite » and C
large enough. The existence of the pair x* € A, t* € (0, %) now follows by the
compactness of the latter set and the lower semicontinuity of V(-,-). Since
x* € A, it follows that x*/¢* # b and, consequently, V,o > V, > 0. Consider
the point pz € A° such that z € 9.. For all « € (0, 1], both ¢, = apz + (1 —
a)x* € A® and z, = az + (1 — a)x*/t* €9,.. Note that V,o < V(4,,¢,) =
taA*(zf), where ¢, = ap + (1 — a)t* and B = ap/t, €(0,1]. As a \ 0, both
¢, > t* and A*(zg) > A*(x*/t*) (see [16], Corollary 7.5.1). Consequently,
Vo=V,

With A(') finite everywhere, it follows by dominated convergence that A(-)
is differentiable everywhere, and hence A*(-) is strictly convex in the relative
interior of its domain (see [16], Corollary 26.4.1). Consequently, (P-2) holds as
soon as x*/t* is in this set. In particular, (P-2) holds when A*(-) is finite
everywhere.

Turning now to the proof of (P-3), observe that co(A)” N {x: |x| > r}
excludes the cone K, for 8’ < 8 — 27n/r. Hence, (P-3) follows, paraphrasing
the argument used when proving the existence of (x*, #*). O
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