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We consider the bisexual Galton–Watson process (BGWP) with promis-
cuous mating, that is, a branching process which behaves like an ordinary
Galton–Watson process as long as at least one male is produced in each
generation. For the case of Poissonian reproduction, it was pointed out by
Daley, Hull and Taylor that the extinction probability of such a BGWP
apparently behaves like a constant times the respective probability of its
asexual counterpart (where males do not matter) providing the number
of ancestors grows to infinity. They further mentioned that they had no
theoretical justification for this phenomenon. In the present article we will
prove upper and lower bounds for the ratio between the two extinction
probabilities and introduce a recursive algorithm that can easily be imple-
mented on a computer to produce very accurate approximations for that
ratio. The final section contains a number of numerical results that have
been obtained by use of this algorithm.

1. Introduction. The bisexual Galton–Watson process (GWP) with vari-
ous mating functions was introduced by Daley (1968) as a modification of the
ordinary asexual Galton–Watson process so as to allow for sexual reproduc-
tion. The underlying model can be described as follows [see Daley, Hull and
Taylor (1986)]: We are given a two-type population process, whose nth genera-
tion consists ofZF

n females andZM
n males which formZn = ζ�ZF

n ;Z
M
n �mating

units. Each mating unit reproduces independently of all other units according
to the same bivariate distribution for each generation. Thus �ZF

n+1;Z
M
n+1� can

be defined by

�1:1� �ZF
n+1;Z

M
n+1� =

Zn∑
j=1

�ξn;j; ηn;j�;

where �ξn;j; ηn;j�n≥0; j≥1 forms a family of i.i.d. nonnegative integer-valued
random variables. Plainly, the empty sum is defined as �0;0� in (1.1). We
assume that the mating function ζ is nondecreasing in each argument, integer-
valued for integer-valued arguments and satisfies ζ�0;0� = 0. Under these
conditions �Zn�n≥0 is called a bisexual Galton–Watson process (BGWP) with
mating function ζ.
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It was pointed out by Hull (1982) that mating functions ζ likely to occur in
real life are superadditive in the sense that

�1:2� ζ�x1 + x2; y1 + y2� ≥ ζ�x1; y1� + ζ�x2; y2�
for all x1; x2; y1; y2 ∈ �0;∞�. The following examples are of this type:

(M1) ζ�x;y� = x min�1; y� for all x;y ≥ 0, known as promiscuous mating.
(M2) ζ�x;y� = min�x;y� for all x;y ≥ 0, known as mating with fidelity.
(M3) ζ�x;y� = x for all x;y ≥ 0, which is the mating function for the

ordinary GWP with asexual reproduction.

Ultimate extinction for BGWP with mating functions like (M1) and (M2),
but also others, was examined by Daley (1968), Bruss (1984), Hull (1982,
1984) and, most recently, Daley, Hull and Taylor (1986), the latter under no
further assumption on ζ than superadditivity. Indeed, excluding the trivial
case ξn;j ≡ 1, ηn;j ≡ 1, their main result reads as follows.

Theorem 1.1 (Daley, Hull and Taylor (1986)). Let q�j� = P�Zn = 0 for
some n�Z0 = j� denote the extinction probability of �Zn�n≥0 given j initial
mating units and m�j� = j−1E�Z1�Z0 = j� the respective mean reproduction
rate. Then for every BGWP �Zn�n≥0 with superadditive mating function q�j� =
1 for each j ≥ 1 holds iff limj→∞ m�j� ≤ 1.

The present work has been motivated by a discussion at the end of
the paper by Daley, Hull and Taylor (1986). Numerical calculations they
did for a BGWP with supercritical Poissonian reproduction, more precisely
�ξn;j; ηn;j� ∼ Poi�1:2� ⊗ Poi�1:2�, and promiscuous mating show that, as
j → ∞, q�j� quickly tends to a value about 1.33 times the respective ex-
tinction probability for the ordinary GWP with j ancestors and the same
reproduction law, given by some qj. They point out that they have no theo-
retical justification for that phenomenon, and a little reflection shows that it
is, in fact, a nontrivial problem.

