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COEXISTENCE FOE A CATALYTIC
SURFACE REACTION MODEL

BY MAURY BRAMSON1 AND CLAUDIA NEUHAUSER2

University of Wisconsin and University of Minnesota
We consider a two-dimensional catalytic surface reaction between X

and Yn with Yn + nX -» nXY, where Yn is a polymer consisting of n
identical atoms, each denoted by Y, and X is a monomer. The reactants X
and Yn are present above the surface in a gaseous phase, and bond to the
surface at certain rates. The resulting atoms X and Y on the surface react
if they are sufficiently close to each other; the product XY then leaves the
surface, A classical example is the oxidation of carbon monoxide on a
platinum surface. In this case, n = 2, X = CO and Yz = O2. We consider
the case in which the polymer consists of n = N2 atoms, arranged in a
square of length N, with N large. We show that when the range of
interaction is large compared to the polymer size, X and Y will typically
coexist on the catalytic surface for appropriate bonding rates. If, however,
the range of interaction is small compared to the polymer sizef then,
irrespective of the bonding rates, the surface will eventually be fully
occupied by the monomer X.

1. Introduction. An important chemical reaction from automobile-
emission control involves the oxidation of carbon monoxide on platinum,
which serves as a catalytic surface. Carbon monoxide (CO) and oxygen (O2)
are both observed to adsorb on the surface. Upon adsorption, O2 disassociates
into two single oxygen atoms, with each occupying a separate site on the
surface; carbon monoxide requires only a single site for adsorption. When CO
and O are sufficiently close to each other on the surface, they react with each
other to form carbon dioxide (CO2), which then desorbs from the surface,
leaving two vacant sites behind. A mathematical model of this reaction was
introduced by Ziff, Gulari and Barshad (1986). They replaced the surface of
the catalyst by the two-dimensional integer lattice, CO and O2 molecules
were assumed to adsorb immediately after colliding with the vacant sites on
the surface. The following important qualitative feature of the model was
kept: O2 required an adjacent pair of vacant sites, whereas CO required a
single vacant site for adsorption. Upon landing, O2 was assumed to disassoci-
ate into two single oxygen atoms, each occupying a single site. Furthermore,
carbon monoxide adjacent to an oxygen atom was assumed to react instantly
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to form carbon dioxide, which then desorbed from the surface, leaving two
vacant adjacent sites behind.

We will refer to this monomer-dimer model as the ZGB model. Using
computer simulations, Ziff, Gulari and Bar shad investigated this system
starting from all sites vacant. The parameters were chosen so that the
molecule colliding with the surface would be carbon monoxide (CO) with
probability p and oxygen (O2) with probability 1 — p (p can be thought of as
the mole fraction of CO in the gaseous phase). Their simulations showed that
the system undergoes two phase transitions with three different phases:

p e(0, jDj] with p1 ~ 0.389 oxygen poisoning,
p ^(PI, p2] with p2 ~ 0.525 coexistence,

P e ( P % 91] carbon monoxide poisoning.

(If p = 0, oxygen continues to bond to the surface until no more vacant pairs
of adjacent sites are present.) Here and later on, poisoning will mean that
any finite square will eventually be completely occupied by only a single type,
in which case the reaction ceases there. Coexistence will mean that for any
s > 0 and large enough L (depending on s), any L X L square will have both
types of atoms with probability at least 1 - s at all large enough times
(depending on the square). This is equivalent to large squares possessing
vacant sites, and hence implies that the reaction will continue indefinitely. A
quite interesting aspect of the ZGB model is the following: the simulations
strongly indicate that the process exhibits a first-order phase transition at
p2, with the density of CO in equilibrium jumping from a little less than 0.25
to 1.0, The transition at pl9 however, appears to be continuous. (A phase
diagram adapted from Ziff, Gulari and Barshad is given in Figure 1.)

The paper by Ziff, Gulari and Barshad has sparked considerable interest in
the physics literature. In a series of nonrigorous papers, the behavior of the
ZGB model was more closely examined [see, e.g., Dickman (1986), Evans and
Miesch (1991) and Jensen, Fogedby and Dickman (1990)]. In the mathematics
literature, a few rigorous results for variations of the ZGB model are known.
Grannan and Swindle (1990) assumed that oxygen atoms bond one at a time
instead of as pairs. In their model, there is never coexistence [see also
Mountford and Sudbury (1992) for an extension of their results]. Durrett and
Swindle (1994) modified the ZGB model by including fast stirring. That is, for
each pair of neighboring sites, the values are exchanged at a rate that is fast
compared to the adsorption rates. Their approach can be justified by the
observation of Engel and Ertel (1979) that carbon monoxide molecules are
highly mobile on the catalyst surface (oxygen atoms also have some mobility).
In their model, all three phases (oxygen poisoning, coexistence, monomer
poisoning) are present. No results regarding coexistence for the original ZGB
model are currently known.

We take a different approach. We replace the oxygen molecule in the ZGB
model by a large polymer consisting of N2 identical atoms arranged in a
square of length N, with N quite large. Otherwise, the adsorption, disassoci-
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FIG. 1. The equilibrium density of O (solid lines) and CO (dashed lines) as functions of p.
Transitions occur at pl and p2.

ation, reaction and desorption proceed as before, although the allowed range
of interaction remains to be specified. This modification results in the loss of
one phase: polymer poisoning will not occur. Depending on the range of
interaction, however, there will be situations in which there are two phases
as the parameter p is varied: one phase in which both components coexist,
and another phase in which monomer poisoning occurs. For other ranges of
interaction, monomer poisoning will always occur. Unlike previous rigorous
results, the spatial geometry of configurations plays a major role here. The
results presented here were previously announced in Bramson and Neuhauser
(1992).

After these introductory comments, we are now ready to present the
monomer-polymer model considered in this paper and state the accompany-
ing results. The model is a continuous time Markov process in which the state
gt at time t is a function Z2 -> {0,1,2} (i.e., each site in Z2 is assigned the
value 0, 1 or 2). If gt(x) = 0, we say that x is vacant; if £/#) = 1, x is
occupied by a monomer, and if £,(#) = 2, x is occupied by a polymer atom.
The evolution of the process is given by the following rules.

(i) O's turn into 1's at rate 1, that is, monomers bond to vacant sites at rate
1.

(ii) N X N squares of O's turn into N X N squares of 2?s at rate A, that is,
N X N squares of vacant sites are occupied by polymers at rate A.
Polymers disassociate into single polymer atoms upon bonding, each
occupying a single site.
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(iii) When a monomer bonds to a site x as in (i) and there is a polymer atom
at at least one site y with \\x — y\\™ < R, then both x and one such y are
immediately vacated; that is, the two atoms desorb. Similarly, when a
polymer bonds to the lattice, the individual polymer atoms immediately
interact with monomers within distance R, whenever possible.

Here, ||x|U < R means maxdx-J, |x2|} < R, where x = (x1? x2). The parameter
R, R > 1, is the range of interaction; N is the polymer length. ("Polymer"
always refers to an entire N X N block of polymer atoms, and "polymer
atom" to a single component of a polymer.) The rates A e [Q?°°) are allowed,
with the probabilities p chosen previously corresponding to 1/(A + 1) in this
setting. So that £, will be right continuous, £t(x) will denote the state at x
after desorption. [Without loss of generality, assume £t(x) to be continuous at
* = 0.]

Rules (i) and (ii) describe the adsorption mechanism, and rule (iii) de-
scribes the reaction between the components and the desorption of the
product. One can use the standard tool of graphical representations to
construct the monomer-polymer process in a more concrete setting. For each
x €L Z2 let W* and Wn

x, n = 1,2,..., denote the successive times at which
jumps occur (i.e., regeneration times) for independent Poisson processes with
rates 1 and A, respectively. We stipulate that at each time ^f, a monomer
bonds at x provided x is vacant, and that at each time Tn

x, a polymer bonds
to x + [0, N)2 provided all sites in that set are vacant. These operations
correspond to (i) and (ii). Desorption as in (iii) is specified by independent
uniform-tO, 1] random variables W**y, s > 0, \\x - 3>IU < R, at those times s
when monomers and polymer atoms are within distance R. Prioritizing
desorption for pairs (x, y) with gs(x) = 1 and £8(y) = 2 by W^y then deter-
mines which sites become vacant. (Although we will restrict ourselves to this
scheme, the precise rule used to match monomers and polymer atoms is not
important). The random variables W£, T*n

x, W^y, with n = 1,2,..., s > 0,
x, y G Z2, define the percolation substructure of £t. The tr-algebra generated
by these variables up to time t and by £0 will be denoted by &^.

We also need to introduce the following set of initial configurations. Let Bj
denote the set of configurations which have infinitely many monomers or
vacant sites. Also, let H2 denote those configurations which have infinitely
many N X N squares not containing any monomers. Set E = E! n E2. The
condition Bx will rule out trivial cases of poisoning by the polymers, and B2»
poisoning by the monomers.

As we see below, the behavior of the model depends on how large the range
of interaction is relative to the polymer size. The following result shows that
when the range of interaction is small relative to the polymer size, monomer
poisoning occurs for all values of A.

THEOREM 1.1. Assume that I < R < mQN and that £0 e Hr For appro-
priate m0 > 0, monomer poisoning occurs for the process j~t with probability 1
for all A > 0.
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It is somewhat surprising that coexistence cannot occur in the above
setting no matter how large A is; this behavior differs from simulations in the
literature, which were done for small N.

The behavior is more complex when the range is large relative to the
polymer size. On the one hand, monomer poisoning must always occur for
small values of A.

THEOREM 1.2. Assume that £0 e HI- For all A < 1/N2, monomer poison-
ing occurs for gt with probability 1.

On the other hand, if the range is large, coexistence occurs for large
enough A. By survival of monomers or polymer atoms, we mean that for
s > 0 and large enough L, any given L X L square will possess that type of
atom with probability at least 1 — # at all large enough times. Survival of
both types is equivalent to coexistence. Theorem 1.3 gives sufficient condi-
tions for the survival of polymer atoms, and Theorem 1.4 for survival of
monomers.

THEOREM 1.3. Assume that R = mN and that £0 e E2- For m > ml9
appropriate ml and large enough A (not depending on m, N), polymer atoms
survive for gt.

THEOREM 1.4. Assume that R = mN, with m > ml and N > Nl9 and that
£0 <E H!- For appropriate ml and N± (and arbitrary A), monomers survive
for &.

Theorems 1.3 and 1.4 together show that coexistence occurs for large m, N
and A, if £0 e H. We note that although Theorem 1.4 gives conditions for the
survival of monomers, these monomers will, for large m and A, be very rare,
with sites typically either being vacant or occupied by polymer atoms. (We
comment on this in Section 5.)

By considering the Cesaro average of the distributions of gs, 0 < s < t, and
taking the limit over an appropriate subsequence, one obtains an equilibrium
p. [This standard construction can be found in, e.g., Proposition 1.8 of Liggett
(1985).] Theorems 1.3 and 1.4 imply that for sufficiently large m, N and A,
such a v possesses vacant sites, and hence an active reaction. Interesting
questions in this context concern the uniqueness of v7 and possible conver-
gence results. On the other hand, in the cases given by Theorems 1.1 and 1.2,
the limit is given by the state consisting only of monomers. Note that the
above results do not rule out the possibility of polymer poisoning for interme-
diate values of m (with large AT) as specified in Theorem 1.3, although such
behavior is quite unlikely. Most plausible is the following scenario for the
system as one varies the parameters: for small N (as in the ZGB model),
poisoning by either type is possible, depending on the rate A, and irrespective
of m. Past some critical NP (presumably, depending on m, but bounded),
polymer poisoning can no longer occur. (It seems likely, in fact, that the
polymer poisoning in the ZGB model is lost for polymers of size at least three
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(of any shape), and even for dimers when R > 1.) Also, past some critical NM,
monomer poisoning occurs for small /n, irrespective of A. As in the ZGB
model, there are presumably always critical X1 and A2, with 0 < Xl < A2 < °o
and depending on N and m, which partition R+ into monomer poisoning,
coexistence and polymer poisoning intervals in the obvious order.

The monomer-polymer process we are considering can be formulated in
Zd, d > 1, as well, although nothing basic changes in that setting. We also
note that one can incorporate another parameter into our process by assum-
ing the interaction between monomers and polymer atoms is not instanta-
neous, but occurs after a random time according to an exponential distribu-
tion with mean /x, One can show that, for fixed /x > 0, monomer poisoning
occurs for large enough N irrespective of m and A. (Also, for any N > 1,
monomer poisoning occurs if /x is large.) For fixed N and small enough ju,, the
analogs of Theorems 1.1—1.4 hold as before.

The remainder of the paper is organized as follows. In Section 2, we
demonstrate Theorem 1.1, and in Section 3, we demonstrate Theorem 1.2. For
Theorems 1.3 and 1.4, we need to employ a rescaling argument that involves
comparison of i-t with oriented percolation. This procedure is reviewed in
Section 4. Theorem 1.3 is then demonstrated in Section 5. Theorem 1.4 is
considerably more difficult than the other three results, and its proof occupies
the remaining three sections of the paper. In Section 6, the theorem is
demonstrated under the restriction that A < 8m2, for appropriate 8 > 0. The
proof of the key result, Proposition 6.3, is deferred to Section 7. In Section 8,
the case A > 8m2 is handled.

2. Monomer poisoning for short range. We demonstrate Theorem 1.1
in this section. The theorem states that if the range of interaction J? is a
small enough multiple of the polymer length N, then monomer poisoning
must occur irrespective of the rate A. The basic idea is that in order to have
room to bond to the surface, a polymer requires a vacant N X N square. If
there is no such square locally but nevertheless individual vacant sites,
monomers will bond and react with nearby polymer atoms. In this manner,
monomers are able to gradually displace polymer atoms without usually
creating such N X N squares, and are thus able to ultimately poison the
surface.

We first partition R2 into [AT/2] X [N/21 squares and note that any
N X N square must cover at least one of these smaller squares. ([x\ denotes
the integer part of x, and \x]9 the smallest integer at least as large as #.)
Fixing one [N/2\ X [N/2\ square B, we let s/p denote the set of configura-
tions | possessing at least kQ polymer atoms in B, where kQ will be chosen
later. Also, denote by er the next (random) time at which a bonding polymer
covers B, and r the next time a bonding polymer and R intersect so as to
contain at least an N/9 X N/9 square; in the latter case, we say that the
polymer and B overlap. Of course, a > r, with both possibly being infinite.

