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We consider finite state nonhomogeneous Markov chains with one-
step transition probabilities roughly proportional to powers of a small pa-
rameter, converging to zero. We examine asymptotic properties of trajecto-
ries. The analysis is based on the so-called orders of recurrence. Transient
states, recurrent classes and periodic subclasses can be identified in terms
of the matrix of powers. This leads to a complete description of the tail
sigma field. Our theorems generalize the classical results for homogeneous
chains and can also be applied to chains generated by stochastic algorithms
of the “simulated annealing” type.

0. Introduction. We consider finite state, discrete time nonhomogeneous

Markov chains (X,) with transition probabilities satisfying
0_1823_1 <P(Xpu=jlXn=1)< ngu,

where &, \ 0. Similar classes of chains were considered by Tsitsiklis (1989),
Connors and Kumar (1989), Chiang and Chow (1989) and Borkar (1992). The
primary motivation comes from the field of stochastic algorithms for global
optimization. The “simulated annealing” algorithm generates Markov chains
of this type [general references on simulated annealing are van Laarhoven
and Aarts (1987) and the special issue of Algorithmica 6 (1991)]. The class of
chains under consideration is fairly large. All chains of Doeblin’s type (A), in
particular all homogeneous ones, satisfy our assumption. On the other hand,
the assumption is stronger than Doeblin’s condition (B) and, consequently,
leads to more conclusive results [see Cohn (1981), for example]. Classification
of states according to asymptotic properties of trajectories can be described ex-
plicitly, in an algorithmic way, in terms of the matrix (v;;). The state space can
be decomposed into recurrent classes of asymptotically communicating states
and the set of transient states. Recurrent classes can be further divided into
periodic subclasses. This decomposition is equivalent to the complete descrip-
tion of the tail o-field of the chain, if P(Xy =1i) > 0 for all i.

Our approach is based on the so-called pathwise orders of recurrence, in-
troduced by Borkar (1992). For each state i, we consider random variable «;
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defined by
o :Sl,lp{h ZOZ&QI(XH :L):oo}
n

Given o = sup{h > 0 : ¥, &" = oo}, all values of the ;’s can be expressed
in terms of the matrix (v;;). Connors and Kumar (1989) defined orders of
recurrence in a slightly different way, setting

Bi = sup{h >0:) 'P(X,=i)= oo}.

Following Borkar, we call B8;’s mean orders of recurrence. They may depend
on transition probabilities in a more complicated way, not only through the
matrix (v;;). Moreover, even if a 8; is known, we cannot tell whether state i is
recurrent (visited infinitely often with positive probability) or transient. The
analysis based on the pathwise orders is simpler and leads to results with
clear probabilistic interpretation.

The outline of the paper is the following. In Section 1 we introduce the
class of chains under consideration. The definitions and basic properties of
the pathwise orders of recurrence are recalled in Section 2. The key results
here are Theorem 2.1 [the propagation rule; due essentially to Borkar (1992)]
and Theorem 2.2 [the balance equations; due to Connors (1988)]. To make
the paper self-contained, we give proofs of these theorems under our slightly
relaxed assumptions. Section 3 has more to do with algebra and graph theory
than with probability. In this section we focus on adjusting the results of
Connors and Kumar (1989) to fit our purposes. Our main results appear in
" Sections 4 and 5. The description of the recurrent classes of the chain, given
in Section 4, is based on the preceding graph considerations. In Section 5, we
decompose recurrent classes into periodic subclasses and thus identify all the
atoms of the tail o-field. In Section 6, we apply the general results to chains,
produced by stochastic optimization algorithms of the “simulated annealing”

type.

1. Chains with regularly diminishing transitions. Suppose (X,,n >
0) is a nonhomogeneous Markov chain on a finite state space .. Assume that
(11 e <sP(Xp1=JjlXp=i)<ce’, 0<c<00,0<uv; <00,
where (&,) is a real sequence such that
0<eg, <1,
(1.2) en—0 asn— oo,

&ns1 < &, for all n.

The convention is £* = 0. The sequence (&,) and the matrix (v;;) are
not uniquely determined by the transition probabilities. For example, we can
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always replace &, by &), = &}, and v;; by v;; = v;;/r, with 0 < r < co. Whenever
we speak of a chain (X,,) satisfying (1.1) and (1.2), we will always refer to a
fixed choice of (&,) and (v;;). We call a chain satisfying these conditions a
chain with regularly diminishing transitions. Let us bear in mind, however,
that the frequency of transitions from i to j does not diminish if v;; = 0.
Transitions from i to j are impossible if v;; = oo. Note that assumption (1.1)
is weaker than its counterpart in Connors and Kumar (1989). We could relax
the condition of monotonicity of (&,) similarly to the cited authors. However,
the apparent generalization in unnecessary. If &,.,, < ke, for all n, m > 0,
then &, can be replaced by &, = max,;;>¢ &n4m in (1.1).

REMARK 1.1. If a chain (X, ) satisfies condition (A) of Doeblin, then it
satisfies (1.1) and (1.2).
Let us recall Doeblin’s condition: For all states i and j,

either >6>0 foralln,

A) P(Xn+1=j|Xn=i){or =0 foralln.

This corresponds to condition (1.1) with v;;’s equal either to 0 or to co. The
sequence (&,) can be chosen arbitrarily.

REMARK 1.2. If a chain (X,) satisfies (1.1) and (1.2), then it satisfies con-
dition (B) of Doeblin.

The second Doeblin condition stipulates that

. .\ [either >6>0 foralln,
(B) P(X’”'1=J|X"=l){or -0 asn— oo
REMARK 1.3. I_Jet (X,) satisfy (1.1) and (1.2). For d > 1, the periodically
sampled chain (X, = X,4) also satisfies these conditions, with &, = &,4 and

ﬁij = min{ Z Ui(s—l)i(s) . 1= i(O),i(l),. . .,i(d) = J}

1<s<d

We will not use Remark 1.3 in this paper. Let us omit the easy proof. Another
standard construction will be more important. Consider the Cartesian product
of two independent copies (X!) and (X2) of the chain (X,). Elements of the
product space .~ x ./ are denoted by underlined letters. The following obvious
fact will be exploited in Section 5.

REMARK 1.4. If (X,) satisfies (1.1), then the double chain [X, = (XL,
X2)] also satisfies (1.1) with the same sequence (&,) and with the matrix of
. powers (vz ) given by ’

Vij = Viyjy + Vipj,  Where L= (i1, 13), J = (J1, J2)-
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Assumptions (1.1) and (1.2) will stand throughout the paper. We will be
concerned with asymptotic behavior of trajectories of (X,). Speaking more
precisely, our goal will be to describe the tail o-field

T = ﬂ (X, k>n).
n>0

Let (Q, % ,P) be the probability space on which our chain lives. We will use
curly brackets {---} for events {w € Q : ...} and 1(---) for their indica-
tor functions. Events are denoted by capital roman letters. If P(B\A) = 0,
we will write A ¢ B a.s. (almost surely). If (A,) is a sequence of events,
{A, io.} (infinitely often) stands for M, U,z Ar and {A, ult.} (ultimately),
for Uy Mysr An. Let

Fn=0(Xp0<k<n).

By (sub)martingale we will mean, by default, a (sub)martingale with respect to
(F ). Sets of states are denoted by script letters. Inclusions between subsets
of 7 will be denoted by &7 C # or &7 & #. Whenever we are concerned with
convergence of a series, we will freely write ), instead of } ;. ;, leaving &
unspecified. By convention, N = min{n : -- -} will be understood to be co when
the dotted condition is false for every n.

2. Orders of recurrence. For i, j € ./, define random variables «; and
a;; by

2.1 a,»=sup{h20:Zaﬁl(Xn=i)=oo},
(2.2) aij=sup{h20228zl(Xn=i,Xn+1=j)=oo},
n
where, by convention, we set sup@ = —oo. We call «; and «a;; the orders of

recurrence of, respectively, state i and the transition from i to j. They are
the pathwise orders, introduced by Borkar (1992). Mean recurrence orders,
defined earlier by Connors and Kumar (1989), will not be exploited here. Let

(2.3) Q=sup{hzO:Zeﬁ=oo}.

