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CENTRAL LIMIT THEORY FOR THE NUMBER OF
SEEDS IN A GROWTH MODEL IN R

d WITH
INHOMOGENEOUS POISSON ARRIVALS

By S. N. Chiu1 and M. P. Quine
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A Poisson point process 9 in d-dimensional Euclidean space and in
time is used to generate a birth–growth model: seeds are born randomly
at locations xi in Rd at times ti ∈ �0;∞�. Once a seed is born, it begins
to create a cell by growing radially in all directions with speed v > 0.
Points of 9 contained in such cells are discarded, that is, thinned. We
study the asymptotic distribution of the number of seeds in a region, as the
volume of the region tends to infinity. When d = 1, we establish conditions
under which the evolution over time of the number of seeds in a region
is approximated by a Wiener process. When d ≥ 1, we give conditions for
asymptotic normality. Rates of convergence are given in all cases.

1. Introduction. Consider the following spatial birth–growth model in
Rd. Seeds are born (or formed) randomly at locations xi at time ti, i = 1;2; : : : ;
according to a spatial–temporal point process 9 ≡ ��xi; ti� ∈ Rd × �0;∞��.
Once a seed is born, it immediately generates a cell by growing radially in all
directions with a constant speed v > 0. The space occupied by cells is regarded
as covered. Cells and new seeds continue to grow and form, respectively, only
in uncovered space in Rd.

The point process 9 is assumed to be a Poisson process with intensity mea-
sure l × 3, where l is the Lebesgue measure in Rd, while 3 is an arbitrary
locally finite measure on �0;∞� such that 3��0;∞�� > 0 and

µ ≡
∫ ∞

0
exp

{
−
∫ t

0
ωdv

d�t− u�d3�du�
}
3�dt� <∞;(1.1)

where ωd =
√
πd/0�1 + d/2� is the volume of a unit ball in Rd. It will be

shown in the next section that µ is the intensity of the seeds formed in Rd.
Throughout the paper we use 3�t� to denote 3��0; t��.

Such a birth–growth process was first suggested and studied by Kolmogorov
(1937) in the case d = 2 to model crystal growth [see Chiu (1995, 1996) for
details of subsequent developments]. Interestingly, special cases of this birth–
growth process when d = 1 have found applications in several different bi-
ological contexts [see Holst, Quine and Robinson (1996) and the references
therein].
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Denote by 8 the spatial–temporal point process of the seeds formed, which
is a dependently thinned version of the Poisson process 9. For ease of presen-
tation, we consider 9 and 8 as both random sets of points in Rd × �0;∞�
and random measures defined on the Borel σ-algebra of Rd × �0;∞�. De-
note by ξz the random variables 8��z + �0;1�d� × �0;∞��, where z ∈ Zd and
�z+ �0;1�d� = �z+ xx x ∈ �0;1�d�. Then �ξzx z ∈ Zd� is a real-valued station-
ary random field. It is stationary because 9 is spatially homogeneous, and so
is 8.

For z1 and z2 in Zd, let d�z1; z2� = max1≤i≤d �z1�i� − z2�i��, where z�i�, 1 ≤
i ≤ d, are the components of z. For 0 ⊂ Zd, denote by #�0� the number of ele-
ments in 0 and by ∂0 the set �z ∈ 0x there exists z′ 6∈ 0 such that d�z; z′� = 1�.
Let 0n ↑ Zd be a fixed sequence of finite subsets of Zd satisfying the regular-
ity condition that limn→∞ #�∂0n�/#�0n� = 0. It implies that the sequence �0n�
does not increase in only one direction, except in the case d = 1. Define Sn to
be

∑
z∈0n�ξz − µ� for each n ∈ N. Let S0 = 0.

Quine and Robinson (1990) established asymptotic normality for the num-
ber of seeds in the case d = 1 with a homogeneous arrival rate. Their method
was extended to cover more general arrival regimes by Chiu (1996). Holst,
Quine and Robinson (1996) proved results similar to Chiu’s by considering
an associated Markov process. In this paper we use a completely different
method, based on mixing properties, to establish asymptotic normality in an
arbitrary dimension d ≥ 1 for a very general class of 3. In particular, when
d = 1, we prove the functional central limit theorem for Sn; that is, after suit-
able normalization and linear interpolation, Sn behaves asymptotically like a
Brownian motion. Rates of convergence are also discussed.