The following proposition serves as our main tool here. It states that under
£0 e«#^, the likelihood of the first overlapping polymer covering B is small.
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PROPOSITION 2.1. Assume that 1 < R < mQN for appropriate m0 > 0, and
that £Q <=tfp. Then,
(2.2) P(cr = T < oo) < 2-1/(72G^)<

Let c r^og , . . . denote the successive times at which bonding polymers
cover B, and TI? r2 , . . . the times bonding polymers overlap B. Also, let na(t)
and nT(t) denote the number of such events by time t. We denote by Bt the
[AT/61 X \N/6] square centered at the middle of B, and let s/m be those
configurations £ possessing at least one monomer in Bj. Using Proposition
2.1, one can deduce the following bounds on E[na(t)].

PROPOSITION 2.3. Assume that 1 < R < m0N for appropriate m0 > 0.
(a) For all ^0 and t,

(2.4) E[na(t)} < 2-1/(720m*)E[nT(t)] + 2.
(b) 7 j f f 0 ej/TO, then

(2.5) E[na(t)] < 2~l^imm^E[nT(t)}
for all t.

Before demonstrating Propositions 2.1 and 2.3, we see how Theorem 1.1
follows from (2.4) and (2.5). Each time a polymer overlaps a square B9 it must
cover either B or one of the square's eight nearest neighbors in the || • IU
norm. So E[nT(t)] is at most the sum of the covering expectations for these
nine squares. It follows that
(2.6) E[nr(t)]<9E[nM],
where n^.(t) corresponds to the square Bl among these nine squares possess-
ing the highest such expectation. Combining (2.4) and (2.6) yields
(2.7) «K(0] <\E[nl(t)} + 2
for small enough m0? and hence, that

E[nl(t)} -4>2(E[nM)} -4).
One can iterate this procedure, successively choosing neighboring squares
B2, J53,... satisfying the analog of (2.6). The covering expectation of the ith
such square thus satisfies

(2.8) E[nM] ^4>2i(E[n(r(t)} -4).
It is clear from (2.8) that for any [N/2\ X [N/2\ square B and any |0?

(2.9) ^K(0] ^ 4 foralH.
Otherwise, lim-^ E[nl

a(t)] = <», but since polymers bond at only the fixed
rate A, this is not possible. So, the number of polymers ever covering a square
B is almost surely finite. A little thought shows that this implies poison-
ing for the system. Such poisoning occurs independently of the initial con-
figuration.
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For £0 e BX, this poisoning must be by monomers. To show this, first note
that under E1? for given i e Z+, there is with probability 1 an [ N/2J X IN/2 j
square B such that at t = 1, all squares B' within distance i of B possess at
least one^monomer in Bj. One can repeat the reasoning used in (2.7) for the
process ft =def ft + 1, but with (2.5) substituted for (2.4), since |0 ej^fm. This
gives
(2.10) E [ n a ( f ) \ > \E[hl(t)}
for all t, where h^t) and hl

a(t) count the covering times corresponding to
those in (2.7). One can iterate (2.10) i times to obtain

(2.11) E[fiff(t)] <2^E[^(t)}.
Inequalities (2.9) and (2.11) imply that for the above square B,

(2.12) P(na(t}>^<E[h(T(t}}<2^\
The analog of (2.12) at each square neighboring B likewise holds, but with
the upper bound 22^(l^1} = 23^ instead. So, a square B can be chosen so
that the probability it or any of its neighbors is covered by a polymer after
t = 1 for the process ^ is as small as desired. But, in order for B to be
completely occupied by polymer atoms at some t > 1, some bonding polymer
must intersect with B? and this polymer must cover either B or one of its
neighbors. So, the probability that B is completely occupied by polymer
atoms at any t > 1 can also be made as small as desired. Consequently,
polymer poisoning occurs with zero probability. The only other possibility is
poisoning by monomers, which implies Theorem 1.1.

Propositions 2,1 and 2.3 remain to be proved. We say that a bonding
monomer is noninstantaneous if it does not immediately react with a polymer
atom and desorb. The basic idea behind the proof of Proposition 2.1 is to show
that for an initial configuration with a substantial number of polymer atoms
in B, a noninstantaneous monomer will typically bond to Bf before all of
these atoms desorb. The presence of such a monomer will prevent the next
overlapping polymer from covering B, and hence imply that a > T. For this,
we set k0 = [l/72Qm01, with kQ being the number of polymer atoms in the
definition of jtfp.

PROOF OF PROPOSITION 2.1. Any site within Bz is at least distance N/6 - 1
from the boundary of B. Once a noninstantaneous monomer bonds to BJ? the
only way for it to desorb is for a polymer to bond within distance mQN of the
site. For small mQ9 such a polymer contains sites at least distance N/9 from
the boundary of B, and hence overlaps B. Since B is not vacant, this polymer
does not cover B. It follows that once a noninstantaneous monomer bonds to
Bj, <T = r < GO cannot occur.

No polymer can cover B until all of the polymer atoms in B at t = 0 have
desorbed. Since £0 e^, we know that there are at least kQ such atoms. Wait
until there are exactly kQ such atoms left. If a noninstantaneous monomer
bonds to BT before all of these k0 atoms desorb, the situation reduces to that
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discussed in the previous paragraph. Also, if a polymer bonds within distance
R of Bj over this period, then the polymer overlaps B, and so a > r. To
bound P( or = T < cc), it thus suffices to obtain an upper bound on the proba-
bility of the kQ atoms desorbing before either of these two events.

To react with a given polymer atom, a monomer must bond within distance
R. There are at most (2R -f I)2 such sites. The number of vacant sites within
distance R of any of the kQ polymer atoms is therefore at most

N2

(2.13) kQ(2R + I)2 < 9k0m*N2 < ——,

for m0 small. Since BT\ > iV2/36, Bf contains at least JV2/72 sites not
within R of any of these polymer atoms. Also, there are no other polymer
atoms within distance R of Sf. The probability of any of the kQ polymer
atoms desorbing before time r and before a noninstantaneous monomer
bonds to Bf is therefore at most 1/2. One can repeat this reasoning kQ times
to conclude that the probability of all the polymer atoms desorbing before
either of these two events is at most 1/2*°. Substituting in for kQ, one gets
(2.2). D

The intersection of an overlapping, bonding polymer with B contains at
least an N/9 X JV/9 square, For m0 < 1/18, there is an N/18 X N/18
subsquare of polymer atoms which are too far inside the interior of this
square to immediately react with any monomers. Under N > l//n0 and
k0 = [l/720m2], it automatically follows that such a configuration possesses
at least k0 polymer atoms in JB, and hence is in j/p. One is therefore able to
repeatedly apply Proposition 2.1 to ^ at the times TI? r2 , . . , to conclude that
the probability of an overlapping polymer covering B is at any step small.
Together with a martingale argument, this will imply Proposition 2.3. For the
martingale, we employ the tr-algebras Wl = ̂  , / = 1,2,... .

PROOF OF PROPOSITION 2.3. As shown above, any polymer which overlaps
B contains at least k0 atoms which do not immediately desorb. So, irrespec-
tive of £0, if T! < oo, then gr ^J^, with the corresponding polymer possibly
covering B. Employing this observation and the strong Markov property, one
can restart the process at time rx. The bound (2.4) then follows from

(2.14) E[nv(t)\ < 2-1^0m^E[nT(t) + 1] for £0 e^p.
To demonstrate (2.14), we introduce the process Zl9 I = Q, 1,..., with

Z0 = 0 and Zl = Yl + •» +Yt. We set Yt - 2^1/(720m") if the bonding polymer
which overlaps B at time T- < oo also covers B, and F- = -1 if either the
polymer does not cover B or T- = oo. (If rl = °o, set Zl = Zl + l = • - • .) It follows
from Proposition 2.1, that for ^0 ej^?

(2.15) ^ [ ^ - i ^ - i ] < 0 fo ra lH>l ,
and so {ZJ is a supermartingale with respect to {^}. Let

pt = min{Z: rl > t } ,
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Note that p is essentially the inverse of r, with

(2.16) rpt^<t<rpt.

For given t, pt is a stopping time with respect to {̂ }. Since the number of
polymers which overlap B by time t is bounded by a Poisson random variable
with mean (9/4)\N2t, E[ pt] < °o. Note that the increments Yt of Zl are
bounded. One can therefore apply a standard version of the optional sampling
theorem to conclude that, for any t > 0,

(2.17) E[Zpt] <E[Z0] = 0.

It follows from (2.17) and the definition of «„.(*) and nT(t), that for £0 <^s/p,

(2.18) E [ n v ( T p t ) ] < 2-^20m°>E[nT(Tpi)].

[If rpt = <x>, interpret nT(rpt) to include an "overlapping polymer at t = °°'?
because of the definition of Yt below (2,14).] By (2.16),

(2.19) MO^O-p,)-
Similarly,

(2.20) nr(rpt) = nr(rp^) + 1 < nr(t) + 1.

Substituting these bounds into (2.18) yields (2.14), which in turn implies (2.4).
The bound (2.5) follows in place of (2.14) under the condition £0 ej/TO. To

see this, note that for a monomer in B7 to desorb, an overlapping polymer
must bond. Since B is not vacant, this polymer does not cover B. In particu-
lar, the overlapping polymer at rl does not cover B. This means that
Y1 — — 1, where Y- is defined as above. Continuing as before, one obtains the
analog of (2.18), but with nr(Tp) replaced by nr(rp) — 1. Using (2.19) and
(2.20) as before, one gets (2.5). d

3. Monomer poisoning for small X. Here, we demonstrate Theorem
1.2, namely, that monomer poisoning must occur for the monomer-polymer
process ^ if A < 1/W2, irrespective of the polymer length N or the range R.
Such behavior is, to be sure, not surprising. Even under "ideal" circumstances
for the polymer, when all sites are vacant, monomers bond at a higher rate
than do polymer atoms; the presence of monomers and polymer atoms on the
surface just imbalances these rates further. One can therefore think in terms
of random walks with negative drift, and use a modification of the accompa-
nying exponential supermartingales to analyze the process.

For any configuration £ of vacant sites, monomers and polymer atoms, let
£ denote the reassignment of values, with j(x) = -1 for a monomer at x,
f (x) = 0 when vacant, and f (:c) = 1 for a polymer atom. Since the number of
sites on the lattice is infinite, the counter

(3.1) !"„(£)= E exp(-a||*|U)|(*), a > 0,
X E Z 2
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will be useful. Note that Y a ( g ) is bounded for given a, and that if ^2(x) = 2
for all x e Z2, one has

(3.2) ha=totYa(€2)= E exp(-aiWU).
xeZ2

Our main tool is the function of ^,
(3.3) Z a f f i ( t ) = exp(j8Ya(&)), a , j 8 > 0 .

LEMMA 3.4. For small enough a and /}, Za^(t) is a supermartingale.

PROOF. The function Za>j3(t) changes when either a monomer bonds at
some vacant site x, or a polymer bonds to the vacant sites x + [0, N)2; the
resulting atoms will then react with atoms of the opposite type within
distance R. When such a bonding has occurred at x, the probability is at
least 1/(A + 1) that it was a monomer which bonded. In this case, Ya

decreases by at least exp[ —a(| | jc|U + R)]. When a polymer bonds, Ya in-
creases by at most N2 exp[ — a^lxlb — N — R)]. The expected change in Za^
following bonding at x at time t is therefore at most

(-——exp[~/3exp(-a(iklU+,R))]
\ A + 1

+ T^T^Pt ̂ 2 exp( -a(ll*L -N- R))} - l\Za^(t -).
A i JL /

Assume that a < 1 and 13 is small. Expansion of the coefficient of Za ^(t — )
shows that it is at most

/3exp(-a(|Ulioo H-JFJ) )1 , ; • ' — — — ^ ( A ] V 2 e x p ( a ( A T + 2 l ? ) ) ~ l )
A ~r 1

+ CN^(32exp(-2a\\xL),
for some constant C^^. For small enough a and f3, this is negative because
A < 1/JV2. Since this is true irrespective of the state ^_, it follows that
Za>p(t) is a supermartingale. D

Fix a and /3 small enough so that Lemma 3.4 holds. Since Za ^(t) is a
bounded supermartingale, it follows from basic theory that Za^(°°) =
lim^^^ Za p(t) exists almost surely, and that
(3.5) E[Za<^)} <Za>ft(0).
The existence of the limit implies that poisoning must occur almost surely for
£r Together with (3.2) and the positivity of Za^9 (3.5) implies that
(3.6) P (polymer poisoning occurs) <> Za^(0)exp( — @ha).

Recall that Hx denotes those states with infinitely many monomers or
vacant sites. It is easy to check, for £0 e H1? that

ha-Ya(£0)^™ asa-*0.



576 M. BRAMSON AND C. NEUHAUSER

So, for fixed /3 and a -» 0, the right side in (3.6) goes to 0, if £0 e HI-
Consequently, polymer poisoning never occurs, and in fact,

P (monomer poisoning occurs) = 1.
This implies Theorem 1.2. [Mountford and Sudbury (1992) use a related
argument for the corresponding monomer-monomer process. Instead of the
exponential superinartingale in (3.3), they employ the analog of Ya, together
with its translations.]

4. Comparison with oriented percolation. For Theorems 1.3 and 1.4,
we will employ a rescaling argument. It is by now a standard technique and
has been applied frequently. [See, e.g., Bramson (1989), Bramson and Durrett
(1988), Bramson and Neuhauser (1993), Durrett (1992) and Durrett and
Neuhauser (1994); the argument is reviewed in Durrett (1991).] The basic
idea is to show that, for given 8 > 0, members of the family of processes
under consideration, when viewed on suitable length and time scales, domi-
nate an oriented site percolation process in which sites are open with
probability 1 - S. (The sites may be j-dependent.) Since oriented site percola-
tion percolates for S close enough to 0, this will then imply that these
processes survive, and have the desired properties.