Following Connors and Kumar, we call ¢ the order of cooling of (&,). Unless
otherwise stated, assume

2.4) 0<pg<oo and Zeﬁ:oo.
n

The other possibility is
(2.4") 0<g<oo and Zsﬁ<oo.

n
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In this section, we consider the two cases (2.4) and (2.4') in parallel. On the
other hand, (2.4) will stand in Sections 4, 5 and 6.

PROPOSITION 2.1. If (2.4) is true, then for all i, almost surely,
(2.5) Y en WX, =i)=o00 wherever a; > 0.

If (2.4') is true, then for all i, almost surely,
(2.5") A Z 9 1(X,=i) <oo whenever a; > 0.

n

Similar statements hold for a;;.

Let us defer the proof of Proposition 2.1. It will be given at the end of this
section.

The rule of propagation for the pathwise orders of recurrence was estab-
lished by Borkar (1992). A slightly strengthened version of his result is the

following theorem.

THEOREM 2.1. Let a; and a;; be the recurrence orders déﬁned by (2.1) and
(2.2). Let ¢ be given by (2.3). If (2.4) holds, then almost surely,
@i — v, if a; > vy,

(2.6) Qij = {—oo, if a; < vy, L, je /.

If (2.4') holds, then almost surely,

a; —vij, if a; > vy,
2‘61 i = 13 ] k 12 L] . .
(2.6") Y —00, if a; < vy, i,je /.

To prove Theorem 2.1, we will need some auxiliary results, which will be
given later in this section. The theorem will follow immediately once we prove
Lemma 2.2 and Proposition 2.1.

An obvious consequence of definition (2.1) is

2.7 a; >0 or a;=-—o0.

The so-called balance equations were introduced by Connors (1988) for the
mean orders of recurrence. Borkar (1992) noticed they hold for the pathwise
orders too. The proof remains essentially the same. We are going to supplement
the equations with a condition not necessarily true for the mean orders. Note,
in passing, that the following statements hold for all trajectories of the chain.

THEOREM 2.2 [Connors (1988); Borkar (1992)]. Let a; and a;; be the recur-
rence orders defined by (2.1) and (2.2). Let o be given by (2.3). We have
" (2.8) max a;; = maxa;; forall &, DG A G S,
' el el

JjEA J¢s
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(2.9) max a; = g,
ie/
2.10) max a;; > 0 whenever maxa; > 0 and maxa; > 0.
el el Jj¢EA
JjgL

PrROOF. To prove (2.8), consider the successive times when the process
moves from .7 to .”\.&«/ and comes back: My = —1, N, = min{n > M, :
X, ¢ .o/} and Mp,y =min{n > N, : X, € &/}. We have M; < N, < M1
unless N; = oo. Thus,

Yl Xn=i,Xn=))=) enUXp €, X1 ¢ )

e n n
s h h
=) N1 S D it
k k

(2.11
: =Y enU(Xn¢ o, Xni1 € )

=Y YUK, =, X = ),
JjgAf
e/

Consequently, max;cy jew @;j < MaX;ey, e @i, Which is tantamount to
(2.8). Assertion (2.9) follows from the fact that Y, " = ¥, 3, " 1(X,, = i)
for all 4. To prove (2.10), notice that if max;c, @; > 0 and maxj¢, a; > 0,
then the process visits & and .\« infinitely often. Therefore, it must move
from &/ to .\« infinitely many times, s0 max;cy, j¢or @ = 0. O

In general, the mean orders of recurrence do not have property (2.10). In
fact, it is just for this reason that the pathwise orders are easier to handle.
Consider the following example, taken from Connors and Kumar (1989).

ExXaMPLE 2.1. Let . = {1,2,3}. Set the transition probabilities p;i(n) =
P(X,1=Jj|X,=1i)as

1-n2 0 n-2
(pij(n)) = 0 1-n' nt|,
1—a a 0
where 0 < a < 1. Condition (1.1) is satisfied for n > 1 with &, = n~! and
0 oo 2
(vij)=]l o0 0 1
0 0 o©

We have ¢ = 1 and (2.4) holds. The mean orders of recurrence are

Br=1, Ba=a, Pz=-;
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see Connors and Kumar [(1989), Example 4]. For each ¢, we obtain a different
solution to the system of conditions (2.6), (2.7), (2.8) and (2.9). If we knew only
the matrix (v;;) and g, we could not tell which of these solutions gives correct
values of the mean recurrence orders. On the other hand, the pathwise orders
of recurrence are.

a; =1, ag = —00, a3 = —00  a.s.

This is because these are the only assignments that satisfy (2.6), (2.7), (2.8),
(2.9) and (2.10).

The remaining part of this section is devoted to proofs of Proposition 2.1 and
Theorem 2.1. We will need the following submartingale analog of a martingale
theorem used by Borkar (1992).

LEMMA 2.1. If (S,) is a submartingale, S, = Y ,,(Yr — Z}) with 0 <
Y,.<1land Z, >0, then

{zn;zn =oo} c {ZY =oo} as

PROOF. Fix a and consider the stopped submartingale (Smin(n,n)), Where
N =min{n : S, > a}. Because Spinn,n) < @+1, from the classical submartin-
gale convergence theorem [Durrett (1991), 4.2.10] we infer that Spin n) —
S > —oo a.s. Consequently, {supS, < a} C {infS, > —oo} a.s. Letting
a — oo, we get {supS, < oo} C {infS, > —oo} as. If }Z, = oo and
infp, Y <, (Yr—Z) > —o0, then 3 Y, = o0. If sup,, 35.,,(Y — Z1) = o0, then
sup,, Y p<, Yr =00 and hence }°Y, = oco. O

Under an assumption slightly stronger than our (1.1), Borkar (1992) proved
the following result.
LEMMA 2.2 [Borkar (1992)]. Almost surely, the following implications hold:
if ; > vijand Y &y 1(X, =1i) =00,
n

2.12) @ . .
then ;i = a; — Ujj and ZSnJ (X, =i,X,11=J)=00;
n

if i > vijand Y &3 (X, =1i) < oo,
n

(2.13) s ) )
then a;; = a; — v;; and Zen” 1(X,=i,Xn1=J) < o0
n

(2.14) ifai=vijand ) &y (X, =1i) < 0o, then a;; = —00;
‘ n

(2.15) if a; < Vij, then a;j = —o0.
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PROOF. First we will prove that for fixed A > v;;,

(2.16) {Z 82 I(Xn = l) = OO} = [Zgz_vij I(Xn = i,Xn+1 = J) = OO} a.s.
n n

To begin with, note that {3 &2 1(A,) = oo} = {¥ &",;1(A,) = oo} as. for

h > 0 and every sequence of events (A,). To see this, write the two series as

> e’zi, and Zk aN +1» Where No = —1, Npy1 = min{n > N, : 1(4A,) = 1}.

Notice that 3N o = el < 3N , by (1.2). Now, the inclusion C in (2.16) follows

N+l =
from Lemma 2.1 with

Sni1= Y leey " WXy =i, Xp1 = J) — o1 L Xp =1)].

k<n

This is a submartingale, because
E(Spi1— S| Fn) =60 1 Xy = i)(cP(Xny1= J | Fn) —627,) 20

by the Markov property and assumption (1.1). The inclusion D in (2.16) can
be obtained in a similar way, if we consider the submartingale (S’ ) defined
by

= Y leeh WXy =1)— &) " U(Xp =1, Xps1 = )]
k<n

To infer (2.12)—(2.15) from (2.16), let us use the fact that the tail o-field 7
consists of finitely many atoms. This fact is true for every nonhomogeneous
Markov chain with a finite number of states; see Cohn (1970). From now
on, we will consider a fixed atomic set T' of .7. It is enough to show that
implications (2.12)—~(2.15) are true almost surely on T'. The recurrence orders
«; are, of course, 7 -measurable random variables, so they are a.s. constant on
T. Moreover, random event T'N{a; > 0,%", % 1(X, = i) = oo} belongs to 7,
so it must be a.s. equal either to T or to J. The statements to follow should be
understood as holding almost surely on T and this phrase will not be repeated.
If o; > v;j and Y, €3 1(X, = i) = oo, then we can apply (2.16) with A = «; to
get Y, e "1(X, =i, X1 = j) = oo and, consequently, @;; > @; — v;;. To
show that a;j < a; — vjj, it is enough to use (2.16) with A > «;. Thus, (2.12)
is proved. Proofs of (2.13)~(2.15) are similar. Note that we have restricted our
considerations to a fixed atom 7' in order to legitimize putting 2 = «; in (2.16)
(on T, we can treat «; as constant). O

Now we are in a position to prove Proposition 2.1.