2. Moments. Let 4�9; t� denote the random region in Rd × �0;∞� which
is covered just before time t by the 9-generated birth–growth process.

For each point �x; t� in 9,

��x; t� 6∈ 4�9; t�� = ��x; t� 6∈ 4�9 \ ��x; t��; t�� = ��x; t� ∈ 8�;

because the first two events imply that at time t the position x has not yet
been covered by the 9-generated birth–growth process, and consequently a
seed is formed at �x; t�. Therefore, we have

E�ξz� = E
[ ∑

�x; t�∈9��z+�0;1�d�×�0;∞��
1��x; t� 6∈ 4�9; t��

]
;

where 1�·� denotes the indicator function. By Mecke [(1967), Satz 3.1] or Møller
[(1992), equation (3.1)],

E�ξz� =
∫ ∞

0

∫
z+�0;1�d

E
[
1��x; t� 6∈ 4�9 ∪ ��x; t��; t��

]
l�dx�3�dt�

=
∫ ∞

0

∫
�0;1�d

E
[
1��x; t� 6∈ 4�9; t��

]
l�dx�3�dt�:
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Note that each �x; t� ∈ 9 does not belong to 4�9; t� if and only if

9���y;u�x �y− x� ≤ v�t− u�; 0 ≤ u ≤ t�� = 0;(2.1)

where � · � is the Euclidean distance. Thus,

E�ξz� =
∫ ∞

0
exp

{
−
∫ t

0
ωdv

d�t− u�d3�du�
}
3�dt� = µ;

where µ has been assumed to be finite in condition (1.1).
By observing that

��x1; t1� 6∈ 4�9 ∪ ��x1; t1�; �x2; t2��; t�� ⊆ ��x1; t1� 6∈ 4�9; t��

and using Møller [(1992), equation (3.1)], we obtain

E�ξz�ξz − 1� · · · �ξz − j�� ≤ µj+1 <∞ for j = 1;2;3; : : : :(2.2)

Thus, E�ξjz � <∞ for each positive integer j. Let 0n+�0;1�d = �z+�0;1�dx z ∈
0n�. Using Møller [(1992), equation (3.1)] again, we have

E
[ ∑
z∈0n

ξz

( ∑
z∈0n

ξz − 1
)]

= E
∑

�xi; ti�∈9��0n+�0;1�d�×�0;∞��; i=1;2; x1 6=x2

1��x1; t1� 6∈ 4�9; t1��

× 1��x2; t2� 6∈ 4�9; t2��

=
∫ ∞

0

∫
0n+�0;1�d

∫ ∞
0

∫
�x1−x2�>v�t2−t1�; x2∈0n+�0;1�d

exp�−4�t1� − 4�t2��

× exp
{
4
(
v�t1 + t2� − �x1 − x2�

2v

)}
l�dx2�3�dt2�l�dx1�3�dt1�;

(2.3)

where 4�t� =
∫ t∨0

0 ωdv
d�t− u�d3�du� and x ∨ y = max�x;y�.

Suppose X1 and X2 are two independent uniformly distributed points in
0n + �0;1�d. Denote by fn the density of Y ≡ �X1 − X2� and let rn =
sup�yx fn�y� > 0�. From (2.3), we have

E�Sn�Sn − 1�� + #�0n�2µ2 − #�0n�µ

= #�0n�2
∫ ∞

0

∫ ∞
0

∫
y>v�t1−t2�

exp
{
−4�t1� − 4�t2� + 4

(
v�t1 + t2� − y

2v

)}

× fn�y�dy3�dt2�3�dt1�

= #�0n�2
∫ ∞

0

∫ rn
0

∫ t1+y/v
t1−y/v

exp
{
−4�t1� − 4�t2� + 4

(
v�t1 + t2� − y

2v

)}

× fn�y�3�dt2�dy3�dt1�
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= #�0n�2
∫ ∞

