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INEQUALITIES FOR THE OVERSHOOT!

By JoseEpH T. CHANG

Yale University

Let X;, X,,... be independent and identically distributed positive
random variables with S, = X; + --- +X,, and for nonnegative b define
R, =inf{S, — b: S, > b}. Then R, is called the overshoot at b. In terms
of the moments of X;, Lorden gave bounds for the moments of R, that
hold uniformly over all 4. Using a coupling argument, we establish
stochastic ordering inequalities that imply the moment inequalities of
Lorden. In addition to simple new proofs of Lorden’s inequalities, we
provide new inequalities for the tail probabilities P{R, > x} and moments
of R, that improve upon those of Lorden. We also present conjectures for
sharp moment inequalities and describe an application to the first ladder
height of random walks.

1. Introduction. Let X, X,, X,,... be independent and identically
distributed positive random variables with finite mean w. Let S, denote the
sum X; + -+ +X,, with S, defined to be 0. For b > 0, denote the stopping
time inf{n: S, > b} by 7, or 7(b) and define R, = S, ;) — b and L, =X,
Then R, is variously known as the overshoot or excess or residual lifetime at
b, and L, is called the total lifetime at b. Our main interest here is in
investigating the behavior of the overshoot; the total lifetime will be an
important ingredient in the analysis. The overshoot is among the fundamen-
tal objects of study in random walk and renewal theory and therefore plays
an important role in a variety of fields of applied probability. Often the object
is to show in some sense that the overshoot cannot be too large. In this
context, the inequalities of Lorden (1970) are very useful; these are stated
below in (1.5), (1.6) and (4.1). In this paper we provide simple new proofs, as
well as sharper inequalities for those that are not sharp already.

Let R, and L, denote positive random variables having distributions

(1.1) P{R, €dx} = p 'P{X > x} dx
and
(1.2) P{L, € dx} = p 'xP{X € dx}.

For p > 0, we have

(1.3) E(R?) =u Y(p + 1) 'E(XP*Y)
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and
(1.4) E(L?) = p 'E(XP*Y);

these moments are finite when E(X?*1!) is finite.

When X has a nonarithmetic distribution, a standard result says that R,
and L, converge in distribution to R, and L., respectively, as b — «. The
well-known “length-biased sampling” or “inspection paradox” phenomenon
arises from the fact that L, (and indeed R,) may be stochastically much
larger than X.

Such limiting considerations leave open the issue that is often the “real”
question: At some given finite b, how large (measured in some stochastic
sense such as moments or tail probabilities) could the overshoot R, be? The
problem of deriving bounds on the behavior of R, that hold uniformly over all
b was addressed by a beautiful paper of Lorden (1970), who established the
following inequalities for the moments of R, in terms of the moments of R..:
For all nonnegative b and p,

(1.5) E(Rf) < (p + 2)E(R?).
Lorden also found a special result for the first moment: For all nonnegative b,
(1.6) ER, < 2ER,.

Stronger assertions can be made under special assumptions on the distribu-
tion of X. For example, Brown (1980) showed that if X has a decreasing
failure rate distribution, then R, is stochastically increasing in 5. However,
at their level of generality, Lorden’s results have remained the best available.

Combining ideas of Lorden (1970) with a clever use of properties of the
stationary renewal process, Carlsson and Nerman (1986) gave a simpler proof
of the first moment inequality (1.6). They did not address the general moment
inequalities (1.5).

In Section 3 we give a new proof of the general moment inequalities (1.5).
The proof in fact shows that for all b, the overshoot R, is with probability 1
bounded above by the maximum of two random variables, one of which is
distributed as R, and the other of which is stochastically bounded by L.
Lorden’s inequalities (1.5) are then an immediate consequence. We also
provide a new proof of (1.6) that shows that R, is with probability 1 bounded
above by the sum of two random variables, both of which are distributed as
R..
The approach taken in Section 3 gives additional insight into Lorden’s
inequalities. We establish almost sure or stochastic inequalities that are
stronger than the moment inequalities, which then become immediate conse-
quences. A coupling argument replaces the remarkably clever but mysterious
tricks of integrating the function ¢ — ER,, several applications of Jensen’s
inequality, and solution of a polynomial inequality that appear in Lorden’s
original treatment. This is made possible by defining and using the residual
R, for all b rather than just for nonnegative b.