In the present article we want to compare more deeply the extinction be-
havior of a promiscuous BGWP �Zn�n≥0 with that of its asexual counterpart,
henceforth denoted by �Fn�n≥0, where females reproduce without mating. We
always assume that �Zn�n≥0 has a product reproduction law pF ⊗ pM, where
pF = �pFn �n≥0 and pM = �pMn �n≥0 are probability distributions on N0. Let Pj
be such that Pj�Z0 = F0 = j� = 1 for each j ≥ 1 and define the extinction
probability function

q�j� x= Pj�Zn = 0 for some n ≥ 0�; j ∈ N0;

pertaining to �Zn�n≥0. Plainly, the reproduction law of the ordinary GWP
�Fn�n≥0 is pF, its extinction probability function qj for some q ∈ �0;1�.

Suppose we are in the supercritical case defined as noncertain extinction,
that is, q�j� < 1 for each j ∈ N. Given our assumptions, an equivalent con-
dition is that pF has mean µ > 1 and pM0 < 1. Our main result, Theorem
3.1, then provides upper and lower bounds for q�j� in terms of qj, if pM0 ≤ q,
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and of �pM0 �j, if pM0 > q. In the latter case, exponential convergence to 1, as
j → ∞, of the ratio q�j�/�pM0 �j yields as a simple consequence, Corollary
3.2. Otherwise, however, convergence of q�j�/qj turns out to be a very diffi-
cult question that will be dealt with in another article because the necessary
arguments are of a totally different nature than those presented here; they
involve potential theory and particularly the Martin boundary of an ordinary
GWP. A further brief discussion is given at the end of Section 3.

Section 4 contains the proof of Theorem 3.1 while Section 5 provides upper
and lower envelopes for q�j� that lead to very accurate numerical approxima-
tions based upon iteration. Some results for the Poissonian case are presented
in Section 6. In particular, we have reproduced the approximations by Daley,
Hull and Taylor (1986) mentioned above. Surprisingly, all our numerical re-
sults (and that includes further ones not given here for the binary splitting
and the linear fractional case) strongly indicate rapid convergence of q�j�/qj
if pM0 < q, thus being in contrast to the aforementioned problems with a
theoretical justification.

Whenever we deal with the extinction probability function of a branching
process �Zn�n≥0, the natural thing to start with is a look at generating func-
tions. So let us take a brief look at the explicit form of the generating function
hk;n of Zn, given Z0 = k; that is,

hk;n�s� = Eks
Zn for k ≥ 1; n ≥ 0 and s ∈ �−1;1�:

Let f be the generating function of pF; that is, f�s� = ∑n≥0p
F
n s

n. Then one
can show by induction that

�1:3� hk;n�s� = 1+
∑

π∈�0;1�n
�−1��π���f�π1�◦· · ·◦f�πn��k�s�−�f�π1�◦· · ·◦f�πn��k�1��

for all k;n ≥ 1, where f�0��s� = f�s�, f�1��s� = pM0 f�s�, π = �π1; : : : ; πn�
and �π� = ∑n

j=1 πj. With fn denoting the n-fold iteration of f, (1.3) may be
rewritten as

�1:4�
hk;n�s� = fkn�s� +

∑

π 6=�0; :::;0�
�−1��π�

(
�f�π1� ◦ · · · ◦ f�πn��k�s�

− �f�π1� ◦ · · · ◦ f�πn��k�1�
)
;

which is noteworthy because fkn�s� is nothing but the generating function of
Fn under Pk. In particular, we have

�1:5�
q�k� = qk + lim

n→∞

∑

π 6=�0; :::;0�
�−1��π�

(
�f�π1� ◦ · · · ◦ f�πn��k�q�

− �f�π1� ◦ · · · ◦ f�πn��k�1�
)
;

since q�k� = limn→∞ hk;n�q� and fn�q� = q for each n ≥ 0. Unfortunately, the
sum in (1.5) does not appear to be amenable to a further analysis of q�k� and
we have thus turned to an alternative approach.
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2. A functional equation for the extinction probability q�k�. For a
moment we adopt a more general viewpoint to be described next. Define the
ordinary GWP �Fn�n≥0 by

�2:1� Fn+1 =
Fn∑
j=1

ξn;j for n ≥ 0

and denote by R = �ri; j�i; j≥0 its transition matrix. Let κ: N0 → �0;1� be a
function, called killing rate. We kill the process Fn at state i with probability
κ�i�, which means we send it to a grave, for simplicity taken as 0.

