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PREDICTING INTEGRALS OF STOCHASTIC PROCESSES!

BY MICHAEL L. STEIN
University of Chicago

Consider predicting an integral of a stochastic process based on n ob-
servations of the stochastic process. Among all linear predictors, an optimal
quadrature rule picks the n observation locations and the weights assigned
to them to minimize the mean squared error of the prediction. While opti-
mal quadrature rules are usually unattainable, it is possible to find rules
that have good asymptotic properties as n — oo. Previous work has con-
sidered processes whose local behavior is like m-fold integrated Brownian
motion for m a nonnegative integer. This paper obtains some asymptotic
properties for quadrature rules based on median sampling for processes
whose local behavior is not like m-fold integrated Brownian motion for
any m.

1. Introduction. For a stochastic process Z(-) on [0, 1] with mean 0 and
finite second moments, consider linear prediction of fol v(t)Z(t) dt for a fixed
known function v(-) based on observing Z(t) at 0 < ¢; < --- < ¢, < 1. For
fixed n, an optimal quadrature rule minimizes the mean squared prediction
error among all choices of ¢1,...,¢, and of the coefficients of the linear pre-
dictor. Except in some simple special cases, it is difficult to find optimal rules,
so Sacks and Ylvisaker (1971) developed the notion of asymptotically opti-
mal quadrature rules and found such rules for processes that behave locally
like Brownian motion or integrated Brownian motion. Benhenni and Camba-
nis (1992a, b) extended these results in various directions. Considering the
close relationship between predicting integrals and estimating regression co-
efficients for stochastic processes described by Sacks and Ylvisaker (1971), the
work by Sacks and Ylvisaker (1966, 1968, 1970), Eubank, Smith and Smith
(1981) and Wahba (1971, 1974) on designs for estimating regression coeffi-
cients are also relevant for the prediction problem.

All of these works assume that the covariance function K(s,t) = cov(Z (s),
Z(t)) satisfies for some nonnegative integer m,

2m+1 2m+1
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is finite and positive on [0,1]. For Z(.) m-fold integrated Brownian motion,
(1.1) is satisfied with a,,(t) constant. More generally, since the smoothness of
K(s,t) for s — t near O controls the local mean square behavior of Z(.), any
process with covariance function satisfying (1.1) can be said to behave locally
like m-fold integrated Brownian motion, at least in the mean square sense.
As an example of when (1.1) does not hold, consider K(s,t) = exp{—0|s —
t|”}, which is a covariance function for 0 < y < 2, § > 0, and is used by
Sacks, Welch, Mitchell and Wynn (1989) to model the response surface from
a computer experiment. For this K, (1.1) only holds for y = 1, in which case
m=1and a1(¢) =26. If y < 1, then a;(¢) =ccand if 1 <y < 2, a1(¢) =0,
but as(t) = co. When y = 2, a,(¢) = 0 for all m. The results obtained here
apply, for example, when 0 < y < 2; they do not apply when y = 2.

To define the optimal quadrature problem formally, let T, = {¢1,...,%.},
with, for convenience, 0 <#; <--- <t, <1land C, =(cy,...,c,) € R". Define
for a function J from [0, 1]? to R,

e (T,,Ch) =/01/01v(s)v(t)J(s,t)dtds

n 1 n
—2Y e [ oIt dt+ 3 e (tit)),
i=1 0

i,j=1
so that
1 n
ex(Ty,Cy) = Var<[ v(Z(t)dt—Y ciZ(ti)).
0 i=1

Thus, the pair (T,,C,) defines a quadrature rule. Let D, be the class of all
n element subsets of [0, 1]. The rule (T%,C?) is optimal if
ex(T3,C}) = inf ex(Tn,Cn).
CpeR"
A sequence of rules {(T%,C%)} is asymptotically optimal if
. eK(T* ’ C; )
1 n n —
"LIEO inf ex(T,,Cp)

T.eD,,
C,eR"

1.

