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DIFFUSION APPROXIMATION OF NUCLEAR SPACE-VALUED
STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN
BY POISSON RANDOM MEASURES!

By G. KALLIANPUR AND J. XIONG

University of North Carolina and University of Tennessee

Under suitable conditions, it is proved that limits of sequences of
nuclear space-valued solutions of stochastic differential equations driven
by Poisson random measures are characterized by diffusion equations.
The results are applied to models of environmental pollution and to
reversal potential models of neuronal behavior.

1. Introduction. Motivated by applications to neurophysiological prob-
lems, in joint work with Hardy and Ramasubramanian we studied stochas-
tic differential equations (SDE’s) on duals of countably Hilbertian nuclear
spaces driven by Poisson random measures in Kallianpur, Xiong, Hardy and

Ramasubramanian (1994). The stimuli received by neurons are of the form of .

electrical impulses and were modeled by Poisson random measures. When the
pulses arrive frequently enough and the magnitudes are small enough, it is
reasonable to expect that the compensated Poisson random measures are
approximated by Gaussian white noises in space—time and, hence, the discon-
tinuous processes of voltage potentials of spatially extended neurons gov-
erned by Poisson random measures are approximated by diffusion processes.

Let ® be a countably Hilbertian nuclear space and let ®’ be its dual space.
Let (U, &) be a separable measurable space and let u" be a sequence of
o-finite measures on U. Let N" be a sequence of Poisson random measures
on R, X U with intensity measures u". Let A": R, X ®' —» ®' and G":
R, X ®" X U — &' be two sequences of measurable mappings on the corre-
sponding spaces.

In this paper, we consider a sequence of SDE’s

(1) Xp=xp+ [‘A"(s,X!)ds + [*[ G"(s, X}, u) N"(duds),
0 0°U

where {X['} is a sequence of ®'-valued random variables and N” is the
“compensated random measure” of N" in the terminology of Jacod and
Shiryaev (1987). We prove that, under suitable conditions, the sequence of
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494 G. KALLIANPUR AND J. XIONG

unique solutions of the SDE’s (1.1) converges in distribution to the unique
solution of the diffusion equation

(1.2) X, =X, + [‘A(s, X,) ds + ['B(s, X,) dW,,
0 0

where A: R, X ®' > &' and B: R, X ®' —A(®',d’) are two measurable
mappings and W is a ®'-valued Wiener process.

Diffusion approximations for linear models were studied by Kallianpur and
Wolpert (1984). The same authors also considered this problem for reversal
potential models of point neurons, which turns out to be real-valued nonlin-
ear SDE’s [cf. Kallianpur and Wolpert (1987)]. Diffusion approximations for
various models of the voltage potentials of point neurons were also studied by
Tuckwell (1989). Kallianpur, Mitoma and Wolpert (1990) have obtained
conditions under which the SDE (1.2) has a unique solution and have pointed
out the importance of the study of the diffusion approximation for infinite-
dimensional nonlinear equations. .

This paper is organized as follows: In Section 2, we give some basic facts
about countably Hilbertian nuclear spaces and SDE’s on the duals of nuclear
spaces for the convenience of the reader. Section 3 is the pivotal part of the
paper. We prove that the solutions of the sequence of SDE’s (1.1) converges in
distribution to the unique solution of the SDE (1.2). Also we show that every
diffusion process which satisfies the conditions of Kallianpur, Mitoma and
Wolpert (1990) can be approximated by a sequence of Poisson random mea-
sure driven processes.

Finally, we apply our results to the diffusion approximation of environ-
mental pollution models studied in Kallianpur and Xiong (1994). The same
problem for the reversal potential model of the voltage potential of a spatially
extended neuron is briefly discussed. Proposition 4.1 yields a diffusion ap-
proximation whose solution, in some cases, is distribution-valued.

2. SDE’s on duals of nuclear spaces. For the convenience of the
reader, we state some basic results of Kallianpur, Xiong, Hardy and Rama-
subramanian (1994) and Kallianpur, Mitoma and Wolpert (1990) about SDE’s
on the duals of countably Hilbertian nuclear spaces either driven by Poisson
random measures or by nuclear space-valued Wiener processes.

DEFINITION 2.1. We call ® a countably Hilbertian nuclear space if ® is a
separable Fréchet space whose topology is given by an increasing sequence of
Hilbertian norms ||-||,, » > 0, such that if H, is the completion of ® with
respect to the norm || -||,, then for each n there exists m > n such that the
canonical injection H,, - H, is Hilbert—Schmidt.

In the above definition, the canonical injection H,, » H, is Hilbert—
Schmidt means that there exists a complete orthonormal system (CONS)
{ef» ™) -1 of H,, such that =, IIe;,”’"II?, is finite.

Let H_ , and &' denote the duals of H, and ®, respectively. As in
Kallianpur, Xiong, Hardy and Ramasubramanian (1994), we always assume
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that there exists a sequence {%;} of elements of ® such that {,} is a CONS of
H, and is a complete orthogonal system (COS) of H, for any n € Z. This
assumption holds for many examples of ®’, notably the space .#'(R?) of
Schwarz distributions on R?.

Let A" = h,||k,lI,* for n € Z and i € Z*. Then {k} is a CONS of H,. For
each n > 0, we define a linear isometry 6, from H_, onto H, such that
0,(h;") =h! for any i € Z*.

DEFINITION 2.2. We call W a ®'-valued Wiener process with covariancg Q
if, V¢ € ®, W .[¢] is a real-valued Wiener process such that E|W,[ ¢]|" =
tQ(¢, ¢), where @ is a continuous bilinear form on ¢ X .

Let (Q,%, 2, F) be a stochastic basis. We first consider the following SDE
on ®':

(21) X, =X+ [A(s,X,)ds + [*] G(s, X,_, u)N(duds),
0 07U

where N(duds) is a Poisson random measure on U X R, with o-finite
intensity measure pu on U, X, is a ®’'-valued random variable and A:
R . X®" — ® and G: R, X ' X U » @' are two measurable mappings.