The killed process �Zn�n≥0 is a Markov chain with transition matrix P =
�pi; j�i; j≥0, where

pi; j = 1�0��j�κ�i� + �1− κ�i��ri; j:

Define again the extinction probability function

q�j� = Pj�Zn = 0 for some n ≥ 0�; j ∈ N0:

A function h: N0 → R is called (right) harmonic for P if it is nonnegative and
satisfies h = Ph. We then have the obvious lemma which follows.

Lemma 2.1. The extinction probability function q is a harmonic function
for P. In detail,

�2:2� q�j� = κ�j� + �1− κ�j��Ejq�F1� for all j ≥ 0:

The function q is uniquely determined as the smallest harmonic solution with
q�0� = 1 and given by q = limn→∞ Pnδ, where δ = 1�0�.

Since q�j� = 1−Pj�Zn ≥ 1 for all n ≥ 0�, it is easily verified that

�2:3� q�j� = 1−Ej

(∏
n≥0

�1− κ�Fn��
)
:

Returning to the situation of a BGWP �Zn�n≥0 with promiscuous mating,
we are obviously given a killed Markov chain with killing rate κ�j� = �pM0 �j
for j ∈ N0. Indeed, if Fn = j, this process is killed if no males are produced,
which happens with probability �pM0 �j.

With the help of (2.2) we will derive upper and lower bounds for q�k� in
the following section (Theorem 3.1). Let us close the present section with a
further lemma that shows q�k� to be the unique solution of (2.2) that satisfies
q�0� = 1 and q�∞� = limk→∞ q�k� = 0; for the latter, see the beginning of
Section 3.

Lemma 2.2. There is exactly one solution q of (2.2) that satisfies q�0� = 1
and q�∞� = 0.
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Proof. Let q1 and q2 be two solutions of (2.2) having the stated properties.
Put κ = pM0 and d = q1 − q2, which clearly satisfies the equation d�j� =
�1 − κj�Ejd�F1� for all j ≥ 0 as well as d�0� = d�∞� = 0. By iterating this
equation, we obtain for every j ≥ 1,

d�j� ≤ Ejd�F1� = Ej�1− κF1�d�F2� ≤ Ej1�F1>0�d�F2�

≤ · · · ≤ Ej�1− κFn−1�d�Fn� ≤ Ej1�Fn−1>0�d�Fn� → 0

as n→∞, since 1�Fn−1>0�d�Fn� → 0 Pj-a.s. 2

3. Upper and lower bounds for q�k�. From now on we simplify our
notation in that we put pn = pFn for n ≥ 0 and κ = pM0 . The particular choice
of the other pMn will be of no relevance for the subsequent analysis.

We consider a BGWP �Zn�n≥0 obtained by killing at rate κ�j� = κj an
ordinary GWP �Fn�n≥0 of females if no mating occurred. According to (2.3)
the extinction probability function q is then given by

�3:1� q�k� = 1−Ek

(∏
n≥0

�1− κFn�
)
:

Let q be the extinction probability of �Fn�n≥0 given F0 = 1, that is, under P1.
Consequently, qk gives the respective probability under Pk.

It is a trivial consequence of the model assumptions that qk always forms
a lower bound for q�k� for each k ≥ 0. However, under which conditions is
the latter of the same order of magnitude as the former. In other words when
does

�3:2� 1 ≤ lim inf
k→∞

q�k�
qk
≤ lim sup

k→∞

q�k�
qk

<∞

hold true? Of course, this is an interesting question only in the supercritical
case; in the present setup it is equivalent to

�3:3� κ < 1 and µ =
∑
j≥1

jpj > 1;

which are therefore standing assumptions throughout.
It is next readily seen from (3.1) that q�1� < 1 and that q�k� ≤ qk�1� →

0 as k → ∞. Use the fact that a BGWP with promiscuous mating and k
ancestors stochastically dominates the sum of k independent BGWP with the
same reproductive behavior but one ancestor. By Lemma 2.2, q�k� is thus the
unique solution of (2.2).

