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The model considered here has arisen in a number of completely sepa-
rate contexts: release of neurotransmitter at neuromuscular synapses, un-
ravelling of strands of DNA, differentiation of cells into heterocysts in algae
and growth of crystals. After a shear transformation the model becomes a
Markov process, based on a Poisson process on the upper half plane, ho-
mogeneous in the horizontal (time) direction, which increases at unit rate
except for occasional “drops.” By considering the process separately when
it is above or below a given “level,” for any interval on the time axis, we
obtain in particular exact moment results and prove asymptotic normality
for long time intervals for the number of downcrossings in the interval, the
total time in the interval when the process is below the specified level and
the number of drops in the interval. Limit distributions as the length of
interval tends to infinity are obtained for the level at which the interval
is “covered.” It is shown that several problems considered in the literature
have analytic solutions as special cases of the general model. The numeri-
cal results from one special case are compared to statistics obtained from
experimental data from neurobiology.

1. Introduction. The stochastic model considered here has arisen in a
number of completely separate contexts: release of neurotransmitter at neuro-
muscular synapses, unravelling of strands of DNA, differentiation of cells into
heterocysts in algae and growth of crystals. The terminal of a neuronal axon
at the neuromuscular junction has branches consisting of strands containing
many sites from each of which the release of a quantum of transmitter can
be evoked by an action potential [Bennett and Robinson (1990)]. Experimen-
tal observations of the effects of these releases on the membrane potential of
the muscle cell can be obtained both intracellularly, to measure total release,
or extracellularly, to measure the time course of individual releases over a
section of a branch of the nerve terminal. The releases are found not to fol-
low a Poisson distribution and it has been postulated that at each release an
inhibitory substance is simultaneously released from a site, spreading along
the terminal branch and preventing releases in regions close to the site where
release occurred. Two models for unravelling of DNA strands are discussed in
Vanderbei and Shepp (1988) and in Cowan, Chiu and Holst (1995). In these,
random sites and times or random sites followed by a random delay time are
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the starting points and times of the strand’s unravelling, assumed to occur at a
fixed rate. The distribution of heterocysts on strands of filamentous blue-green
algae is investigated in Wolk (1975). Here cells differentiating into heterocysts
inhibit nearby cells from so differentiating. Meijering (1953) considered some
models for the formation of crystals, one of which assumed random nucleation
followed by growth at a fixed rate. The one-dimensional version of this process
is considered here.

In the first example, observations on the number of releases and the time
between releases were given and were studied in Bennett and Robinson (1990).
An analytic study of the number of releases for a particular simplified model
was given in Quine and Robinson (1990). A generalization of this work to in-
clude processes inhomogeneous in time is needed to give more realistic models
for these experimental results and this is given below. Vanderbei and Shepp
(1988) and Cowan, Chiu and Holst (1995) both studied, by rather different
means, the time until complete separation of DNA strands under two models.
The general model considered in this paper incorporates both these models
as special cases and we indicate how to obtain their results. In the third ex-
ample, attention was focussed on the distances between heterocysts as given
by a particular simple model for the inhibitory process. This will be examined
under a general model. In the fourth example, lengths of crystals were of in-
terest and these also are examined under the general model. In all cases, it
is of interest to examine the properties of the number of initiated points, the
distances between them, both at the end of the process (at infinite time) and
at some intermediate times, when it is also of interest to look at the number
and length of gaps (and of covered regions), and the distribution of times to
initiation of the process at various points.

Consider a two-dimensional Poisson process E, on time and level, (¢, x),
homogeneous in time, with rate function A(x), x > 0, —co < ¢ < oo. This no-
tation is used in line with the convention in point processes, although in each
of the applications, “time” actually represents position on a strand and “level”
represents time after commencement of the process. This model incorporates
as special cases the homogeneous process, where A(x) = A, a constant, consid-
ered in Vanderbei and Shepp (1988) and the process with A(x) = (y/u)e */*
of Cowan, Chiu and Holst (1995). Associated with each point of the process =
is a half-line or ray of slope 1. We will study the process {X,, —oco <t < oo},
defined as the infimum of these rays, as in Figure 1.

In the problems described above it was assumed that there was spread
from each position at a constant rate v in both directions. However, because
the process is homogeneous in time, v can be taken as % by a change of scale
and further the distribution is unchanged under the shear transformation
(t,x) — (t+ x/2, x) [cf. Vanderbei and Shepp (1988)]. Thus questions con-
cerning each of the applications can be transformed into questions concerning
the process {X,}.