We review the above procedure. Oriented site percolation can be defined as
follows. For z = (zl9 z2) e Z2, let 3? = {(z, k) e Z2 X Z: zl + z2 + k is even}.
The oriented site percolation process is a collection of random variables
{cr(z, k): (z, k) <EJ?f}, with values in {0,1}, that indicate whether the sites in
& are open (1) or closed (0). We say that the process is j-dependent with
density at least 1 - d if for any sequence (za, ka), a = 1,2,..., h, satisfying
l l ^ o j ~~ Za2\\i > 2y whenever both 04 =£ a2 and ka = ka , then
(4.1) P(a(za,ka) = Ofor a = l,...,h) < 8h.
By an open path from (y, 0) to (z, k\ k > 1, we mean a sequence of points
£0 = (;y, 0), £l9£2,...,£k - (z,*)in &, such that for I = 1,...,*, & - ̂  +
(e-,1) or ^ = £l_l + ( — ei91) for some i e {1,2}, where ei is the ith unit
vector and all the £/s, I = I9...,k, are open.

Let A c Z2 and define
(4.2) W^ = { z : there is an open path from ( y, 0)

to (z, k) for some y e A}.
We think of W/ (Wk for short) as the set of wet sites at time k connected to
the source A at time 0. Also, set

(4.3) £#>= f) W>*0},
k=o

with Of = U^ e A ^iy}- When co e Of, that is, there is an infinite open path
starting at A X {0}, we say percolation occurs from A. The following is, for
j-dependent percolation, a slight variant of results on 1-dependent percolation
given on pages 204 and 205 of Durrett and Neuhauser (1991). [A detailed
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exposition on independent oriented site percolation can be found in Durrett
(1984). In Liggett, Schonmann and Stacey (1995), it is shown that j-depen-
dent percolation can be coupled with independent percolation so as to domi-
nate the latter and so that the exceptional probabilities S converge to 0 in
both cases; this allows one to automatically extend various percolation results
to the j-dependent setting.] We denote by B|> the square of length L', L' > Q,
centered at z e Z2.

LEMMA 4.4. Let (or(z, k): (z, k) ej?j be a j-dependent oriented site perco-
lation process with density at least 1-5, for 8 > 0. If 8 is sufficiently small,
then jP(Qt0}) > Q. Fix such a 8. Then, there exists y > 0 so that for any s > 0
and large enough I/,

(4.5) limsup max P(Wf} n B£, = 0; Of) < *.
&~»oo \z\<yk

That is, on the set fl^\ a large square centered inside the cone \z\ < yk
will at large times k typically contain at least one wet site. The relevant
observation here is the same as that in Durrett and Neuhauser (1991),
namely that, inside the cone, Wj[°* is at large k typically equal to Wf .

The sources A we will be employing will typically satisfy |A| = <». By
choosing an infinite subset of A whose elements are sufficiently separated
from one another, one can construct an arbitrary number of copies of W^ (up
to translation) which are nearly independent of one another up to large times.
Arguing in this manner, it is not difficult to show that P(£l£) — 1 for | A\ = °°.
Applying this in conjunction with Lemma 4.4, it is also not difficult to show
that for |A| = oo,

(4.6) limsup max P(Wf n J3£, ¥= 0) < *,
k-^co \z\<yk

where <5, y, e, and Lf are quantified as above. That is, large squares inside
\z\ < yk will at large times typically contain wet sites.

To compare our processes with oriented site percolation, we proceed as
follows. Set

(4.7) <t>(z) = ( M z l J M z 2 ) ,

B(s) = < K * ) + B ,
for z = ( z l 5 2 2 ) eZ 2 , where B = (-Af/2, M/2]2, M e 2Z+. The M x M
squares B(z) are centered at <f>(z) and partition Z2, We will employ certain
"good events" in the squares B(z\ The definition will depend on the precise
situation, whether a sufficient number of monomers, polymer atoms, or
vacant sites are present in B(#). If the good event occurs in JEK^) at time t,
with, for instance, t = kT, T > 0, we then say B(z) is occupied at this time.
The terms M and T here are to be regarded as large and fixed. (In Sections
5-8, we will set M = 2[R/4\ ~ JR/2; the choice of T will depend on the
context.)
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Let Hk(z) denote the event that B(z) is occupied at time kT. The main
step in the comparison with oriented site percolation is to show, for some
fixed j, that the following bound holds for appropriately small S: for all za,
a = 1,2,..., h satisfying \\zai - zaj\i > 2j, al * a2,

(4.8) P r\H!+l(za)\^kT\<Sh

U=l /

whenever co e Hk(zf
a) for some choice of z'a with \\za — zf

a\\i = 1 for all a. In
the case h = 1, (4.8) states that B(z) is not occupied at time (k 4- l)T with
probability at most 8 if B ( z f ) is occupied at time kT for some immediate
neighbor zf of z. For k > 0, set a-(z9 k 4- 1) = 0 if B(z) is not occupied under
these circumstances; otherwise, set cr(z,k + !)=!. Then, (4,1) is satisfied,
Letting

(4.9) V^ = [z e Z2: B(z) is occupied at time kT},

and W0 c F0, one can check by induction that

(4.10) Wk c Vk

for all k > 0, where Wk is defined as above. Under |V0 = oo? one can then
apply (4.6) to Vk to conclude that inside \z\< jkM, each large Lf X Lf block
of M X M squares typically contains at least one such occupied square at
time kT. With a little more work, this will, in each case, imply that each
L X L square, L = L'M, will, with high probability, contain a monomer,
polymer atom, or vacant site (depending on the result to be shown) at large
enough times, and hence that the appropriate atom type survives.

Since the evolution of ^ is time homogeneous, it will suffice to demon-
strate (4.8) for k — 0. It is also enough to show the inequality for h = 1, if one
can control the interaction between distinct blocks of sites. For attractive
particle systems, this is often done by comparing the system to one with fixed
configurations on certain boundary regions which separate these blocks [see,
e.g., Bezuidenhout and Grimmett (1990), Bramson, Durrett and Swindle
(1989), Durrett and Schinazi (1993) and Durrett and Swindle (1991, 1994)].
By choosing the "worst configuration" on the boundary, one obtains a new
system which is pathwise dominated by the original system. If the boundary
regions are specified to have width at least the range of interaction of the
system, the evolution of the new system will be independent over the differ-
ent blocks. Demonstration of (4.8) for h = 1 for the new system will then
imply analogous bounds for general h for the original system.

The system ft is not attractive, however, and this increases the technical
details in demonstrating (4.8), One can, nevertheless, follow the above outline
for attractive processes, with some modification. (This procedure should work
in general for nonattractive particle systems with finite range, when a
rescaling argument can be applied.) Choosing j = 4 in Section 5 and j = 5 in
Sections 6-8 in (4.8), we will specify boundary regions with width R, which
separate the squares B(za) that contain B(za). Once the configuration is
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chosen on these boundary regions, the evolution on the squares B(za) will be
mutually independent. Since there is no uniformly worst configuration on the
boundary for all paths, we take, for each path, a configuration (which will
be allowed to change over time), which maximizes l(H^(zaJ). Of course, the
ensuing estimates then need to include the effect of varying the data on the
boundary.

The main observation behind this reasoning is that one can simultaneously
couple the different new systems, obtained by choosing the boundary data in
all possible ways, so that the analog of Hl(za) is in each case restricted to the
same small set of paths. This coupling can be done by appropriately reorder-
ing, according to x, the times {2^*} and {?^*}, given in Section 1, at which
monomers and polymers attempt to bond to Z2. Although the reordered times
will still be given by independent Poisson processes, the choice of coupling for
the positions x e Z2 will frequently depend on the configurations of £t at
those times. In practice, we will always be deriving bounds for functionals
of £j [typically, Poisson-like processes, or in (7.14), a supermartingale],
which will be increased or decreased by "favorable" or "unfavorable"
monomer/polymer bonding and desorption. The favorable and unfavorable
bonding and desorption can always be coupled in a natural way so as to
provide uniform bounds for the desired functionals over the different systems.
(For instance, in the proof of Lemma 5,6, we will require lower bounds on the
number of polymers that bond in B. Under certain conditions, there will be at
least M2/3 unoccupied positions in B where polymers can bond. Their
location will depend on the boundary data, which affects the matching of sites
x for the coupling of {%*}, but not the probabilities that are involved.)
Together, these bounds on the desired functionals will imply the analog
of (4.8).

Rather than complicate the notation in Sections 5-8 to include this cou-
pling, we restrict ourselves to the case h = 1 in the actual proofs, while
pointing out briefly there how the coupling enters. (The reader will probably
agree that the arguments in Sections 6-8 are already sufficiently cumber-
some. The argument in Section 5 is not so long.) For those interested in
tracking things down, we group together here the different instances in
which such coupling is used. The same upper bounds on the number of
monomers which attempt to bond, on the set of sites within distance R of J5,
are employed in Lemmas 5.5, 7.17, 7.25, 8.17, 8.29 and 8.50, and in Proposi-
tion 6.16. These bounds allow one to control the number of polymer atoms
which desorb from B over that time period. The coupling here is the obvious
"identity" coupling; in other cases, it depends on the configuration. Lower
bounds on the number of monomers which bond and interact with polymer
atoms in B are used in Proposition 6.16 and Lemma 7.28; upper and lower
bounds on the bonding rates are used in Lemma 7.14. Upper bounds on the
number of polymers that bond over certain regions in B are used in Lemmas
6.14 and 8.19, and lower bounds are used in Lemmas 5.6 and 8.50. The
bounds in all the cases are based on the simple large deviations bounds for
Poisson random variables given in (5.10).
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5. Polymer survival for large X. It was shown in Sections 2 and 3
that either a short range of interaction or a low bonding rate for polymers
ensures poisoning by monomers. Here, we demonstrate Theorem 1.3, which
states that for large m and A, polymer atoms survive. The basic idea is that,
on account of the long range, polymers will have plenty of room to bond in the
active region between competing monomer and polymer clusters. Together
with the choice of A? this leads to the spread of such polymer clusters at the
expense of monomers and hence to the survival of polymer atoms.

To demonstrate Theorem 1.3, we employ the framework provided in the
previous section. We partition Z2 by M X M squares B(z) as specified in
(4,7), with B = B(0) = (-M/2, M/2]2, and set M = 2[R/4\. All sites in
neighboring squares are within distance R of one another, with M « R/2
since R is large. Also, let T = 1/2,000N2, where T is the time increment
used in the rescaling. We will say that B(z) is occupied when there are at
least m2/20 polymer atoms in B(z), where, as always, R = mN.

The main goal of this section is to show the following result.

PROPOSITION 5.1. For any 8 > 0, and sufficiently large A and m (with m
depending on <5, but neither A nor m depending on N),

(5.2) p(B(ty is not occupied at some t e [ T , 2 T ] ) < 8
i f B ( z ) is occupied at time 0 for some z with \\z\\i = 1.

As in Section 4, we let Hk(z) denote the event that B(z) is occupied at
time kT. Since the evolution for £t is translation invariant in both space and
time, inequality (5.2) implies, in particular, that

(5.3) P(H£+1(z)\^kT)<d

under Hk(zr) for any z1 with \\z — z'\\i = 1.
As discussed at the end of Section 4, we in fact require the multidimen-

sional version given in (4.8) to show survival of polymer atoms. We find it
convenient to set

B(z) = BM+ZR

here, which is the set of all points within distance R of B(z). We will need to
be able to provide a lower bound on the number of polymers that bond in
B(Q), and an upper bound on the number of monomers that bond in B(0) in
order to derive (5.3), and, more generally, (4.8). Including a boundary region
of width R around B(Q), to separate it from other squares B(z), gives a
square of length M + 4R < WM for large R, So, we stipulate that \\za —
za Hi > 10 in (4.8). Reasoning as in the last three paragraphs of Section 4 will
give the independence of the different squares needed for (4.8) to hold. (More
detail is given at the end of this current section.)

Given (4.8), one can then compare the process Vk in (4.9) with the
corresponding oriented percolation Wk by (4.10). This enables us to employ
the bound (4.6). The assumption that £0 e H2 in Theorem 1.3 implies that at
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any tl > 0, the number of occupied squares B(z) is infinite with probability
1. Restarting the process then, and applying (4.6) and (4.10), it follows that
for large enough L', and for 5 chosen small enough in (5,3),
(5.4) limsup max P(Vk n B£, = 0) < s

k~^oo \z\<yk

for fixed s > 0. This implies that the polymer atoms in gt survive at the
times kT, & = 0,1,2,... . Employing (5.2) over the times (T,2T) for the
interval (kT9(k + 1)T), it follows that the polymer atoms in ^ survive for all
time, which implies Theorem 1.3.

As remarked in the Introduction after Theorem 1.4, the concentration of
monomers will, in fact, be very low when m and A are large. We outline the
argument, which is a minor adaptation of the one just given for Theorem 1.3.
Specifically, one needs to replace (4.5) and (4.6) with analogous statements,
but where Lf = 1 and s -» 0 as 5 -» 0. (The reasoning for these variants is
the same as that for the original versions.) On the other hand, the bound in
(5.2) holds for any given 8 > 0, if m is chosen large enough. So, use of the
same reasoning as in the above paragraphs shows that (5.4), in fact, holds
with Z/ = 1. Consequently, there are, with overwhelming probability, poly-
mer atoms in the corresponding M X M square for a given B± in the above
cone, for large k. Since there can be no monomers in such a square, this
shows that the density of monomers goes to 0 as m -> °°, as desired. (Not
surprisingly, the actual rate at which this convergence occurs will be much
faster than the bounds employed in the above reasoning.)

The basic idea behind the proof of Proposition 5.1 goes as follows. Except
on a set of small probability, "not very many" monomers have time to bond to
B = JB(0) over (0,2T]. Also, if B(z\ \\z\\i = 1, is initially occupied, there can
be no monomers in B then, since all such sites are within range R of one
another. Because A is large, there is thus plenty of time and space for
sufficiently many polymers to bond to B over (0, T] for B to remain occupied
over [T,2T].