Asymptotically optimal rules can sometimes be based on what Cambanis
(1985) calls median sampling. Specifically, for a continuous density A on [0, 1],
define T, (h) = {tin,...,tan} by

/Otm h(t)dt =

Sacks and Ylvisaker (1971) essentially show that for m = 0 or 1 in (1.1)
with a,,(t) constant, by taking A(¢) proportional to v(¢)%/2m+3) and appropri-
ately defining C,,(h), {(T(h),Cr(h))} is an asymptotically optimal sequence
"of quadrature rules.

(¢ —(1/2))
ma—
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Sacks and Ylvisaker are able to obtain this result because it is possible to
put a sharp lower bound on the mean squared error of optimal quadrature
rules when m = 0 or 1. Eubank, Smith and Smith (1981) extend this result
to arbitrary m, but only for a very restricted class of covariance functions.
For more general covariance functions satisfying (1.1) with «,, constant, the
following is known [Benhenni and Cambanis (1992a)]: let # be the class
of positive continuous densities on [0,1] and C,(k) a sequence of weights

that appropriately corrects for edge effects. Then if A*(¢) is proportional to
v(2)2/@m+3),

C ex(Tu(hY), Cu)
12 A Facr ex (Ta(h), Co(B)) — &

Benhenni and Cambanis (1992a) also consider cases where «,, is not constant.
Note that (1.2) falls short of proving the asymptotic optimality of {(T,(h*),
Cp(h*)} in two regards. First, it is not known in general that the weights
C.(h*) as defined by Benhenni and Cambanis (1992a) do as well asymiptoti-
cally as the optimal weights. Second, even if these weights are asymptotically
optimal given the sequence of designs {7, (A*)}, the possibility that no regu-
lar sequence yields an asymptotically optimal quadrature rule has not been
eliminated in general.

The goal here is, in a sense, to extend (1.2) to cases where m is not an in-
teger. Specifically, letting K(¢) = cov(Z(0), Z(t)) for stationary Z(.), assume
for some a # 0, K(¢) — a|¢|* is smoother than K(¢) in a sense made precise
in Section 2. Then the results of Section 2 show that (1.2) holds for « < 3 but
a # 2. Making the identification « = 2m + 1, we see that previous results
only hold for a an odd integer. I expect that the results here can be extended
to include @ > 3 (but not an even integer), but that would require a more
sophisticated choice of weights [Benhenni and Cambanis (1992a)].

While this work only considers stationary processes, the extension to cer-
tain nonstationary processes is not difficult. For example, suppose Z(-) is a
fractional Brownian motion [Yaglom (1987), page 406], which is a class of self-
affine processes that has found application to fields such as music, geography
and meteorology [Voss (1989)]. Then var(Z(s) — Z(t)) = 2a|s — t|* for some
a € (0,2), so that @ = 1 yields Brownian motion. It is not possible to make
var(Z(t)) independent of ¢ for such a process, so the process is not stationary,
although it does possess stationary increments. Theorem 1 below applies to
fractional Brownian motion if we are willing to assume var(Z(0)) is finite.
Alternatively, if we normalize the ¢;’s to add up to 1, then again Theorem 1
applies without having to assume var(Z(0)) is finite. One rough interpreta-
tion of Theorem 1 when 0 < a < 2 is that for processes whose local behavior
is sufficiently similar to that of fractional Brownian motion, the problem of
predicting integrals of the process is asymptotically the same as if the process
were fractional Brownian motion.

As noted by Sacks and Ylvisaker (1971), there is a close relationship be-
tween the stochastic approach to optimal quadrature and the deterministic
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worst-case analysis commonly used in the numerical analysis literature. In
Section 3, I compare the results here to some related work in numerical anal-
ysis.