To obtain the existence and uniqueness of the solution of (2.1), we need the
conditions introduced in Kallianpur, Xiong, Hardy and Ramasubramanian
(1994). For simplicity of notation, we rewrite them as the following assump-
tions:

AssuMpTIONS S. For any T > 0, there exists an index p, = p,(T") such
that V p > py, 3 ¢ > p and a constant K = K(p, q,T) such that:

(S81) (Continuity.) For every t €[0,T], A(t,-): H_, > H_, is continuous;
V t€[0,T] and ve H_,, G(t,v,-) € L*(U, u; H_,) and, for ¢ fixed,
the map v — G(t,v,-) is continuous from H_, to L*(U, u; H_)).

(S2) (Coercivity.) For every t € [0,T] and ¢ € ® C &',

(2:2) 24(t,9)[6,(#)] <K(1+1¢l%,).
(83) (Growth.) For every t € [0,T]and v € H_,,,

I Az, 0) 12, <K (L +I0ll%,) and
(2.3) ) \
[U||G(t,v, u) |2y n(du) < K(1 + lIvll?,).
(S4) (Monotonicity.) For every t € [0,T], v;,v, € H_,,
2(A(t,v,) — A(t,03),v; — V) 4

(2.4) + [ 162,01, 0) = Gt 00, 0) |7 w(dw)

< Klv, — v,l2,.
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REMARK 2.1.  The left-hand side of (2.2) is well defined as 6,& < ®. In fact,
we only need to show that for any p,r > 0 and ¢ € ®, we have 0,0 €P,.As

op(¢)=ep(z<¢,h;>,h;)— (Z<¢ DA 1787
= X ARG WA = TG, 1R

and
T (<o, B R I152) < 2<¢ DE=1lI7 <,
J

we see that 6,(¢) € ®,.

Let D(0,T], H_,) be the space, with the usual Skorohod topology, of all
mappings of [0, T'] to H_, that are right continuous and have left limits. Let
D(0,T1,®") be the space of all mappings of [0,7] to ®' that are right
continuous and have left limits. The topology of D(0,T],®") is given in
Mitoma’s sense [see Mitoma (1983) for more details]. The following result was
proved in Kallianpur, Xiong, Hardy and Ramasubramanian (1994).

THEOREM 2.1. Under Assumptions S, (2 1) has a unique ®'-valued solu-
tion X if we have r, such that EIIXOII_,0 < «. Furthermore, let p(T) =
max(ry, po(T) and p(T) > p(T) such that the canonical injection from
H, 1y = Hyr, is Hilbert-Schmidt. Then X| o r, € D(0,T1, H_, (1)) and

(2.5) E sup IIXtIIEpl(T)sI{',
0<t<T

where K is a finite constant that depends only on K, T and E I|X0||§pl(T).

It is of interest to consider the martingale problem posed by (1.2). Let
25(®") ={F: ' » R:3 h € C5(R)
and ¢ € ® s.t. F(v) = h(v(¢))}.
For F € 25(®’), we define a map 9, F: &' — R by
D, F(v) =A(s,v)[¢]2'(v[ 4])
+30" (v[ $])Q(B(s,v)*d, B(s,v)*d),

where B(s,v)*: ® - ® is the adjoint operator of B(s,v). For Z € D([0, T'], "),
let

(2.6)

(2.7)

(2.8) M"(Z), = F(Z,) - F(Z,) - [9,F(Z,) ds.

Let C(0,T], H_,) be the space, with the usual uniform topology, of all
continuous mappings of [0,T] to H_,. Let C(0,T], ®') be the space of all
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continuous mappings of [0, 7] to ®'. The topology of C([0,T], ®’) is given in
Mitoma’s sense [see Mitoma (1983) for more details].

Let %, =%;(C(0,T], ,®")) be the o-field of all Borel sets in C([0, T'], D).
For each t € [0, T, let &, = m; '%,, where m,: C(0,T],®") > C(0,T], ") is
given by (m,x), = st,Vs e[0,T].

DEFINITION 2.3. A probability measure P on (C([0,T], ®"), .Q;’T) is called a
solution of the Z-martingale problem if, V F € 95(®"), {M*(Z),} is a P-
martingale with respect to the filtration {ﬁ’}

Now we summarize the results of Kallianpur, Mitoma and Wolpert [(1990),
Sections 6 and 7] as a lemma to suit our purpose. First we make the following
assumptions for the SDE (1.2) which is similar to the conditions given in
Kallianpur, Mitoma and Wolpert (1990), but with weaker initial and continu-
ity conditions.

AssumpTIONS D. For any T > 0 there exists an index p, = p(T') such
that, V p > p,, 3 ¢ > p and a constant K = K(p, q,T') such that:
(D1) (Continuity.) For every t € [0,T],v € H_, and v,,v, € H_,, A(t,v) €

-p’

H_, and B(¢t,vNvy) €H_, Furthermore for ¢t fixed, A(t,v) and
|@p(t, v))-B(t, vy)-p, -p 8TE continuous in v, v, and v,, where

|QB(t,u1)—B(t,v2)|—p, -p

(29) = Y Q((B(s,v1) — B(s,v5))*h?, (B(s,v,) — B(s,v5))*h?).
J

(D2) (Coercivity.) For every t € [0,T] and ¢ € P,

(2.10) 2A(t, $)[6,(#)] < K(1 +1¢lZ%,).

(D3) (Growth.) For every t € [0,T]and v € H_,,

lA(t, )% <K(1 +Ivl?,) and

@b, -p, —» < K(1 + lI0l%,).

(D4) (Monotonicity.) For every t € [0,T] and v,,v, € H_,
2(A(t,vy) —A(t,v3),0; — V) ¢ + 1Qpt,v,)-Bt, vyl -4, -4

<Klv, - vzllg
(D5) (Initial.) There exists an index r, such that E IIXOII_, .

(2.11)

(2.12)

LEMMA 2.1. (i) Suppose that Assumptions (D1)-(D3) and (D5) hold. If P*
is a solution of the @-martingale problem and there exist an index p and a
constant K,(p) such that

(2.13) EP*{/;TQ(B(s,Zs)*zb,B(s,Zs)*¢)ds} <K(p)gl3,

then P* is a weak solution of (1.2).
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(ii) Furthermore, if A and B also satisfy the monotonicity condition (D4),
then the 9-martingale problem has a unique solution which is the distribu-
tion of the unique solution of (1.2).