The rest of this paper is set out as follows. In Section 2 we formally de-
fine the process X, and consider conditions on the rate A(x) needed for the
remainder of the paper. We then look at times when the process first crosses
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Fi1G. 1. The process {X,}.

a specified level and look at limit results for high levels, thus generalizing the
results of Vanderbei and Shepp (1988) and Cowan, Chiu and Holst (1995). In
Section 3 we examine the blocks defined by the process’s crossing of a fixed
level. This enables us to partition the process into a series of independent
pieces. We then obtain results on the duration of these blocks, the number of
downcrossings in any fixed interval and the number of points of the original
process in a block below the specified level. Section 4 contains results concern-
ing the number of drops, the heights and distances between these drops and
gives the Markovian properties of these sequences. We obtain the properties
of the number of drops in an interval and in each block. In Section 5 we give
applications of the results to a number of particular cases considered in the
literature.

2. The process {X;}. In this section we consider the distribution of X,
and the time for X, to reach a specific (possibly high) level. The results are
used to derive asymptotic results for the level at which complete coverage of a
long interval (0, ¢) is attained which, in the DNA application and the models
for differentiation of cells into heterocysts and crystal growth, is the time until
the process is completed.

2.1. Assumptions and the distribution of X,. We use throughout the prob-
ability space (Q), .7, P) defined by the Poisson point process E in the upper
half-plane {(¢,x): —o0 <t < 00, x > 0} with mean measure A(x)d¢dx. We
assume that A(-) is continuous, except for at most a finite number of points,
and that for all real numbers x > 0,

0 < A(x) := fox)\(y)dy < 00.
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Let &, be the o-algebra generated by this process up to and including time
t. A filtration is defined by {%;,, —co < ¢t < oo}. We can describe the process
{X,, —o0 <t < oo} as follows. It consists of uniform upward motion at unit
speed with occasional jumps downward. The jump rate is A(X,_) and after
a jump, the new position X, is distributed on the interval (0, X,_) with the
density

AMy)/AX,).

Clearly, {X,} is a stationary Markov process with respect to the above filtra-
tion.

The distribution of X, at any specific time ¢ can be obtained as follows.
First note that the event {X,_ > x} is the same as the event that there are no
points of E in the triangle with corners (¢ — x, 0), (¢, 0), (¢, x). As the number
of points within the triangle has a Poisson distribution with mean

A(x) == /Ox A(s)ds, x>0,

we get
P(X, > x)=e 2™,
If we define
A(x) =0, x <0,
then in a similar way we obtain for ¢ > 0 the conditional distribution
P(X, = y|Xo =2, %) =P(X, = y| X, = x)
= exp(—A(y) + A(y — 1)), O<y=<x+t.

Note that the distribution has an atom at y = x + ¢, corresponding to no jump
in the process in (0, £].

We will now make assumptions on the mean measure. First recall I’'Hopi-
tal’s rule: if f and g are defined and differentiable with g’'(x) # 0 for all
sufficiently large x and g(x) — oo as x — oo, then

@) @)
M o)~ A gy’

provided the last limit exists (and is finite). We separate three different cases
depending on the behavior of A(x) at infinity.

CASE A;. Assume y :=lim, , A(x) < oco. In this case the point process
E can be generated by a Poisson process with intensity y on the #-axis and
to each point of this a level is generated (i.i.d.) by the distribution A(-)/7y. It
follows by ’'Hépital’s rule that

lim Ax) = lim M =

1.
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Hence the distribution of X, has an exponentially decreasing tail
e~ T - P(X, > x) = e A < gmre)

for £ > 0 and all sufficiently large x.

CASE Ay,. Assume A(x) — oo and xA(x)/A(x) — p with 0 < p < oo as
x — o0o. Then

Ax) Ax) 1
oo xA(x) oo A(x) +ah(x)  1+p

We get for £ > 0 and large x that
—xA(x) <1—1Fp + 3) <logP(X, > x) = —A(x) < —xA(x) (1—i1-p - g) .

That is, the tail decreases faster than exponentially.