0
exp�−4�t1��

∫ rn
0
fn�y�

×
{∫ ∞

0
exp�−4�t2��3�dt2� −

∫ ∞
�y/v−t1�∨0

exp�−4�t2��3�dt2�

+
∫ t1+y/v
�y/v−t1�∨�t1−y/v�

exp
{
−4�t2�+4

(
v�t1+ t2�−y

2v

)}
3�dt2�

}
dy3�dt1�

= #�0n�2µ2 − #�0n�2
∫ ∞

0
exp�−4�t1��

∫ ∞
0

exp�−4�t2��

×
∫ v�t1+t2�∧rn

0
fn�y�dy3�dt2�3�dt1�

+ #�0n�2
∫ ∞

0
exp�−4�t1��

∫ rn
0
fn�y�

×
∫ t1+y/v
�t1−y/v�

exp
{
−4�t2�+4

(
v�t1 + t2�−y

2v

)}
3�dt2�dy3�dt1�;

where x ∧ y = min�x;y�. The density fn depends on the shape of 0n + �0;1�d
but σ2 ≡ limn→∞ var�Sn�/#�0n� does not. We can derive σ2 by evaluating
the above integrals with 0n + �0;1�d and #�0n� replaced by a ball of large
radius R and volume ωdR

d, respectively. The density of the distance be-
tween two independent uniformly distributed points in this ball is f�y� =
dR−dyd−1B�d+1�/2;1/2�1− y2/�4R2�� where Ba; b�·� is the distribution function
of the beta distribution with parameters a and b [Kendall and Moran (1963),
equation (2.122)]. Therefore

σ2 = µ−
∫ ∞

0
exp�−4�t1��

∫ ∞
0
ωdv

d�t1 + t2�d exp�−4�t2��3�dt2�3�dt1�

+
∫ ∞

0
exp�−4�t1��

∫ t1
0

exp�4�y��
∫ ∞
y

2dωdv
d�t1 + t2 − 2y�d−1

× exp�−4�t2��3�dt2�du3�dt1�:

In particular, if 3�dt� = λdt, where 0 < λ < ∞, then writing γd =
λωdv

d/�d+ 1�,

µ = λ

�d+ 1�γ1/�d+1�
d

0

(
1

d+ 1

)
;

σ2 = µ− I1 + I2;

(2.4)

where

I1 =
λ

�d+ 1�γ1/�d+1�
d

d∑
j=0

(
d

j

)
0

(
j+ 1
d+ 1

)
0

(
d+ 1− j
d+ 1

)
;

I2 =
∫ ∞

0
λ exp�−γdtd+1

1 �
∫ t1

0
exp�γdyd+1�

∫ ∞
y

2d�d+ 1�γd

× �t1 + t2 − 2y�d−1 exp�−γdtd+1
2 �dt2 dydt1:
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When d = 1, we can obtain an analytic solution by means of the transforma-
tion u = �t2 − y�/

√
2,w = �t2 + y�/

√
2 and a series expansion, giving

I2 = −
∫ ∞

0
λ exp�−λvt21�

∞∑
j=1

�−2�j�λvt21�j/2
0�j/2�
j!

dt1

=
√
πλ

v
log 2:

For d ≥ 2 we can write I2 in a form suitable for numerical integration as
follows.

Put u = γ1/�d+1�
d �t1 − y�, w = γ

1/�d+1�
d �t2 − y� and x = γ1/�d+1�

d y. Then

I2 =
2d�d+ 1�λ
γ

1/�d+1�
d

Kd;

where

Kd =
∫ ∞

0

∫ ∞
0

∫ ∞
0
�u+w�d−1 exp

{
−�u+ x�d+1 + xd+1 − �w+ x�d+1}dudwdx

and (2.4) gives

σ2 = λ

γ
1/�d+1�
d

{
2d�d+ 1�Kd −

1
d+ 1

d∑
j=1

(
d

j

)
0

(
j+ 1
d+ 1

)
0

(
d+ 1− j
d+ 1

)}
:

By means of substitutions like α = �u + x�d+1, Kd can be reduced to an
integral of the variable x alone, the integral containing distribution functions
of gamma variables. In this form the integral can be readily evaluated using
an S-Plus program. The numerical values to three decimal places for d = 1,
2, 3 and 4 are as follows:

d 1 2 3 4
Kd 0.307 0.213 0.195 0.207

σ2γ
1/�d+1�
d /λ 0.342 0.439 0.515 0.579.