Inequality (1.6) is “sharp,” in the sense that there is a case of equality;
necessary and sufficient conditions for equality to hold are provided in
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Section 3. It turns out that Lorden’s general moment inequalities (1.5) are not
sharp; one might anticipate this from a comparison of (1.5) and (1.6), which
do not “match up” at p = 1. In Section 4 we obtain new general moment
inequalities that are sharper than those in (1.5). Section 4 begins by develop-
ing bounds for the tail probability P{R, > x} that improve upon a bound
established by Lorden. The sharpened general moment inequalities then
follow as a crude consequence of the new tail probability bounds.

Section 5 introduces a conjecture that replacing the “(p + 2)” in the right
side of (1.5) by “(p + 1)’ gives sharp inequalities. The neat form of these
conjectured inequalities leads to the interesting prospect that, if they indeed
hold, a very nice probabilistic explanation might be waiting to be discovered.
A counterexample shows that a natural first conjectured “explanation” is
false.

Section 6 establishes a monotonicity property of the expected first ladder
height of random walks and points out a connection with the conjecture of
Section 5.

We denote stochastic ordering by <, and equality in distribution by =.
That is, W <, Z means that P(W > x} < P{Z > «x} for all x, and W=, Z
means that W and Z have the same distribution.

2. Almost sure inequalities. Here we present extensions of two in-
equalities that formed the basis of Lorden’s paper. We begin by extending the
definitions of 7(c¢) and R, given in the Introduction for nonnegative c, to all
real ¢ as follows: Take 7(c) = 0 and R, = —c for ¢ < 0. Note that these
definitions are what one obtains by using the expressions for 7(c) and R,
given in the Introduction.

Next, for each real number a define the process {S,,: n =0} by S, , =
S.@y+n — Siay Then for real ¢ and nonnegative b, we denote by 7,(c), R,
and L, , the quantities that stand in the same relation to the process {S,, ,}
as the quantities 7(c), R, and L, have with the process {S,}. That is, define

7,(c) =inf{n: S, , > c},
R =8

a,c a,r,(c)

c

and
La,b = Sa,Ta(b) - Sa,r,,(b)—l = XT(a)+ Ta(B)*

Clearly, R, , =4 R, and L, , = L,.

PRrROPOSITION 2.1. With probability 1, the inequalities

(21) Ra+c < Ra + Ra,c
and
(2.2) R,., <R,VL,,

hold simultaneously for alla € R, c € R and b > 0.

Lorden (1970) introduced Proposition 2.1 in the case of nonnegative a and
c. We claim that (2.1) and (2.2) hold on the event {sup S, = «}. The verifica-
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tions are a simple matter of checking cases. To see (2.2), for example, in the
case of nonnegative a (and ) a picture makes it clear that

(2.3) R,,, >R, implies R, ,<L,,,

so that (2.2) holds. For a < 0 and a + & > 0, (2.3) can be seen from a similar
picture. Finally, for a < 0 and a + b < 0, (2.2) is trivial, since R, , < R,,.

3. Lorden’s moment inequalities. Throughout this section, let Y de-
note a random variable distributed as R, with Y independent of X;, X,,....

PropPOSITION 3.1. For all b = 0 we have R,_y =, R,.