Finally, in work done independently from mine, Pitt, Robeva and Wang
(1995) obtain essentially all of the results in this work using rather different
methods of proof:

2. Results. Suppose & is a positive density on [0,1], H the correspond-
ing distribution, G = H! on [0,1] and g = G'. Then T,(h) = {G((j -
1/2)/n); j = 1,...,n}. Defining u(¢) = v(G(t))g(t), a reasonable predictor of
fol v(t)Z(t)dt = fo v(G(t))g(t)Z(G(t)) dt based on observing Z(-) on T,(h)
isn~! ” _u((j—1/2)/n)Z(G((j—1/2)/n)). So define C,(h) = (c1n,---,Cnn)
by ¢jn = (1/n)u((j — 1/2)/n).

THEOREM 1. Suppose v and G, considered as functions on [0, 1], have two
bounded derivatives with g(t) > 0 for 0 < t < 1 and that for some a > 0, either
Kit)=ap—alt|*+Q(t) forO0<a<2

or
Kt)=ap—a1t?+alt|]*+ Q(t) for2<a<3,

where Q(t), considered as a function on [0,1), has |a] + 2 derivatives,

(2.1) Q(t)=o0(t*) ast] O,

(lee)+2)
(2.2) % is bounded on [0,1]
and
(2.3) QU (¢) = o(t*"1*2) ast | 0.
Then as n — oo,

t 2

@4) ek (Ta(h),Calh) > 2alg(-a)l [ ittt

where {(-) is the Riemann zeta function..

Before proving this result, first note that it does agree with Theorem 2 of
Benhenni and Cambanis (1992a) when they both apply. If @« = 2m + 1, then
an,(t) as defined in (1.1) is identically (2m + 1)!a, so that their result implies

2m+2 |Bomi2l 1 v(8)?
n eK(Tn(h)nd(h)>n)—) 2m+2a 0 h(t)2m+2

where Bs,.s is a Bernoulli number [Abramowitz and Stegun (1965),
page 807]. The two results coincide with a = 2m + 1 by noting {(—2m — 1) =
—Bomi2/(2m + 2). This correspondence provides support to the conjecture

dt,
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that Theorem 1 applies with @ > 3 as long as the definition of C,(A) is
appropriately modified.

PROOF OF THEOREM 1. Define
e (n) = / / {u(t)u(s) J(G(t), G(s)) — u(t)uy J(G(t), Gx)
jJk
—uju(s) J(Gy,G(s)) + ujur J(G;,Gy)} ds dt,

where [; means f(JJ../_"l)/n, G =G((j—1/2)/n) and u; = u((j—1/2)/n), so that

es(n) & es(Tu(h),Cu(h)) = i e (n).
J k=

1

Letting Jp(x,y) = |x — ¥/, we then have, for 0 < @ < 2, ex(n) = ageg,(n) —
aeyg,(n) + eq(n). The basic idea of the proof is to show that the term e;,(n)
dominates the mean squared error asymptotically. By straightforward calcu-
lation, both es,(n) and e;,(n) are O(n~*), and so are o(n~*"!) for o < 3. Next
consider eg(n). By (2.1),

2.5) > eb(n)=o(n™M).
lj—kl<1

Define
1 = /J /k (w(t) — u)(u(s) — up) J(G(t), G(s)) ds dt,

1) = [ [ w(s) = un){J(G(8),G(s)) - J(G}, G(s))} dsdt and
JjJk

NI = /j/k{J(G(t),G(s)) — J(G(1),Gy) — J(G},G(s)) + J(G;,Gr)} dsdt,

suppressing the dependence on . Then
e*(n) = U* 4w JUF 4+ up 1Y 4w jus 11T

In bounding these terms, we will need the following: by (2.2) and (2.3),

/1 Q(LaJ+2)(s) ds
t

=0(1)+ O(/tl g lel-2 ds)