Hereafter we consider only the class of 3 with σ2 > 0.

3. Mixing coefficients. Denote by ��;A ;P� the probability space in-
duced by �ξzx z ∈ Zd�. For 0�1�; 0�2� ⊂ Zd, let d�0�1�; 0�2�� = inf�d�z1; z2�x zi ∈
0�i�; i = 1;2�. Define the mixing coefficients to be

αa; b�k� ≡ sup
{
�P�A1 ∩A2� −P�A1�P�A2��x Ai ∈ σ�ξzx z ∈ 0�i��;#�0�1�� ≤ a;

#�0�2�� ≤ b; d�0�1�; 0�2�� ≥ k
}
;

where k ∈ N, a; b ∈ N ∪ �∞� and σ�ξzx z ∈ 0� is the σ-algebra generated by
�ξzx z ∈ 0�.

We impose the following condition on 3 to govern how fast it goes to infinity.
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Condition 3.1. There exists a constant M<∞ such that

�3�t+ c� − 3�t� + 1��3�s+ c� − 3�s� + 1� exp
{
−
∫ t

0
ωdv

d�t− u�d3�du�
}
≤M

for all 0 ≤ s ≤ t <∞, where c = d
√
d/v.

In this section we derive an upper bound only for α1;1�k�.
Consider ξz1

and ξz2
such that d�ξz1

; ξz2
� ≥ k. For each Ai ∈ σ�ξzi�, there

exists an index set Ji of nonnegative integers such that Ai =
⋃
j∈Ji A

�j�
i where

A
�j�
i = �ξzi = j� and i = 1 or 2. Let

∣∣P
(
A
�n�
1 ∩A

�m�
2

)
−P

(
A
�n�
1

)
P
(
A
�m�
2

)∣∣ = βn;m�k�:
Then, for any Ai ∈ σ�ξzi�, i = 1 and 2,

∣∣P�A1 ∩A2� −P�A1�P�A2�
∣∣ ≤

∞∑
n=0

∞∑
m=0

βn;m�k�:(3.1)

Note that

P
(
A
�0�
1 ∩A

�m�
2

)
−P

(
A
�0�
1

)
P
(
A
�m�
2

)

= P
( ⋃
n≥1

A
�n�
1

)
P
(
A
�m�
2

)
−P

( ⋃
n≥1

A
�n�
1 ∩A

�m�
2

)
:

Hence we obtain β0;m�k� ≤
∑∞
n=1 βn;m�k�, βn;0�k� ≤

∑∞
m=1 βn;m�k� and

β0;0�k� ≤
∑∞
n=1

∑∞
m=1 βn;m�k�. Consequently, it suffices to consider only∑∞

n=1
∑∞
m=1 βn;m�k� because

∞∑
n=0

∞∑
m=0

βn;m�k� ≤ 4
∞∑
n=1

∞∑
m=1

βn;m�k�:(3.2)

Let Ti = inf�tx �x; t� ∈ 9∩��zi+ �0;1�d�× �0;∞��� and let Xi be the posi-
tion of the seed corresponding to the birth-time Ti, for i = 1 and 2. Because 9
is a Poisson process which is spatially homogeneous, T1 and T2 are indepen-
dent whenever z1 6= z2. They have the same distribution function F which is
given by

F�t� = 1− exp�−3�t�� for t ≥ 0(3.3)

and zero otherwise. The random positions Xi are uniformly distributed in
zi + �0;1�d.

Recall that for each �x; t� ∈ 9, �x; t� ∈ 8 if and only if (2.1) holds. That
means for each �x; t� ∈ 8 there is a forbidden region R�x; t� in which no points
of 9 exist. For d = 1 and 2, R�x; t� is a triangle and a cone in Rd × �0;∞�,
respectively. For ��x�j�; t�j�� ∈ 8x j = 1; : : : ; n�, the forbidden region is just
the union

⋃n
j=1R�x�j�; t�j��. Since 9 is a Poisson process, for n ≥ 1 and m ≥ 1,

P
(
A
�n�
1 ∩A

�m�
2 �Ti = ti; i = 1;2

)
6= P

(
A
�n�
1 �T1 = t1

)
P
(
A
�m�
2 �T2 = t2

)