PROOF OF PROPOSITION 2.1. We will prove that (2.4) implies (2.5). Just as
in the preceding proof, fix an atom T of .7. We will show that (2.6) holds for
all i almost surely on 7. For every i, the recurrence order «; is a.s. constant on
T. The series Y, €% 1(X,, = i) either converges a.s. on T or diverges a.s. on T
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(provided that a; > 0 a.s. on T'). From now on, we consider random variables
restricted to T' and we omit the phrase “a.s. on T'.” Define the set of states

M:{ie/:aiEO,ZSZ’I(X,L=£)=00}.

Under (2.4), the set &/ is nonempty because there exists some state m such
that Y &2 1(X, = m) = oo and a,, = ¢ > 0. Suppose, contrary to (2.5), that
there is some j ¢ & with a; > 0. Recall Theorem 2.2. Set
h =max a;; = max aj;.
el el
Jjgt Jgst
From (2.10) we infer that A > 0. By Lemma 2.2, 2 = max;c jgx (a; — U;j),

because (2.12)~(2.15) show that «;; is equal to a; — v;; whenever «a;; > —oc.
Moreover, (2.12) implies that

Ze’,fl(Xn=i,Xn+1=j)=oo for someiec o7, j¢ &
n

(choose i, j such that a;; = a; — v;; = h). On the other hand, (2.13)~(2.15)
imply that

Zaﬁl(Xn=j,Xn+1=i)<oo for every j & o&7,i € .
n

Now, recall the inequality (2.11). We have just shown that its left-hand side
diverges while its right-hand side converges, a contradiction. Therefore, (2.5)
must hold. O

Now, Theorem 2.1 follows from Lemma 2.2 combined with Proposition 2.1.

3. Solving the propagation-balance equations. In this section, the
conditions stipulated by Theorems 2.1 and 2.2 will be treated in a purely al-
gebraic way. Let us forget about the chain (X, ) and random variables defined
by (2.1) and (2.2). We regard (v;;) just as a given matrix (0 < v;; < oo) such
that for every i there is some j with v;; = 0. In much the same way, ¢ is
treated as a given number, 0 < o < co. We look at («;) as a system of numbers
(or —o0). Assume that (2.6) defines («;;). The goal is to find systems satisfying
conditions (2.7), (2.8), (2.9) and (2.10). Our approach will be similar to that
of Connors and Kumar (1989). Condition (2.10) makes all the difference. In
general, (2.6), (2.7), (2.8) and (2.9) admit infinitely many solutions, most of
them with no probabilistic meaning. If we add (2.10) to the set of conditions,
only finitely many solutions will remain. We will show later (in Section 4) that
all these solutions have clear interpretation in terms of the stochastic process.
The first elegant algorithm of Connors and Kumar will be suitably modified
‘to produce all solutions to our set of conditions. Contrary to the cited authors,
we do not assume that the chain is irreducible. We call the chain irreducible
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if the graph of possible transitions is connected. In terms of the matrix (v;;),
the irreducibility assumption can be expressed as

3.1) i—>j foralli,je.”,
where

i— j, if i = j, or there exists a sequence of
(3.2) states i = i(0),i(1),...,i(r) = j such that

Vi(s—1)i(s) < OO for 1 <s<r.

Under the irreducibility assumption, the basic algorithm would not be sim-
pler (proofs of some lemmas would). We will need assumption (3.1) only in
Lemmas 3.9 and 3.10 at the end of this section and later in Section 6.

To begin with, let us rewrite our conditions in an equivalent form, to stress
a “local” character of solutions. If we set # = {i : a; > 0}, then (2.6), (2.7),
(2.8), (2.9) and (2.10) imply a; = —oo for i ¢ 2,

(8.3) a; >0 ifieR,
3.4) max (a; —v;;) = max (a; —vj;), forall o/, J¢ & ¢ 2,
1E-"4 13-4
jeR\A jeR\ oA
(35) maxa; = @,
ie®
(3.6) mg (a; —v;j) =0, forall &/, J¢ o ¢ R,
115
jem\ot

3.7 max(a; — v;;) < 0.

ie#

JER

Indeed, (3.3) and (3.5) are obvious. To get (3.7), we argue as follows. For all
J & #, we have aj; = —o0, by (2.6) and (2.7). Therefore, a;; = —oo for all
ie R, jg R, by (2.8) (with & = #). In view of (2.6), a;; = —oc means just
that @; — v;; < 0. Therefore, (3.7) holds. Now, if we take (3.7) into account, we
can see that (3.4) is a consequence of (2.8), whereas (3.6) is a consequence of
(2.10).

The advantage of (3.3)(3.7) is that these conditions involve only («;,i €
#). Conversely, suppose (3.3)(3.7) hold for a system («a;,i € #). If we put
a; = —oo for 1 ¢ #, the extended system («;,i € ) will satisfy (2.7), (2.8),
(2.9) and (2.10), provided that («;;) are given by (2.6).

In the sequel, we will have to work with systems that need not satisfy (3.7),
but satisfy the following weaker condition

+ (8.8) max(ai - Uij) < max '(ai — vij) for all &/,@ g K74 g A.
. ie# el

JER jeR\A
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By definition, a system («;,i € #) is a coalition if (3.3), (3.4), (3.6) and (3.8)
hold. Say # is the domain of the coalition and max;c4 «; is its height. The
set # ={je #:aj =max;cya;} will be called the top of the coalition. The
coalition is said to be closed if (3.7) holds, too. Thus, the problem is to find
all closed coalitions of height ¢. Notice that if # is a set of one element, then
(3.4), (3.6) and (3.8) are vacuously satisfied. Thus, in particular, all singleton
systems (a; = g, {i}) are coalitions of height o.

It will be helpful to express conditions (3.3)—(3.8) in terms of a reachability
relation. Given a system (a;,i € #) (not necessarily a coalition), write for
ie#and je ./,

i —>p j, ifi= jand a; > h, or there exists a sequence of states
3.9 i =i(0),i(1),...,i(r) = j such that i(s — 1) € # and
@i(s-1) = Vi(s-1)i(s) = hfor 1 <s <r.

If there is a danger of ambiguity, we will write explicitly “/ —; j with respect
to (w.rt.) (aj,i € #).” If i —;, j, we say j is reachable at height h from i.
We follow Hajek (1988) in using this term. His definition and ours will be
compared in Section 6. A sequence of states with the property described in
(3.9) will be called a path at height A. Note that all states of a path but its
end, j, must belong to %.

LEMMA 3.1. System (a;,i € R) satisfies (3.4) if and only if the relation
defined by (3.9) with respect to this system has the property:

(3.10) for every h and for all i, j € R,i —} jimplies j —p i.
Equivalently,
(3.11) foralli,je #,h=a;—v; > —occimplies j —p i.

PROOF. The fact that (3.10) is equivalent to (3.11) is obvious. Suppose
(8.11) is true. Let J ¢ &/ ¢ # and h = max;cy jeg\o (@; — v;;). We will show
that max;cy jes\w(aj — vj;) > h, which is tantamount to (3.4). If ~ = —o0,
there is nothing to prove. If A > —oo, choose i € & and j € #\& such that
h = a; —v;j and consider a path from j to i at height A. Select the first entry
this path into &7, to get k € £\, [ € o such that a; — vy > h. Conversely,
to deduce (3.11) from (3.4), fix i, j € # and write h = a; — v;;. Consider the
set o ={jlU{k e #:j—4 k}. We have maxjsey jep\ o (@r — Ur) < h, by
definition of &7. If i € #\ &7, this would contradict (3.4). Thus, i € &/. O

LEMMA 3.2. System (aj,i € #) satisfies (3.3) and (3.6) if and only if the
relation defined by (3.9) with respect to this system has the property:
(8.12) i—>oJj foralli,je R.
Condition (3.7) holds iff
(3.13) iAok foralliec Rand k¢ R.
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Condition (3.8) holds iff
(3.14) foreveryh, i—>nk, ic Rand k¢ R implyi—y jforall je R

PROOF. Obvious. O

Conditions (3.10)—<(3.14) are sometimes much easier to check than (3.4) and
(3.6)—3.8).