CASE A3. Assume A(x) — oo and A(x)/A(x) — ¢ with 0 < ¢ < co. Then
A(x) i A(x) 1

lim -

X—00 A(x) - xLoo )\(x) T

Hence for ¢ > 0 and large «x,
(c—¢&)x <logA(x) < (c+ &)x.
The tail decreases extremely quickly:
—elcte)x _ele—e)x

P <logP(X, > x) = —A(x) < oyt

We think that Cases A;—Aj cover most situations of interest. The assump-
tions on the mean measure will imply that all the integrals given below will
be finite. It is easily seen that Case A; implies that the Laplace transform
E(e %) is finite for @ > —c for some ¢ > 0; Cases A, and A5 imply that the
Laplace transform is finite for all «. Thus all moments of X, are finite and we
have, for example,

E(X, = /0 e 2@ dyx < o0,

2.2. Time for {X,} to reach a specific level. Conditional on X, = x, con-
sider the random time 7 when the process first hits the level z > x and its
Laplace transform

f(x, ) =E,(e™).

The notations E, and P, stand for the conditional expectation and probability
given X, = x, respectively.

It is easy to derive a recursive relation for the Laplace transform. With
probability exp(—A(z) + A(x)) there are no downward jumps in the process
before it hits the level z; otherwise there is a downward jump before ¢t = z — x



908 L. HOLST, M. P. QUINE AND J. ROBINSON

and after that the process “regenerates” but with another starting value, y
say. Taking into account the distribution of the height after such a jump, we
get the following recursive relation for f(x) := f(x, a):

f(x) = exp(—a(z — x)) exp(—A(2) + A(x))

+ /S;xf;:: e f(y) A();(-div-)x)/\(s + x) exp(—A(x + 5) + A(x)) dy ds

with the boundary condition f(z) = 1. Differentiating, we obtain

(a+ AN — F(x) = [ FIN)dy
with f'(0) = af(0), and then after another differentiation,
f"(x) = (. + A(x)) ' ().
Solving this equation we find

1+ a [y exp(au + A(w)) du

BT = 1) = e exp(au + Aw) du

By inverting the Laplace transform, the distribution of 7 can be obtained in
any specific case. Differentiation gives

E, (1) :/x AW gy,

We could also consider ¢, defined to be the time until { X,} drops below level
z when X, = x > z. This is just the same as the time until the first point of
E occurs in the strip {(s, ¥): s > 0, 0 < ¥ < z}. Projecting the points in this
strip onto the time axis gives a Poisson process with intensity A(z). Thus ¢
has an exponential distribution with mean 1/A(z). That is,

P({>t)=e2®" >0,

2.3. Time for {X,} to reach a high level. It is of interest to study the time
until {X,} hits an extreme level. For a high level this is done in Vanderbei and
Shepp (1988) for the homogenous case A(x) = A, a constant, and by Cowan,
Chiu and Holst (1995) both for the homogenous case and for A(x) = (y/u)e */*.

From the formula for E,(7) in the previous section and under any of the
assumptions A;—Aj;, one can show using ’'Héspital rule that for every fixed
x>0,

E,(7)A(2)e™?) > 1, z — o0.
We also get
lim zA(z)e 2 = 0.

Z—> 00

Therefore

A(2) exp(—A(2)) /O " exp(au/E,(r) + Aw)) du — 1
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as z — oo and hence
wl =47 = 1+ (a/E(7)) [y exp(au/E, (1) + A(u)) du oL
B <e p<Ex<7>)> T 1+ (a/E, (7)) [ explau/E (1) + Mu))du  1+a’

Here 1/(1 + «) is the Laplace transform of an exponential distribution with
unit mean. Therefore as z — oo we have

(2.1 Px(max X, < z) =P.(7>1t) > exp(—e™¥)

O<s<t

for fixed u and ¢/E (1) — e * or equivalently,
(2.2) A(z) —log A(z) =logt+ u + o(1).
Note that if 7', denotes the level at which the interval (0, ¢) is completely

covered, we have

P.(T, <2)= Px(max X, < z).

O<s<t

In the remainder of this section, this result will be used to get asymptotic
results on the level at which complete coverage of a long interval (0, ¢) occurs
in a number of special cases.

Consider first the homogenous case for which (2.2) becomes

2222 —log Az =logt + u + o(1),

which for ¢ — oo is equivalent to

L log At? + (1/2)loglog At? + u + o(1)
VA log A2 '
Hence it follows from (2.1) that, as ¢ — oo,
P.(vAlog A2 T, —log At? — $loglog At% < u) — exp(—e™%).

This is proved in a different way by Cowan, Chiu and Holst [(1995), Theo-
rem 2]; it is also obtained in Vanderbei and Shepp (1988), although (as is
pointed out) there are some minor gaps in their proof.