To show that this scenario in fact holds, we employ the following events:

F = I at most — m2 monomers attempt to bond to B over (0 ,2T]

Gl = {there exist at least —-m2 polymer atoms in B at some t e [0, T ] } ,
I 15 /
/ AM2 \

G2 = (at least ——-— polymer atoms bond to B over (0,T] > .
I -L^j, UUU I

Let T denote the time at which the event G1 first occurs, and set G = G1 U G2.
Also, let Hl 2(0) denote the event that B(0) is occupied over all of [T, 2T].

To demonstrate Proposition 5.1, we employ the following lemmas.

LEMMA 5.5. For appropriate cl > 0,
P(FC) ^expf-c^n2}.
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LEMMA 5.6. For appropriate c2 > 0 and large m,

P(F n Gc) < exp{-c2Am2}
under HQ(z) for some z with \\z\\i — 1.

LEMMA 5.7. For large A,
fiTfi2(0) cF c uG c .

Proposition 5.1 follows quickly from Lemmas 5.5-5,7. By Lemma 5.7,
(5.8) P(H{ 2(0)) < P(FC) + P(F n Gc),
Plugging Lemmas 5.5 and 5.6 into the right side of (5.8) gives

(5.9) P(H1
c

>2(0))<exp{-c3m2})

under H0(z), \\z\\i = 1, large m and A, and appropriate c3 > 0. This clearly
implies (5.2). So, to prove Proposition 5.1, it suffices to show Lemmas 5.5-5.7.

We first recall the following elementary large deviations estimate, which
will also be used in later sections. If X is a Poisson random variable with
mean A, then it has moment generating function exp{A(exp(0 — 1)}. Employ-
ment of Chebyshev's inequality, for small enough t, shows that for 77 > 2/5
(any positive number will do) and appropriate c4 > 0,

(5.10) P(X> (1 + 7?)A) < exp{-c4A}?

P(X<(1- TJ)A) <exp{-c4A}.

PROOF OF LEMMA 5.5. The result follows almost immediately from the first
half of (5.10) with TJ = 1 and A = m2/40. Since \B\ < 7R2, for large R, and
1(0,2T]| = 1/1,OQQ]V2, the number of monomers which attempt to bond to B
over (0,2T] is Poisson with mean at most 7#2/l,OOOJV2 < m2/140. D

PROOF OF LEMMA 5.6. For \\z\\i = 1? every site in B(z) is within distance
2M < R of every site in B. Since under H0(z), B(z) contains poljnuer atoms
at time 0, B has no monomers then. Because m2/70 < M2/3N2 for large m,
it follows that under F n HQ(z), there are, over [0, T], never more than
M2/3N2 monomers in B. Likewise, under GJ, there are never more than
m2/15 < M2/3N2 polymer atoms in B. Since monomers and polymers can-
not coexist in B, it thus follows that under F n G?J n H$(z), there are, over
[0, T], never more than M2/3N2 occupied sites in B. Denoting this last
event by K, one has
(5.11) Fr\Gl C\H0(z) cJT.

An occupied site y can obstruct the bonding of a polymer at x + [0, N)2

only if y e x + [0, N)2. When there are at most M2/3N2 occupied sites in
B, polymers at at most M2/3 positions are obstructed by them. Since M is
assumed to be large compared with N, there remain at least M2/3 positions
in which polymers can bond so as to be completely in B. Over these times,
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polymers therefore bond inside B at rate at least AM2/3. Now, assume any
initial configuration. Employing the second half of (5.10) with T? = 1/2, it
follows that the probability that there are, over [0, T], never more than
M2/3N2 occupied sites, and that fewer than AM2/12,OOQiV2 polymers (and
hence AM2/12,QQQ polymer atoms) bond in B over (0, T] is at most

( c4AM2 \^\~-6m^!^^c^]
for appropriate c2 > 0. That is,

(5.12) P(Gl n K) < exp{-c2Am2}.
Lemma 5.6 follows from (5.11) and (5.12). D

PROOF OF LEMMA 5,7. To demonstrate the lemma, it suffices to show that
(5.13) FHGI ciarlf2(o)
and
(5.14) F n G 2 c f f l f 2 ( 0 ) .
Under G1? there are least m2/l5 polymer atoms in B at the time r e [0, T].
Only those monomers bonding in B over (0,2T] can interact with these
polymer atoms; under F, there are at most m2/70 such monomers. It follows
that, under F n Gl9 there are at least m2/20 polymer atoms in B at all times
in[T,2T]. So, (5.13) holds.

Under G2, at least AM2/12;QQO polymer atoms bond to B over (0, T]. Only
those monomers in B at time 0 or bonding to B over (0,2T] can interact with
these polymer atoms. Under F9 there are at most

7R2 + 4m2 < 8R2

such monomers. For large A,

AM2 „ m2

- 8 E 2 > — ,
12,000 " 20

Thus, under F n G2, there are at least m2/20 polymer atoms in B at all
times in [T, 2T]. So, (5.14) also holds, n

We note briefly that (5.3) can be extended to (4.8) without too much
difficulty by reasoning ̂ along the lines of the end of Section 4. The bound for
monomer bonding in B in the proof of Lemma 5.5 holds, irrespective of the
data on the boundary of B. One can also proceed in the proof of Lemma 5.6 by
observing that, under K, there are always at least M2/3 positions in which
polymers can bond. The polymer bonding times v% for the "first" M2/3 of
these positions can therefore be coupled together so that systems correspond-
ing to different boundary data share the same exceptional event in (5.12). The
bounds corresponding to (5.13) and (5.14) continue to hold in the multidimen-
sional setting as well.
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6. Monomer survival for large m and N. Basic setup. It was shown
in Sections 2 and 3 that either a short range of interaction or low bonding
rate for polymers ensures poisoning by monomers, and in Section 5 that
polymer atoms survive for a long range of interaction and high bonding rate.
In Sections 6-8, we demonstrate Theorem 1.4, which states that for a long
range of interaction and large polymer size, monomers survive. The assump-
tion on the range is presumably not necessary, especially in view of Theorem
1.1. Some assumption on the polymer size is needed, though, on account of
possible polymer poisoning as in the ZGB model. There are no restrictions on
the polymer bonding rate, although, as we shall see, the argument becomes
more complicated when the rate is large.

The basic reason for the survival of monomers under these conditions is
the inability of polymers to completely "seal off large regions where monomer
bonding would be prevented. In regions where monomers are able to bond
(either in relatively large open regions or in "cracks" between polymers), they
will interact with nearby polymer atoms. Suppose, for instance, that the
interaction is with a polymer atom which is surrounded within distance N by
other polymer atoms. The vacant site which is created in this case cannot be
occupied by a polymer atom until on the order of N2 nearby polymer atoms
are removed, so that a polymer is capable of bonding. Before all of these
polymer atoms are removed, there will be substantial opportunity for more
monomers to bond nearby. This can create vacant sites in additional pure
polymer regions which cannot be filled immediately by polymers, and so on.
Under this scenario, polymer atoms should not be able to poison Z2. Rather,
there should be enough open space for bonding monomers to "strike back,"
although these monomers may only on occasion stick to Z2. It is also, of
course, possible for monomers, if A is small enough, to eventually poison Z2,
as in Theorem 1.2.

It is unfortunately quite cumbersome to make the above scenario mathe-
matically precise. One needs to be able to characterize "good" configurations
that are resistant to local polymer poisoning, and to specify a mechanism
under which the evolution of the system can be monitored. (A set will be
referred to here as poisoned if it is completely occupied by monomer or by
polymer atoms.) Since the geometry of allowable configurations is fairly
complicated, and the process %t is nonattractive, considerable care must be
exercised. For our argument, we need to distinguish two cases, where A < dm2

and where A > 8m2, for appropriately small 5 > 0. Loosely speaking, a good
configuration on an M X M square will be one in which either (i) the number
of polymer atoms which need to be removed from the square before it is
possible to poison it with polymer atoms is large (> e^m2 A N2), appropriate
el > 0); or (ii) there are enough vacant sites to make it impossible for
polymer atoms to poison the square over a moderate period of time or, in the
case A < 8m2, (iii) there is at least one monomer in the square.

As in Section 5, we set M = 2[R/4\ (« JB/2), where R is the range of &.
Using M x M squares B(z) as specified in (4.7), we can partition Z2 as
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before. The square B(z) will be said to be occupied when either (i), (ii) or (iii)
above is satisfied for A < Sm2, and when (i) or (ii) is satisfied for A > 8m2. We
will show that if B(z) is occupied, then, after elapsed time T = 1/8, its
immediate neighbors are occupied with probability close to 1. This will allow
us to employ the rescaling algorithm from Section 4 to conclude that monomers
survive for all time. We divide the work that is required into three parts.
Proposition 6.3 is one of the main tools; since the proof requires substantial
preparation, we postpone it to Section 7. Using Proposition 6.3, we will
demonstrate monomer survival for A < Sm2 in this section. In Section 8, we
cover the case where A > 8m2. There, the argument becomes more technical,
but can be built on the work in this section.

We begin by introducing notation needed to formulate the condition (i)
above and Proposition 6.3. Because of the translation invariance of the
evolution of ^, it is enough to focus on the set B = J3(0) == B^* By B1^ we
will mean those x G B for which d(Bc, {x}) >jN, where the distance function
d(v) is i*1 terms of the IT norm. Note that for large m and fixed j,
|jgjjj ^ \B\. Consider now a configuration £ with £(#) = 0 for a given x G Z2,
and g(y) ¥= 1 for all y G BjN. Let T x ( ^ ) denote the minimal number of
polymer atoms one needs to remove from £ so that a polymer occupying x
can bond. This procedure entails creating a vacant N X N square containing
x; therefore, any choice of the corresponding Tx(g) sites will be contained
within B£N. Also, set

N2

(6.1) r,u) = r,(f) A —
L z

For any configuration £, let J/(£) denote the collection of sets A =
{*!, . . . ,#„} with xt G B71, 11^ - r^JU > 2JV, and !;.(£) > 0. We define the
"counter" for £,
(6.2) *(f) = max £ f,,(f).

^^^f)x.eA

The purpose of K( t;) is to provide a manipulable lower bound on the number
of polymer atoms which need to be removed before B can be completely filled
by polymer atoms. (It follows easily from the definition of <$/( £) that K(f ) is a
lower bound.) The condition that K ( g ) > e^m2 A AT2), el > 0, is the condi-
tion referred to in (i) earlier. The reason for the specific choice of K(%) using
r^.Cf ) comes from Lemma 7.14 in the proof of Proposition 6.3.

We need to specify what is meant for a site to be surrounded by polymer
atoms. Denote by D(^) the set of points x e SJl for which £(y) = 2 for all
y e BjlN/3. In general, we shall refer to the subset B^/3 as the core of B^.
Note that when a polymer P bonds at time t and none of its atoms interacts
immediately with a monomer, then those sites in the core of P are in -D(^),
and so

|Pnsu,)U ([£])'•
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Having defined K and D, we can now state Proposition 6.3. As mentioned
earlier, the proof will be given in Section 7. Here and later on, a parameter
/3 > 0 will be said to be large relative to another parameter a > 0 when (3/a
is bounded away from 0,

PROPOSITION 6.3, Assume that |JD(£0)| > &R2, where s > Q> and that m
and N are large relative to I/s. Assume further that K(^0) > a for some
a < s(m2 A N2)/128. Then, for all A and appropriate Cl and C2 > 0,

(6.4) P ( f f (&) < ~ at some t < ̂ ) < Ciexp{-C2a}

and

(6.5) P(^(4/105) < 2a) < Ciexp{~C2a}.

Any multiple of a can be chosen in (6.5). We require just the bound a in this
section; the bound 2 a will be used in Section 8.

We next introduce the notation we need to formulate condition (ii) given
earlier, in the case where A < 8m2. Let £ be a configuration with no
monomers in B, and let L(f) denote the maximal number of vacant N X N
squares B$ with \\yh - yJU > 7N and B^cB7'. Also, let ^(f) =
(PI(£ ) , . . . , PL(%)(^} be a choice of such squares. We choose the random
collection ^(^) to remain constant except when ft changes in B. For ^ = 0
and m large, it is not hard to see that L(£) > m2/225. The presence of a
large collection «^(f) will allow monomers, as we will later show, enough
time to bond and interact with polymer atoms in D(£) before B can com-
pletely fill up with polymers. [In Section 8, when handling the case A > 5m2,
we will need to decompose «^(£) into "quick" and "slow" subsets, df(£) and
<5tf)J

Consider now the process £f, with A < 5m2, where 3 > 0 will be specified
later. We will say that B is occupied for the configuration £ if either
(1) K(£) > ^(m2 A N2\ where *a = 1/8,000, (2) L(£) > ^xm2 or (3) f(*) =
1 for some x e B. (Any smaller choice of e^ also works.) We will find it
convenient later on to say that B is well occupied if one of the same three
conditions holds, but with sl in the lower bounds in (1) and (2) being
replaced by 2e1. We set el = sl or ~sl = 2%, depending on the context. The
set B(z) will be occupied if one of the corresponding three conditions for the
translates of K(g), L(£) and £ holds; let Hk(z) denote this event for gkT.
The main result in this section is the following analog of Proposition 5.1

PROPOSITION 6.6. For small enough S > 0, A < 8m2, T = 1/8 and m2 A
N2 large relative to 1/5,

(6.7) P(B(0) is not occupied at some t e [T,2T]) < 8

i f B ( z ) is occupied at time 0 for some z with \\z\\i = 1.
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To obtain Theorem 1.4 for A < Sm2, we employ the rescaling algorithm
provided in Section 4 and already used in Section 5. We observe that by
Proposition 6.6,

(6.8) P(Hc
k+,(z}\FkT}<S

under Hk(z') for any z* with \\z — z'\\\ = 1. As mentioned at the end of
Section 4, we, in fact, require the multidimensional version given in (4.8) to
show survival of monomer atoms. For this, we set

B(z) = BjM+2R

here, which is the set of all points within distance M + R of B(z). In order to
derive (6.8), and, more generally (4.8), we will need to analyze the behavior of
%t in B(0) and B(0), \\z\\\ = 1, and to employ an upper bound on the number
of monomers that bond at sites within distance R of these sets. [These sites
are all in B(Q).] Including a boundary region of width R around B(0), to
separate it from other squares B(z), gives a square of length 3M -t- 41? < 12 M
for large R. So, we stipulate that \\za — za \\ > 12 in (4.8). Reasoning as at
the end of Section 4 gives the independence of the different squares needed
for (4,8) to hold. As in Section 5, given (4.8), one can then compare the process
Vk in (4.9) with the corresponding oriented percolation Wk by (4.10). This
enables us to employ the bound (4.6). The assumption that £0 e Hx in
Theorem 1.4 implies that at any tl > 0, the number of occupied squares B(z)
is infinite with probability 1. Restarting the process at time tl and using the
same comparisons as in Section 5, the analog of (5.4) then follows, as does the
extension of the survival of monomers to nonlattice times. This implies
Theorem 1.4 for A < Sm2 and appropriate 8 > 0.