Proor. Let R denote the overshoot at time & of the delayed renewal
process generated by Y, X, X,,.... Thatis, R}, = S}, — b, where S} =Y +
S, for n > 0 and 7'(d) = inf{n: S), > b} for b > 0. Then R,_, = R),. However,
it is a standard fact [see, e.g., Asmussen (1987), pages 116 and 117] that the
process {R}: b > 0} is stationary, with R}, =, R, forall 5> 0. O

Now we can imitate the clever trick Carlsson and Nerman (1986) used to

prove (1.6). We also provide necessary and sufficient conditions for equality to
hold.

PROPOSITION 3.2. For all b > 0 we have ER, < 2ER,. Equality holds if
and only if P{X = u} = 1 and b = ku for some nonnegative integer k.

Proor. Let Y; and Y, be independent of each other, independent of X;,
X,,..., and distributed as R,. Proposition 2.1 gives

(3.1) R, SRb+Y1—Y2 JrRb+Y17Y2,Y2—Y1

with probability 1. For b > 0, conditioning on Y; and applying Proposition 3.1
show that R,y _y, =4 R.. Next, the independence assumptions on Y; and
Y,, together with the fact that R, =, R, for all fixed a and c, imply that
Ry.v,_v,v,-v, =st Ry,-v,- However, conditioning on Y, and applying Propo-
sition 3.1, we obtain Ry _y =, R.. Thus,both Ry,y y and R,.y _y,y, v,
are distributed as R, so that taking expected values in (3.1) proves Lorden’s
first-moment inequality (1.6).

For the case of equality, it is clear that the stated conditions are sufficient,
since they give ER, = u = EL, = 2ER,,. To establish necessity, suppose that
ER, = EL, and observe that equality must then hold in (3.1) with probability
1. Conditioning on the random variable Z =Y, — Y;, which has positive
density (with respect to Lebesgue measure) at 0, we see that in particular

(3.2) R,=R, ,+ R, ,, with probability 1
must hold for all sufficiently small positive z, except possibly for a set of

Lebesgue measure 0. However, for positive z the equality in (3.2) implies that
R,_, <z; indeed, if R,_, >z, then R, =R, _, — 2z <R,_,. Thus, letting
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zy >z, > -+ with z, |0 be a sequence of values of z that satisfy (3.2), we
have R,_, <z, with probability 1 for all n. That is, with probability 1, for
all n there is a renewal in the interval (b — z,, b], so that there is a renewal
at b with probability 1. This clearly implies the claimed necessary conditions
if b > 0. On the other hand, if & = 0, then

E(X?)
EX °
so that Var(X) = 0, and X is deterministic. O

EX=ER,=EL, =

To continue with the proof of the general moment inequalities (1.5), note
that

(3.3) Ry<Ry, yVL yy

with probability 1, by (2.2). We know that R,_y =, R... Proposition 3.4 below
will show that L,_yy < L.

—st

lLEMMA 3.3.

Pu¢>x}=ﬁﬁqx>xyx>ﬂpugedn.

ProorF. We have

P{L,>x} = f w 1zP{X € dz)

ze(x,)

=P~_1f

ze€(x,»)

/ dyP{X € dz)
y<€(0,2)

=“*fmmf P{X € dz} dy

y ze(xVy,»)

=u! P{X>x,X>y}dy
y€(0,»)

=M*f P{X>x|X>y}P{X>y)}dy,
y<€(0,°)

which is what we wanted to show, by (1.1). O

The previous lemma is very simple and presumably known, but it also has
displayed a tendency to invite suspicion or misunderstanding at first sight. A
simulation interpretation, which seems useful in clarifying both the state-
ment of the lemma and the proof of the next proposition, states that one can
generate a random variable distributed as L, as follows. First generate a
random variable Y distributed as R,. Then generate i.i.d. copies X;, X,,...
of X until an X, that exceeds Y is obtained. Such an X, is distributed as L.
An apparently tempting but incorrect interpretation of the lemma is to
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equate P{L, > x} with P{X > x | X > R_}, where X and R,, are independent.
This would correspond to the following incorrect procedure for generating a
random variable distributed as L.: Independently generate two ii.d. se-
quences X, X,,... and Y, Y,,..., where Y, is distributed as R,, and take
the first X, satisfying X, > Y,. To see that this is different from the correct
simulation procedure mentioned above, let k denote inf{k: X, >Y,} and
observe that the distribution of Y, is not the same as that of R,; evidently Y,
tends to be smaller.