LEMMA 3.3. Suppose (a;,i € #) and (a},i € #') are coalitions. If #NR' #
&, then there is c € R such that o, = a; +cforallic #NR'.

PROOF. Choose constants b and b’ such that a; + b = ) + &' for some
i € #NA. By symmetry, it is enough to show that a; + b < o} 4 &’ for all
e #ZNAH. Let
A ={ieRNR :a;+b>a;+b}, A ={ieRNR :ai+b=<a;+b}.
We know that &/’ # J and we claim that &/ = J. Suppose the contrary. Then,
max(a’L +b - vij)
14
Jjgs
= max (o + b —vi;) Dby (3.8) for (aj,i € #')
le
je#\of
< mz};( (a; +b—v;j) by definition of &/
le
jeR\ot
< max (a; +b—v;;)
ieR\A'
JjeR\A
= max (a; +b—v;;) by (8.8) for (a;,i € #)
I N
Jje’
= max (a;j+b—-vj;) by (3.4) for (a;,iec R)
e\’
jeot'
<max(a; +b—vj)
¢’

je'

< mi}(a; + & —v;j) through a similar chain of inequalities.
115
gt ‘
Thig is impossible and the proof is complete. Note that we have tacitly used
(8.6); the foregoing strict inequality is justified in view of the fact that its left-
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hand side is finite. This fact follows from (3.6), because &7 # Jand #'\ o # O,
by assumption. O

LEMMA 3.4. If (a;,i € #) and (a},i € R) are coalitions (with the same
domain #) of the same height o, then o = a; for all i € %.

PrOOF. Obvious. O

LEMMA 3.5. Suppose (a;,i € #) is a closed coalition of height ¢ and (o}, i €
R') is a coalition of the same height o. Then either #NR =B or X' < R. If
R' C R, then there is ¢ > 0 such that o, = a; +c forall i € #'.

PROOF. Suppose # N #' # . By Lemma 3.3, we can choose constants b
and & such that @; +b=a, + b for alli ¢ ZN X' If #\# and #\#' were
nonempty, we would have

max (a; + b —vjj)

eRNR
jeR\#'
< max (o} +b —v;;) by (3.8) for (aj,i € #')
ieRNA
JER\R
= max (ai +b— Uij)
ieANR
JjER\R
< max (a; +b—v;;) by (3.6) and (3.7) for (a;,i € #),
ie#NR
JER\H'

which is impossible. Thus, #' € # or # C #'. If # C #, then
0+ =max(a;+b') =max(a; +b) <o +0b,
iex iex
so b < b and we can set ¢ = b — b to conclude. If # C #', then b < ¥/, by a

similar argument. From this, we can infer that # = #'. Indeed, #'\# #
would imply
b> max (a; +b—v;) > max (a;+b —v;) =¥,
ieR ieR

JER\R jeR\R

by (8.7) for (a;,i € #) and (3.6) for (a},i € #'). O

LEMMA 3.6. If (a;,i € #)and (d},i € #') are closed coalitions of the same
. height o, then either #N R =D or # =R and a; =« for all i.

PrOOF. Obvious. O
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The following two lemmas will directly lead to the algorithm for computing
all closed coalitions. Given a system («;,i € #) and sets & C 2, # C ./, we
will write

A >, B ifi—y jforsomeic o, je A,

with respect to (;,i € #). Recall that relation i —; j was defined for j not
necessarily in #.

LEMMA 3.7. Let (a;,i € #1),...,(a;,1 € P,) be coalitions of height o such
that their domains #1,..., #n are disjoint. Set hj, = max;cy, j¢m,(a; — Vij) >
0, k=1,...,m, and suppose

K1 —>h K2 —hy Bm by #1,

where the kth arrow is understood with respect to (a;,i € Ry). If we let # =
HR1U.---U R, and

& =a;,—(hy—h) forie R,

where h = min(h,...,hn), then the system (&;,i € #) is a coalition of
height o.

PROOF. Let us recall the conditions appearing in the definition of coalition
and invoke Lemmas 3.1 and 3.2. We are going to check that conditions (3.10),
(8.12), (3.14) and (3.5) hold for (&;,i € #). Rewrite the sequence of arrows as

.@1 —)ﬂ Qg —>ng ——)ﬁ gl:

all arrows with respect to (&;,i € #). If i € #;, and j € #p.1, then i =i J
with respect to (&;), because («;,i € #;) has property (3.14). The same applies
toi e £, and j € #;.Thus,i —; jforalli, j € #.Ontheother hand, i A j
with respect to (a;) for A > fL, whenever i € #; and j ¢ #p, by definition
of h. This shows that (3.14) is true for (&;). To verify that (3.10) holds for
(a;,i € #), consider two cases. If i € #; and j € #;, k # [, theni —; j,
j—jiandiy j, jAhiforevery h > k. If i and j belong to the same %y,
for some k, use the fact that («;, i € #1,) satisfies (3.10). Properties (3.12) and
(3.5) are ensured by the choice of A. O

LEmMA 3.8. Let (a;,i € #1),...,(a;,i € RBm),(a;,i € Rmy1) be coali-
tions of height o such that their domains, #1,..., $m+1, are disjoint. Set
hy = max;eg, jew,(a; — ;) >0, k=1,...,m, and suppose

K1 —>hy K2 —~hy Rm by Pmils

where the kth arrow is understood with respect to (a;,i € #p). If (a;,i €
Rmi1) is closed, then #1 U --- U Ry, is disjoint from domains of all closed
coalitions of height o.
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PROOF. Suppose the assertion of the lemma is false. Select the greatest &,
1 < k < m, such that %, is not disjoint from domains of all closed coalitions of
height ¢. By Lemma 3.5, there is a closed coalition («},i € #’) of height ¢ such
that £, C #'. We claim that #'\#;, # . Indeed, the coalition with domain
A}, is not closed, because A, > 0. It is impossible that #; = #’, because this
would imply the corresponding two coalitions coincide, by Lemma 3.4. Now,
Lemma 3.5 gives a; = a; + ¢ for all i € #;. We have A;, = max;cg, jex, (¢, +
€—Vjj) > ¢ > maXecg, e (a; +c—v;j), because (o}, i € #') satisfies (3.6) and
(8.7). This contradicts the assumption #; —p, #ry1. Indeed, #p,1 C A\ 2.
If £ < m, the last inclusion follows from Lemma 3.5 in view of the choice of
k. If k = m, it follows from Lemma 3.6, due to the fact that (a;,i € 1) is
closed. O

Now we are in a position to describe the algorithm. We will need some more
definitions and notational conventions. All coalitions produced in the course
of computations will have the same height ¢. Therefore, Lemma 3.4 allows
us to abbreviate “coalition (a;,i € #)” to “coalition #.” Say a coalition is
open (at height p) if it is disjoint from all closed coalitions of height o. The
fact that a given coalition is closed depends on the coalition itself and can be
verified if falsified directly. On the other hand, the fact that a given coalition
is open depends on its “environment.” Each of the coalitions to be dealt with in
the algorithm will be assigned to one of the following three categories: closed
coalitions, coalitions known to be open and nonclosed coalitions that are not
known to be open. Coalitions of the third category will be called unlabeled. An
unlabeled coalition may be open or may be a proper subset of a closed coalition
(Lemma 3.5). The idea behind the algorithm is simple. We aggregate disjoint
coalitions until we get coalitions that are either closed or open.

ALGORITHM
Input. (v;j) and o.
Output. The family of all closed coalitions of height o.

Start. Begin with a family of all singleton systems (a; = o,{i}). They are
coalitions, of course. Find out which of them are closed.

Step. Consider a family (indexed by ¢) of coalitions («;,i € #;) of height o,
with disjoint domains #; such that | J, #; = .. Select a nonclosed unlabeled
coalition, say #;,. Set A1 = max; P, j¢5?¢1(ai —v;;) > 0 and find another
coalition #,, such that #; —j,, #:,. If #;, is unlabeled, repeat the same
procedure with #;, and so on. The resulting sequence

gtl —>hy «99:2 > hy t

either contains a cycle or ends at a labeled coalition (closed or open).
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e If a cycle obtains, apply Lemma 3.7. Replace those coalitions that form the
cycle with one larger coalition. Check whether the new coalition is closed or
not. If it is not closed, leave it unlabeled.

o If a labeled coalition appears at the end of the sequence of arrows, label all
its predecessors in this sequence as open coalitions.