Demonstration of Proposition 6.6. The idea behind the proof of the propo-
sition is as follows. We will first show that for any configuration £ without
monomers in B, either K(g) or !/(£) is large [in which case B is occupied
(well occupied)], or |D(£)| is large (Lemma 6.9). If B is occupied (or well
occupied) at time 0, we can therefore stop the process ^ at a random time S
while |£K&)| is large, but just before both K(& < [e^m2 A N2)\ and L(&)
< [s1m2l In the case where L(^s) = [i^m2], one can show that at time
Sr = S H- £?2, s2 = (lefiJfZ2)""1, with probability close to 1, \D(gs,)\ is large and
K(£8,) > ff^m2 A N2) (Proposition 6.16). In the other case, where K(£s) =
['sl(m2 A N2)l these bounds already hold at time S. [These events are given
in (6.24)]. Set S" = Sf or S" = S, depending on the case. At time a = S" + e3,
with £3 = l/(3 * 106), one obtains that, with probability close to 1, K(ga) >
s-^m2 A N2) [(6.5) of Proposition 6.3], in which case ^ is occupied (or well
occupied). Also, with probability close to 1, K(gt) > ~sl(m2 A N2')/2 over
t e [S"9 cr] [(6.4) of Proposition 6.3]. Together, these observations imply that,
with probability close to 1, B is not poisoned over [0, cr] and is occupied at
time or if B is initially occupied (Proposition 6.31). Similarly, B is occupied
over [0, cr] and is well occupied at time a if B is initially well occupied.
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Iterating the above procedure on an occupied square B(z), \\z\\ = 1, at
most 2T/s3 times, it follows that, over [0 ,2T] 9 B(z) is, with probability close
to 1, not poisoned by polymer atoms [Proposition (6.36)]. This allows monomers
to continually bond in B(z). It is not difficult to check that, under this
assumption on B(z), the neighboring square B = B(0) will be well occupied
at some r < T (proof of Proposition 6.6). One can therefore also apply the
above iterative procedure to the well-occupied square B. One concludes that
with probability close to 1, B is always occupied over [T, r + 2T] D [ T 9 2 T ] ,
This demonstrates the claim in Proposition 6.6.

Most of the technical work in deriving Proposition 6,6 is done in Proposi-
tion 6.3, Lemma 6.9 and Proposition 6.16. As previously mentioned, the proof
of Proposition 6.3 is deferred to Section 7. Lemma 6.9 and its proof are given
below. The following two lemmas, Lemmas 6.13 and 6.14, are used for
Proposition 6.16.

In Lemma 6.9, we show that if there are no monomers present in B, and if
both K(g) and L(£) are not large, then |D(£)| must be large. Here, Pf will
stand for the jN XjN square centered around the N X N square Pl9 and
&>J(g) = {P/(£), • • • , P|J( £)(£)) the corresponding collection, where
PI(£ ),..., •?£(£)(£) and <^(|) are as defined earlier in the section. Here and
later on in the paper, we implicitly assume that m and N are chosen large
enough so that certain nuisance constants can be absorbed into bounds by an
appropriate change in the corresponding factor (for instance, so that the
fractional part of R/4 in the definition of M can be neglected, and also, so
that |B/5 » |B | can be employed).

LEMMA 6.9. Assume that B contains no monomers for a given configura-
tion £, and that £"(£)< w2/400 and L(f) < m2/4,000. Then,

R2

(6.10) |Z>U)|> —.

PROOF. Let A = [xl9...9xn] ej/(£) be a set as in (6.2), on which J K X f ) is
achieved. We claim that if there are no monomers in B, then

n L(O
(6.11) B7"c (JB^U U W f ) U D ( f ) .

i = i 1=1
Assuming (6.11), it is not difficult to show (6.10). Note that

UO

IU1=1 5N z 25nN2 and U W f )1 = 1
<225L(g)N2.

Also, \B^\ > R2/5 for large m. So, by (6.11),
R2

(6.12) — < 25nN2 + 225L(g)N2 + |D(f )|.5
Since n < K(£) < m2/4QQ, L(%) < m2/4,000 and R = mN, (6.10) follows
from (6.12).
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To show (6.11), suppose that x e B1* but x <£ Uf=1B^uD(^\ Since
* « Z > ( f X there is a y <E B1* with £(y) = 0 and \\y - xL < N/3. Since
x & Bgfc implies that \\x — #jlU > flV, it follows that for all i,

\\y - sJU > \\x - *JU - \\y - *IU > 2N.
If T y ( $ ) =£ 0 were true, then A = A u { y } e j / ( £ ) would give a greater value
of K(g) in (6.2), which would be a contradiction. So, Fy(f ) = 0. We claim this
implies that x e Ufi^-P/5^). To see this, assume the contrary. Letting
^ i ? - - - > ^L(O denote the centers of P x ( £ ) , • • • > PZ,(£)> one has Hac — yz|U >
15AT/2, and so

l i y - ^ I U > 7 A T for all/.
Since Bfa cB/3, this implies that &*({;) is not maximal. So, in fact, x e
UfH}P/5(£X which implies (6.11). D

Suppose that the polymer atom at y e D(£0) desorbs over (0, £]. Since y
was originally surrounded by polymer atoms, ty(ft\ and hence K(£t), must
remain large until a substantial number of other polymer atoms desorb from
B. This is the content of Lemma 6.13. Here and later on, we set B = B^+2Rj
the set of all sites within distance R of J3; clearly, only monomers in B can
interact with polymer atoms in B. One can check that |Bh< 7jR2. Also, let
Z^t) denote the number of monomers that have bonded in B by time t.

LEMMA 6.13. Suppose that y e D(£0) and i-8(y) = 0 for some s e (0, t].
For Zx(0 < AT2/20, one has fy(%t) > N2/20 and hence K(£t) > N2/20.

PROOF, Any N X N square containing y, when intersected with BjN/3,
contains a square B^/3. Since for y eD(^0), B$N/3 is initially completely
occupied by polymer atoms, B^/3 has more than N2/20 such atoms when
Z^t) < N2/20. (Choose N large enough so that the number of sites lost
through noninteger N/6 is negligible). So, fv(&) > N2/2Q under Zx(0 <
AT2/20 and fs(y) - 0. Since JKX£) > f/^) for"y e B7s ^(^) > AT2/20 also
follows, n

A bonding polymer can intersect an N X N square in 4N2 different
positions. Under the assumption A < 6m2, this implies that the rate at which
a vacant N X N square is intersected by a polymer is at most 48R2. Consider
an initial configuration f for which L(£) > L0. Let Z2(t) denote the number
of the squares P^foX • • • > PL££Q) which remain free of polymer atoms over
[0,^]. Using the above upper bound on A, we obtain the following lower bound
on Z2(0. [Recall that s2 = (16SJ?2)"1.]

LEMMA 6.14. Assume that L(£) > L0 for a given L0, and that t < s% for
A < 5m2. Then,

(6.15) P fz 2 (0<^- ) <exp(-^j°
V ^ / I **

where c4 > 0 is chosen as in (5.10).
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PROOF. The rate at which polymers intersect \J^lPl(^0) is at most
4SL0J?2. So, the number of squares PI(£Q) which contain polymer atoms at
some time in [0, t] is dominated by a Poisson random variable with mean
48L0R2t. For t < 1/168R2, this is at most L0/4. So, (6.15) follows from
(5.10) with T? = 1. [Note that, along the lines of the discussion at the end
of Section 4 on the coupling of different systems, the derivation of the bound
in (6.15) depends on L0 rather than on the precise configuration of ^ in B.
This allows one to couple the corresponding exceptional sets in Proposition
(6.16).] D

Proposition 6.16 enables us to control the behavior of £ over a short
interval of time when |D(f0)| and L(£0) are large. It says that over this
interval, L(gt) typically remains large, whereas at the end, K(£t) and \D(^t)\
are large. Here, VA( £) denotes the number of vacant sites in the set A.

PROPOSITION 6.16. Assume that L(f0) > sm2 for some 8 > 0 and that
A < 5m2, Then, for appropriate C3 > 0,

/ em2 \
(6.17) P\L(€t) ^ -5— ^some t < s^ \ < exp{-C3^m2},

\ 2 /
where s2 = (16&R2)"1. Assume further that |D(£0)I ^ £r%2 for some 0 <
e' < 1/10, and that ^'(m2 A N2) is large relative to 1/8. Then,

N2 . _ , , . e'R2\ I C*ee'3*1 ^ N2 e'R2\ f
(6.18) P^K(^) < —— or \D(^)\ < ̂ ~) < 3exp|-

PROOF. We set L0 = ^m2 and define Z2(t) as in Lemma 6.14. It is
immediate that Z2(t) < L(^) for all t; the inequality (6.17) therefore follows
from (6.15). Denoting the complement of the exceptional set in (6.17) by Gl9 it
follows that on Gl9

sR*
(6.19) VB(%t)> —— fort<s2.

There are fewer than 5R2 sites within range R of a given site. On account of
(6.19) and |D(f0)| > ^'jR2, the rate of desorption from D(f0) until the first
such desorption occurs is therefore at least

$R2 I ssfR2
___o'K>2___ _ _____

^ o J.V 5R2 10
on Gj. Let G2 be the event some polymer atom desorbs from D(^Q) by time
*?2. Under Gt, the probability of G| occurring is thus at most exponential
with parameter

ss'R2 1 ee'
10 I68R2 1603'
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Together with (6.17X this shows that
ss'' \(6.20) P(Gft <exp{-C3^/n2} + exp|-^|.

(Note that, along the lines of the discussion at the end of Section 4, the above
bounds do not depend on the precise configuration of ̂  in B, but only on the
above rates. So, the corresponding exceptional sets may be coupled.)

By Lemma 6.13, K(^) > N2/20 on G2? unless AT2/20 monomers have
bonded in B by then. Since the rate of bonding of monomers in B is trivially
at most 7jR2, Zl(e2) is bounded above by a Poisson random variable with
mean 7/165. It follows from (5.10), with 17 = 1, that for fixed 8, and for
&'(m2 A JV2) large relative to 1/8,

(6.21) PJZ 1 (^ )>y(m 2 A]V2 ) j<exp | -^ i ( m
2 AJV 2 ) | .

Since N2/20 > e'(m2 A N2)/2, it follows from (6.20) and (6.21), that

/ N2\ ! C3ee'\
(6.22) p j j^s——j^erpl——Y-},

where we rechoose C3 if necessary. Also, since \B$N/S\ < N2 for any y,

e'R2

\D(t0)\-\D(S,a)\<
£1

holds under Z^) < z'm2/2. So, |D(&a)| > sfR2/2 off of the exceptional set
in (6.21). Together with (6.22), this implies (6.18). D

We now apply Proposition 6.3, Lemma 6.9 and Proposition 6.16 to demon-
strate Proposition 6.6. For this, we introduce the following notation. Set

<*w S = mf{t:K(€t)<-£l(m2AN2),
(6.23)

L(&) < ^m2, f-t(x) * 1 at all x eB},

where, as before, sl denotes either sl or 2sv (Recall that s± = 1/8,000.)
Also, set

,a ̂  Fl = (*: K(^ = ̂ l(m2 A ^2)J and L^> ^ l*lm*\}>(6.24)
F2 - {^: K ( € ) < [^(m2 A ]V2)J and L ( f ) = [^m2]}.

If B is occupied or well occupied under £0, then

(6.25) ^s e Fl U F2 on S < oo.

The stopping time S occurs when B borders on being unoccupied (^ = ^x),
or when K and L satisfy bounds that are twice as large (£2 = 2^). Since
K(gt) and L(^) can only decrease in increments of 1, (6.25) is easy to check.
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For gs e Ft, i = 1,2, it follows from Lemma 6.9 that
R2 R2

(6.26) |Z>(^T^^-

If gs e Fl9 we may therefore apply Proposition 6.3, with s = 1/30 and
a = [s^m2 A A?'2)], together with the strong Markov property. If i-s e F2, we
need to first apply (6.18) of Proposition 6.16, with G = s1 and s' = 1/15,
together with the strong Markov property, to obtain

N2 R2

(6.27) P\K(€8,)*——or\D(£8,)\* g() < 3exp< - £*3 gl

155

where S' = S + s2. On G3, the complement of the exceptional set in (6.27),
one may then apply Proposition 6.3, with s = 1/30 and a = [~sl(m2 A N2)\ as
before. Set S" equal to S or S' as appropriate and cr = S" + £3, with
£3 = l/(3 X 106). Using (6.4), one has in both cases that

P(B is poisoned by polymers at some t e [ S", a ] \ ys«)
(6.28)

< C1exp{-C4(m2 A N 2 ) } ,
for £x = el and appropriate C4 > 0, and

P(K(&) < e^m2 A N2) for some t e [S",o-] |^.)
(6.29)

^Ciexpf-C^m2 A AT2)}
for ^x = 2^. For both values of el9 (6.5) implies that
(6.30) P(K(&) <s,(m2 AN2) \^,} < C1 exp{-C4(m2 A AT2)}.

Assume now that S is initially occupied or well occupied. Employing the
above results, we obtain the following behavior for gt over [0, a]. On [0, S),
the square B remains occupied. In particular, there are always either vacant
sites or monomers in B. For £s e F2, it follows from (6.17) of Proposition 6.16
(with the same choice of & and e')t that, off of an exceptional set, B retains
vacant sites on [S,S'), if ^i = ®il under el = 2s1? B typically remains
occupied. On [S", <j], it follows from (6.28) and (6.29), that, off of an excep-
tional set, B again retains vacant sites under "sl = el9 whereas under sl =
2^1? B remains occupied. Putting this together, we obtain the following
proposition.