REMARK 2.2. In applications of the above lemma, condition (2.13) is
usually verified by showing that

EP" sup [1Z,)%, < -
0<t<T

and making use of (2.11).

3. Diffusion approximation. Let {P"} be a sequence of probability
measures on ([0, 7], ®’) induced by the solutions of the SDE’s (1.1). In this
section, we first prove that, under suitable conditions, the sequence {P"} is
tight. Then we show that any limit point is supported on continuous path
space and is a solution of the Z-martingale problem corresponding to the
SDE (1.2). It follows from Lemma 2.1 that under the monotonicity condition,
the Z-martingale problem has a unique solution which is the distribution of
the unique solution of the diffusion equation (1.2). Finally we also show that
any ®’-valued diffusion processes given by a SDE of the form (1.2) which
satisfies the Assumptions D of the previous section can be approximated by a
sequence of ®'-valued processes driven by Poisson random measures.

The following lemma has appeared in Kallianpur, Xiong, Hardy and
Ramasubramanian (1994), and we give an outline of its proof for the sake of
completeness.

LEMMA 3.1. Suppose that, for each n, (A",G", u") satisfies Assumptions
S of Section 2 and that the indexes p,, p, q and the constant K are indepen-
dent of n. Also assume that there exists an index r, such that

(8.1 supEuX(;‘u%,0 < o,

Then the sequence {P"} is tight in D([0,T'], H_, 1)), where p,(T) > p(T) is
such that the canonical injection from H_, pyinto H_, ) is Hilbert-Schmidt.

ProOF. By the assumptions and Theorem 2.1, (2.1) has a unique solution
X" taking values in H_, 1, and

(32)  supE, sup X2, <K(K T, supE| X ,,I(T)) <
n 0<t<T
For any ¢ € ® fixed, let

C! = ftAn(s’Xsn)[(b]ds and
0
(3.3) t —
- fOfUG”(s,Xs”_,u)[(b]N (duds).
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Then the real-valued semimartingale X"[$] can be written as X[¢] =
X3l + C + M. Tt follows from (S3) and (8.2) that {C"} is C-tight [that is,
tight in ([0, T']D and the limit points have continuous paths]. Similarly we
can prove the C-tightness for {(M")}. It follows from (3.1) that {X}[ ¢]} is a
tight sequence of random variables. Hence, by Jacod and Shiryaev [(1987),
Corollary 3.33, page 317, and Theorem 4.13, page 322] the sequence of
semimartingales X'[ ¢] is tight in D(0, T]. So, it follows from Mitoma’s
argument [see Mitoma (1983) for reference] that {P"} is tight in D(0, T'], ®’).

Making use of the inequality (3.2) again, we can show that {P"} is
uniformly p,(T')-continuous in Mitoma’s sense [see Mitoma (1983) for the
definition] and hence, {P"} is tight in P(0, T'], H —pyry)- O

To characterize the limit points of the sequence {P"}, we introduce the
following assumptions:

AssuMPTIONS A. There exist a continuous quadratic form @ on ® and two
measurable maps A: R, X &' - &' and B: R, X ®' > A(®’, ®’) such that:

(A1) The sequence {X[} converges to an H_ PoTY" -valued random variable X,
in distribution.
(A2) For every t € [0,T], p > p, and compact subset C, of ®_ »» We have
lim sup |A™(¢,v) — A(t,v)|-4 = 0.
n-ow© o0 o
(A3) For every ¢t €[0,T], ¢ €®, a >0, p > p, and compact subset C, of
®_,, we have
(3.4) lim sup p*{u:|G"(t,v,u)[$]| > a} =0,

n—oo vel,

lim sup |[ G"(£,0,,u)[$1G"(¢, 05, w)[ $] W' (du)
n=% y1,v,€C
(3.5)
_Q(B(t’vl)*¢’B(t’v2)*¢) =
and

. n 2
(3.6) Alllm sup f |G"(¢,v,u)[ ] Lyerct,v,un o112 mym" (du) = 0.
- 0 UECO U

neN

Condition (A3), together with the conditions of Lemma 3.1, ensure that any
limit process of the sequence { X"} has continuous paths.

LEMMA 3.2. Let P* be a cluster point of the sequence {P"} on
D0, T, H_, ). If the sequence (A",G", u"*, X{') satisfies the conditions of
Lemma 3.1 and assumption (A3), then

(3.7) P*(C([0,T], H_, 1)) = 1.
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PrOOF. Let g be a nonnegative continuous function on R vanishing in a
neighborhood of 0 and of » [g,,, m €N, of (3.21) are examples of such
functions]. For any ¢ € ®, let {F"} be a sequence of maps from
Ddo, T1, H_p2(T)) to R given by

(38)  F2)= T g(8z[9]) - ['[ 2(6"(s,2,,w)[ #])u"(du) ds.

0<s<T
Without loss of generality, we assume that P" converges to P* weakly.
Making use of a theorem of Skorohod [see Ikeda and Watanabe (1981),
Theorem 2.7, page 9], there exists a probability space (Q',%’, P') and
D({o0,T], H _pyr)-valued random variables £” and ¢ with distributions P"
and P*, respectively, such that ¢" tends to ¢ P'-a.s.
We now divide the proof into four steps.

Step 1. First we show that
(3.9) F*(¢") » ) g(A&[#]) in probability.