= o(zelel ),

so that ¢~ tlel+1Q(lel+1)(¢) is bounded on [0,1] and tends to 0 as ¢ | 0. Re-
_ peating this argument yields ¢-*l*!@(l))(¢) is bounded on [0,1] and tends

to0ast | Ounless a = 1. For a = 1, @(¢t) - 0 as ¢t | 0 by (2.1). For
2'<a <3, @)/t ! is bounded and tends to 0 as ¢ | 0 by (2.1). In all cases,

]Q(L“J+1)(t)| < |Q(LaJ+1)(1)] +
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for 1 <r < |a)+2, Q7 (¢)/t*" is bounded and tends to 0 as ¢ | 0. Defining
for j >k,

Bﬁ.;) = sup{|Q(')(t)|: Gj1—Gr <t<Gj—Gp1},

forl1<r<|aJ+2and j> k+1, wethus have

B('Ire)
J .
(2.6) G =R)ymyer is bounded
and
B("‘)
(2.7) lim sup — _ __—90

=00 1< j—k<y(n) ((] - k)/n)a—r
if y(n)/n — 0 as n — oo. Finally, the following bound will be repeatedly used:
for a function f with second derivative bounded by ¢ in a neighborhood of the
origin,

1/(2n)
2.8) [ {F@0)— FO) i < o

1/(2n

for all n sufficiently large.
Now consider Ig. For j>k+1,

Ilék] = '/J[k(u(t) —uj)(u(s) — ur)
x {Q(G; - Gx) + (G(t) - G; - G(s) + G Q(G; — Gy)) dsdtl

+%B§.§>/j/k|u(t)—uj||u(s)—uk|(G(t)—Gj—G(s)+Gk)2dsdt

= 0(n~%) + o(n—G(i;_k)a_l) N O(n—s ( 1;_k)“—2)

using (2.6), (2.8) and the assumption that u has bounded second derivative on
[0, 1]. Moreover,

Z (j—R)P < nZnﬂ = O(n + nP*?)
J—k>1 j=1

and Ig = Igj, S0

> |Ig*’| =0(n ™t +n%%) =o(n 1)
|j—k|>1

for @ < 3. Equation (2.5) allows us to handle the terms |j — k| < 1.
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Next consider IIg .Fora<2and j>£k+1,

5] < |Q(G; - Gk)//(u(S) — up)(G(t) - Gj)det‘

(2)//|u(s)—uk|{(G(t)—G )%+ 2|G(t) — G;1IG(s) — Gyl} ds dt

ol () ) ol (57

yielding

> |uIf | = 0(n 7 +n7%) = o(n™Y)
|j—Fkl>1

fora<2. For2<a<3and j>£k+1,

| <

Gj )dsdt'

+§@%@—Gwéﬁww»mw

x [(G(t) — Gj)? — 2(G(t) — G))(G(s) — G4} dsdt' +BY0(n™®)

=0(n%) + O(n'G(L;—k)a_3),

yielding

> |ul IJk] o(n™) =o(n~*1).

|i—Fkl>1

To bound IIIg, first consider « <1 and j> &+ 1: |III O(B(z) —4), so
that

(2.9) > |ujur | = o(n™7%)
1J—k|>1

follows from (2.7). For 1 < a < 2, (2.9) follows from (2.7) and

- g = ‘Q”(G Gk)f/(G(t)—G )(G(s) — Gi)dsdt |+ O(BYn™®),
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and for 2 < a < 3, (2.9) follows from

II%| = O(n~%)

+ EQ@)(GJ-—Gk)/j/k{(G(t)—Gj)(G(S)—Gk)2

(2.10) 2 4), -6
—(G(2) - G)X(G(s) — G} dsdt{ +O0(BYn®)

E\O -3 ik a-4
-o((+(57) +(57) )
n n
Finally, consider e, (n). By following the preceding arguments, we have

> A 4w+ wp Il ) = o(n7179),
lj—kl>1

since this bound only requires (2.6), which is true for Q(¢) = |¢|*. Moreover, a
straightforward argument shows