PROPOSITION 6.31. Suppose that m2 A N2 is large relative to 1/5, with
A < 8m2. If B is initially occupied, then for appropriate C5 and C6 > 0,

I C6(6.32) P(B is poisoned by polymers at some t e [0, <r]) < C5 exp<

and

R\ P( ?? re nnt nrfi/niorf nf rr\ <: /°L ^-vn/ — -I r1\^ & i- — > .(6.33)
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IfB is initially well occupied, then
I C6(6.34) P( B is not occupied at some t e [0, o- ]) < C5 exp< - —
I °

and
I CQ

(6.35) P(B is not well occupied at a} < C5 exp{ — —
I 8

(For or = S = QO, we interpret B as being well occupied under 4-)
One is free to iterate the above procedure involving the behavior of ̂  over

the interval [0, a]. Setting o"l = a and successively defining oj in terms of
o-j_l9 one can repeatedly employ Proposition 6.31 to analyze £ over [0, cry].
Recalling that or > 0- — S" = #3? one automatically has cr; >J£3. Iterating
over £ e [0,2/8], we therefore obtain the following bounds.

PROPOSITION 6.36. Suppose that m2 A N2 is large relative to 1/8, with
A < 8m2. IfB is initially occupied, then for appropriate C6 > 0 and C7,

P(B is poisoned by polymers at some t e [0,1/6])
(6.37) C7 t C6

- cfeXPt *O \ O

IfB is initially well occupied, then
C I C

(6.38) P (Bis not occupied at some t e [0,2/5]) < — exp |- —
o \ o

Using Proposition 6.36, we are able to demonstrate Proposition 6.6 without
difficulty. The bound (6.37) tells us that if a square B(z\ with \\z\\ = 1, is
initially occupied, then it typically will not be poisoned by polymers for
T == 1/8 units of time. Over this time interval, the neighbor B = B(Q) of B(z)
will typically be well occupied at some time r. The bound (6.38) then tells us
that B will typically remain occupied up to time 27\ which is the desired
result.

PROOF OF PROPOSITION 6.6. Every site in B(0) is within range R of every
site in B(z), So, if B(z) contains a monomer at time t, B(0) contains no
polymer atoms then, and J3(0) will be well occupied. On the other hand, if
B(z) contains a vacant site x, then a polymer atom at a given site y in B(0)
will desorb at least at rate 1/5J?2 due to monomers bonding at x. By Lemma
6.9, as long as J3(0) is not well occupied, |Z>(^)| > J?2/15. So, the rate at
which polymer atoms desorb from D(gt) until B(0) is well occupied at least
1/75 as long as B(z) remains unpoisoned by polymers.

Let T denote the first time B(0) is well occupied. It follows from (6.37) that,
if B(z) is initially occupied,

C7 ( Ca\ ( 1 }
(6.39) p ( T > T M _Lexp_- l U exp - —— .



594 M. BRAMSON AND C. NEUHAUSER

If one applies the strong Markov property at time r, one obtains that over
[T, T + 2T], 5(0) is occupied off of the exceptional set given in (6,38), So, if
B(z) is initially occupied,

P(B(0) is not occupied at some te[T9 2T])
(6.40) 2C7 / C6\ I 1 \

s——e^ —— J+e ip l ———).

For sufficiently small 8 > 0? it is clear that the right-hand side of (6.40) is
dominated by 8. This gives (6.7) and completes the proof of Proposition 6.6. D

7. Demonstration of Proposition 6.3. In this section, we demonstrate
Proposition 6.3. The basic idea behind the proof goes as follows. The assump-
tion |Z)(£0)| > sR2 says that at least a fixed proportion of the sites in BJl are
surrounded by polymer atoms. When a bonding monomer interacts with the
polymer atom at such a site, K(^t) must increase on the order of magnitude
of N2 (Lemma 7.3). Moreover, as long as D(^) remains large, a fixed fraction
of the desorbing polymer atoms from BJl will be from D(^) (Corollary 7.7).
One is therefore able to construct a supermartingale function of K(gt) for
such D(£) (Lemma 7.14). Typically, D(&) will remain large for a fixed
amount of time just depending on s (Corollary 7.23). Application of the
optional sampling theorem and calculation of the exceptional probabilities in
the above steps then yield the first part of Proposition 6.3. The same esti-
mates, together with an elementary bound on the rate at which polymer
atoms in Z)(&) desorb (Lemma 7.28), yield the second part of Proposition 6.3.
Reasons for the assumptions on a in the statement of the proposition are
given just before Lemma 7.25 and Lemma 7.28.

Although the above line of reasoning is in spirit correct, one needs to make
several modifications for it to be executable. First of all, D($t) is not exactly
the right quantity to use, since we need to have more control over the
prospective supermartingale. In particular, we are demanding too much in
searching for sites D(^) which are completely surrounded by polymer atoms.
Such considerations also induce us to modify K( £t).

We begin by setting D(g) equal to the set of those x e JB/l, with |(jc) = 2,
for which the number of sites in B£N/3 which are not occupied by polymer
atoms is at most JV2/18. It is easy to check that D(£) c Z)(£) always holds.
We define the quantities At(g) and Dt(g\ t > 0, inductively as follows.
Choose A0(£) ej*(f), where j*tf) is defined in Section 6, and set Z>0(f)
equal to the set of those y e D(f) with \\y - xL > 2N for all x e A0(f).
Employing the process & with £0 - f, we extend At(g) over time by adding
a site y e D t _ ( f ) whenever a polymer atom desorbs at y, and removing a
site y whenever ry(&) = 0. Also, set Dt(£) equal to those y e Z>(&) with
lly - x[U > 2N for all x e At(f). Using At(g), we define

(7.1) **U)- E f,U).
*eA,(£)



CATALYTIC REACTION 595

In this construction, one always has
(7.2) A ( ( f 0 )6 j / (O, AUo)cfl(£) , Kt(t0)<K(tt).
One can think of Dt_(%) as providing the available pool of sites on which the
"counter" Kt(^) feeds when polymer atoms desorb. Typically, we will omit the
argument £0 and write A^ = A,(f0), Dt = JDt(^) and Kt = Kt(fQ).

In the above construction, when y is added to At, Kt increases by ry(^).
One has the following bounds, which are related to those in Lemma 6.13.
Here and elsewhere throughout the section, none of the estimates depend on
A, the rate at which polymers bond. As in Section 6, we will also implicitly
assume in this section that m and N are chosen large enough so that certain
nuisance constants can be absorbed into the bounds by an appropriate change
in factor.

LEMMA 7.3. Suppose that y e Dt_ and £t(y) - 0. Then, £,,(&) > N2/2Q,
and hence
(7.4) Kt-Kt_>N2/2Q.

PEOOF. Any N X N square containing y, when intersected with B$N/3,
contains a square B^/3. Since y e £^_cZX£ f _) , B^/3 has at most N2/18
vacant sites at time t - . For large N, \Bft/B\ ~ N2/9. So, at least iV2/20
polymer atoms must be removed after time t in order for a polymer to be able
to bond on a square containing y. Hence, F (^) > N2/20. Since y £ At_ and
y e At, this implies (7.4). D

Recall that B = B^+2R is the set of all sites within distance R of B, and
thatJBI < 7jR2. Since M = 2[R/4\, it is not hard to check that for each
x <E B, there are at least J?2/4 sites y with ||x — j>|U < I? and ||y - z|U < J?
for every z ^ B. For any £, it is therefore either the case that (a) for any
x e JB, the number of sites y with \\x — jlU < 1? and i-(y) = 2 is at least
R2/8 or (b) the number of sites y with \\y ~ z\\^ < R for every z e B and
f(^y) ^ 2 is at least l?2/8. As we shall see, these conditions say in essence
that either (a) no polymer atom present in B desorbs at a fast rate or (b) all
polymer atoms in B desorb at at least a moderate rate. This alternative is
employed in Lemma 7.5 below. Here and later on, we use the following
terminology. We distinguish between polymer atoms that desorb immediately
upon bonding on Z2 through interaction with an already present monomer,
and those polymer atoms that remain on Z2 for a positive period of time and
desorb only when a monomer bonds. We refer to the first type as instanta-
neous polymer atoms and the second type as noninstantaneous polymer
atoms. We set rA(£) = the rate at which any noninstantaneous polymer
atoms desorbs from the set A c Z2 for the configuration £7 and set PA(g) =
the number of polymer atoms in A. Denote by <$/'($;) the collection of sets
A e«#t£), where, in addition, for x e A, the square BjN contains at least
N2/2 vacant sites, and, by U(A) = U ^ e A ^ I W * ^e union of the squares.
Note that B%N contains any polymer which contains x, and that B%^ n B^
= 0 for xl =£ x2 and xl9 x2 e A ej/'(£).
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LEMMA 7.5. Assume that A cB, with PA(£) > eR2 for some e > 0. Then,
for any A' <EJ/'(£) with A' * 0,

rA(O *(7.6) > ———.V ' rWO ~ 2,500

Note that on A' = 0, r^^Cf) is trivially 0.

Let A'j denote the subset of A^ consisting of those x for which B$N
contains at least N2/2 vacant sites. Also, let

T! = rf = inf/f: |Z>,| < ^E2

for <? > 0. (Here and elsewhere in the section, we suppress the superscript for
stopping times rf depending on e.) Then, the following is an immediate
consequence of Lemma 7.5.

COROLLARY 7.7. Assume that t < rl for a given e > 0 and that A't ¥* 0.
Then,

rn(£t) s
(7.8) A t}

>W6) " 10'000'
PROOF OF LEMMA 7.5. Assume first, as in (b) above, that the number of

vacant sites within range R of every site in B is at least R2/8. One trivially
has

(7.9) ^ (A ' ) ( f ) ^^ (^ )^7 f l 2 ,

since the number of sites in B is less than 7R2. On the other hand, since
PA( |) > eR2 and the number of sites a given monomer can interact with is at
most 5E2,

R2 sR2 e
(7.10) ^ « ) ^ T 5 ^ = 4 0 R 2 -

Taking the ratio of the bounds in (7.9) and (7.10), we see that (7.6) holds
under (b). _

Suppose now, as in (a), that for any x e B, the number of sites y within
range R of x with g(y) = 2 is at least ,R2/8. Since

PU(A^^<4\A\N2

trivially holds, the fraction of polymer atoms within range R of x which are
contained in U(A') is at most 32\A'\N2/R2. It follows that

32|A'|Af2

(7.11) rU(A.,(f) < 7R2
 R2 = 224|A'|2V2.
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On the other hand, since U(Af) contains at least \A'\N2/2 vacant sites, it
also follows that

\A'\N2 #R2 s
(7.12) r A ( f )^_____.B ,AW.

Taking the ratio of (7.11) and (7.12), we see that (7.6) holds under (a) as
well. D

By employing Lemma 7.3 and Corollary 7.7, one can show that Kt tends to
increase for t < rv To make this precise, we introduce the function Yt,
t & [0,1] with

(7.13) Y-y.., _ /«P( -W' f o r ' e f O . r J ,
( } ' ' \exp{-/8ffTl}, f o r f e K . l ] ,

where s > 0 and ft > 0. (The finite bound t < 1 is not necessary, but shortens
the proof of Lemma 7.14 by a step.) Also, let

r2(0 = inf{w > t: Ku - Ku_= -lorKu - KU_^>N2/20] A rt A 1.
Lemma 7.14 shows that Yt is a supermartingale. Here, the choice of fx
rather than Tx in the definition of Kt in (7.1) is important, since one can
control the ratio in (7.8).

LEMMA 7.14. Assume that 1/N2 and ft are small relative to s. Then, Yt
s>^

is a supermartingale with respect to &t on t < 1.

PROOF. Note that Kt can only decrease when a polymer atom is removed
from U(At_), in which case it decreases by 1. By Lemma 7.3, on the other
hand, Kt increases by at least N2/20 when a polymer atom is removed from
Dt_. Also, by Corollary 7.7,

rj5,(6) *

>W&) "" 10^000

for t < rl and At ¥* 0. Set s == s/10,000. Assuming t < rlt one therefore has

N2

(7.15) P Kr9(t)-Kt> 20 jd **P(KT^-Kt= -11^),

with Kr^t} > Kt off of these two sets.
Using (7.15), we show that

(7.16) E[YTiW[*;] <Yt

for large N and small /3. Since Ku is increasing over [t, r2(0), a little thought
shows that Yt is therefore a supermartingale. To obtain (7.16), we set

ft = P(KT2(t} - Kt - -11^).
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It then follows from (7.15) that
E[Yri(t)l^}-Yt

< Pt[exp{-/3(Kt - 1)} - expl-^}]

JV2\
+ spt exp \-p\Kt +

20 / -exp{-pK,}

= ptexp{-(3Kt}
I (3N2

(exp{0} -1) + 5 exp -—-
1 ZU

-1
By expanding out the exponentials in [•] above, it is easy to check that for
N2 > 40/e and j8 a small enough multiple of £, the quantity in [•] is at most
0. This gives (7.16). Consequently, Yt is a supermartingale. (Note that, along
the lines of the discussion at the end of Section 4 on the coupling of different
systems, the corresponding supermartingales Yt can be coupled by matching
the downward and upward jumps in each case.) D

In Lemma 7.17, we bound D(^t) in terms of D(g0) by controlling the
number of monomers that can bond in B up to time t. This bound is much
better than any analog involving D(gt), and is the reason for introducing
D(t;t). As in Section 6, the term VA($) denotes the number of vacant sites
in A.

LEMMA 7.17. Assume that |D(f0)| > eR2 for some s > 0. Then,

(7.18) P |£»U)i<
sR2

at some t
1,100

< exp< —
c4gfi2

144
where c4 > 0 is as in (5.10).

PROOF. Suppose x e D(£0). For # £ D(£t), one has either
N2

(7.19) & ( * ) * 2 or VBJK/9( €<)>——.

For |D(f0)| - |JD(^)| > $R2/2 to hold, at least sR2/4 sites x e D(^0) need
to satisfy either the first half or the second half of (7.19). In the first case, one
has, of course,

(7.20) |{* e B1*: £0(x) = 2, f((*) * 2}| > ̂ -.