0<s<T
By the tightness of {P"}, for any & > 0, there exists a compact set C of
D{o, T], H_, ry such that P(C)>1—-¢,V n>1 Let C, be a compact
subset of H_, r, and M a constant such that

(3.10) Cc{zeD([0,T],H ,,1): Z, €Cy,Vte [0,T]}
and
(3.11) Cocf{veH_, q:lvlp,m < M)
Let b > 0 be such that g(x) = 0 for any |x| < b. Then, V a > 0,
T
P'(ws [ #(G" (s, &7 ) 61" (du) ds > a
<P'(w:&"&0)

1 r . ) n
(3.12) +;Epf0 ng(G (s, & u)[ )" (du) ds1o(€™)

1
<e+ ;EP'fOTp."{u: |G*(s, & u)[ 61| > B}1c(€M)lIgle ds

g1l
g fTsup p*{u: |G*(t,v,u)[ ¢]| > b} ds,
a “o yec,

<e&

where || g|l.. denotes the supremum norm of the bounded function g. As
sup u"{u: |G"(¢,v,u)[ ¢]| > b}

veClC,

ll12,cry
(3.13) < sup —— [ G"(¢,0,u) % pur " (du)

veC,

2
lpllp,cr)
< B2

K(1+M?),
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it follows from (A3) and the bounded convergence theorem that

(3.14) limsupP’(w: fog(G"(s,fs",u)[d)]),u,"(du) ds >a| < ¢&;
n—oow 0 U

that is,

(3.15) [ [ (6" (s, &% w)[$])w"(du) ds —p: 0.
Note that

(3.16) Y g(agr[e]) > X g(Ag[¢]) Plas.

0<s<T 0<s<T

This proves (3.9).
Step 2. The sequence {F"(£")}, < is uniformly integrable.
For each n,let p” and D" be the point process and jump set, respectively,

corresponding to the Poisson random measure N”". As X" is a solution of the
SDE (1.1), then

Fr(X") = T (65, X0 (9)[#]1(5)
(3.17) [ [ 86" (s, X2, w)[ 9] wr(du) ds

T <
[ [ 86" (s, X ) [ #))N"(duds).
As G™ satisfies (S3) uniformly for n, it follows from (2.5) that

supEP|Fr( M) |
n

— supE|F*(X")[’
n

_ supE[OTng(Gn(s,X:,u)[¢])2m(du) ds

IA

(3.18) supEfOTfUKg(G"(s,Xs",u)[d>])2p,"(du) ds

T
<KsupE[ [ 6"(s, X7 0) IF el Sl o " (du) ds

T
< K,ll¢l5,r)supE [0 K(1+ X2, 1) ds
n

<K,l¢l3 K1+ K)T,

where K, = sup{(g(x) /x)%: x € R} is finite. This proves the assertion of step
2.
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Step 3. We have

(3.19) EF T g(Az[4])=0.
0<s<T
It follows from (3.17) that E(F™(X")) = 0 for any n € N. Hence
E” Y g(Az[¢])=E" ¥ sg(A&l4])
0<s<T 0<s<T

(3.20) = lim B” (F"(£")

lim E(F*(X")) = 0.

Step 4. Equation (3.7) holds.

Let {g,,} be a sequence of continuous functions on R vanishing in a
neighborhood of 0 and « such that {g,(x)} increases to x2 as m tends to .
For example, we take

0, if |x] < 1/(m + 1)
or|x|>m+ 1,
(321) g (x) = {«x2, ifl1/m <|x| <m,
((m+ Dlxl=1)/m, ifl/(m+1)<|x|<1/m,
m2(m + 1 —|x]), ifm<|x|<m+ 1.
Making use of the monotone convergence theorem, we have
(3.22) EP" Y |Az[4]°=0, Véeo.
0<s<T
Taking ¢ = hP*™), j =1,2,..., and adding, we have
(3.23) EP Y AZ|2,,a) = 0.
0<s<T

This proves (3.7) and hence finishes the proof of the lemma. O

LEMMA 3.3. Under the conditions of Lemma 3.1, if Assumptions A hold,
then P* is a solution of the @-martingale problem.

ProoF. For F €95(P’), let £'F be a map for @’ to R given by
Z'F(v) =A"(s,v)[¢]h'(v[¢])

(3:24) + [ {h(o[8] + G"(s,0,w)[@]) ~ k(o[ 4])

—G"(s,v,u)[ o1 (v][ ]} n"(du).
For Z € D(0,T], ®'), let

(325)  M[(Z),=F(Z(t)) - F(Z(0)) — [Z'F(Z(s)) ds.
0
Let £7, &, C, Cy, M and P’ be as in the proof of Lemma 3.2. Note that
| M7 (&M), — MT(£) ]| < I7(2) + I7(0)

(3.26) +f0t1;(s) ds +,j:I§'(s) ds

2
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where

(8.27) Ip(s) =|n(&M ¢]) — (&L S]]

(3.28) I3(s) =|A™(s, M o121 6])
—A(s, &) ]/ (£[ 6))]

and

() = [ (B(&16] + 6"(s. £, w)[ 8]) - K(&7T8))

—G"(s, &, w)[ d11' (EM [ $])}n"(du)
— 30" (&[6])Q(B(s, &,)*¢, B(s, &) *¢).
Now we prove that V ¢ € [0, T,
(3.30) EP'|MF(¢&"), — MF(£),| >0 asn— .

(3.29)

It follows from the uniform continuity of 4" that, for any & > 0, there exists
8 > 0 such that |A"(x) — h"(y)| < ¢ whenever |x — y| < 8. Letting

Lol anien n n
oo D, {u [ [ a(r (1191 + apGn(s, &, w)[#])
e (6:16]) dads| > o,
we have
(332)  W(D)1e(€7 < sup w{u: 6" (s, 0,0 911> 3} 0.
Note that

|13(8) |1 €M) 1c(£)
[ AL e (6118 +apGn(s, 2, w)6]) — 1 (&2161) dadp)

<

XG"(s, &, u)[ 1* " (du) |1c(€™)

+3[R"(&'18]) - " (&[8])| sup [ G"(s,0,u)[#1"w"(du)

(3.33) vely

+31w (L) sup || G"(s, 0, w61 w"(dw)

vel,

~Q(B(s,0)"9, B(s,)"9)|

+3|r"(&[ oD |Q(B(s, £M)*d, B(s, £) %)
—Q(B(S, fs)*(b’ B(S, fs)*d))l
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It follows from the continuity of A" that the second term tends to 0 P’-a.s.
Condition (A3) implies that the third term converges to O for all w € Q. It
follows from (3.5) and the continuity of G* that Q(B(s, v)*¢, B(s,v)*¢) is
continuous in v and hence the fourth term tends to 0 P’-a.s. Note that the
first term is dominated by

sup/sG"(s,v,u)[q&]z,u,"(du)
veC, U

(3.34) + [IA"]l sup [D G"(s,v,u)[ $1° " (du)

veCy, D,

<eK(1+M?)|¢l2 7, + A" |l sup fD G"(s,v,u)[ $]* u(du).