A w0+ udlY ) = 0(n 29,
lj—kl<1

Thus,

217 +u Il +wdly | = o(n”' ).
Jik=1

For any function y(n) satisfying y(n) — oo and y(n)/n — 0 as n — oo,

u_ﬁ:“y(m wju, I
=, 2 e o)
ff”(t—s)g,+0(<”_k'“> )
_{( /)g1+0(<|1~:|+1)2)
_|( j—1/2 S)gj+0<<lj—:l+l)2>
(5o o((F))f

= > {4 +0(Y(nn))}g?

|j—kl<y(n)

}dsdt
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xfj/k{lt—sl"‘—‘t— k—n1/2

(24

S

“_{1—1/2_
n

. a . 1+«
+{———J k +0((———” k|+1) )}dsdt
n n
= Z ug'g‘;/‘f{n—-ﬂa—{t—k_l/z - J_1/2—S
lj—El<y(n) JJk n n
. a a+2
+‘——J k }dsdt+0((——7(n)) )

n n

so that the remainder is o(n~2"1) if, for example, y(n) = log n. Now

na+2/\./];{|t—3|a—‘t—k_nl/2 _‘1_1/2_8
J

n

a

— k
W__
n

}dsdt

1 . o . i . o
=(a—+1)(—a+—2){|‘]_k+ll 22— | — k- 1)
2 . 1a+1 . a+1 .
—a+1HJ—k+§ —{J—k—g }+IJ—kI“
for j # k and is
2 1

(a+D(@+2) (a+1)2e1

for j = k. Thus, for a positive integer r,

& E—1/2
a+2 t— a_’t_
n > fj/k{l s| ~

k=j—r

a

J-k
n

}dsdt

"

a _1
_’J /2 _
n

-2 {(r+1)*2 — pot2} - 4 (r+ l)aﬂ +2Zr:l“.
(a+1)(a+2) a+1 2 =t

For 0 < a < 3, as r — oo [Berndt (1985), page 150],

r ra+1 re ara—l
a _ _ L 1
;l {(-a)+ — + 5 + g~ o),
so that
lim —2___ {(r+1)a+2_ra+2}
rooo| (a+1)(a+2)

4 1 a+1 r N
—a+1(r+§) +2;l]=2§(—a)‘
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Using y(n) — oo, a straightforward argument yields

i 2((—&) w a 2 (_a) 1 a
. Y wupllly ~ —3 Zu?gj ~ £a+1 u(t)g(t)*dt
li—kI=¥(n) n =1 n 0

_24(-a) /1 v(t)? dt
0

natl h(t)a+1 :

For j— k> y(n), similar to (2.10),
. s a—4
|1115’i|=0<<Jnk) n'G),

. n
> |ujUkIII§Ii| =01 Y jet=o(n* ).

|j—kl<y(n) J=y(n)

so that for a < 3,

Theorem 1 follows. O

Using Holder’s inequality, it can be shown that fj v(¢)2A(¢)~*~! dt subject
to h being a density on [0,1] is minimized by taking h(¢) proportional to
v(t)¥/(@*t2 Tt follows that the unique continuous density minimizing the right-
hand side of (2.4) is

1
(2.11) R (t) = o()? 2 / v(s)¥(*+? ds
0
and in this case,
1 p(t)? ot 2/(as2) a+2
(2.12) A Wﬁdt = {/0 v(t) dt} X

For h* as given in (2.11) to satisfy the conditions of Theorem 1, we must have
v(¢) # 0 on [0,1]. Since v is continuous, we may as well assume v(¢) > 0 on
[0,1]. Let o#’ be the class of all positive continuous densities on [0, 1] with
bounded first derivatives on (0,1).