808 S. N. CHIU AND M. P. QUINE

only if conditional on �Ti = ti; i = 1;2� the forbidden regions for �A�n�1 � and
�A�m�2 � have a nonempty intersection. This can happen only if v�t1+t2�+2 d

√
d >

k− 1. Hence,

βn;m�k� ≤
∣∣∣∣
∫ ∫

v�t1+t2�+2 d√
d>k−1

P
(
A
�n�
1 ∩A

�m�
2 �Ti = ti; i = 1;2

)

× dF�t1�dF�t2�

−
∫ ∫

v�t1+t2�+2 d√
d>k−1

P
(
A
�n�
1 �T1 = t1

)

×P
(
A
�m�
2 �T2 = t2

)
dF�t1�dF�t2�

∣∣∣∣:

(3.4)

Consider P�A�n�i �Ti = ti�, i = 1 and 2. Conditional on ��Xi;Ti� = �xi; ti��,
i = 1 or 2, there are n seeds formed in zi + �0;1�d only if �xi; ti� 6∈ 4�9; ti�
and at least n− 1 more points of 9 exist in zi + �0;1�d after t but before the
cell generated by the seed at �xi; ti� covers zi+�0;1�d, which will occur before
ti + d
√
d/v. Thus,

P
(
A
�n�
i �Ti = ti

)

≤ exp
{
−
∫ ti

0
ωdv

d�ti − u�d3�du�
}

×
∑

j≥n−1

�3�ti + d
√
d/v� − 3�ti��j exp�−�3�ti + d

√
d/v� − 3�ti���

j!

for i = 1 and 2. Hence
∞∑
n=1

∞∑
m=1

∫ ∫
v�t1+t2�+2 d√

d>k−1
P
(
A
�n�
1 �T1 = t1

)

×P
(
A
�m�
2 �T2 = t2

)
dF�t1�dF�t2�

≤
∫ ∫

v�t1+t2�+2 d√
d>k−1

{
3�t1 +

d
√
d/v� − 3�t1� + 1

}

×
{
3�t2 +

d
√
d/v� − 3�t2� + 1

}

× exp
{
−
∫ t1

0
ωdv

d�t1 − u�d3�du�

−
∫ t2

0
ωdv

d�t2 − u�d3�du�
}
dF�t1�dF�t2�:

(3.5)

Similarly, consider P�A�n�1 ∩ A�m�2 �Ti = ti; i = 1;2�. Conditional on
��Xi;Ti� = �xi; ti�; i = 1;2�, there are n and m seeds formed in z1 + �0;1�d
and z2 + �0;1�d, respectively, only if at least n − 1 and m − 1 more points of
9 exist in �z1 + �0;1�d� × �t1; t1 + d

√
d/v� and �z2 + �0;1�d� × �t2; t2 + d

√
d/v�,
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respectively, and �9�R�x1; t1� ∪ R�x2; t2�� = 0�. The probability of the lat-
ter is at most exp�−

∫ tmax
0 ωdv

d�tmax − u�d3�du�� where tmax = max�t1; t2�.
Therefore,

∞∑
n=1

∞∑
m=1

∫ ∫
v�t1+t2�+2 d√

d>k−1
P
(
A
�n�
1 ∩A

�m�
2 �Ti = ti; i = 1;2

)
dF�t1�dF�t2�

≤
∫ ∫

v�t1+t2�+2 d√
d>k−1

{
3
(
t1 +

d
√
d/v

)
− 3�t1� + 1

}

×
{
3
(
t2 +

d
√
d/v

)
− 3�t2� + 1

}

× exp
{
−
∫ tmax

0
ωdv

d�tmax − u�d3�du�
}
dF�t1�dF�t2�

=
∫ ∫

v�t1+t2�+2 d√
d>k−1

I�t1; t2�dF�t1�dF�t2�; say.