Now suppose A(x) = yF(x), where F is a distribution function with support
on (0,00) with finite mean u. This is a special case of A; in Section 2.1.
Formula (2.2) gives

log yt + u = —y/o (1— F(v))dv +yz —log F(2) + o(1)
=vyz—vyun+o(1).
Hence as ¢t — oo,

P,(yT, —log yt — yu < u) — exp(—e "),

This result covers the case considered in Cowan, Chiu and Holst [(1995), The-
orem 1] with A(x) = (y/p)e */*.
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Let us now consider another special case of A;, where A(x) = yF(x) =
v(2/7) arctan x so that F' has infinite mean. After some calculation we find

2
A(z) = y(z — ;(logz +1)+ 0(1)),
giving the limit

2 2
P, (yTt —log yt — =y log log vt — =y < u) — exp(—e ),
an a

as t — oo.

Another interesting case is A(x) = y2(1-®(1//x)), where A; of Section 2.1
holds [®(-) is the standard normal distribution function]. This corresponds to
a stable distribution with coefficient %; see Feller (1966). We get

A(z) = yz — y/o (20(1//x) — 1) dx.
Integration by parts and series expansion gives
A(z) = y(z — /8z/m + 1+ o(1)),

from which we find, as t — oo,

8
P, <yTt — log vt — \/y logyt+vy < u) — exp(—e ).
au
For a final example, suppose A(x) = e* so that A(x) = e* — 1 and A(x) =
e* — x — 1; this is an example of A3 with ¢ = 1. We get from (2.2)
e —2z—1=logt+u+o(1),
which gives
z =log(logt +2loglog¢ +u +1)
=loglogt + (2loglogt+ u + 1)/log ¢ + o(1/log t).
Hence
P.(T,logt—logtloglogt—2loglogt —1<u)— exp(—e™™)
as t — oo.
3. Blocks. In this section a fixed level z is considered (corresponding to
a fixed time in the applications). The behavior of the process is addressed in
relation to this level. In the following subsections we consider the distribu-
tions of the lengths of these blocks, the number of downcrossings, which is

in applications the number of gaps, and the number of points of the original
process in each block.

3.1. Duration of blocks. Consider the time points when {X,} crosses the
level z. These separate the path into “upblocks” where X, > z and “down-
blocks” with X, < z. Because {X,} is Markov, the behavior of the process
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within each block is independent of its behavior in other blocks. The upblocks
are probabilistic replicas and so are the downblocks.

By the argument in Section 2.2 we see that the duration ¢ of an upblock
is exponential with mean 1/A(z). To obtain the distribution of the duration
7 of a downblock, note that it begins with a drop from above z to some point
in 0 < x < z chosen according to the density A(x)/A(z). From the result in
Section 2.2 we see that 7 has Laplace transform

—ar Z AMx)
B =], )

1+ a [7_o(Mx)/A(2)) [_,exp(au + A(w)) du dx
B 1+ af; exp(au + A(w))du
@ Jo A(x)exp(ax + A(x)) dx
A(2) 1+ a [; exp(au + A(u)) du’

which determines the distribution of 7. Taking derivatives we find

E, (e7*)dx

ef® 1

=G

and
Var(r) = 2:?;)) f (@ _ 1) du — (E(r))%

Furthermore, the times for the crossings form an alternating renewal pro-
cess and results from renewal theory can be used to study different aspects
of the process {X,} and also the underlying Poisson point process E. For gen-
eral results on renewal processes see, for example, Asmussen (1987) and Gut
(1988).

3.2. Number of downcrossings in an interval. Let us consider B,, the num-
ber of downcrossings in the interval (0, ¢). The mean and variance of the du-
ration of a complete block, consisting of one downblock and the succeeding
upblock, are

eA(z)

A(2)

pg=E(T+{)=

and
2eA(Z> z eA(Z) (eA(Z) — 2)
2 _ — Au) _ _
ok = Var(r+ ) = /0 (e 1)du )

As the point process E is stationary, it follows that
E(B,) =t/pp = te*®/A(2).

However, the time point 0 might be chosen in some particular way invalidating
stationarity, for example, as the start of a downblock. In any case, Blackwell’s
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renewal theorem gives, as ¢t — oo,
E(B;,, — B;) = h/us.
That is, the density of downcrossing is asymptotically
1/up = A(2)e 23,
Furthermore as ¢ — oo, well known results of renewal theory give
Var(B,) = t o}/ + o(?)
and
B, — E(B,)
J/Var(B,)

Another quantity of interest is C,, the total time in (0, ¢) the process spends
below level z. We have, as t — oo,

C,—tE(7)/pp
Jt (E(r)? Var(¢) + E(¢)? Var(r))/uh
see, for example, Gut [(1988), page 122].