Theorem 3.1 is the main result of this article and shows that (3.2) is in-
deed valid unless κ ≥ q. Recall that f�s� = ∑j≥0pjs

j denotes the generating
function of pF = �pn�n≥0 and fn denotes its n-fold iterate for each n ≥ 0; in
particular f0�s� = s.
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Theorem 3.1. Assuming (3.3), the following assertions hold for all k ≥ 1:

(i) If κ < p0, then

�3:4� 1 ≤ q�k�
qk
≤ 1+ κ

p0
:

(ii) If κ = p0, then

�3:5� 1+ 1− q
1+ q− p0

≤ q�k�
qk
≤ 2:

(iii) If p0 < κ < q, then

�3:6� 1+ κ�1− q�
κq+ �1− κ�p0

≤ q�k�
qk
≤ �n+ 2�

(
1

1− κ +
p0

κ

)
;

where n is determined through fn�p0� < κ ≤ fn+1�p0�.
(iv) If κ = q, then

�3:7� 1− q
q�a1 − q� + �1− q�

≤ q�k�
akq

k
≤ 1

1− q +
p0

q
;

where ak = Ek�τ�τ <∞� as defined and τ = inf�n ≥ 0: Fn = 0�.
(v) If κ > q, then

�3:8� 1 ≤ q�k�
κk
≤ 1+ f�κ�

κ− f�κ� :

The proof of Theorem 3.1 will be given in Section 4. Observe that (3.6)
indeed completely covers the case p0 < κ < q because fn�p0� strictly increases
to q. Note also that p0 = κ holds in particular when pF = pM, that is, when
male and female offspring are produced according to the same distribution.
Since ak evidently tends to infinity as k→∞, (3.7) implies supk≥1 q

−kq�k� =
∞ if κ = q. Figure 1 gives an illustration of the bounds obtained for the case

Fig. 1. Lower and upper bounds for r�k� in the Poisson case with µ = 1:2.
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considered by Daley, Hull and Taylor (1986), where pF is Poisson with mean
µ = 1:2.

Define next r�k� = q−kq�k� for k ≥ 0 and

�3:9� r∗�k� =





r�k�; if κ < q;

r�k�/ak; if κ = q;
q�k�/κk; if κ > q:

It is natural to ask next whether or not r∗�k� converges as k→∞. Unfortu-
nately, the answer is simple only in the case κ > q where even exponential
convergence holds true [f�κ� < κ].

Corollary 3.2. If κ > q, then for all k ≥ 0,

�3:10� 1 ≤ q�k�
κk
≤ 1+C

(
f�κ�
κ

)k
;

where C is the upper bound in (3.8).

Proof. By (3.7) in Theorem 3.1, q�k� ≤ Cκk for all k ≥ 0 whence by (2.2),

1 ≤ r�k� = 1+ 1− κk
κk

Ekq�F1� ≤ 1+ C�1− κ
k�

κk
Ekκ

F1 ≤ 1+ Cf
k�κ�
κk

;

which is the asserted result. 2

The case κ ≤ q is much more difficult because, in contrast to the previous
case, the bounding functions of Theorem 3.1 do not provide any insight into
the asymptotic behavior of q�k� apart from the crude information that r∗�k�
remains bounded. Before discussing this further, we state the following result
on r.

Let P̂k = Pk�·�Fn → 0� with expectation operator Êk. It is well known
that �Fn�n≥0 forms again an ordinary (subcritical) GWP under P̂k with k

ancestors, offspring generating function f̂�s� = q−1f�sq� and reproduction
mean µ̂ = f′�q� < 1; see Athreya and Ney [(1972), page 47ff ].

Lemma 3.3. The function r�k� = q−kq�k� satisfies

�3:11� r�k� =
(
κ

q

)k
+ �1− κk� Êkr�F1�

for each k ≥ 0.

Proof. The identity is a direct consequence of (2.2) if we note that
P̂k�F1 = j� = Pk�F1 = j� qj−k holds for all j; k ≥ 0 and thus

q−kEkr�F1� =
∑
j≥0

P�F1 = j�qk−jr�j� = Êkr�F1�: 2
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Iterating (3.11) leads to the basic identity

�3:12� r�k� =
(
κ

q

)k
+ Êk

( τ∑
j=1

(
κ

q

)Fj j−1∏
i=0

�1− κFi�
)
;

where τ is here and throughout the extinction time of �Fn�n≥0. As one can
see from this identity, the limiting behavior of r�k� for k → ∞ is related
to that of the time reversal at τ of �Fn�n≥0 under P̂k. For an analysis of the
latter, potential-theoretic arguments have to be employed involving the Martin
boundary of �Fn�n≥0. Since such arguments cannot be given briefly and are of
a totally different nature than those given here, we have decided to present
them in a separate article. We finally note, however, that in contrast to the
picture conveyed by the numerical results of Section 6, we have good reasons
to believe that r�k� does not generally converge.