Repeat.

Stop. If every coalition of current generation is either closed or labeled as
open, stop.

THEOREM 3.1. In a finite number of steps, the algorithm produces all closed
coalitions of height o.

PROOF. Each step decreases the number of coalitions that are unlabeled,
so the algorithm must stop. Lemma 3.7 shows that the procedure of praducing
new coalitions is correct. Notice that once a coalition has been laheled, it will
not be altered by the algorithm. Thus, Lemma 3.8 shows by induction that
the procedure of labeling open coalitions is correct. The very form of the stop
criterion guarantees the desired result. O

The rest of this section contains results that will not be used until Section 6.
The algorithm consisted of building larger coalitions from smaller ones. Now,
let us try the other way around and sketch another approach. Begin with a
large coalition of big height 7 and look for its subsets that are closed coali-
tions of height ¢ < 7. This makes sense if a large coalition is known. We will
encounter such a situation in Section 6. Now, recall a result of Connors and
Kumar (1989).

LEMMA 3.9 (Connors and Kumar). If (3.1) holds, then for any sufficiently
big 7 > O there exists a coalition (A;,i € ), with the domain equal to the
whole space of height T.

PRrROOF. In consecutive steps of the algorithm, whenever a closed coalition
with a domain smaller than .” appears, add a sufficiently big constant to all
a;’s. The coalition will cease to be closed, O

Given 7, the system (A;) spoken of in Lemma 3.9 is unique, by Lemma 3.4.
Connors and Kumar called (A;) the solution to the “modified balance equa-
tions.” If the chain is irreducible, all closed coalitions of height ¢ can be iden-
tified in terms of the system (A;).

LEMMA 3.10. Suppose (A;,i € ) is a coalition of height 7 and ¢ < 7. If
(a;,i € R) is a closed coalition of height ¢ and m € # is such that ap = o,
' then ’

(3.15) forall je /,m—,, _, jwrt (X;) implies Aj < Ay,
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R={jeS :m—,, _,jwrt. (1)}

(3.16) and for all j e 2, aj=Aj — An+o0.

Conversely, if m satisfies (3.15) and the system (a;,i € #) is defined by (3.16),
then it is a closed coalition of height o.

PrROOF. If(a;,i € #) is a coalition, then Lemma 3.5 shows that «; = A; —c¢,
all i € #. Fix m such that a, = ¢. We obtain ¢ = A,, — g. Ifi € # and
Ai — Ui = Ay — 0, then a,—vu >0 and j € #, by (3.13). Thus, m —, I
w.r.t. (A;) implies j € # and a; < ap, so AJ <An.If je R, thenm —( jwrt
(i) by (3.12) and consequently, m —,,,_, j w.r.t. (1;). We have verified (3.15)
and (3.16). The converse part is easy. O

Property (3.15) characterizes states belonging to tops of closed coalitions of
height o. Note that if m satisfies (3.15), m > im—e M’ and Ay = Ay, then m’
also satisfies (3.15) and both the states belong to the top of one closed coalition.

- We think Lemma 3.10 has some intuitive appeal. We do not think an algo-
rithm based on it would be efficient, even if we take (A;) for granted.

4. Recurrence and transience. Now, return to our Markov chain (X,,)
and its asymptotics. We are going to exploit algebraic results of the previous
section and to show their probabilistic meaning. Let ( v;;) and (&,) be the
matrix and the sequence appearing in (1.1). Let ¢ be the order of cooling of
(&r), given by (2.3). Assume (2.4) holds. This assumption is not essential and
it is made merely to simplify notation. The case (2.4') could be treated in a
similar way and the results to follow would need only minor modifications.

THEOREM 4.1. (a) There is a decomposition ./ = |J, #; U € of the state
space into disjoint sets and a correspondzng decomposition Q = J,U; of the
probability space into disjoint events such that

U={X,e# io}={X,e R ult} as,
{Xp,e€ io}=C as
Moreover,
U;={X,=i io} a.s foreveryiec %,

(b) On each of the events Uy, the recurrence orders defined by (2.1) are a.s.
constant. Their a.s. values, say a;(U;), are determined by the fact that

(;(Uy),i € ;)

is one of the closed coalitions of height o, produced by the algorithm. In par-
‘ticular, the domain and the top of the coalition can be expressed as

R ={i:a;(Us) >0}, My ={i:a;(Us) =0}
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PROOF. For almost every w € (), the systems (a;(w),i € ) and
(ajj(w),i, j € /) satisfy (2.6), (2.7), (2.8), (2.9) and (2.10), by Theorems 2.1
and 2.2. We proved in Section 3 that there are finitely many, say s, distinct
solutions to this set of conditions. Each solution is a closed coalition of height
o (extended by setting —oo outside its domain). All the solutions are produced
by the Algorithm. Now, set U; = {w € Q : (@;(w)) is the tth solution } for
1 <t < s. Simply by construction, the values of recurrence orders are constant
on these events and form closed coalitions of height ¢. The domains of the
coalitions under consideration are disjoint by Lemma 3.6. Now note that
{w: X, (w) =1 i0.} ={w: aj(w) > 0} to conclude the proof. O

Note that we have defined as many events U; as there are closed coalitions
of height ¢. Without some assumptions on the initial distribution of the chain,
we cannot claim that all these events have positive probability. The following
proposition will clarify this point.

PROPOSITION 4.1. Suppose #; is the domain of one of closed coalitions of
height o. If P(Xy € #;) > 0, then

P(X,e R foralln>0)>0
and, consequently, P(U;) > 0.

The proof involves notion of periodicity, so let us defer it. In the next section
we will prove a stronger result—Proposition 5.1.

Theorem 4.1(a) and Proposition 4.1 allow us to say the domains #; of closed
coalitions of height ¢ are recurrent classes and € = .7\ U, #; is the set of tran-
sient states. Loosely speaking, the process is a.s. eventually attracted to one
of the recurrent classes and visits all its states infinitely often. Note that the
statement of Theorem 4.1(a) makes no reference to the recurrence orders, yet
its proof heavily depends on them. To explain the role played by our stand-
ing assumptions (1.1) and (1.2), we will give an example of Markov chain of
Doeblin’s type (B), for which the conclusion of Theorem 4.1(a) is false.

EXAMPLE 4.1. Let . = {0,1,2,3} and let the transition probabilities
P(Xn41 = jlXn =1i) = pij(n) be

p1o(n) = peo(n) =1, pso(n) =1-n"2

pss(n) =n=2, pos(n)=1-n71,
(n) = 0, if n is even, (n) = n~l, ifn is even,
Po1tt) =1 p-1" ifnis odd, Po2it) =10,  ifnis odd.

This is clearly not a chain with regularly diminishing transitions. It is easy
to see that the tail o-field of this chain has two atoms:

A1={X2n+1=0 i.O.}={Xn=1 i.O.},
A2={X2n=0 i.O.}={Xn=2 10}
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If 1 ={0,1,3} and .2 = {0,2,3}, then A; = {X, € ./1 ult.} and Ay =
{X, € /2 ult.}. However, the sets /1 and ./ are not disjoint.

The preceding example sheds some light on the role of Lemma 3.6 in the
proof of Theorem 4.1. In fact, this lemma is the only result of Section 3 needed
to prove that there exists a decomposition of . into recurrent classes #; and
the transient set €. The remaining part of Section 3 shows how to identify
the decomposition in algebraic terms.

5. Atoms of the tail sigma field. It will turn out that chains with reg-
ularly diminishing transitions display essentially no more patterns of asymp-
totic behavior than homogeneous ones. The events U; defined in the preceding
section are not necessarily atoms of the tail o-field, yet their decomposition
into atoms is surprisingly simple. Our main tool will be the method of two
particles due to Doeblin, in conjunction with our theorems concerning the re-
current classes. For our purposes, the Doeblin’s trick can be summarized as
follows. Recall that the chain (X,) is defined on (Q,%,P). Let (X!) and
(X2) be two copies of (X,). Let X, = (X1, X2) be defined on Q x Q by
X, (w1, w2) = (X}(w1), Xﬁ(wg)). Equip Q x Q with the product measure P xP
to get the double chain, consisting of two independent copies of the original
one. The following lemma is valid for arbitrary Markov chains. It is probably
well known, yet we will give the proof for completeness.