—q 40, 1);

3.3. Number of points in a downblock. Next consider the points of = in
the strip {(¢,x): —oco <t <00, 0 < x < z}. Only these points determine the
process in downblocks. In upblocks there are no points in this strip. Projecting
the points on the time axis gives a Poisson process of intensity A(z). Mark each
such point with 1 if it begins a (down) block; otherwise mark it 0. The event
that a point at ¢, say, has mark 1 is the same as the event that = has no points
in the triangle with corners (¢ — z, 0), (¢, 0), (¢, z). Hence the probability that
the mark is 1 is

pr=e"?,

The sequence of 1’s and 0’s generated in this way is evidently a stationary
discrete renewal process. Let v be the number of points in the Poisson process
belonging to the same block, that is, the number of 0’s between successive 1’s,
plus 1. Because the times Z,, Z,, ... between successive points are indepen-
dent exponential random variables with mean 1/A(z), we have

Z1+Z2++ZV:T+§

Now v is a stopping time and a well known result of Wald gives

3.1) EWE(Z,) =E(7+ {).
Therefore,
A(z)
msz@i5=&@
Note that

E(v) =" =1/p,,
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which also follows from stationarity. We finally remark that the total number
of points in (0, £) x (0, 2) is of course Poisson with mean ¢A(2).

4. Drops. Other questions of interest are how many downward jumps or
drops, N,, there are in (0, ¢], and the sizes of and distances between such
jumps. The number of drops is the number of releases in the neurotrans-
mitter problem and the number of starting points in the other applications.
The times at which these occur and the distances between them are used in
Section 5.1 to obtain results on growth lengths and nucleation distances; the
mean and variance of the number of drops is compared to experimental data
in Section 5.2.

4.1. The number of drops in an interval. In this subsection we consider
the mean, variance and asymptotic normality of N,. Imagine the set A =
{(s,9):0<s <t 0<y < x+ s} split into small elements ds x dy. The
event that there is a drop occurring in such an element is the same as the
event that there is a point @ of Z in the element, which occurs with probabil-
ity A(y)dsdy, and that there are no points in the intersection of the triangle
A(Q) with corners (s, y),(s,0), (s — ¥,0) and the first quadrant, which has
probability exp(—A(y) + A(y — s)). As the point process E is Poisson, these
events are independent and the probability of both occurring is just the prod-
uct. Summing, that is, integrating, over all elements we obtain the formula

t px+s
E.(N)= [ [ A exp(-A(y) +A(y - ) dyds.

The above derivation can also be stated in the following more formal way
[cf. Mecke (1967), Satz 3.1]. We can write

N, = [ I(5(AQ) =0)dE(Q).
As the point process E is Poisson, we have by independence that

E.(N)) = [ EU(E(A(Q) = 0)EdE(Q)

= [ Ox@dQ= [ [ A exp(~A() + Ay - ) dyds.
A 0’0

We think that the above verbal formulation is more illuminating than the
formal one. “Verbal formulations” will be used below for similar considerations.

Under stationarity, that is, unconditional on X, using the stationary dis-
tribution P(X, > x) = e (), we get by integrating,

Est(Nt) = t/oo )\(y)e—A(y) dy = t/OO A(y)ze—A(y) dy
0 0
= t Eg(A(X))).

Next we will derive a formula for the variance, Vary(N,). Split the set
{(s,¥):0<s<t, 0<y<oo}into small elements ds x dy. Take two elements
with coordinates (0, y;) and (tu, ¥5), 0 <u <1, 0 < ¥4, y9 < co. The event
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that there are drops in both elements is the same as the event that there is
a point in each of the elements and there are no points in the triangles with
corners (—y1, 0), (0, 0), (0, y,), respectively, (tu — vy, 0), (tu,0), (tu, y3). The
probability for this is

1(y1 > y2 = tw)A(y1)A(y2) exp(—A(y1)) exp(—(A(y2) — A(ys — tu)))

times “area elements.” Furthermore, the distance between two points taken
from a uniform distribution on the unit interval has the density 2(1 — u) for
O<u<l

Using this and symmetry and letting N, be a sum of 1’s and 0’s, each indi-
cating a drop or not in an area element, we find by summing (i.e., integrating)
that

1 00
Eo(ND) =Eu(N)+2 [ 200-w) [ Mon)exp(-A(n)

yi1ttu
x [ Ay exp(=A(y2) + Ay — tw)) dyy dy, du

Yo=

and, therefore,

Var,(N) =t [ A(y)exp(- A(y))dy+t2 [ A exp(=8(n))