PRrROPOSITION 3.4. L, yy =y Ly forallb >0, and Ly <, L,.

Proor. The first assertion follows from a simple conditioning argument
using the independence of Y and the fact that L,_, , =, L, for all nonnega-
tive constants b and y. To prove the second assertion, define L = X,, where
p=inflr: X, >Y}. It is easy to see that P{p <o} =1. Now L =, L, by
Lemma 3.3 and clearly L > Ly on { p < »}. Indeed, if Ly, > Y, then Ly must
be the first X, that exceeds Y, so that L, = L; otherwise, Ly, <Y < L. Thus,
we have displayed a random variable L distributed as L, that satisfies
L > Ly with probability 1, so we are done. O

Lorden’s inequalities (1.5) now follow immediately.

COROLLARY 3.5. For all nonnegative b and p we have
E(Rf) < (p +2)E(R?).

Proor. Using (3.3), Proposition 3.1, Proposition 3.4, (1.3) and (1.4), we
obtain

E(RP) < E(R[_y) + E(L{_yy) < E(RZ) + E(L?) = (p + 2)E(RZ). O

4. Tail probabilities and moment inequalities. Lorden’s (1970) The-
orem 4 develops a result for tail probabilities that may be stated as follows:

b + EL,

(4.1) P{R, > x} < ( P

)[P{Lw > x} + P{R,, > x}].

The next two results provide improved tail inequalities. The first of these
consists of a calculation that does not use results from the previous sections.

PROPOSITION 4.1.  For all nonnegative b and all x > ER,,

b+ ER,
(42) P{Rb > x} < (W)P{Lw > x}

Proor. Let F denote the distribution of X, so that P{X € dz} = F(dz)
and P{L, € dz} = p~'2F(dz), and let U denote the renewal function, defined
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by U(x) = 7 _, P(S,, < x}. Then
P{R,>x} = [ P{X>b+x—y}U(dy)
[0,5]

=[ F(dz)U(dy)
[0,617(b+x—y,»)

U(dy)F(dz) + [

[ U(dy)F(dz)
(b+x,0)7[0,b]

( x,b+x] '/; b+x—2,b]
- [U(b) ~U(b +x~2)|F(dz) + U(b) [ F(d2).
(x,b+x] (b+x,0)

We now use Wald’s equation U(c) = (¢ + ER,)/u to treat the two summands
in the last expression. For the first summand, we obtain

[(x’bm [U(b) — U(b + x — 2)] F(dz)

—pt (z—x+ER, - ER,,, ,)F(dz)

(x,b+x]
<pt (z + ER, — x)F(dz)
(x,b+x]

ER, — x

iy BBz
s ( b+x )'[(x,b+x]zF(dz)
(b+ER,,
- b+ x

where the last inequality uses the assumption that x > ER,. For the second
summand,

)P{Lme (b +2]),

U(b)f(b”’w)F(dz) = }(b+ ER,,)f(b”’m)F(dz)

<M‘1(b—%)f 2F(dz)
- b+x [Ntz

b + ER,

N (W

The desired result is obtained by adding the last two displays. O

)P{Lw € (b +x,2)}.