THEOREM 2. Suppose v and K satisfy the conditions of Theorem 1 and
v(t) >0o0n [0,1]. Then

lim ex(T,(h*), Cn(h*)) -1
n—00 infpe gy ek (Tr(h), Cr(h)) ’

When a = 1, so that both (1.2) and Theorem 2 apply, the same conclusion
is reached except for the additional restriction here that densities in #” have
- bounded first derivative.
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3. Discussion. There is an enormous literature on error analysis for
quadrature formulae based on a worst-case approach. The basic idea
[Motornyi (1990)] is for some class of functions &, to define the largest error
of a quadrature rule

R(#,T,C)=sup
fes

1 n
/0 Feyde—3 e £(t:)].
i=1

If, as is commonly done, & is all functions in some Sobolev space whose norm
is at most 1, the worst-case approach and the probabilistic approach taken
here are closely linked. For example, suppose & is all functions for which

f™ is absolutely continuous and { S fmtD(£)2 dt}l/ 2 < 1. Then Sacks and
Ylvisaker (1971) note that R(%,T,C) = ex(T,C) if K is the covariance func-
tion for m-fold integrated Brownian motion. Another way to characterize this
correspondence is that K is the reproducing kernel [Wahba (1990)] for the
Hilbert space with norm given by the L2 norm of f(™*1), Sacks and Ylvisaker
(1970) and Eubank, Smith and Smith (1981), for example, exploit this corre-
spondence to obtain their optimality results. While a covariance function sat-
isfying the conditions of Theorem 1 is the reproducing kernel for some Hilbert
space, unless a = 1, it is not possible to express the norm on this space in
terms of integrals of ordinary derivatives. Thus, it appears one would need
to use Sobolev spaces of fractional order [Adams (1975)] to have any hope of
handling covariance functions satisfying (2.1) for a # 1.

A deterministic approach that yields similar looking results to those ob-
tained here is to take & to be the class of all functions f that can be written
as f(t) = v(t)z(t) for a fixed known v satisfying some regularity conditions
and |z(s)—z(t)| < |s—t|? for all s, t and some B satisfying 0 < 8 < 1 [Motornyi
(1990)]. Then [Motornyi (1990)]

(2.13) lim n%f inf R(¥,T,C)% = ([ ()Y B+ gt e
) o TlenD,,, T T (B+1)2228 /0 v )
CeR"”

Setting 8 = a/2, we see the formal similarity between the right-hand sides
of (2.13) and (2.12). However, it does not appear possible to apply (2.13) to the
stochastic problem addressed here because of the lack of a direct relationship
between taking suprema over & and the mean squared error under K as given
in Theorem 1. In particular, the Riemann zeta function plays no role in (2.13).

However, the appearance of the Riemann zeta function in Theorem 1 is
not entirely unexpected. Bucklew and Cambanis (1988) showed that for a
class of processes covering the case a = % in Theorem 1, the Riemann zeta
function does appear in the constant for the limiting variance when predicting
integrals. Moreover, Sobolev (1974, 1992) showed how a multivariate gener-
alization of the Riemann zeta function known as the Epstein zeta function
occurs in the worst case error for integrating periodic functions on the unit
cube based on observations on a regular lattice. Stein (1993a, b) gives some-
what analogous results for stationary processes on the unit cube based on
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observations on a square lattice. In particular, if 4(¢) = 1, then Theorem 1 here
is essentially a very special case of Proposition 3.1 of Stein (1993b), which can
be seen by using the identity {(—a) = —2(27) (@ +1){(a+1) sin(7wa/2).

Finally, it is worth noting that there is a considerable literature on proba-
bilistic approaches to error analysis of quadrature formulae in the computa-
tional complexity literature [Traub, Wasilkowski and Wozniakowski (1988)],
although there it is generally assumed that the stochastic process is m-fold
integrated Brownian motion. To the extent that fractional Brownian motion
and models with similar local behavior have found application, restricting
attention to processes that behave locally like m-fold integrated Brownian
motion appears to be a matter of mathematical convenience rather than any
determination that other models are not useful. The results here and in Pitt,
Robeva and Wang (1995) show that it is possible to obtain useful results about
predicting integrals for processes that behave locally like fractional Brownian
motion.
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