4. Proof of Theorem 3.1. Recall that P denotes the transition matrix
of �Zn�n≥0 and forms an operator that maps a function h: N0 → R on Ph
given by Ph�j� = κj+�1−κj�Ejh�F1�. Notice that P is order-preserving. The
subsequent proof makes frequent use of the following two conclusions that can
be drawn from Lemmas 2.1 and 2.2.

1. If h is a superharmonic function for P (h ≥ Ph) and h�0� = 1, then Pnh
decreases to a harmonic limit h∞ ≥ q whence h ≥ q.

2. If g is a subharmonic function for P with g�0� = 1 and if g is upper-
bounded by some superharmonic function h with h�∞� = limk→∞ h�k� = 0,
then Png increases to q implying g ≤ q.

Now consider the functions hc�0� = 1 and hc�k� = cqk for k ≥ 1, where
c ≥ 1 is to be suitably chosen below. Notice that hc ≤ hd if c ≤ d and that
hc�∞� = 0. It follows that

�4:1�
Phc�k� = κk + �1− κk��pk0 + cEk1�F1>0�q

F1�
= κk + �1− κk��pk0 + c�qk − pk0��

for all k ≥ 0, whence hc ≤ �≥�Phc is equivalent to

c ≤ �≥�ck =
κk + �1− κk�pk0
κkqk + �1− κk�pk0

= 1+ κk�1− qk�
κkqk + �1− κk�pk0

:

If κ < p0, it is easily seen that 1 ≤ ck → 1 as k→∞ and that supk≥1 ck ≤
1+ κ/p0. Hence (3.4) follows from conclusion 1 by taking h = h1+κ/p0

.
If κ = p0, then

�4:2� c1 ≤ ck = 1+ 1− qk
qk + 1− κk ≤ lim

k→∞
ck = 2;
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which implies (3.5) by first using conclusion 1 with h = h2 and then conclusion
2 with g = hc1

and the same h. We note for the first inequality in (4.2) that

ck − 1 =
(
qk − κk
1− qk +

1
1− qk

)−1

=
(
q− κ
1− q

∑k−1
j=0 κ

k−1−jqj
∑k−1
j=0 q

j
+ 1

1− qk
)−1

≥
(
q− κ
1− q +

1
1− q

)−1

= c1 − 1:

If p0 < κ < q, then the same approach yields

�4:3� c1 ≤ ck = 1+ 1− qk
qk + �1− κk��p0/κ�k

≤ lim
k→∞

ck = ∞;

where the left inequality in (4.3) follows by a similar estimation as that leading
to (4.2). We infer the lower bound in (3.6) by another appeal to conclusion
2 after having provided an upper superharmonic bound. Unfortunately, the
latter requirement as well as the upper bound in (3.6) must be derived from
another function class because the ck’s are now unbounded. We will finish the
proof of the lower bound after (4.7).

Let us introduce the function

g�s; k� = 1+
∑
j≥0

�fkj�s� − fkj�p0��q−k

for k ≥ 0 and s ∈ �0;1�, so that g�s;0� = 0. In the case fn�p0� ≤ s ≤ fn+1�p0�,
n ≥ 0, g satisfies

�4:4�

g�s; k� ≥ 1+
∑
j≥0

�fkj+n�p0� − fkj�p0��q−k

= 1+
n−1∑
i=0

∑
j≥0

�fkj+i+1�p0� − fkj+i�p0��q−k

= �n+ 1� −
n−1∑
i=0

fkj�p0�q−k

and, by a similar estimation,

�4:5� g�s; k� ≤ �n+ 2� −
n∑
i=0

fki �p0�q−k:

Recalling that R denotes the transition operator of �Fn�n≥0, the important
feature of this function can be stated as

Ekg�s;F1�qF1 = R�g�s; ·�q·��k� = g�s; k�qk − sk
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for every s ∈ �0;1� and k ≥ 0. Namely,