By (1.6), Proposition 4.1 improves (4.1) when x > ER,, and hence when
x > EL,. On the other hand, the inequality
P{R, > x} < P{L, > x} + P{R,, > x},

which is trivial from the results of the previous section [see the paragraph
containing (3.3)], improves (4.1) when x < EL_. The next proposition gives a
somewhat better inequality.
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PROPOSITION 4.2. For all nonnegative b and x,
(4.3) P{R, > x} < P{L, > x} + P{R, > x}P{X < x}.
PrOOF. Begin with (3.3) and Propositions 3.1 and 3.4, which imply
(4.4) P{R, >x} <P{R,>x} + P(L,>x} —P(R,_y>x,L,_yy>x}.

Next write

P(R, y>x, Ly yy>zx) = fP{R,,_y >x, L,_,, > x}P{Y € dy)

= [P(R,_, > x}P{L, > x)P{Y € dy}.
However, defining the age A, = infly — S,: S, <y}, we have
P(L,>x1A, =2} =P{X>x|X>z} >P{X>x}
for all z such that P{X > z} > 0. It follows that P{Ly > x} = P{X > x}. Thus,
using Proposition 3.1 again,

P{R, y>x,Ly_yy>x} = P(X> x}fP{Rb_y > x}P{Y € dy)

= P{X > x}P{R, > x}.

The proof is completed by substituting the last display into (4.4). O

The tail probability bounds in Propositions 4.1 and 4.2 contain enough
information to give new moment inequalities. As an example, the next
proposition applies these tail probability bounds in a straightforward and
rather crude way to obtain a strict improvement on Lorden’s inequalities (1.5)
in all nontrivial cases, that is, cases in which the stated upper bound is finite
and X is not deterministic.

PRrOPOSITION 4.3. For all nonnegative b and p,

E(Rp) < E(LP) + P{X < EL,}E[(R.. A EL.)"].
ProoOF. In fact, we have
E(Rf) = [ px"'P(R, > z) da
0
ER,
sf pxP Y[ P{L, > x} + P{X < x}P{R,, > x}] dx

0

+f°° px? 'P{L, > x} dx

ER,

< E(L?) + P{X < ER,)E[(R. A ER,)"].

From this, the stated inequality is a consequence of Lorden’s first-moment
inequality ER, < EL,. O
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Tighter bounds are possible: the preceding proof proceeds crudely in
pursuit of expediency and a relatively neat-looking bound. First, for x < ER,,
the proof in effect applies only the consequence

P{R, > x} < P{L, > x} + P{R, > x}P{X < ER,}

of inequality (4.3). Using (4.3) “as is” gives the better, but not quite as
neat-looking, uniform bound

E(RP) < E(L?) + fOEL“pxP-IP{X < x}P(R, > x} dx.

In some cases, even using (4.3) for x < ER, is clearly wasteful. For example,
if F has a positive density f(0) at 0, then the bound given by (4.3) is of the
form 1 + f(0)x + o(x) as x |0, which is greater than 1 for small x. Finally,
for x > ER,, the proof just bounds P{R, > x} by P{L, > x}, ignoring the
extra factor (b + ER,;)/(b + x) that is permitted by (4.2).

5. Conjectures. I would conjecture that the following inequalities hold:

CONJECTURE 5.1. For all nonnegative b and p,
E(Rf) < (p + 1)E(RE) = E(LZ).

Note that if these inequalities hold, it is clear that they are sharp: equality
holds when X has a deterministic distribution X = u, say, in which case
L, = u = R, whenever b is an integer multiple of u. Proposition 4.3 makes
partial progress toward the goal of eliminating the extra E(RZ) in Lorden’s
bound by reducing that E(RZ) to P{X < ELJ}E[(R, A EL_)*]. Since
P{X < EL_} may range over the whole interval from 0 to 1, the improvement
contributed by the factor P{X < EL,} may range from great to negligible.
Certainly for large p the improvement is significant—it is easy to see that if
X is not deterministic, then E[(R, A EL,)?] becomes negligibly small com-
pared to E(R2) as p — .