LEMMA 5.1. Assume A € J and P(A) > 0. If for some i € . we have
(5.1) AxAc{X,=(X}, X2 =(ii) io} as [PxP],
then A is an atom of the tail o-field .

PROOF. Suppose, contrary to our claim, that there exists B € 7, with

B c A, such that P(B) > 0 and P(A\B) > 0. Let ¥ o, = 0(X,,n > 0). By the
Markov property and the Levy’s 0-1 law [see Durrett (1991), 4.5.6],

(5.2) P(B|X,)=P(B|%,)>P(B| %) =1(B) as.

For clarity, write the two copies of Q as Q! and Q% Now X, = (X}, X2) lives
on Q! x Q2. For j = 1,2, let B/ and A/ be the copies of B and A, respectively,
on /. By (5.1) and (5.2) we may find w; € B! and w; € A%\ B2 such that

(5.3) X, (01,02) = (i,i) io.
P(B'|X!)(w1) > 1 asn— oo,

and 4
P(leX,Ql)(a)g) —- 0 asn— oo

Let (n;) be the sequence of moments when X, (w1, w2) visits (Z,7), that is
no = —1, npy1 = min{n > nj : X:(@1) = i = X2(w2)}. This is an infinite



280 W. NIEMIRO AND P. POKAROWSKI

increasing sequence of integers, in view of (5.3). Because for j = 1,2 and
all &,

P(B’ | X] )(w;) =P(B/| X}, =i) =P(B| X,, =1),

we have contradictory convergeh(:e statements for P(B | X, =i). O

Now, return to the chain (X,) with regularly diminishing transitions and
invoke Theorem 4.1. Of course, we can restrict our description of atoms of
J to those contained in one of the events U;. Fix ¢, write U for U, and
# for the corresponding recurrent class #;. Let (a;,i € #) be the corre-
sponding closed coalition, that is, a;’s are values of the recurrence orders
on U. Recall the reachability relation (3.9) introduced in Section 3. Now we
have to keep track of the lengths of underlying paths. If there is a sequence
i =i(0),i(1),...,i(r) = j (consisting of precisely r + 1 states), which is a path
at height A leading from i to j, we will write i —j j (r steps). Write i — i
(0 steps) if a; > h. The system (a;,i € #) is fixed and notation i —j j will
refer to it whenever i, j € ./, that is, whenever we deal with the single chain.
It will be helpful to look at # as a set of nodes of a graph. We say that direct
transition from i to j is recurrent if i —¢ j (1 step), that is, if a;j = a; — vij >0
or, equivalently, {X, = i,X,41 = j i0.} = U. Equip # with arcs (i, j) cor-
responding to recurrent direct transitions. We say the resulting graph has
period d, if for all i € #, i —¢ i (r steps) implies that r is a multiple of d.
If d is the largest number with this property, we call it the proper period. If
the graph has proper period d, the class # can be decomposed into disjoint
periodic subclasses #'P), 0 < p < d — 1, such that i € 2P) and i —¢ j (r
steps) implies j € 2P+ ’), where p +r is understood modulo d. The preceding
definitions and facts are borrowed from the classical theory of homogeneous
chains, so we omit details. Note, however, that the setting is different. The
graph of recurrent direct transitions is not equal here to the graph of possible
direct transitions.

THEOREM 5.1. Let # be a recurrent class and U = {X, € # ult.}. Sup-
pose the graph of recurrent direct transitions in # has proper period d > 1
and let 2P, 0 < p<d —1, be the periodic subclasses. The events

AP =X, e 2P 0} ={Xpge PP ult}, 0<p<d-1,

if nonnull, are atoms of the tail o-field 7 and U< < q-1 AP =T a.s.

PROOF. It is obvious that {X,q € 2P io0.} = {X,q € 2P ult.} and
Uo<p< ¢-1 AP = U a.s. For definiteness, we will consider, say A, and show
it is an atom of .77, provided that P(A©)) > 0.
~ Consider the double chain (X, ). By Remark 1.4, this is a chain w1th reg-
ularly diminishing transitions. Elements and subsets of the product space
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# x . will be denoted by underlined letters. We have

AQ x AO {X,eZ ult} as, where £ = U PP x PP,
O0<p=d-1

because A = {X,; € 2O, X441 € 2V,..., Xpgia1 € P9V ult.} as.
The theorem will be proved if we show that & contains precisely one recurrent
class # of the double chain and there exists m € # such that (m,m) € #.
Indeed,

{X,e2 ult}={X,e# ult.}={X,=(m,m) io} as.

will follow from Theorem 4.1, and application of Lemma 5.1 will conclude the
proof.

Let us first construct a closed coalition («;,i € £) of height ¢. Our tools
here will be Lemmas 3.1 and 3.2. For i € 2, set

o = +ai, — 0.

We check that the system (a;,i € £) satisfies (3.11). Indeed, fix i, J €< and
note that «; — vij = h1+ he — o, where b = a;; —v;,j, and hg = a;, — vj, j,, by
Remark 1.4. Now use the fact that («;,i € #) satisfies (3.11). We have

i1 > J1 (1step), j1—p i1 (7 steps, say),
iZ > hy jZ (1 Step), j2 > hy i2 (S StepS, Sa}’).

We may assume r > 1 and s > 1. We can repeat cyélicaily the paths from i,
to ji to i1 and from iz to j; to ig, obtaining

J1—n 11 (r+1)(s+1) — 1 step),
J2 =y iz ((r +1)(s+1) — 1 step).

Now, as the number of steps on each coordinate is the same, we can compose
the two paths into a single path in the product space. Note that all states of
this path belong to &2, because one step moves each coordinate from, say, 2(?)
to @(ptl), Therefore, we get j —p,44,—o .. We have verified property (3.11).
Now we wish to arrange that (3.12) and (3.13) be fulfilled. To this end, let us
restrict the domain of the system («;). Choose m belonging to the top .# of
the coalition (a;,i € #), that is such that a,, = ¢. Set

#Z={icP:(m,m)—>oi}.

System (a;,i € #) satisfies (3.12) and (3.13) by construction [it is easy to see

that no states outside & can be reached at height 0 from (m,m)]. It is also

clear that (3.11) remains true if the domain & is restricted to #. Property (3.5)

is obvious. We have built a closed coalition of height ¢ with (m,m) belonging

to its domain #. We are left with the task of showing that this is the only
such coalition inside £. .

" Suppose (a,i € #') is another closed coalition of height ¢. Because the

recurrence orders for the double chain cannot exceed the recurrence orders
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for each coordinate, ; < min(a;,, @;,). Thus, the top of £’ must be a subset of
A x # ,where .# is the top of #. We will argue that #’ cannot be a subset of
Z (in fact, £’ must be disjoint from &), because the coalition # constructed
previously contains (.# x .#)N £. We claim that

ifmie 4 NPP and iy, jo € 2P,

5.4
G4 then (my,iz) =0 (my, j2) wrt. (a;,i € £).

Indeed, we have
my —, my (sd steps) for some s > 1,

by property (3.10) for the system (a;,i € #). Of course, s can be replaced
by its multiple, because the path can be repeated cyclically. For the second
component, we have

ia —o j2 (rd steps) for all r sufficiently large,

because d is the proper period of the graph of recurrent transitions. We can
choose 7 to be a multiple of s. Composing coordinates along two paths of the
same length, in the same way as in the preceding part of the proof, we get
(5.4). The rest is easy. Let mi,mg € .# N #P), Consider m appearing in the
definition of #. If, say, m € .# N %?, then moving p steps along an arbitrary
path at height o we get (m,m) —, (m}, mj) for some m/,m; € .# N P(p),
Apply (5.2) twice to obtain

(m,m) —, (m},my) —¢ (m},mg) —o (m1,mz) wrt. (a;,i € £).

We have shown that (m1,mg) € #. Therefore, Z > (A4 x #)NZF. O

The following Proposition 5.1 is an extension of Proposition 4.1. Note that
the terms “recurrent class” and “domain of a closed coalition of height ¢” are

synonyms.

PROPOSITION 5.1. Suppose #'P), 0 < p < d — 1, are periodic subclasses of
a recurrent class R. If. say, P(Xo € 2©) > 0, then

P(X,q1p€ PP foralln>0and 0<p<d-—1)>0.
Consequently, P(A(®) > 0.