�4:6�

Ekg�s;F1�qF1

= Ek1�F1>0�q
F1 +

∑
j≥0

Ek�fF1
j �s� − f

F1
j �p0��

= �qk − �p0�k� +
∑
j≥0

�fkj+1�s� − fkj+1�p0��

= qk
(

1−
(
p0

q

)k
+
∑
j≥0

(
fkj�s� − fkj�p0�

)
q−k −

(
s

q

)k
+
(
p0

q

)k)

= g�s; k�qk − sk:

Consider now the functions ĥc�0� = 1 and ĥc�k� = cg�κ; k�qk for k ≥ 1 and
c > 0. Again, ĥc ≤ ĥd if c ≤ d and ĥc�∞� = 0. Then

Pĥc�k� = κk + �1− κk��pk0 + cEkg�κ;F1�qF1�
= κk + �1− κk��pk0 + c�g�κ; k�qk − κk��;

so that ĥc ≥ Pĥc holds iff

c ≥ ĉk x=
κk + �1− κk��p0�k

κkg�κ; k�qk + �1− κk�κk

= 1+ �1− κk��p0/κ�k
g�κ; k�qk + �1− κk�

for all k ≥ 1. In order to show the upper bound in (3.6) for supk≥1 q�k�q−k, it
suffices by conclusion 1 to verify that this bound is also an upper bound for
supk≥1 g�κ; k�ĉk. Let fn�p0� < κ ≤ fn+1�p0� for an arbitrary n ≥ 0, in which
case supk≥1 g�κ; k� ≤ n+ 2 by (4.5). Now the desired result follows from

�4:7�

g�κ; k�ĉk ≤ g�κ; k�
1+ �1− κk��p0/κ�k

1− κk

= g�κ; k�
{(

1
1− κk

)
+
(
p0

κ

)k}

≤ �n+ 2�
{

1
1− κ +

p0

κ

}
=x ĉ

for every k ≥ 1.
By noting that hc1

≤ ĥĉ, the proof of the lower bound in (3.6) is also settled.
For the case κ = q we proceed in the same manner, this time choosing

hc�0� = 1 and hc�k� = cg�q; k�qk for k ≥ 1. Recall from before Lemma 3.3 that
P̂k = Pk�·�Fn→ 0� with expectation operator Êk. Under P̂k with k ancestors
and reproduction generating function f̂�s� = q−1f�qs�, �Fn�n≥0 forms a sub-
critical GWP. Furthermore, its nth iterate f̂n takes the form f̂n�s� = q−nfn�qs�
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for each n ≥ 0. Consequently, for each k ≥ 0,

g�q; k� = 1+
∑
j≥0

�fkj�q� − fkj�p0��q−k = 1+
∑
j≥0

�1− f̂kj�p0/q��

= 1+
∑
j≥1

P̂k�Fj > 0� =
∑
j≥0

P̂k�τ > j� = Êkτ = ak:

For inequality (4.9), we note that by the same argument which proved (4.2),

�4:8� akqk = qk + �1− qk�
∑
j≥0

qk − fj�p0�
1− qk ≤ q+

∑
j≥0

q− fj�p0�
1− q = q�a1 − q�

1− q

for all k ≥ 1. Now hc ≤ �≥�Phc again holds iff c ≤ �≥�ck for all k ≥ 1, where
ck here takes the form

ck =
1+ �1− qk��p0/q�k
akq

k + �1− qk� :

The asserted inequality (3.7) thus follows from

�4:9�
ck ≤

1+ �1− qk��p0/q�k
1− qk ≤ 1

1− q +
p0

q

≥ 1
akq

k + �1− qk� ≥
1

�q�a1 − q�/�1− q�� + 1
= 1− q
q�a1 − q� + �1− q�

for each k ≥ 1, of course, by a further appeal to conclusions 1 and 2.
We finally have to consider the case κ > q and put hc�0� = 1 and hc�k� = cκk

for k ≥ 1. Then hc ≤ �≥�Phc holds iff

c ≤ �≥�ck x=
κk + �1− κk�pk0

κk − �1− κk��f�κ�k − pk0�

for all k ≥ 1. Equation (3.8) now follows from limk→∞ ck = 1 [notice f�κ� < κ]
and the inequality