veCy D,

From (3.6) and (3.32) we have

(3.35) sup f G™(s,v,u)[ #]°u"(du) - 0.
veC, D,

Hence by (3.33)-(3.35),

(3.36) limsup | I2(s)[1c(£™)1c(€) < eK(1 + M), 1y

As
|I3n(3)|lc(§n)1c(§)

< ML [ 67 (s, €7 w)[ 1" (du)1c(£7)
U
+QUB(s,£)°6. B(s, £))1c( )|
< HH L K (L + &1 ) Il (€7)

+ lim [ 167(t, &, w)[ 8] w"(d)1e(6) |

< K1+ MR Ll ),
it follows from Fatou’s Lemma and (8.36) that

’fotzg(s) ds| > a)

1
(3.37) < 2¢ + limsup —E® [ 17(5)[1o(£")1c(£) ds
0

n—o a

lim sup P’

n— o

eKT 9 9
<2&+ T(l + M?)|@llp,1)-

Hence, | [¢ I}(s) ds| converges to 0 in probability. Similarly we can prove that
[ /¢ I2(s) ds| converges to 0 in probability. Furthermore, it is easy to see that



DIFFUSION APPROXIMATION OF PROCESSES WITH JUMPS 505
I7(¢) and I}(0) tend to O P’-a.s. So, by (3.26), MF(¢™), tends to MF(¢), in

probability.
As X" is a solution of (1.1), it follows from It&’s formula that

My(x"), = [ (h(X[8] + G(s, X2, w)[ 9])
- WX [9]))N"(duds)

(3.38)

and hence
EP|MF(&m),|" = E|MF(x),[*
= EfOTfU(h(Xs"_M] +G"(s, X ,u)[ 4])

—h(X2 [ ¢]1))" w(du) ds

(3.39)

< K(E + D)TIRIZ1 112 -

Thus for every ¢t € [0, T1, {MF(¢™),} is uniformly integrable and hence (8.30)
holds.

It follows from (3.38) that, for every n € N, {MF(X"),} is a martingale and
hence {MF(¢™),} is a P’-martingale. Passing to the limit, we see that M¥(¢),
is a P’'-martingale and hence, M¥(Z), is a P*-martingale. Therefore, P* is a
solution of the Z-martingale problem. O

THEOREM 3.1. Suppose that (A",G", u") satisfies Assumptions A and
also satisfies Assumptions S uniformly in n. In addition, let the initial
condition (3.1) hold. Then P" converges to P* weakly and P* is the distribu-
tion of the unique solution of the SDE (1.2).

Proor. It follows from Lemma 3.3 that P* is a solution of the 2-
martingale problem. Also, by Assumptions A and S and passing to the limit,
we see that (A, B, @) and the initial value X|, satisfy Conditions D of Section
2. Furthermore,

B [[Q(B(5.2,)%6. B(s. 2,)°) as)

Pl (T n 2 .
(3.40) —F {fo ,}E‘;fvm (¢, Z,, w) o] " (du) ds}

" T
< B[R+ 12 0) 81 s

< TK(1 + K)lI¢l% (-
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Hence, by Lemma 2.1, P* is the distribution of the umque solution of the
SDE (1.2). By uniqueness, {P"} converges weakly to P*.

The next theorem will show that ®’-valued diffusion processes which are
of the form of (1.2) can be approximated by processes driven by Poisson
random measures.

THEOREM 3.2. Under Assumptions D, the SDE (1.2) has a unique solution
which can be approximated by a sequence of processes driven by Poisson
~ random measures.

ProOF. As Q(¢, ¢) is continuous in ¢ € ®, we see that, for any & > 0,
there exists an index r; and & > 0, such that @(¢, ¢) < £ whenever ¢ €
and || ¢ll,, < 8. For any ¢ € ®, let ¢ = 8¢/l ,. Then ||¢>||,o = & and hence

(3’41) Q(¢a d’) < ?”d’“ro
It is then easy to see that @ can be extended to a continuous nonnegative-

definite symmetric bilinear form on H, X H, . That is, there exists an
operator @;/ on H, such that

(3.42) Q. ) =(QY%, Q™).

Let U={1,2,...}, u"({k}) = n?, X =X,, A"(s,v) = A(s,v) and
1

(3.43) G"(s,v,k)[$] = ;(Q}{zB(s,v)*¢,h;°>,o

Now, we only need to verify the conditions of Theorem 3.1. From (3.43), we
have

[G v )2 nr(du) = E [ (G(t,0,u)[hf]) w(du)

2
= T X(@Q1 B, v) e, ).,
J

3.44 .
. - Slenc o,
J
= ZQ(B(t,v)"hf, B(t,v)*h)
Jj
= |QB(t,U)|_P,_P < K(l + ||v||3p),
Similarly

(3.45) fU||G"(t,v, u) — G*(¢,v', u) |2, u*(du) < Kllv — v'l?,

Hence (A", G", u") satisfies Assumptions S uniformly in 7.
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Next, let C, be any compact subset of H_ »- Note that
n 2
n?|G*(¢,v, k)=,

el n 9
X n*|G"(t,v, )%

r=1

fl6" (2,0, ) %y p(du) < K(1 +l0]2,).

A

(3.46)

Hence, for n > (||¢||p/a)\/K(1 + supvecollvllgp) , we have
sup p™{u: |G"(¢t,v,u)[ ]| > a}

velC,

< sup p,"{u: K(1+lvl2,)llell3 > (na)2} =

vel,

(3.47)

This proves (3.4); (3.6) can be shown in a similar manner. For (3.5), we note
that

[G"(2,01,w)[$1G"(2, 01, w)[ ] w"(du)

(3.48) _ §<Q}§23(t,v1)*¢,h2°> < 1/2B(t vy)*d, hk)
1

Q(B(t’ vl)*¢, B(t’ Uz)*d’)-
Hence (A", G", u") also satisfies Assumptions A. O

REMARK 3.1. The conditions in Theorem 3.2 for a unique solution of (1.2)
are weaker than those imposed by Kallianpur, Mitoma and Wolpert (1990).
More specifically, they require that, in addition to Assumptions D, A(¢,v)
and B(¢,v) be jointly continuous in (¢,v) € R, X ®’ and

B{(1+1X/2,,) [log(1 + 1 X )2,,)]*} < =

4. Applications. In this section, we apply our results to various models
of environmental pollution problems and also to a stochastic reversal poten-
tial model of spatially extended neurons.