(3.6)

Under Condition 3.1, there exists a constant M such that I�t1; t2� ≤M for all
t1; t2 ≥ 0. From (3.4), (3.5) and (3.6), we have

∞∑
n=1

∞∑
m=1

βn;m�k� ≤ 2
∫ ∫

v�t1+t2�+2 d√
d>k−1

I�t1; t2�dF�t1�dF�t2�

≤ 4M
∫ ∫

v�t1+t2�+2 d√
d>k−1; t1≥t2

dF�t1�dF�t2�

≤ 4M
∫ ∞
�k−1−2 d√

d�+/�2v�
dF�t1�;

(3.7)

where �x�+ = max�x;0�. Thus, by the stationarity of �ξzx z ∈ Zd�, (3.1), (3.2),
(3.3) and (3.7),

α1;1�k� ≤ 16M
(

exp
{
−3

( �k− 1− 2 d
√
d�+

2v

)}
− exp�−3�∞��

)
= α′�k�;(3.8)

which tends to zero as k tends to infinity.

4. Central limit theorem. We prove the central limit theorem for Sn in
an arbitrary dimension d ≥ 1 in this section.

Lemma 4.1 [Bolthausen (1982)]. Suppose that �ξzx z ∈ Zd� is stationary. If∑∞
k=1 k

d−1αa; b�k� <∞ for a+ b ≤ 4, α1;∞�k� = o�k−d�, and E�ξz�2+δ <∞ and∑∞
k=1 k

d−1α1;1�k�δ/�2+δ� <∞ for some δ > 0, then
∑
z∈�d � cov�ξz0

; ξz�� <∞ and

if σ2 = ∑z∈�d cov�ξz0
; ξz� > 0, then the distribution of Sn/

√
#�0n�σ2 converges

weakly to the standard normal distribution as n→∞.

In order to use this lemma to show the asymptotic normality of Sn, we have
to know upper bounds of α1;∞�k� and αa; b�k� for a+ b ≤ 4.
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Lemma 4.2. Under Condition 3.1, for all k; a; b ∈ N,

αa; b�k� ≤ abα′�k�:

Proof. Consider 0�i� = �zjx j ∈ Ji� for i = 1 and 2 such that d�0�1�; 0�2�� ≥
k, where J1 = �2j− 1x j = 1; : : : ; a′�, J2 = �2jx j = 1; : : : ; b′�, a′; b′ ∈ N, a′ ≤
a, b′ ≤ b and all zj are distinct. Let A�n�i = �ξzi = n�, where n is a nonnegative

integer and i = 1 and 2. For each Ai ∈ σ�ξzx z ∈ 0�i��, Ai =
⋃∞
n=0�A

�n�
i ∩B

�n�
i �

for some B�n�i ∈ σ�ξzx z ∈ 0�i� \ �zi��. Let
∣∣P
(
A
�n�
1 ∩A

�m�
2 ∩B�n�1 ∩B

�m�
2

)
−P

(
A
�n�
1 ∩B

�n�
1

)
P
(
A
�m�
2 ∩B�m�2

)∣∣ = γn;m�k�:
Then, in view of (3.2), (3.7) and (3.8), it suffices to show that

∞∑
n=1

∞∑
m=1

γn;m�k� ≤ a′b′
∞∑
n=1

∞∑
m=1

βn;m�k�:

Let Tj = inf�tx �x; t� ∈ 9 ∩ ��zj + �0;1�d� × �0;∞��� where j ∈ J1 ∪ J2.

Similar to the argument in Section 3, for n ≥ 1 andm ≥ 1, P�A�n�1 ∩A
�m�
2 ∩B

�n�
1 ∩

B
�m�
2 �Tj = tj; j ∈ J1∪J2� 6= P�A�n�1 ∩B

�n�
1 �Tj = tj; j ∈ J1�P�A

�m�
2 ∩B

�m�
2 �Tj =

tj; j ∈ J2� only if the forbidden regions intersect, that is, if v�tj1
+tj2
�+2 d
√
d >

k − 1 for some j1 ∈ J1 and j2 ∈ J2. This pair �j1; j2� can be any one of the
a′b′ elements in the set ��j1; j2�x ji ∈ Ji; i = 1;2�. Since P�A�n�1 ∩ A

�m�
2 ∩

B
�n�
1 ∩B

�m�
2 �Tj = tj; j ∈ J1 ∪ J2� ≤ P�A�n�1 ∩A

�m�
2 �Tj = tj; j ∈ J1 ∪ J2� and

P�A�n�i ∩B
�n�
i �Tj = tj; j ∈ Ji� ≤ P�A�n�i �Tj = tj; j ∈ Ji� for i = 1 and 2, from