For any x e D(^0) and y e BjlN/3, one has ^0(y) = 2. So, under the second
half of (7.19), more than N2/18 sites in SJl have become vacant over [0, t].
Also, for any x, \BjN/3\ < (^N -f I)2 < N2. It therefore follows in the second
case, that

,, f , , iV2 ^I?2 1 zR2

(7.21) |{* e BA; €M = 2, fc(*) ^ 2}j > -^——jjs = "73".

So, in either case, the quantity on the left-hand side is at least #jR2/72.
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Each time a noninstantaneous polymer atom desorbs from B*1, a monomer
atom needs to bond in B. The number of such monomers bonding over [0, u]
is trivially dominated by a Poisson random variable X with mean 7R2u, It
therefore follows from (5,10) with rj = 1 and u = s/1,100 < <?/(14 • 72), and
(7.20) and (7.21), that

/ . sR2 e \ I zR2\
F|lD(^0)|- |D(^)|>^-atsome^<I-I^J <P|X>^-J

c4sR2

^eXPV 144 • / '
This implies (7.18), D

We introduce the stopping time
em2

(7.22) T8 = inf *:|A,|> —— -1
^ b4

Using T3> we can reinterpret Lemma 7.17 in terms of Dt,

COROLLAEY 7.23. Assume that |Z>(£0)| > sR2 for some s > 0. Then

p(Tl - Tloo A T3) = P(|j^ - ^R2 atsomet^ Y^O A TS)
(7.24) ' ' c^

144
< exp< —

PROOF. When \At\ < sm2/64, there are at most (sm2/64)(16N2) =
ffR2/4 sites strictly within distance 2N of any x e At. These are the only
points that are not in Dt, but might be in D(^t). On t < r3, \At\ < sm2/64,
and therefore

sR2

\D(£t)\-\Dt\*——.

The inequality therefore follows from (7.18). The equality follows from the
definition of rv D

In order to be able to apply Corollary 7.23? we also need to be able to rule
out the possibility that Kt behaves badly after time r3. This is done in
Lemma 7.25. The condition |A0| < ^m2/128 here is the reason for the
assumption a < sm2/l28 in the statement of Proposition 6.3. The absence of
a suitable analog for K(gt) is the reason for introducing Kt.

LEMMA 7.25. For given s > 0? assume that m is large relative to l/#, and
that \AQ\ < £rm2/128. Then,

sR2
 m { s ]\ / c4^2/ sR2 l s 1\ (

(7.26) P\Kt< ——atsornetG^^-sU <exp|--
10s
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PROOF. Since |A0j < &m2/128 and |AT | > &m2/64 - 1, one has
3

2sm
IAT 8I - IA0| > —— ~ 1.

This implies that there are sites y x > . . . , yifl, with \\yt - y£,||a> > 2N and iQ =
[£rm2/128 — 1J, where at certain times at < r3,

y^e^. and &.( jf) = 0.

So, yi e Aa., and by Lemma 7.3,

(7.27) f
y,(£,)^'

It follows, for t > TS, that at least i0JV2/40 noninstantaneous polymer atoms
need to desorb on B over [0,t] in order for Kt < t'0iV2/40, For m large
relative to l/s, i0N2/40 > sR2/W4. On the other hand, the number of
noninstantaneous polymer atoms which desorb from B over [0, u] is domi-
nated by a Poisson random variable X with mean 7R2u. So, by (5.10), with
TI = 2/5 and M = £/105,

/ ^2 / e 1\ / ^E2\ ( c4^2

^,< ̂  atsome^(r3,^JJ <P^> ̂ J ^expj---^^ D

In the demonstration of (6.5), we will use Lemma 7.28. It employs the
observation that when Df is large and Kt is small, the rate at which polymer
atoms desorb from Dt is high. Such a desorption then increases Kt. The need
to always have on the order of N2 vacant sites in B in the proof of the
lemma is the reason for the assumption bounding a in terms of N2 in the
statement of Proposition 6.3,

LEMMA 7.28. For given s > 0, and m large relative to I/G,
I ~ e N2 s \ I sN2 \

(7.29) P \Dt> -R2andO<Kt< ——atattt* -^ I ̂ exPJ"-^Fh

PROOF. Under 0 < Kt < N2/2Q, there must be an N X N square con-
tained in B with more than 19N2/20 vacant sites. When \Dt\ ^ R2/Wy this
implies that the rate at which polymer atoms desorb from Dt is at least
(19i¥2/20)(J?2/10)(l/5J?2) > JV2/100. For large m, there are more than
R2/5 sites in B!\ So, when \Dt\ < R2/1Q, either

N 2

(7.30) f t ( * ) ^ 2 or VBSlf/9(£t)> ^

holds for at least I?2/20 sites in x e B*1 n D*. Reasoning as in (7.20) and
(7.21), one can show that in either case, the number of vacant sites in B is at
least R2/360. So, when \Dt\ e [sR2/4, R2/10\ the rate at which polymers
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desorb is at least (R2/360)(sR2/4.)(l/5R2) = ^U2/7,200; for m large rela-
tive to 1/X this is again at least AT2/10Q. The probability that this rate holds
over [05 #/105] without any polymer atom in Dt desorbing is at most
exp{-ffN2/W7}. If such a polymer atom desorbs at time t, then Kt > N2/20
by Lemma 7.3. This implies (7.29). (Note that, along the lines of the discus-
sion at the end of Section 4 on the coupling of different systems, the above
bounds do not depend on the precise configuration of gt, but rather on the
number of vacant sites and the size of Dt. So, the corresponding exceptional
sets may be coupled.) D

We now demonstrate Proposition 6.3. The proof of (6.4) consists of applying
the optional sampling theorem to the supermartingale Yt from Lemma 7.14
and using the estimates for the exceptional sets given in Corollary 7.23 and
Lemma 7.25. The proof of (6.5) consists of analogous estimates, together with
Lemma 7.28.

PROOF OF PROPOSITION 6.3. One can choose A0 ej/(£0) so that |A0| <
sm2/128 and K0 > a, since Tx(g0) > 1 for each x e A0. For the process Kt
thus defined, it follows from Lemma 7.14 that Yt is a positive supermartin-
gale for small enough /3 > 0. Set

(7.31) T 4 =inf(^<^} A T , .
V & /

By the optional sampling theorem,

(7.32) E[Yri] <E[Y0] < exp{-(3a}.

It therefore follows from Chebyshev's inequality that
f a \ ( /3a

(7.33) P(Kt < - at some t < r1 < exp\ ^ /
On the other hand, by Corollary 7.23,

( c4sR2

(7.34) P(Tl < s' A T8) < exp - ~^-

since |D(£0)| > sR2, where we abbreviate e' = «/105. Also, by Lemma 7.25,

(7.35) P(K(< ^atsome*e(T3,* ']) <exp(-^-\,
\ £ I \ &\J }

for large enough m or N, since |A0] < sm2/128 and a < s(m2 A AT2)/128.
Putting (7.33H7.35) together, it follows that

(7.36) P\Kt < ^ at some t < sf] < C^xpi-C^}\ 2 ]
for appropriate Cl and C2 > 0, Since Kt < K(£t) always holds, this implies
(6.4).
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To show (6.5), we first note that at least one of the following five events
must occur: (1) r3 < /?', (2) r3 > e'9 but rl < sf (i.e., Dt < (s/4)R2 for some
t < e'\ (3) Kt = Q for some t < e1', (4) Dt > (^/4)E2 and 0 < Kt < N2/20 for
all t < s', or (5) Dt > (e/4)R2 for all t < s1 and Kt > N2/20 for some
t < e f . Denote these events by El9..,, £5. One can bound P(K( £,) < 2a; ,Ef)
for all i by using previous estimates. By Lemma 7.25, for large enough m or
N,

(7.37) P(^<2a;£1)^exp|-^}.

The bound for P(E2) is given in (7.34), and that for P(E3) is given in (7.36).
By Lemma 7.28,

/ eN*
(7.38) P(^4)^exp|-1^?-

In order to obtain the behavior under E5, we translate the process in time by

AT2

= inf(t:Kt > 20
and set

Kt = Kt+Ts and Yt = Yl+Tt.

One can apply the same reasoning as in (7.31)-(7.33) to Kt and Yt9 but with
4 a replacing a (the estimates are valid for any fixed multiple of a). Since
4a < JV2/20? it follows, in particular, that

(7.39) P(Ky, <2a;E5) <exp{-2/3a}.
Combining the inequalities between (7.37) and (7.39), for El9...,E5, shows
that

P(Ke, < 2a) < Clexp{-Cza]
for appropriate C1? C2 > 0. Again, since Kt < K(t;t) always holds, this implies
(6.5). (Note that if one wishes to couple different systems along the lines of
the discussion at the end of Section 4, then the coupling needs to be restarted
at time r5.) D

8. Monomer survival for X > 8m2. Basic setup. In Sections 6 and 7,
we showed that monomers survive for a long range of interaction and large
polymer size, if the rate at which polymers bond, A, satisfies A < dm2 for
appropriate 3 > 0. The main result employed there, Proposition 6.6, stated
that for T= 1/5 and some B{z), \\z\\\ = 1, occupied at time 0, B(0) is
occupied over [T, 2T] except on a set of probability 3. Proposition 6.3, Lemma
6.9 and Proposition 6.16 were the main tools used in demonstrating Proposi-
tion 6.6, with the demonstration of Proposition 6,3 occupying Section 7.

The argument for A > 8m2 follows along the same lines, but involves
certain complications. Proposition 6.3 does not depend on A, but Lemma 6.9
and Proposition 6.16 need to be rephrased to be applicable here. In particular,
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the lower bounds in (6.17) and (6.18) of Proposition 6.16 depended on the
restriction, A < 8m2, given in Lemma 6,14. The basic problem is that if one
has no control over the rate at which polymers bond, then large vacant
regions in the M X M square B can conceivably be poisoned by polymers
before bonding monomers have a chance to poke holes in solid polymer
regions, which was the strategy employed in Section 6.

In this section, we address this problem. If one restricts oneself to vacant
regions where polymers do not bond too rapidly, then the analog of Proposi-
tion 6.16, Proposition 8.3, holds. To state things properly there and later on,
we first need to introduce some terminology involving "slow" and "quick"
N X N squares. In particular, the definition of "occupied" will be somewhat
different here than in Section 6 and employs these ideas. With these changes,
the main result in this section, Proposition 8.6, is analogous to Proposition
6.6. The basic reasoning leading to Proposition 6.6, in (6.23) through (6.40), is
repeated here [(8.9)-(8.55)], although there are certain complications. Instead
of the two cases Fl and F2, there are now four cases to consider [(8.12)]. Also,
more work is required to analyze the behavior of gt on [0, S], the analog of
[0,S"] in Section 6, in two of the cases. Because of the related structure of the
two sections, we attempt to limit ourselves as much as possible to explaining
the new arguments present in this section, while keeping the comparisons
with Section 6 intelligible.

In Proposition 6.16, the presence of a large number L of vacant N X N
squares was required. These squares also entered into the definition of
occupied for A < dm2. Here, we divide such squares into two types, "slow"
squares and "quick" squares. As in Section 6, for any configuration £ with
£(*) * 1 for all x e J3, let «^(f) - {P^f ),..., PL(f)} denote a collection of
vacant NxN squares B$, I = 1, . . . ,L, satisfying ([3^ — yl |U > 7N and
Bjf c S/3. We say that a vacant square B$ is slow for the configuration f if
the rate of bonding polymers which intersect B$ is at most /JL = 4SB2, for
fixed 8 > 0; we write P,(f) e^f), if P,(f) e«^(£) is slow. Similarly, we say
that B$ is quick if the rate is greater than 4SJ?2, and that P,(f) e <?(f), if
P/(£) e<^(£) is quick. As just before Lemma 6.14, A < 8m2 automatically
implies this rate is at most 4 SI?2, and so the vacant squares dealt with in
Section 6 are all slow. Here, we choose «^(f) by maximizing |JK£)I first, and
then by maximizing I«^(f )| among the collections satisfying this condition on
I^U)i.

We also employ certain subsets e5^(£) and j^(£), t > 0, of ^(£). For
Pj(£) e<yt|X let P,(£) e^(f) if no polymer intersecting with P,(£) has
bonded by time t and no polymer atom in Pf(£) (defined above Lemma 6.9)
has desorbed by then. Clearly, <5^(f) c^(|) and any P t ( f ) e^(f) is still
vacant. Since the rate at which bonding polymers intersect Pz(£) e^(£) is
still at most JUL at time t9

l^U)l<i^U)l
as well. For P,(f) e <sf(£), let P,(£) e ̂ (f) if a polymer intersecting Pf(g)
has bonded by time t. One can check that until Pz(£) enters ^t(€)9 the
bonding rate for polymers intersecting Pj(£) is greater than /JL.
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Using this terminology, we now tailor Lemma 6.9 and Proposition 6,16 to
our needs. In Lemma 8.1, we substitute |*?t^)| + !#(£)! for L(f), and in
Proposition 8.3, |c5^(£0)| for I/(|0). One can check that the exact same reason-
ing as in the proof of Lemma 6.9 works for Lemma 8.1. For Proposition 8.3, a
quick extra step needs to be added to the proof of Proposition 6.16 because of
the desorption of polymer atoms in Pf( £ \ but the rest of the reasoning is the
same. We omit the arguments here,

LEMMA 8.1. Assume that B contains no monomers for a given configura-
tion f, and thatK(£) < m2/400, \y(£)\ < m2/8,QQQ and |tf(f )| < m2/8,OQO.
Then

R2

(8.2) \D(f)\^—.