¥1=0

<[ 2= [T ACya) exp(—(Aly2)~A(ya—tu))) dys du dyy
u=0 y9=0

o0 2
— ([T Aexp-A0dy)
We therefore find that Varg(V,)/t equals
[ Ay exp(-a() dy
[ =200 [ Mo exp(-AG) [ ( _ ) du dy, dy,
4 Mnesp(-AGn)
/yyl / 01— )\(y2 + u) exp(—(A(yz + u) — A(y2)))du dy; dy;.
Hence as ¢ — oo,
Vary(N)/t = [ A(y)exp(~A(y)) dy
[ Ao exp(-A0) [ exp(-A2)2A ()5 dy2 oy
7 Ao exp(-A()
y1=0

x fyy;o foo 20 (1) exp(—(A(u) — A(y5))) du dy, dy;.
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One might also be interested in the distribution of N,. For large ¢, asymp-
totic normality follows by the following argument. Consider for a level z
complete blocks, each consisting of a downblock and the succeeding upblock.
Because the blocks are independent, the number of drops in the blocks are
independent too. As N, is the sum of the drops in the blocks, we can use the
results for renewal processes to justify asymptotic normality; see Gut [(1988),
Theorems IV 2.3 and IV 2.4]. Thus we have

N, — Ew(Ny)

v Vargy(N,)
The same techniques can be used to derive analogous results for N, ,, the
number of drops in the set {(s, ¥): 0 <s<t¢, 0 <y < z}.

We finish this section by considering E(N,) and Varg(N,) in the homoge-
neous case [A(x) = Al. It is easy to show

A

2

Varg(N,) 0 Ay? o Ay?
: —>/0 Aexp 9 dy(1 2/0 Ay exp 9 dy
00 Ayz
+/y=0/\exp<—2)

y Ax2\ ® Au?
X /x—O exp(2> /u=x 2A exp(—2> dudx dy

(4.1) Ey(N,) =t

and

(4.2)

= \/7;)\(210g2— 1)

after some algebra. Equations (4.1) and (4.2) are in accordance with the results
of Quine and Robinson [(1990), page 501], which concern linear growth on a
finite interval.

4.2. Heights of and distances between drops. The process {X,,¢ > 0} can
be described in terms of Hy, Ty, H,, Ty, Hy, Ty, ..., where Ty, Ty + T,
To+T1+ T, ... are the times to the first, second, third, ... discontinuity, or
drop,in{X,}and H,, H,, H,, ... are the heights of {X,} at 0, Ty, Ty+ T4, . ...
We will also let Y, Y, ... denote the predrop heights, so Y, = X(7T,—) and
so on; note that Y, = H,_; + T,_;. Then the sequences {H,, Hy, ...} and
{(H{,Ty),(Hy, T;), ...} are Markov chains with continuous state spaces. It is
of particular interest to obtain the transition probabilities and the stationary
distributions of H;, T; and S; ; = H; + T; — H,,, the size of the (i + 1)th
drop.

The conditional density of (H;,, T';) given (H;, T';_;), that is, the transition
density for the second chain, is, for 0 < y < x + ¢,

fo, . rim, 1, (Y tx, )= Fa, 1,8,y t|x) = A(y) exp(—A(x + ) + A(x)),
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so the transition probability density from H; = x to H; | = y is

)\(y)eA(x)/ e *Wdu, y>x,
y

p(x,y)= g, 1, (yx)= -
A(y)eA(x)/ e 2Wdy,  y<ax.
X

Further,
(4.3) frm,(tlx) = A(x + ¢) exp(—A(x + ) + A(x))
and for 0 <y < x +¢,

A+ [ [T —Aw)
(4.4) From.u,,(tx, y)=e //M e dy,

By the usual “empty triangle” argument, the stationary density [ 5(y) of H;
is proportional to A(y)e 2(). Thus

(4.5) Fu(y) = kA(y)e ),

where
o0
=1 Mu)e ™™ du .
«=1/[ A
From this we obtain the stationary distribution of T'; from

Po(T; > t) = [ Fux)exp(-A(x + ) + A(x)) dax

o0
= K/ Ax)exp(—A(x +¢)) dx.
0
Integration leads to the stationary expectation of T'; as

E.(T;) = /0 P (T; > ¢)dt = k.