(3.5), (3.6) and (3.7), the result follows. 2

Lemma 4.3. Under Condition 3.1, for all k ∈ N,

α1;∞�k� ≤
∞∑
h=k

2d
2−1hd−1α′�h�:

Proof. We use the same argument and notation as in the proof of Lemma
4.2 except that b = ∞. Now J1 = �1� and J2 = �2;4;6; : : :�. Let J�h�2 =
�jx d�z1; zj� = h� for all integers h ≥ k. Then the number of elements in J�h�2

is �2h + 1�d − �2h − 1�d, which is less than 2d
2−1hd−1. The forbidden regions

intersect only when v�t1+tj�+2 d
√
d > h−1 for some tj ∈ J

�h�
j and h ≥ k. There-

fore, from (3.5), (3.6) and (3.7),
∑∑

γn;m�k� ≤
∑∞
h=k�2d

2−1hd−1∑∑
βn;m�h��,

and the result follows. 2

Remark. Lemmas 4.2 and 4.3 are quite similar to Bradley (1981),
Lemma 8. However, in our context Bradley’s lemma is not applicable because
his condition, that the σ-algebras σ�ξzj x j ∈ J

�h�
2 � be independent, is not

fulfilled.



CLT FOR A GROWTH MODEL IN Rd 811

Now we impose one more condition on 3.

Condition 4.1. For sufficiently large k ∈ N,
∞∑
h=k

hd−1α′�h� = o�k−d−τ�

for some τ ≥ 0.

From (2.2) and Lemmas 4.2 and 4.3, if Condition 4.1 holds, which implies
that α′�k� = o�k−2d+1−τ�, then all the requirements of Lemma 4.1 are met
when (1) τ ≥ 0 and δ = 5 if d ≥ 2 or (2) τ = ε for some ε > 0 and δ > 2/ε if
d = 1. Thus, the following central limit theorem is obtained.

Theorem 4.1. Under Conditions 3.1 and 4.1 where τ ≥ 0 if d ≥ 2 or τ > 0
if d = 1, the distribution of Sn/

√
#�0n�σ2 converges weakly to the standard

normal distribution as n→∞.

Conditions 3.1 and 4.1 are fulfilled (for any τ) when, for example, 3�t� ∼Ktj
for some positive K and 1 ≤ j < ∞. If 3�∞� < ∞, then Condition 3.1 holds,
but Condition 4.1 requires a fast convergence of 3�t� → 3�∞�. Consider, for
example, 3�t� = λ0�α�−1

∫ t
0 y

α−1e−y dy for some positive finite α and λ so that
3�∞� = λ. Then there exists a to such that

exp�−3�t�� − exp�−λ� = exp�−λ��exp�λ− 3�t�� − 1�
≤ 2 exp�−λ��λ− 3�t�� for t > to

= O
(
tα−1 exp�−t�

)
:

Thus, by (3.8), this 3 satisfies Conditions 3.1 and 4.1 for any τ.

5. Functional central limit theorem. In particular, we consider d = 1
in this section, and so σ2 = ∑

z∈� cov�ξ0; ξz�. For each n ∈ N, for ease of
presentation we assume #�0n� = n and define

Wn�t;ω� = S�nt��ω�/
√
σ2n for t ∈ �0;1� and ω ∈ �;

where �x� is the greatest integer not exceeding x. The function ω 7→Wn�·;ω�
is a measurable mapping from ��;A � into �D;D �, where D is the space of
functions on �0;1� that are right continuous and have left-hand limits, and
D denotes the Borel σ-algebra induced by the Skorokhod topology [see, e.g.,
Billingsley (1968)]. Let

α�k� ≡ sup
n∈Z

{∣∣P�A1 ∩A2� −P�A1�P�A2�
∣∣x A1 ∈ σ�ξzx z ≤ n�;

A2 ∈ σ�ξzx z ≥ n+ k�
}

for k ∈ N. Note that α�k� ≤ α∞;∞�k� for all k.
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Lemma 5.1 [Herrndorf (1984), Corollary 1]. If there exists some δ > 0 such
that

∑∞
k=1 α�k�δ/�2+δ� <∞ and E�ξz�2+δ <∞ for all z ∈ Z, and var�Sn�/n→ σ2,

where 0 < σ2 <∞, then Wn converges in distribution to the standard Wiener
measure on D as n→∞.