A natural reaction to Conjecture 5.1 is to ask whether the stochastic
inequality R, <, L., holds for all 5. Momentary encouragement is provided
by Proposition 4.1, which implies the inequality P{R, > x} < P{L,, > x} for all
x > ER,. However, these lovely thoughts are spoiled by simple counterexam-
ples. For example, let X have the distribution

1,  with probability m/(m + 1),
m, with probability 1/(m + 1),

for a given positive integer m. Then L, takes on the values 1 and m with
probabilities 1/2 each, while

X =

m m—1
m + 1)

Thus, if m is chosen large enough, P(R,,_, > 1}=1—-PR, _, = 1} is close
to 1 — e~ !, which is larger than 0.5 = P{L, > 1}, so that we do not have
R, _, < L.. (Here m =5 is large enough to give a counterexample.)

P{Rm—2=1} =P{X1=X2= =Xm—1=1} =(
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The previous example has also been useful in ruling out some other
conjectures. Despite such disappointments, it is most tempting to continue to
search for other probabilistic assertions that would “explain” why the mo-
ments of R, might be bounded by the moments of L,. Of course, also
enlightening would be a counterexample to the conjecture, which is supported
by computer experiments and perhaps a certain amount of wishful thinking.

6. Application to the first ladder height. In many applications of
Lorden’s inequalities, the multiplicative constant is not critical: the (p + 2) of
(1.5) will do as well as the (p + 1) of Conjecture 5.1. In this section we discuss
an example of a problem in which the distinction becomes important.

Dropping the assumption that X is positive, suppose the distribution F
has mean 0. We exclude the trivial case where X = 0 with probability 1.
Define the moment generating function ¢ by ¢(8) = [e®*F(dx) and assume
that the set ® = {0: ¢(6) < =} contains a neighborhood of 0. Then in fact ® is
an interval having endpoints 6, and 6,, say, with —» < 6; <0< 6, < =,
Define the exponential family of distributions {F,: 6 € ©} by

Fy(dx) = e ¥OF(dx),

where (0) = log ¢(0). We will assume that X;, X,,... are independent and
identically distributed having a distribution F, that is a member of the
exponential family just described. In this situation, P, and E, will denote
probability and expectation.

The process {S,: n > 0} is a random walk. The residual R, the first
positive value taken by the random walk, is known as the first ladder height,
and 7, is called the first ladder epoch.

PROPOSITION 6.1. The first moment E R, is a nondecreasing function of 6
for nonnegative 6.

ProOOF. In fact, defining h(0) = E R, we will show that the function A
has a nonnegative derivative for 0 < § < 6,. Define u = E; X = ¢'(6). Then
Siegmund (1979) shows that % is differentiable in (0, 6,) with

h'(0) = E,R§ — nEy(oR,)
and also, letting M denote min{S,: n > 0}, that

mEy(7oR) = E‘,Rofm w)Eo(Rx)Po{ —M € dx}.

Applying Lorden’s first moment inequality in the form

E,(Rj)

Eo(Rx) = EO(RO)

to the last integral gives the result. O
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In view of the case of equality in Proposition 3.2, it is easy to see that E,R,,
is actually a strictly increasing function of 6 for 6 € (0, 6,) unless R, is
constant with P -probability 1, that is, unless there is a positive ¢ such that
Pi{Xe{..., —2¢, —¢,0,c}} = 1.

Although apparently not noticed before, Proposition 6.1 is proved by a
simple combination of known results. Extending the simple proof to other
moments would require Conjecture 5.1. To see this, define h,(6) = E,(R}).
Then

h,(0) = Eo(RgH) — REy(ToRE)

and
rEy(7oRE) =E0R0f[0 )Eo(Rﬁ)Pg{—ME dx}.
Thus, if
E,(R§™)
E,(R?) < ——~
(D) = 5, (Ry)

holds, then #/,(8) > 0. This is a case where we need the (p + 1) in Conjecture
5.1; the (p + 2) in Lorden’s inequality (1.5) is too large.
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