Stochastic environmental pollution models have been studied by various
authors [Curtain (1975), Kwakernaak (1974) and Kallianpur and Xiong
(1994)]. All models investigated so far are of Poisson random deposit of
chemical.

For the convenience of the reader, we briefly describe two kinds of pollu-
tion models [see Kallianpur and Xiong (1994) for more details]. Let L be a
second order differential operator given by

92 d
(41) ~Lf(x) =D z H) - LVl xex- [0,

where D is the dequlon coefficient and V =(V,,...,V,) is the drift vector.
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In the absence of random deposits, the chemical concentration u(¢, x) at
time ¢ and location x should satisfy the partial differential equation

a
(4.2) Tﬁu(t’ x) = —Lu(t, x) — au(t, x),
where « is the leakage rate. We also impose Neumann boundary conditions:
4.3 i t,0 i t,l 0 =1,2 d
(4.3) axiu(,)—axiu(,)—, i=1,2,...,d.

The chemicals are deposited at sites in 2 at random times 7,(w) <
7o(w) < +-- and locations k;(w), ky(w), ... with positive random magnitudes
A(w), Ay(w),.... Taking these random deposits into account, we may con-
vert (4.2) formally into the SPDE

—u(t,x, w)

(4.4) %
= —Lu(t,x, w) — au(t,x, w) + ZAj( w)3xj(w)(x)5fj(w)(t)

with Neumann boundary conditions (4.3), where §, is the Dirac measure at
x.
For Ac# and BCR,, let

(4.5) N([0,t] xAXB) = Y 13(A;(0))1s(x(w)).

J: TjSt

We make the further assumption that 7,,7,,... are the jump times of a
Poisson process and that (Kj, Aj), Jj=12,..., are i.i.d. random variables so
that N is a Poisson random measure on R, X 27X R, with intensity measure
pon ZXR,.

Suppose there is a mechanism to clean up the environment when the
chemical concentration at x exceeds a fixed level ¢(x). In this case, the real
effect of the chemical deposit depends on the magnitude A,(w) and the
tolerance level £(x). For the sake of mathematical simplicity, we assume that
at time 7;(w) the pollutant is uniformly deposited over the whole 2 instead of
at a point k(@) as in model (4.4). We also assume that the real effect of the
chemical deposit at x €2 is proportional to the difference between the
chemical concentration u(7;-, x) and the tolerance level ¢(x). Then (4.4) can
be modified and written formally as the SPDE

—u(l, x,
&tu( x, )

(4.6) = —Lu(t,x,w) — au(t, x, )
+ Z.Af( w)(f(x) - u(r(w) -, x, w))&,j(w)(t)

with Neumann boundary conditions (4.3).
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The basic pollution model (4.4) and the pollution model (4.6) with a
tolerance level are then understood, respectively, as the integral equations

ul ] =uol 8] + [ (u]-Lo] - au,[$]) ds

(4.7) o
+/0f%[0 ad(x)p(x)N(dsdxda)
and
wl9] =uol 9] + [(w[-Lo] - au[])ds
(4.8)

+['[(a(16] - v, [$])N'(dsda),

where u, is regarded as a ®'-valued process and ® is a countably Hilbertian

nuclear space constructed below in terms of the operator L. Also N is the

Poisson random measure on R, X2 X R, with intensity measure w on

ZX R, asin (4.5) and N’ is a Poisson random measure on R, X R, with

intensity measure u’ on R, which can be constructed similarly as in (4.5).
Let p be a function on 2 given by

.V,
(49) p(x>=exp( ppes )
Let
4.10 H={hel’*(z, d oh oh =0,i=1 d
( ‘ ) ( p(x) x) 0xlx_0 dx, xl_l_ sy =1, .

Then L is a nonnegative-definite and self-adjoint operator on the separable
Hilbert space H with discrete spectrum. Let A;, ¢;, j=0,1,2,..., be the
eigenvalues and eigenvectors, respectively, of L. For r; > d/4, it is known
that

(4.11) Y(1+4) <o
J
For re Rand h € H, let
(4.12) IRIZ = X<k, (1 + Ap)"
and ’
(4.13) ®={heH:|hl, <o, VreR},

where ( -, - ) is the inner product on H. For each r, let H, be the completion
of ® with respect to the norm || - ||,. Let ®’ be the union of all H,, r € R. Note
that Hy=H and (-, )o = {-,- ). Then ® is a countably Hilbertian nuclear
space and @' is its dual space. It might be of interest to consider diffusion
models for the pollution processes. A natural way to study this problem is to
regard diffusion models as the limiting case of Poisson models.
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To this end, consider a sequence of SDE’s on @,

ulo] = uglo] - [wrl(a+L)¢]ds
(4.14) 0

+j:[?¢f:a¢(x)p(x)N"(dads),

where N" is a sequence of Poisson random measures on R, X 2X R, with
intensity measure u" on 2°X R,. We study the diffusion approximation for
the centered processes @” = u™ — Eu™ It is easy to see that #" satisfies the
following SDE on ®':

[ o] = agl o] — [‘ar[(a+L)¢] ds
(4.15) ooo
+ [ ad(x)p(x) N (dxdads),

where N" is the compensated random measure of N " that is, N"(dxdads)
= N"(dxdads) — u*(dxda) ds.

To obtain a unique solution of (4.15) with a uniform bound, we assume that
there exist two indexes r, and r, and a finite constant K, all independent of
n and such that

(2 o 2 )
(4.16) Ellagl=,, <K and j%j;) lag(x) p(x) | n"(dxda) < Kl ol7,,
Ve,

To get a diffusion approximation result, we make the following assumptions:

AssuMPTIONS L. For each £ > 0 and ¢ € ®:

(L1) 4§ — @, as n — o in distribution as ®’-valued random variables.
L2) u(Zx[e,©) —> 0as n - o,

(L3) The limit of [, [ lad(x)p(x)|u"(dx da) exists as n tends to .
(L4) As m - 0,

@17)  sup [ [ 1ad(%)p(2) [ Lageorpconaan’(deda) = 0.