In view of this lemma, we should find an upper bound for α�k�.

Lemma 5.2. Under Condition 3.1, for each k ∈ N,

α�k� ≤
∞∑
r=0

�r+ 1�α′�k+ r� =
∞∑
r=k

∞∑
h=r

α′�h�:

Proof. We use again the same argument and notation as in the proof of
Lemma 4.2 except that 0�1� and 0�2� have to be in the form �z ∈ Zx z ≤ n� and
�z ∈ Zx z ≥ n + k�, respectively, for some n ∈ Z. Now J1 = �1;3;5; : : :� and
J2 = �2;4;6; : : :�. Conditional on �Tj = tjx j ∈ J1∪J2�, the forbidden regions
intersect only when v�tj1

+ tj2
� + 2

√
2 > k + r − 1 where d�zj1

; zj2
� = k + r

for some r ∈ N ∪ �0� and ji ∈ Ji, i = 1 and 2. For each such r, the number of
elements in the set ��j1; j2�x d�zj1

; zj2
� = k+ r; ji ∈ Ji; i = 1;2� is at most

r+ 1. The statement is now obvious. 2

If Conditions 3.1 and 4.1 hold for τ = 1+ ε for some ε > 0, then by Lemma
4.1, var�Sn�/n → σ2 < ∞. Moreover, by Lemma 5.2, α�k� = ∑∞r=k o�r−2−ε� =
o�k−1−ε/2�: Thus, the requirements of Lemma 5.1 are met whenever δ > 4/ε.
Hence, we have proved the functional central limit theorem for Sn in one
dimension.

Theorem 5.1. For d = 1, under Conditions 3.1 and 4.1 where τ > 1, Wn

converges in distribution to the standard Wiener measure on D as n→∞.

6. Rates of convergence. In this section we assume that

3�t� ∼Ktj for some positive K and 1 ≤ j <∞,(6.1)

or

3�t� = λ
∫ t

0

yα−1e−y

0�α� dy for some positive finite α and λ.(6.2)

Either (6.1) or (6.2) implies that α′�k� = O�e−ρk� for some positive finite ρ.
Thus, by Lemma 5.2, when d = 1, α�k� = O�e−ρk�.

Denote by Gn the distribution function of Sn/
√

#�0n�σ2 and by G the stan-
dard normal distribution.

Theorem 6.1. If (6.1) or (6.2) holds, then for d ≥ 1,

sup
∣∣Gn�x� −G�x�x x ∈ R

∣∣ = O
(
#�0n�−1/2 logd #�0n�

)
:(6.3)
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Furthermore, when d = 1,

�Gn�x� −G�x�� = O
(

log3#�0n�√
#�0n��1+ �x��4

)
for each x ∈ R.(6.4)

Proof. For d ≥ 2, (6.3) follows from (2.2), Lemma 4.2 and Takahata (1983),
Theorem 1, whereas for d = 1, (6.3) and (6.4) follow from (2.2) and Tikhomirov
(1980), Theorem 4. 2

In order to obtain a rate of convergence for the functional central limit
theorem, we need to consider a smoothed version of Wn. For each n ∈ N we
assume #�0n� = n and define

W′n�t;ω� =
S�nt��ω�√
σ2n

+ nt− �nt�√
σ2n

(
S�nt�+1�ω� −S�nt��ω�

)

for t ∈ �0;1� and ω ∈ �. That means W′n is the random polygonal line with
nodes at �j/n;Sj/

√
σ2n�, j = 0; : : : ; n. Thus, W′n belongs not only to D but

also to C, the space of bounded, continuous, real-valued functions defined on
�0;1�.

Let Pn and W be the distributions of W′n and the standard Wiener process
on D. Denote by L�·; ·� the Lévy–Prokhorov distance between two probability
measures defined on the Borel σ-algebra of the metric space C with the sup-
norm. The following theorem follows from (2.2) and Utev (1985), Corollary 7.2.

Theorem 6.2. If (6.1) or (6.2) holds, then

L�Pn;W� = O
(
n−1/4+ε);

where ε > 0.
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