REMARK. Noting that we can write
(o0}
Pu(H; > )=« [ A(x+h)e >0 dx,
0
it is easy to see that H; and T'; have the same stationary distribution if and
only if A(x) = A, a constant.
We can similarly obtain the following simple formulas for the stationary

moments of H; and T;:

Eo(H) =« [ xA(x)e@dx,
0
o0 o0 2
Var(Hy) = [ A)e 0 da = (i [~ maa)e 2 d)
0 0

Var(T.) = 2k A(x)e 2™ dx — k2
st i o
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and

Covy(H;, T;) = foo(l — A(x))e 2 dx — k? /Oo xA(x)e ™) dx.
0 0

REMARK. In the particular case when A(x) = A is constant, these results
give
1/2 —2/m

1-2/7

There are two other related results concerning Hy, Ty, Hy, T¢,.... A
completed left branch of length / in the original unsheared process is trans-
formed to a drop of size S = 2/ and a completed right branch of length r is
transformed to an interdrop time of duration 7' = 2r. Thus the size of drop, for
example, S;,; = H; + T; — H;_{, has the same stationary distribution as T';.

We might expect that for all x > 0,

Pst(Hi > x) = Pst(Xt > x) = Pst(Hi + Ti > x)

In the homogeneous case, A(x) = A, a constant, it is not difficult to verify this
analytically.

corrg (H;, T;) = ~ —0.38.

4.3. Markov renewal theory for drops. From the forms for the transition
densities in Section 4.2 it can be seen that both Markov chains are aperiodic
recurrent Harris chains [see, e.g., Durrett (1991), pages 282 and 287] with
stationary distributions. A consequence of this is, for example, that uniformly
in A as n — oo,

P(H,cA)~ [ fu(y)dy.

Furthermore the Markov chain {(X,,0), (H{, Ty), (Hy, T;), ...} defines a
Markov renewal process, for which ergodic properties can be deduced using
Theorem 2.1 in Alsmeyer (1994). However, we think that the following direct
approach is of interest as it illuminates some of the results obtained above.

In Section 4.1 we considered the number of drops, V,, in (0, ¢], “renewals”
in the above process, and found that under stationarity

Eu(N) =t [ Az)edy.

In the previous section it was proved that the mean time between drops is

E(T) =1/ [ A»)e0dy,
which gives
Ei(N,) = t/Eg(T)).
From the explicit formula for E (N,) it is not difficult to show that
E.(N¢pp — No) = h/Ey(T;),  t— oo,

which also follows from the Markov renewal theorem in Alsmeyer (1994).
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4.4. Mean and variance for the number of drops in a block. Let N, be the
number of drops in an upblock. To find the mean of N, consider the Poisson
process in the triangular region bounded by the lines x = z and x = z + ¢,
t > 0. In order that a small rectangle (¢, ¢ + d¢) x (y, y + dy) in this region
contributes to N, it is necessary that (a) there is a point there, (b) the point
is a drop and (c) ¢ > t. Using the fact that { has an exponential distribution
and independence, we get

BN = [ [ A0 exp(-(3() - 4(2) = (v ~ A exp(-A(2)0) e dy
eA(Z) 00

— —A(y)

on changing the order of integration. The variance of N, can be found in the
same way to be

Var N, =EN, + (EN,)* + 2I,,

where
I, = ¢*® [ [ A(y2) exp(~A(y2))

x ///\(v—u+z)exp(—A(v+z—u)
—ul(z) + A(v — ¢ty + y5)) dudv dity dys,

the limits being 0 <u <ty +2—yy, tg —yg+2<v <ty, 2<yy<z+tyand
0 <ty < o0.

Let N, be the number of drops in a downblock (including the initial drop).
The above method is not suitable for finding the moments of N, but it is easy
to derive a recursive relation. Conditional on a starting value of x € (0, z),
there is no other drop with probability exp(—A(z) 4+ A(x)), and otherwise there
is another drop before ¢t = z — x and the downblock “regenerates.” Taking into
account the distribution of the height after this drop, we get the following
recursive relation for g(x) :=E (N,):

8(x) = exp(-A(z) + A(x))

46 fOH exp(—A(x +¢) + Ax))A(x +1) /0 1+ g2

IR

= 1+ [ exp(=A(s) +A()) [ g(A(y)dy ds

with the boundary condition g(z) = 1. Differentiating, we obtain

g(x) =~ [ (N dy + Ax)(g(x) - 1,

g'(x) — A(x)g'(x) = —A(x),
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giving
z y
g(x)=1+ / ) / e 2O\ (8) dt dy.
x 0

The initial drop height x has density A(x)/A(2), so

)\(x)
EN / g0,y 4%

_ ‘ ~A)
2@ o Ay)e dy.