We denote the limit of (L3) by Q(¢, ¢). It is easy to see that @ determines
a continuous nonnegative definite bilinear form on ® X & under condition
(4.16).

PrROPOSITION 4.1. Let A™(¢t,v) = A(t,v) = —(a + L')v and G™t,v,
x, ) ¢] = ad(x)p(x). Under Condition (4.16) and the Assumptions L, the
conditions of Theorem 3.1 hold and hence, ii" converges weakly to a ®'-valued
diffusion process i governed by the SDE

(4.18) &, =iy~ [(a+L)a,ds +W,
0
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where W is a ®'-valued Wiener process with covariance Q. Further, if @ is
given by

(4.19) Q(o, ¥) =f%¢(x)¢(x)dx, Vo,ped,

then (4.18) can be formally written as the SPDE

d
(4.20) Eﬁ(t, x) = —(a+L)a(t,x) + W, ,, (0, x) = @y(x),
where Wt . 18 Gaussian white noise in space-time.

REMARK 4.1. () If ry=r, =0 and u" are finite measures on ZX R, it
follows from Kallianpur and Xiong (1994) that &" are H-valued processes.
Therefore, " can be regarded as random fields. That is, for each =, there
exists a real-valued measurable function z"(¢, x, w) on R, X 2 X Q such that
Vi¢t>0and ¢ € ®, we have

i'(w)[ ¢] =L§n(t,x,w)¢(x)p(x)dx a.s.

The process u"(¢, x, w), depending on ¢ and x is called the random field
corresponding to the H,-valued process @2".

(i) If d > 1 and @ is given by (4.19), then the limit process # is not
H-valued [see Walsh (1984)].

Now we consider a sequence of pollution models with a tolerance level of
the form of (4.8):

t t r®
4.21) ul =ufj — L'u” + a™ ds + —u?_)N"*(dads),
(421) wf =uf - [(L'u} +a"w,)ds + [ [ a(¢ = ui ) N"(dads)

where ¢ € H is the (nonrandom) tolerance level and N" is a sequence of
Poisson random measures on R, X R, with intensity measure u” on R,.

AssuMPTIONS E. The assumptions we need in this case are:
(ED a™ + [§ ap™(da) > a and [§ a®u"(da) - B2.
(E2) For any £ > 0, u™{a: a > &} - 0.
n., n

(E3) There exists a sequence ¢” such that ¢"a” — 7.
(E4) sup,, [5; a®u™(da) > 0 as M — .

For any ¢ and ¢ in @, let Q(¢, ¢) = (P, ¢). Let A: &' > &' and B:
@' - @’ be given by
(4.22) A(v) = —L'v —av + y¢ and B(v)*¢ = Bv[¢]d,,
where ¢, is the unique eigenvector of —L corresponding to the eigenvalue
AO = 0.

Let V,» = c"u}. We have the following diffusion approximation result for
{vr).
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PROPOSITION 4.2. Suppose that we have r, such that sup, EIIVO"IIE,0 <

and {V{'} converges to a ®'-valued random variable V, in distribution. Then
V" converges in distribution to the solution of the diffusion equation on ®':

(4.23) V,=Vo+ [(A(V,)ds + ['B(V,) dW,,
0 0

where W is a ®'-valued Wiener process with covariance Q.

Proor. Note that
424) VP =Ve+ ['ANV)ds + [[ GM(VE,a) N (dads),
0 070
where

(4.25) A"(v) = —L'v — a™v + (c"¢é — v)j;waun(da)
and G"(v,a) = (c*é—v)a.
We show that ¢” — 0. In fact, we note that

[ @ (da) = [‘au(da) + [Ma%w(da) + [ a%u"(da)

& M
(4.26) " ° )
< 8/ ap"(da) + M%u™{a: a > &} + supf a’u"(da).
0 n ‘M

Then
(4.27) B? < eliminf [ ap(da) + sup [ a%"(da).
n—oo 0 m M
Letting M — o, we have
(4.28) B? < eliminf [ ap’(da).
n—© 0
Letting £ — 0, we have

(4.29) liminf [ ap"(da) = .

n-—o 0
As a” + [§ ap™(da) - a and c"a™ — vy, we have ¢ — 0. It is then easy to
see that Assumptions A of Section 3 hold for (A", G", u"*) and the proposition
follows from Theorem 3.1. O

Now we show that the limiting process is in fact in H,, and can be regarded
as the solution of a stochastic partial differential equation.
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THEOREM 4.1. Suppose that ¢ € H, and V, is an Hjvalued random
variable such that E||V0||§ <o, Then V € C(0,T], Hy). Let V(¢t,-) = V,. Then

V(t, 1) = V(0,%) — [(L'V(s, %) + aV(s, x) = vE(x)) ds
(4.30) 0
+ [‘BV(s, x) dB,,
0

where B is a one-dimensional Brownian motion.

Proor. It follows from (4.22) and (4.23) that, for ¢ € ® such that L¢ =
Ad,

Vi1 = Volo] + [A(V)[d]1ds + [(B(V,)*,dW,
(431) = Vol 8] = ['((a+ WV 8] - [ 9]) ds

+[[BV.[]dW.[ 4],

Making use of It6’s formula, we have

ViIo1* = Vol 61" — [2V[#1((a + MV,[ 6] — [ 1) ds
(4.32) 0

+f0t2BVs[¢]2 dW,[ o] + fotﬁz(V;[¢])2 ds.

From the Burkholder—-Davis—Gundy inequality [see Dellacherie and Meyer
(1982), (90.1), page 285] we have

f(r) =E sup V,[4]”

Oo<t<r

<EV,[¢]* + for((2|a| +1+ B2)EV,[$]* + v¥%[ ]°) ds
+ 4BEY [ V,[]* ds

(4.33) <EV,[¢]" + (2lal+ 1+ Bz)forf(s) ds + y%[¢]°r

+ 4gE( sup |V,[611V /5 V.LoT ds

O<t<r

<EV,[6]*+ (2lal+ 1+ Bz)forf(s) ds + y%[ ¢]%r

+3f(r) + 8282 [ B(V,[ 6])" ds.
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That is,

f(r) < 2EV,[ $]* + 2(2lal + 1 + 3382)

4.34 r
(434 X [f(s) ds + 2v%[6]"r.
0

Gronwall’s inequality then yields

E sup V,[4]* < (2EV,[ ¢]” + 2v%[ 6]°T)
(4.35) 0<t<T

Xexp(2(2lal + 1 + 338%)T).