PROOF. For clarity, let us treat separately two cases.

Case 1. Assume d = 1, that is, the graph of recurrent direct transitions
is aperiodic. We are to show that P(X, € # foralln > 0/X, = i) > 0 for
all i € #. Imagine we have removed all other recurrent classes, leaving only
# and its neighborhood. Consider the process confined to this set of states.
More precisely, the new state space will be .” = # U €&, where ¢ =1{j €S
Jj ¢ # and there is an i € # such that v;; < oo}. Let P(Xn+1 = J|X,, =

i) =P X,;1 = jlX,=i)fori € # and j € S Ifi e €, let P(X,,+1 =
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J1X, =i) = c;j for all n, where ¢;; > 0 for j € # and ¢;; = 0 for j € €.
The modified chain ( X,) has the same transition rule inside . Moreover,
(X,) satisfies the basic assumption (1.1) (with vu =vjforie #,je e
0 =0fori e €,je # and v; = oo for i, j € €). It is easy to check that
the modified chain has just one recurrent class, namely, #. The new process
behaves exactly like the original one until it hits €. So, we are reduced to
proving that P(X, ¢ #foralln > 0|Xo=1i)>0foralie R Suppose,
contrary to our claim, that

(5.5) P(X,e#foralln>0|X,=i)=0 for someic Z.
This implies that for all % sufficiently large,
(5.6) P(X,e#foralln>k|X,=j)=0 forall je 2,

because to each j there corresponds i such that the process can move with
positive probability from Xy =i to X, = j, without leaving #. Here we have
used the assumption of aperiodicity. Thus, we get

5.7 P(X,c ¢ forsomen>Fk|Xo=i)=1

and so P(X, € € i.0./Xo =i) = 1, which is impossible. Theorem 4.1 can be
applied to the modified chain (X,), yielding P(X, € € i.0.|Xo=i)=0

Case 2. Assume d > 1. The idea of the proof is similar, but we need another,
more delicate modification of the chain (X, ). Let the new state space be . =
RUE, where € = # x {1,...,d—1} and identify # with # x {0}. Let RT =
{(i,j) e Zx R :i—o j(1step)} be the set of arcs of the graph of recurrent
direct transitions. For i,j € #,set P(X,11 = j | Xpn =1) = P( X010 = J |
X, =1),if (i, j) € RT, otherwise zero. Define probabilities of transition from
Rto € by P(Xpp = (i,1) | X, =i) =1~ Z]EQP(XrH-l =Jjl X, =1.
Transitions inside € and from € to # are the following: P(X np1= (I, p+1)|
X,=(,p)) =1, where p < d and p + 1 is understood modulo d. We claim
again that &% is the unique recurrent class of the chain modified in this way.
Using Lemmas 3.1 and 3.2, it is not hard to check that the closed coalition
(ai,i € #) remains a closed coalition for the modified chain and becomes the
only one. Now, the key fact is that the graph of all possible transitions of (X )
has proper period d. Behavior of (X,) and (X,) is the same until the first
nonrecurrent transition occurs. Therefore,

P(X,q4p € 2P foralln>0and0<p<d-—1)
>P(Xoe 29,(X,, Xns1) € RT for all n > 0)
—P(Xoe #9,(X,, Xni1) € RT for all n > 0)
=P(X,4.pc PP foralln>0and0<p<d—1)
=P(Xoe 20, X, e # for all n > 0).
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To show that P(X, € #foralln > 0| Xg=i) > 0, i € 29 we argue as
in the first part of the proof, with the following adjustments. If (5.5) holds for
some i € 2, then we can only claim that (5.6) holds for all j € 2¥), modulo
d. Anyway, we get (5.7), because P(X, ¢ 2 | Xy e 2)=0. O

6. Simulated annealing. Markov chains, generated by the classical sim-
ulated annealing algorithm [Kirkpatrick, Gelatt and Vecchi (1983); see van
Laarhoven and Aarts (1987)] can be described as follows. Suppose ./ is a fi-
nite set and to each i € ./, a number w; is assigned. Let (cij,i,j € /) bea
stochastic matrix. Consider Markov chain (X,) with transition probabilities
given by

;.0 . .
P(Xp=j| Xn=i)=cyeg™ 9 j%j

OV PXpu=il X =i)=1- L P(Xa = j 1 Xa =),
J#i

where the sequence (&,) satisfies (1.2). We will also assume that the order of
cooling ¢ satisfies (2.4). The w;’s should be regarded as values of an objective
function. The goal is to find m such that w,, = w,, where w, = min;c , w;.
Matrix (c;;) describes random search. Formula (6.1) comprises both the gener-
ation of subsequent tentative solutions and the acceptance rule. The process
defined by (6.1) is, of course, a chain with regularly diminishing transitions.
We have

[ max(w; — w;,0), ifi# jandc; >0,
00, ifi # jand ¢;; =0,
O, ifi = J and Cii > 0,
(6.2) v;; =1 oo, ifi = j,c;; =0 and w; < w; for all &
such that ¢;z > 0,
0, if i = j,c; = 0 and there is &
such that w; > w; and ¢;;, > 0.

To explain why the three cases with i = j appear in (6.2), notice that (6.1)
implies
P(Xnp=i| Xp=i)=ci+Y call— ey,
i

If wp > w;, then 1 — gp#Wi=#u0) oxceeds 1/2 for large n; otherwise it is zero.

From Theorem 4.1, 1t is easy to derive necessary and sufficient conditions
for reaching the set f ={m : wy = w,} of global minima with probability 1.
We are going to state one of such conditions in a way resembling the result of
Hajek (1988). It was Hajek who introduced the notion of “reachability at height
h.” Let us first make clear the distinction between his definition and ours.
From now on, assume the search matrix (c;;) is irreducible. Consequently,

.(3.1) holds. Fix 7 big enough. Suppose

(6.3) (Ai, 1 € /) is the coalition of height 7.
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Formula (6.3) should be regarded as a definition of the system of numbers
(A;). Correctness of this definition is ensured by Lemmas 3.9 and 3.4. Note
that the role of 7 in (6.3) is only to “fix the origin of coordinates,” informally
speaking. By Lemma 3.1,

(6.4) foralli,je .” and all h,i —5 j wrt. (A;) implies j — i wrt. (A;).

On the other hand, define another system (A}, i € ). To simplify notation,
assume w, = 0. Set

(6.3) Xo= 17— wi.

Note that if ¢;; > 0, then w; + v;; = max(w;,w;) and, therefore, A, — v;; =
7 —max(w;, w;). Thus,

i —>.p J,wrt. (X)) ifi = j and w; < h, or there exists a sequence
of states i = i(0),i(1),...,i(r) = Jj such that
Ci(s-1)its) > 0 for 1 < s < r and w;i) < A for
O<s=r.

We see that Hajek’s relation of “reachability at height A” is precisely our —,_,
with respect to (A;) given by (6.3'). Consequently, Hajek’s “weak reversibility”
condition is equivalent to the following statement:

(6.4') foralli,je ./ and all A,i —j j wrt. (A]) implies j —j i wrt. (A)).

The difference between (6.4) and (6.4') is that the former is a consequence of
definition of the system (A;), whereas the latter is an assumption.

LEMMA 6.1. Consider the simulated annealing chain with irreducible (c;;).
If the weak reversibility condition (6.4') is fulfilled, then the system (A;) defined
by (6.3) is equal to the system (A}) given by (6.3").

PROOF. Follows immediately from Lemma 3.1. O

Note that combining Lemma 6.1 with Lemma 3.10 we get Theorem 5 in
Connors and Kumar [(1989), the Potential Theorem].

Unfortunately, general conditions for reaching < a.s. turn out to be just as
simple (or as complicated) as conditions for reaching any other subset of ..7.