The variance of N_ can be obtained similarly, since it follows as above that

EN? =1+ 1 [ (exp(A(2) — A) ~ DAG)1 +25() .

5. Applications. It is worthwhile to consider some special cases. First,
we will apply the results of earlier sections to give more directly some results
of Wolk (1975) and Meijering (1953). Then we apply the results of Section 4.1
to a model proposed in Bennett and Robinson (1990) and obtain numerical
results corresponding to some data for number of releases of neurotransmitter
at synapses.

eA?)

5.1. Nucleation distances and growth lengths. In applications, two quan-
tities of interest in the “unsheared” process are the distance between adjacent
nucleation sites, ¢ say, and the final length of the growth from one such site,
71 say. In terms of the sheared process, by noting that Y, = H; + T';, we have

2§:T1+Y2_H2 and 2’)’]:Y1_H1+T1

We proceed to derive the densities of ¢ and 7 in the case A(x) = A.
Note first that 26 =; UH; + (1 + U)T, where U is uniform on (0, 1),
independent of H; and T';. The results of Section 4.2 imply that, in general,

(5.1) Far(h, t) = kA(R)A(t + R)e A0+,

In the homogenous case, k = \/2/7\ and so

P(uH, + (1 +u)T, < 2x) = \/zﬁﬂ//(t +h) exp(—/\(t—;h)2> dhdt,

where the integral is over the region uh + (1 + u)t < 2x. It follows that the
density of ¢ is

fe(x) = 2\/27;\/01 (exp(—%) — exp<_2u/\2xz)> du
= 4\/27:_\(exp(_);xz> - exp(—2/\x2))

+81x(1 — 2d (2vAx) + D(VAx)),
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where ®(-) is the standard normal distribution function. With v = 1/2, this
corresponds to equation (xvi) of Wolk (1975) (there are two obvious misprints
in that equation).

To obtain the density of 7 it is necessary to use the fact that Y, and T'; are
conditionally independent, given H, so that

P(n < x|Hy = h) = [[ Fyia(y|m)fra(tik) dydt,

where the integral is over the triangular region ¢t > 0, y > h, y — h + ¢ < 2x.
It follows from (5.1) that Y, =; Y, = H; + T'; has density

Fy(y) = kA*(y)e ),
so that

fH\Y(hb’)fY(y)
fu(h)

In the homogeneous case, using (5.2) and (4.3), integrating with respect to ¢
first and putting z = y — h gives, after some calculation,

f ozt (x1h) = 20 exp(—A(2x + h)2/2 + Ah2/2)

(5.2) fyu(ylh)= =A(y)exp(A(h) —A(y)),  y=zh.

2x
x <2x _ /0 (1= Az + h)?) exp(—A(z — %)% + Ax?) dz)

and, putting w = (z — x)V/A,
fou(xlh) = 21 exp(—=2Ax(x + h))
x (2 + v/ 7/ exp(Ax?)(2D(V2Ax) — 1)(A(h + x)? — 1/2)).
Since the density of H is [from (4.5)]

fu(h) = \/2)‘ exp<—()‘>h2), h =0,
T 2
integration gives

fo(x) = 2VA(1 — B2V Ax)) (2xVA + /7(2A%% + 1) exp(Ax?)(2P(v21x) — 1)).

This corresponds to (32) of Meijering (1953) with u = x+/A.

5.2. An example of neurobiological data. Data obtained by Professor M. R.
Bennett of the Neurobiology Research Centre at the University of Sydney
were reported in Quine and Robinson (1992). For these data the mean and
variance of the number of releases from 800 impulses were 1.340 and 0.680,
respectively. A model for the rate of release proposed in Bennett and Robinson
(1990) was equivalent to defining

AMx) = yoFx*Le % T(R),
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with the particular value k£ = 5 suggested. Notice that A(co) = y. Estimation
of v, 6 and v in a doctoral thesis of Thomson (1994) gave 2.04, 2.94 and 0.20,
respectively. These estimates are based only on the times for the first two
releases. Simulations based on these parameters using 10,000 trials gave a
mean and variance of 1.57 and 1.04, and numerical integration of the results
of Section 4.1 using MATLAB gave a mean and variance of 1.54 and 1.00.
The results are qualitatively satisfactory, but there are difficulties with the
model due to detection errors as pointed out in Thomson (1994) and Thomson,
Lavidis, Robinson and Bennett (1995).
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