1 ≤ ck = 1+ �1− κk�fk�κ�
κk − �1− κk��fk�κ� − pk0�

≤ 1+ fk�κ�
κk − fk�κ� = 1+ 1

�κ/f�κ��k − 1

≤ 1+ 1
�κ/f�κ�� − 1

= 1+ f�κ�
κ− f�κ�

for all k ≥ 1. The proof of Theorem 3.1 is herewith complete.
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5. Lower and upper envelopes for q�k�/qk. The bounds given in The-
orem 3.1, which are valid for all k ≥ 1, may clearly fail to be very accurate, but
the bounds we have provided in the previous sections can be used as initializa-
tions for a recursive scheme that successively leads to sharpened upper and
lower bounds for q. The procedure is easily implemented on a computer and
gives numerical results in those cases where the distribution of F1 is known
under each Pk. Such a case, namely, where reproduction laws are Poissonian,
is presented further below after the iteration scheme and its relevant proper-
ties are introduced.

Let q0 be any given approximation of q with q0�0� = 1 and superharmonic
upper bound h satisfying h�∞� = 0 (standing assumption throughout). How-
ever, q0 itself need not be sub- or superharmonic. From a theoretical stand-
point it would then be natural to approximate q by Pnq0, which indeed con-
verges pointwise to q, as one can easily verify (see Lemma 5.1). On the other
hand, this iteration requires computing Pnq0�k� for every k ≥ 0 and thus
involves infinitely many computations. For that reason we have used another
similar, iteration scheme which at each step updates the current approxima-
tion only within a finite window of increasing size. More precisely, we define
the nth iteration qn recursively by

�5:1� qn�k� =
{

Pqn−1�k�; if 0 ≤ k < n;
qn−1�k�; if k ≥ n;

for each n ≥ 1. A simple induction shows that

�5:2� qn�k� = P�n−k�
+
q0�k�

for all n ≥ 0 and k ≥ 0. Notice that qn�0� = 1 for all n ≥ 0. The relevant
properties of this recursive scheme are stated by the following lemma.

Lemma 5.1. The inequality q0 ≤ �≥�q implies qn ≤ �≥�q as well as
limn→∞ qn = q. If q0 is further sub(super)harmonic for P, then even

�5:3� q0 ≤ �≥�q1 ≤ �≥�q2 ≤ �≥� · · · ↑ �↓�q

holds true.

Proof. Since P is order-preserving, we have qn�k� = P�n−k�
+
q0�k� ≤ �≥�q

for all n ≥ 1 and k ≥ 0 if q0 ≤ �≥�q. For the same reason we infer (5.3) in the
case of sub(super)harmonic q0.

In view of (5.2) the convergence of qn to q clearly follows if we prove Pnq0 →
q, as n → ∞. However, the uniform boundedness of the Pnq0 implies that
each subsequence �nk�k≥1 contains a further subsequence �n′k�k≥1 such that
Pn′kq0 converges to a harmonic limit q∞, q∞�0� = 1. Now q0 ≤ h for some
superharmonic h which vanishes at ∞ implies q∞�∞� = 0. Consequently,
q∞ = q by Lemma 2.2 and the proof of Lemma 5.1 is complete. 2
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6. Numerical results. Let us finally turn to the question of how the
recursive scheme in (5.1) can be used to provide numerical results. Suppose
we are given a function q�0�0 whose iteration q�0�1 can be easily computed. If
κ < q, such functions are naturally given by Theorem 3.1 and of the simple
form q�0�0 �0� = 1, q�0�0 �k� = cqk for k ≥ 1 and an appropriate c ≥ 1. However,
the reader should recall from the proof of Theorem 3.1 that these functions
need not necessarily be sub- or superharmonic in the case p0 < κ < q. It is
for this reason that we have given the more general convergence result in
Lemma 5.1.

Now (5.3) is perfectly designed for recursive calculations whenever R is
known. This includes the cases of Poissonian and linear fractional reproduc-
tion as well as the case of binary splitting, to mention the probably most popu-
lar ones. Let us rewrite (5.3) as a recursive equation for r�n�1 �k� x= q−kq

�n�
1 �k�,

since we are interested in approximations for r�k� = q−kq�k�. We have

�6:1� r�n�1 �k� = r�0�1 �k� + �1− κk�
n−1∑
j=0

rj; k�r
�n−1�
1 �j� − r�0�0 �j��qj−k:

A collection of numerical results we obtained for the Poissonian case are
reported below. When it turned out that corresponding results in the other
aforementioned cases looked qualitatively very similar, we decided to refrain
from their presentation here.