PROPOSITION 6.1. Consider the simulated annealing chain with irreducible
(cij). The following three statements are equivalent:

(1) For every i we have P(X, € & for somen | Xg=1) =1
(i) & N R; # D for each recurrent class #;.
. (iii) For every i € .” there is j € & such that i —,,_, j with respect to the
system (A;) given by (6.3).
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PrROOF. The fact that (ii) is equivalent to (i) follows straightforward from
Theorem 4.1 and Proposition 4.1. To prove that (iii) and (ii) are equivalent, use
Lemma 3.10 from Section 3. Condition (iii) implies (ii), because if m —, _, Jj
and m € .#,,then j € #,, by (3.16). To show that (iii) follows from (ii), suppose
i # -0 J for some i and all j € 4. Consider the set &7 ={j:i —,,_, j}. &
is nonempty because i € .27. Select m € & such that A, = maxjc, A;. Then
m satisfies (3.15) and so it belongs to some .#;. We have #; N & = (J for the
corresponding recurrent class. O

If the weak reversibility assumption (6.4') is fulfilled, we can replace (A;) by
(A})in (iii) and we obtain the condition, under which Hajek proved convergence
in probability of simulated annealing to the set of global minima. Let us stress
that if (6.4') fails, Proposition 6.1 remains true, yet system (A;) is no longer
equal to (A]) and it is no longer directly expressible in terms of the objective
function (w;). To illustrate this point, consider an example.

ExamPLE 6.1. Let . = {0,1,2,3} and w; = i, for all i. The set of global
minima is 4 = {0}. Assume &, = n"!, so ¢ = 1 and (2.4) holds. Assume that
¢;; = 0 for all i. The following four cases correspond to four ways of defining
the “neighborhood structure,” that is, positions occupied by nonzero entries in
the matrix (¢;;).

(a) Assume co1 > 0, c12 > 0, co3 > 0, ¢19 > 0, c21 > 0, ¢30 > 0 and ¢;; = 0 for
all other pairs i # j. Condition (6.4') holds and we have

d=M=1, M=MN=1-1, dg=A=7-2, A3=N=r1-3.

There is one recurrent class # = {0, 1}. ¢ is reachable with probability 1.
(b) Assume co; > 0, c12 > 0, c23 > 0, co1 > 0, c30 > 0 and ¢;; = 0 for all other
pairs i # j. Condition (6.4’) fails:

)\0:7‘——1, /\1=7‘, /\2=T—1, /\3:7——2.

Now, there is one recurrent class # = {1,2}. 4 is not reachable with
probability 1.

(c) Assume cp1 > 0, c12 > 0, c23 > 0, c30 > 0 and ¢;; = 0 for all other pairs
1 # j. Condition (6.4') fails:

A =A1= A2 =, Ag=71-—1.

The whole ./ becomes a recurrent class. ¢ is reachable with probability 1.
(d) Assume cp2 > 0, c¢13 > 0, cg3 > 0, c30 > 0, ¢31 > 0 and ¢;; = 0 for all other
pairs i # j. Condition (6.4') fails:

Ao =T, AM=T, Ao=7-1, A3=171-2.

There are two recurrent classes: #; = {0} and #2 = {1}. # is not reach-
able with probability 1. O
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To conclude this section, let us point out an application of Theorem 5.1.

PROPOSITION 6.2. Consider the simulated annealing chain with irreducible
(cij). Assume the objective function (w;) is not constant. The following three
statements are equivalent.

(i) The chain is weakly ergodic.
(ii) There is only one recurrent class.
(iii) For every pair of states i, j € ./, there is k € ./ such that i —),_, k
and j —);_o k with respect to the system (A;) given by (6.3).

PROOF. By Theorem 8.1 in Cohn (1987), the chain is weakly ergodic iff the
tail o-field is [P] trivial for every initial distribution. Therefore, (i) implies (ii).

To show that (i) follows from (ii), use Theorem 5.1. We are going to check
that the unique recurrent class, say &, does not have periodic subclasses.
Begin with the observation that there exist states i € # and j € . such that
cij > 0 and w; > w;. Indeed, if it were false, i € # and i — j [reachability in
the sense defined by (3.2)] would imply w; < w; and hence j € %, by induction,
in view of (6.2) and (2.6). Then we could use the irreducibility assumption (3.1)
to deduce w; = const, contrary to the assumption. If ¢;; > 0 and w; > w;, then
v;; = 0, by (6.2). Therefore, we can find i € &# such that v;; = 0, which implies
that the graph of recurrent direct transition is aperiodic.

Now, we verify that (ii) is equivalent to (iii). Suppose (ii) holds. Let .# be
the top of the unique recurrent class #. We claim that i —,,_, kfor alli € .7
and k € .#. Indeed, if i /), _, k, then consider &/ = {j:i —,,—, j} and select
m € & such that A, = maxjc Aj, just as in the proof of Proposition 6.1. It is
clear that m and % belong to tops of two distinct recurrent classes, contrary
to (ii). Thus (ii) implies (iii). Converse is easy. If two recurrent classes exist,
say #1 and H#,, select i € .#1 and j € .# 5. If (iii) were true, we could find %
belonging simultaneously to #; and %3, which is impossible. O

EXAMPLE 6.2. Let us return to the four cases in Example 6.1 to illustrate
Proposition 6.2. The reachability relation is understood with respect to (A;).

(a) We have i —,, O for all i, because 0 —, 0,1 —,_1 0,2 —,_o 0 and
3 —>r-3 0.

(b) We have i —,,_1 1 for all i, because 0 -, 1,1 -, 1,2 —,_; 1 and
3 —>r—9 1.

(c) We have i —,,_1 1 for all i, because 0 —, 0,1 —,_1 0,2 —,_1 0 and
3 —>r-1 0.

(d) Now, \g=A1=7;wehave 0 A, _1ifori#0and 14,11 fori#1.

Under additional assumptions; strong ergodicity can be deduced from weak
ergodicity. Well-known general theorems or the results of Anily and Feder-
gruen (1987) can be used.
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7. Concluding remarks. The literature on tail events of nonhomoge-
neous Markov chains is fairly large. Let us mention Cohn (1976, 1981, 1982,
1987) and Mukherjea (1985), who treated the problem in a more general
setting than we have. There is, however, a price to be paid for the higher
generality. The results of the cited authors are much less explicit than ours.
Roughly speaking, they relate the structure of tail events to asymptotic be-
havior of multistep transition probabilities. If theorems of this kind are to be
applied to simulated annealing, their assumptions turn out to be extremely
difficult to check. For chains with regularly diminishing transitions, bounds on
P(X,.r = jlX, =1i) were derived by Tsitsiklis (1989). However, Tsitsiklis did
not examine implications of the bounds for the structure of tail evens and his
ad hoc definition of recurrent states does not seem to be appropriate. Chiang
and Chow (1989) obtained precise results on asymptotics of P(X, = ). They
worked under assumptions that force the chain to be strongly ergodic and
they were not concerned with classification of states. It is interesting to notice
that quite different approaches lead to closely related results. Algorithm II
of Tsitsiklis produces classes equal to our .#;’s, tops of closed coalitions. The
“height” function & of Chiang and Chow (with opposite sign) is the solution
to “modified balance equations” of Connors and Kumar (1989) [h(i) = 7 — A;
in our Lemma 3.9]. Detailed discussion of these connections goes beyond the
scope of this paper. Let us conclude with some conjectures. It is plausible that
limsup, P(X, =) > 0 if and only if { € |, .#,, that is, if a; = ¢ with posi-
tive probability. We think liminf, P(X, = i) > 0 if { € .#, and the graph of
recurrent transitions in #; is aperiodic. These conjectures, if proved, would
complete our classification of states, making a distinction between positive re-
current states and null recurrent states. It would follow that, in the case of
aperiodicity, chains with regularly diminishing transitions have bases in the
sense defined by Mukherjea (1984) or Cohn (1982).

APPENDIX

Hajek (1988) contrived a particularly nice example of a simulated anneal-
ing Markov chain with complex “neighborhood structure.” Let us illustrate our
Theorem 4.1 using this example. Transition probabilities of the ten chains to
be considered are given by (6.1). Figures 1-10 correspond to various sequences
(&,). Using the simulated annealing parlance, we can say the figures describe
Markov chains with various “rates of cooling.” The respective values of the
order of cooling ¢ are indicated. We omit detailed description, because all rel-
evant information can be shown graphically. Circles represent states, vertical
coordinates of their centers are equal to values of objective function w. Arrows
indicate possible transitions [corresponding to nonzero entries in the search
matrix (c;j)]. The set of states, the objective function and the “neighborhood

_ structure” shown by arrows are the same on each figure. Note that the weak
reversibility condition (6.4’) holds. We actually used Lemmas 6.1 and 3.10 to
identify recurrent classes. Recurrent states are blackened.
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