Letting ¢ = ¢, and adding, we have

EY, sup V,[¢,]° < (2EIVol§ + 2¥2I£15T)
(4.36) Jj=00<t<T

X exp(2(2lal + 1+ 338%)T).

The continuity of V[ d)j] is obvious. It follows from (4.36) that V e
C(0,T1], Hy). (4.30) easily follows upon setting B, = W,[¢,]. O

In recent years it has been well recognized in the neurophysiological
literature that a neuron cell is spatially extended. That is, a realistic descrip-
tion of neuronal activity would have to take into account synaptic inputs that
occur randomly in time as well as at different locations on the neuron’s
surface. It is of interest, therefore, to consider diffusion approximation for
reversal potential models of voltage potentials of spatially extended neurons.
One motivation for such models is to regard the Poisson events as the
openings (and consequent closings) of various ion-specific passages through
the membrane. During the open period, ions of the appropriate type pass into
or out of the cell through such a passage at a rate depending on the difference
between an equilibrium potential and the voltage potential.

A general result has been obtained in Kallianpur and Wolpert (1987) when
the neuron can be regarded as a single point and the importance of the
investigation for spatially extended neurons is indicated. We derive such a
result as an application of our diffusion approximation theorem in this setup.
A similar result was obtained by Baldwin (1990) in his dissertation.

For the convenience of the reader, we describe the reversal potential model
briefly. We refer to Kallianpur and Wolpert (1987) and to Hodgkin and
Huxley (1952a—d), who originated the term “equilibrium” potential, for a
more detailed description.

Let £ and L be given by (4.1), where 2 represents the membrane of the
neuron. More general 2 and L can be treated similarly. Let £(x,t) be the
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nerve membrane potential at time ¢ and at a point x. In the absence of
stimuli, £ will satisfy the cable equation

(4.37) %g(x,t) — —L&(x,t) — af(x,t).

If the stimulus arriving at time ¢ at a point x is I(x, ¢), then ¢ will satisfy

(4.38) %f(x,t) = —L¢&(x,t) — ab(x,t) +I(x,t).

The stimuli received by the neuron are pulses of electrical current of such
short duration that we may consider them to be impulses. They can be either
positive (excitation) or negative (inhibition). Suppose that there are excitatory
(resp. inhibitory) ions with equilibrium potentials n, € ®' (resp. n, € ®')
arriving according to Poisson stream N, (resp. N,) with random magnitudes
A* >0, k=1,2,..., with common distribution F, on [0,) (resp. A* <0,
k=1,2,..., with common distribution F;, on (—,0]). Let N, and N; be
independent Poisson processes with parameters of f, and f;, respectively.
The random variables A*, A% N, and N, are all taken to be mutually
independent. Let {r,} and {r;} be the jump instants of the processes N, and
N, respectively.

Then ¢ can be regarded as a ®'-valued process and characterized by the
following reversal potential model

: N (&) Ni(t)
(439) gt = §0 - j(;(a + L,)fs ds + Z (ne - f.,k_)AI.: + Z (gri—_ nl)A’:
k=1 k=1

Let U=®’ X R and

NA® N
(440) N(AxBx[0,t]) = kZ 15(A%)1x(n) + kZ 15(AF)14(m;)
-1 -1

for any t >0, Be%(R) and A €#(®’'). Then N is a Poisson random
measure on ®' X R X R, with intensity measure

(4.41) (A X B) = f15(m.) F(B) + fi15(m;) F;(B)
for any A € #(®’) and B € #(R). Equation (4.39) is then rewritten as

¢ , ¢
(442) &=&— [(a+L)gds+ [ [ [ (& ,n,a)N(dndads),

where

(m—v)a, ifa=0,
(v—-m)a, ifa<O,

(443) f(v,”fl,a) = {

forved' , ned, ack.
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Now we consider a sequence of SDE’s on ®' of the form (4.42):

(4.44) gr=¢r - j:(a” +L')En ds + f:fqyfn«f( &, m, a)N*(dndads),

where a” is a sequence of real numbers and N™(dndads) is a sequence of
Poisson random measures on ®’ X R X [0,%) given by (4.40) with f,, f;, F,
and F; replaced by f?, f*, F' and F}*, respectively. The intensity measure u”
are given by (4.41) with f,, f;, F, and F, replaced by f”, f*, F' and F},
respectively.

To characterize the limiting behavior of ¢* as n — ©, we make the

following assumptions:

ASSUMPTIONS R.

R a™ + fra® — ffa? > a and f"b + f"b! > B2 in R, where a” =
/3 aFM(da), b = [; a®F*(da) and a} and b are defined similarly.

(R2) For any &€ > 0, f'FMa: a > &} + f*"F{a: a < —¢} = 0.

(R3) There exists a sequence c¢” such that ¢"fa’ — v, and c¢"f"al — v,.

(R4) sup, (f" [ a’F*(da) + f [ZM a®?F(da)) > 0 as M — o,

In analogy with Theorem 4.1, we have the following diffusion approxima-
tion result for V" = c¢’¢;.

THEOREM 4.2. Suppose that we have r, such that sup, E IIVO"II%,O < © and
{V§} converges to a ®'-valued random variable V, in distribution. Then V"
converges in distribution to a ®'-valued process V. Further, suppose that 7,
and m, € Hy and V, is an Hy-valued random variable such that E||V,|[§ < .
Then V € C(0,T], Hy) and V(¢, -) = V, satisfies

V(t,x) =V(0,x)
(4.45) +f0t(_(°‘ +L)V(s,x) + %n(x) — vm(x)) ds

¢
+ ['BV(s, x) dB,,
0
where B is a one-dimensional standard Brownian motion.
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