We first take a look at the situation that was examined by Daley, Hull
and Taylor (1986). So let pF be a Poisson distribution with mean µ = 1:2,
which yields q = 0:6863. Also let p0 = κ. Table 1 compares for various k the
approximated values for r�k� obtained from our recursive algorithm with those

Table 1

A comparison of numerical values for
r�k� obtained from (5.4) with those

from Daley, Hull and Taylor (1986)

r�k�

k (5.4) DHT

1 1.2439 1.2439
2 1.3161 1.3161
3 1.3302 1.3300
4 1.3310 1.3308
5 1.3301 1.3300
6 1.3296 1.3292

10 1.3295 1.3296
20 1.3295 1.3295
40 1.3295 1.3296
60 1.3295 1.3293

100 1.3295
200 1.3295
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by Daley, Hull and Taylor (DHT), who used a method based upon truncation
of the transition matrix of �Zn�n≥0. We used 400 iterations and, in order to
reduce the number of computations, a stopping rule that would keep the values
of upper and lower envelope fixed at any k as soon as their difference fell below
10−5. As one can see, both methods lead to almost identical numbers.

We then performed similar calculations for p0 = κ and varying q. The
respective graphs of r�k� for q = 0:01; 0:2; 0:5 and 0:8 within ranges of k
that provided satisfactory precision are shown in Figures 2–5. It seems that
for q < 0:5 the graph of r always behaves like a damped oscillation that
eventually settles at a limiting value between 1 and 2, whereas for q ≥ 0:5
such a limit point is rapidly approached in a nonoscillatory manner. However,
we have no theoretical justification for this apparent phenomenon.

Finally, we looked at the graphs of r for fixed q but varying κ be-
tween values much smaller than the pertinent p0 up to κ = f10�p0�.

Fig. 2. The case q = 0:01 and κ = p0.

Fig. 3. The case q = 0:2 and κ = p0.
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Fig. 4. The case q = 0:5 and κ = p0.

Fig. 5. The case q = 0:8 and κ = p0.

The results for q = 0:2 (implying p0 = 0:13375 and µ = 2:0118) and
κ = 0:05; 0:01; f�p0�; f2�p0�; f5�p0� and f10�p0� may be found in Figures
6–10. The case κ = f10�p0� can be viewed as a good approximation of the case
κ = q within the range shown in the figure. In fact, we obtained the same
curve modulo deviations of order less than 10−5 for κ = f20�p0�. Although the
graphs of r for κ = f5�p0� and f10�p0� appear as increasing functions (with
some finite limiting value according to our theorem), we suspect an oscillatory
behavior of r for all κ < q, however, with rapidly decreasing amplitudes as κ
increases to q, and with intervals between consecutive amplitudes that are
too long to be visible in the given range chosen in the picture.

For q ≥ 0:5 the graphs of r as κ varies look very much the same as those
shown in Figures 4 and 5, where κ = p0. We have thus refrained from dis-
playing them here.
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Fig. 6. The case q = 0:2 and κ = 0:05.

Fig. 7. The case q = 0:2 and κ = 0:1.

Fig. 8. The case q = 0:2 with κ = f�p0�.
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Fig. 9. The case q = 0:2 with κ = f2�p0�.

Fig. 10. The case q = 0:2 with κ = f5�p0� (lower curve) and κ = f10�p0� (upper curve).

The speed of convergence of our recursive algorithm appears to be very
fast for small values of q (not greater than 0.4), but increasingly poor as
q increases beyond 0:5. We always chose an iteration number between 400
and 500 and computed approximations for r�k� for k less than this iteration
number, as suggested by (6.1). It then appeared for q > 0:5 that not only
would computation times exponentially grow, but simultaneously the distance
between lower and upper bounds of r�k� would be outside a satisfactory range
(chosen as 10−4 or smaller) for k greater than about half the iteration number.

Despite the computational problems just mentioned for large values of k,
the grand picture conveyed by our numerical results is that r�k� always con-
verges as k tends to infinity. It is therefore to be emphasized once more that
we have theoretical reasons to conjecture the latter to be generally false. On
the other hand, if r�k� indeed diverges, then its variation for large values
of k seems to be in a range of little numerical interest, a “near-constancy”
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phenomenon also encountered for the so-called Harris function of certain su-
percritical ordinary GWP; see, for example, Biggins and Nadarajah (1993) and
the references therein.
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