PROPOSITION 8.3. Assume that |<5^(f0)i > #m2 for some s > 0, and that
sm2 is large relative to 1/8. Then, for appropriate C8 > 0,

I sm2 \
(8.4) P |<557(&)| < ——atsomet < s2\ < exp{-C8£m2},

\ ^ /

where s2 = (168R2)^1. Assume further that |Z)(£0)| > £*R2 for some 0 <
e' < 1/10 and that s'(m2 A N2) is large relative to 1/8, Then

N2 e'R2\ ( C8s£f
I -r^. / ,. N I 1 I O

/ N2 efR2\ I
(8.5) P\K(^} < —— or \D(f.J\ < -^-J < expj

8

For A < 8m2, we defined B to be occupied (well occupied) for the configu-
ration £ if conditions (l)-(3) before Proposition 6.6 were satisfied. For A >
8m2, we now define B to be occupied if either (1) K(g) > £4(m2 A N2) or
(2) 1*5^^)1 > £5m2

? and well occupied if the constants are replaced by £4 and
£5. We set ^4 = 4^4 = 2sl = 1/4,000 (el was defined in Section 6), and
4 = 2Jl£5 = sl = 1/8,000, where j1 = 3 X 106/5. (Needless to say, % is
required to be quite small.) As in Section 6, we use s4 and £5 to denote the
bounds for occupied or well occupied squares, depending on the context.
Condition (1) is the immediate equivalent of that for A < 8m2; condition (2)
on \^(O\ replaces that on L(f). [For A < 8m2, &{£) =&(£)} We omit the
third condition given for the case A < 8m2, that f (#) = 1 for some x e B. A
partial reason for this is that, under A > 8m2, the transition from a configu-
ration with £(#) = 1 for some x e B would cause difficulties here, for ex-
ample, the configurations with g ( x ) = 0 for x e B are not occupied since
K(g) = 0 and *5Kf) = 0. As we shall see, configurations consisting of large
numbers of monomers are not stable under A > 5m2, which provides a
physical justification for dropping the condition.

The main result in this section is the following proposition.



CATALYTIC REACTION 605

PROPOSITION 8.6. For small enough S > Q, A > S m 2 , T r = 1/8 and m A N
large relative to 1/8,

(8.7) P(B(0) is not occupied at some t e [ T , 2 T ] ) < d

ifB(z) is occupied at time 0 for some z with \\z\\\ = 1.

Proposition 8.6 is the analog of Proposition 6.6. As before, the multidimen-
sional version given in (4.8) allows one to compare the process Vk of occupied
squares with the corresponding oriented percolation process Wk by (4.10).
When |V0| = <», one employs (4.10) and continues with the same reasoning as
in Sections 5 and 6 to show that monomers survive for the case A > 8m2 as
welL We are only assuming £0 e EI for the initial state, however. This allows
the possibility here of only a finite number of occupied squares B(z) initially.
[This is the price one pays for excluding condition (3) for occupied sites in
Section 6 from the conditions for A > 8m2.] To bridge this gap, one notes the
following. Let H3 denote those configurations where there is at least one
N X N square not containing any monomer. For gt G E|, there will never
again be any polymer atoms on Z2, and the mean density of vacant sites will
drop off exponentially quickly. So, monomer poisoning will occur in this case.
In order to show that monomers survive under E19 it therefore suffices to
show that, on the set {£t e E3 for all t}9 the probability of monomer survival
is as close to 1 as desired.

We show this by using a fairly standard restarting argument. Assume that
fjo e E3, where t0 = j(lT 4- 1) and j91 e Z+, with I being regarded as fixed.
With a fixed probability s > 0, some square B(z)9 z = z{9 will be occupied at
time £0 + 1. The process V£9 which corresponds to Vk9 but where time is
shifted by t0 4- 1, will dominate the corresponding process W/ as in (4.10).
Hence,

w}j <= w.
where W^'7' is the restriction of Wg given by W^z}>j = (z). By Lemma 4.4, the
evolution of Wjz}>J ensures survival of monomers on the set Olz)?J.

Now, for given I, choose the first value of 7, J = J(l\ for which W/z})J ^ 0.
By the Markov property, the waiting time for this event has an exponential
tail in j. One has? for any Z, that

fl£>' '7c{W/*>'J*0}.
Also,

(8.8) limP((flJf>' J )C) - limP((af )c | W/°> ^ 0) - 0.

So, one can choose I to make the probability in (8.8) as small as desired. It
follows that for large Z, monomers will survive on [W£z}*J ¥= 0} with probabil-
ity close to 1. The same is therefore also true on {^ e E3 for all t}9 which is
the desired conclusion.
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Demonstration of Proposition 8.6. We proceed along the lines of the
argument given in Section 6, starting with (6.23)vAs in (6.23) and (6,24), we
introduce the stopping time S^ and sets F\ and F2, where

(8.9) S^ = inf{t: K( &) < £4(m2 A N2) and \&>( &)| < £5m2}

and

FI = {£: K(t) = [£4(^2 A N2)\ and |^(f )l < [56/n2|}9

(8.10) F2 = [ £ : K ( f ) < [e,(m2 A N2)\ and |̂ ( f ) | = ^5m2]}.

Note that SQ stops the process ^ when conditions (1) and (2) run into
trouble. Since K(%t) and \S^(^t)\ only decrease in increments of 1, it follows
that for B occupied or well occupied under £0,

(8.11) f e i e ^ U ^ on So1 < oo,

which is the analog of (6.25). Note that the situation for (8.11) is, however,
somewhat different than for (6.25), since for A < dm2, B was occupied if it
contained monomers, but that this is not true here.

Instead of working directly with F1 and F2, we will consider the sets

Fn = { t : K ( f ) = [et(mz*N2)\,\D(g)\*R2/15},

,o ̂  F™ = {^: *(*) = l^m' A N 2 ) \ , \ f f ( S ) \ * £6™2} n F^,
F21 = {f: |^(f) |=l56m2J, |D(f) |^f l 2 /15}nF1

c
1nF£! ,

F22 - {%: i^(|)| - [55m2J; |^(f )| > %m2} n F^ n Ff2 n^,

where s6 = 1/8,000. By Lemma 8.1, under F-, i = 1,2, either |D(f )| > E2/15
or \^(O\> %m2. So,

F! c Fn U F12 and F2 c F21 U F22.

Together with (8.11), this gives
2

(8.13) &i G U Fij on So1 < oo
ij-l

for B occupied or well occupied under f0. The sets Fx and F2 should be
thought of as the analogs of Fl and F2 in Section 6. Since <9"(t;) *£&(£) in
general for A > 5m2, each case splits up into the two subcases, F?1 and F^2.
The subcases Fn and F21 can be handled analogously to Fl and F2 in
Section 6, whereas we need to modify our reasoning for^F12 and F22.

The goal in all four cases is to stop ^ at a later time S at which K( ̂ ) and
D(gg) are large enough to apply Proposition 6.3. Choosing s = 1/30, as
before, will then allow us to control the behavior of ^ on the comparatively
long interval [S, <r], where a = (£+ s3) A (2/8) and s3 = l/(3 X 106). To-
gether with bounds for ^ over [0, S], this allows us to control £t over [0, a-].
As in Section 6, one can then iterate this procedure for %t over [0,2/6].
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We set S = $Q for £gi e Fll9 since the conditions on K and D are already
satisfied in this case. For gsi e F21, we need to first apply (8.5) of Proposition
8.3, with s = % and #' = 1/15, together with the strong Markov property, to
obtain the analog of (6.27), with S = Sj + ^2 and #2 - (168B2)"1. [In-
equality (8.4) controls the behavior of gt over [Sj, S].] Setting s = 1/30 and
a = [$4(m2 A ]V2)j in both cases, and applying Proposition 6.3, one obtains,
for £gi <E Fn U F21, bounds that correspond to (6.29) and (6.30) on the behav-
ior of £f over [S, a]. We replace (6.28), since we need to avoid the presence of
monomers in B as well as polymer poisoning for A > 8m2. We instead employ
the event E that B contains both a vacant site and a polymer atom. [Note
that £ e E ensures that monomers can bond in B, and that there are no
monomers already present in any of the squares B(z) with \\z\\i < 1.] On
fgi e Fn U F21, (6.28)-(6.30) then translate into the following bounds: for
ei = £z-, i = 4,5 and appropriate C9, C10 > 0,

(8.14) P(f, ^ Eat some £ e [s, 0-])^) < C9 exp{-C10(m2 A AT2)},

and for "ei = «s^,

P(^(^) < £r4(m2 A^ 2 ) at some t e [$,<r] ^)
(8.15)

<C9exp{-eio(m2 A AT2)}.
For both values of si9

(8.16) P(^(^) < ^4(^2 A^2) 1^) <C9exp{-C10(m2 AN2)}.
We wish to reduce the cases F12 and F22 to analogs of Fu and F21, which

will then allow us to apply the above reasoning to fgi e F12 U ̂ 22 as well- For
this, we will use the following lemmas on the behavior of K and @.

LEMMA 8.17. Assume that K(gQ) > K$ for a given K$. Then, for t < <^2,

(8.18) P(K(& ^KQ~ 1/8) < exp|-^|.

LEMMA 8.19. Assume that *?(f0) > Q0 f°r a given Q0. 7%ew, for t > &2,
Qo \ ( c4Q0(8.20) p[ |^ (^o ) |<^)<e x p/

\ o / I 4

Lemma 8.17 states that K(gt) decreases at most at a given rate; the
estimate holds because monomers can bond in B at rate at most 7J?2. Lemma
8.19 gives a bound in the opposite direction for |j^(|0)|. This gives a lower
bound on the number of polymers that have bonded in B by a given time. The
argument is analogous to that in Lemma 6.14. Both lemmas here use (5.10),
which is the source of c4. Lemma 8.17 will be used in Lemma 8.22 and
Lemma 8.19 in Lemma 8.29.

Our basic approach for the cases F12 and F22 will be the following.
Starting from either £0 e F12 or £0 e F22, over [0, «2], at least a fixed pro-
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portion of B will be covered by polymer atoms (Lemma 8.19)? with neither K
(Lemma 8.17) nor ̂  [(8.4) of Proposition 8.3] decreasing by too much. A given
fraction of these polymer atoms will be in D at t — s2. Therefore, at t = s%,
analogs of Fn or F21 hold, with the coefficients £4 and £5 being modified.
Propositions 6.3 and 8.3 can then be applied.

A complication in this scenario is caused by the possible interaction of
initially present monomers with the polymers when they bond, which could
cause many of the associated polymer atoms to desorb in uncontrollable
patterns. To handle this situation, we inductively define the following stop-
ping times, Sj and Sf, j = 0,1,2,..., starting from SQ in (8.9), with

S} - infj* > SjU: K( fe) < £4(m2 A ^2) - ±

(8.21) and|^U)|<2^5m2

S? = S} + s2.
The idea will be to continue along the sequence {Sj} until these monomers
are exhausted by bonding polymers, with the number of iterates required
being at most j'0 = j1 - 1 = (3 - 106/t>) - 1. Although we only need to deal
with fsi e F12 U F22 here, Fn and F2l are included as subcases under our
assumption that B is occupied or well occupied under f 0. The result we want,
Proposition 8.36, is given after two preliminary estimates.

We first note that, by repeatedly applying Lemma 8.17 and (8.4) over the
intervals [ S j , Sf], one can control the behavior of K and 5? up to time Sj.
(One uses m A N here instead of m2 A N2 as in Section 6 because of the
factor j0.)

LEMMA 8.22. Assume that m A N is large relative to 1/8. If B is initially
either occupied or well occupied, then

P(K(& <2^(^2AiV2)J^(^Jl<2-^5m2a^om^e[0,Sjo]|
(8.23) , r

o • 11< 2j0exp - ——
I o

for appropriate C1]L > 0.

Corollary 8.24 is an immediate consequence of Lemma 8.22 and our
definitions of £4 and £5.

COROLLARY 8.24. Assume that m A N is large relative to 1/8. If B is
initially occupied, then

(8.25) P(& * Eat some tf= [0,SjJ) < 2j0 exp(- -~-\,
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and ifB is initially well occupied, then
I C \

(8.26) P(B is not occupied at some t e [0, Sj-J) < 2 j0 exp j - -— > .

We claim that jQ is large enough so that \D(gt)\ will typically be at least
R2/15 sometime before S*. For this, set

(8.27) J = minjj: |D(&i)l > R2/15J.

We also let Z3(0 denote the number of polymers that have bonded completely
inside B by time t9 and Z4(t) the number of polymer atoms in B_at time t.
Recall that Z^t) is the number of monomers that have bonded in B by time t
(where B = B^+2R consists of those sites within range R of B). Since 7J?2 is
an upper bound on the number of monomers initially in B, one has the
simple inequality

Z4(0 > N2Z3(t) - Z^t) - 7R2

for all t. Since Z4(t) < R2 trivially holds, one gets, for all t, that

(8.28) N2Z3(t) - Z j ( t ) < 8R2.

LEMMA 8.29. For any £0 and appropriate C12 > 0,

/ 2 \
(8.30) P\J>J0 andSjo < -I <Aexpf-C^m2}.

PROOF. By Lemma 8.1 and (8.21), either

, , R2 , , m2

(8.31) UW*^ or l^^l^g^o

for any j. If the first alternative holds for some j < j"0? then automatically
J < j"0. Denote by G4 the event that the second alternative holds for all j < j"0,
and set

GHlKfe)i>^foraiu<4
By Lemma 8.19, with QQ = m2/8,000 and t = $2,

( c4m2 }(8.32) P(G)n08s,oexp{__J__j.

Now, on G5?

x N m2j0 40
(8.33) Z'(S-> ^ 64^0 ^ T"'-
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But the rate at which monomers bond in B is bounded by 7R2, and so by
(5.10),

/ . , , 28fl2 , 2 \ / / 2 \ 28R2\
p\ y I el \ -> ____ ol ^ _ <- Pi 7 I _ -> ____P[*i(\)* 8 >*>** s j - ^ p U J - S I

(8.34)

< exp(—
Uc4R2

The bounds given for Z£Sjo) and Z3(Sjo) in (8.33) and (8.34) are inconsistent
with (8.28). So,

/ t 2\\ ( 14c4flM
(8.35) P(G5 n {S* < -}] < exp|—————J.

Together with (8.32), (8.35) shows that

PJG4 n |s/o < ||j <Aexp{-C12m2}

for appropriate C12 > 0. This implies (8.30). D

Combining Lemma 8.29 with Lemma 8.22 and Corollary 8.24, we obtain
the following behavior for ^ over [0, Sj A (2/3)].

PROPOSITION 8.36. Assume that m A N is large relative to 1/8. If B is
initially occupied, then

( r 21\ / c \
(8.37) &eEatsomete 0,5} A - < C18 exp - -^ ,

L S J ; I 3 I
and ifB is initially well occupied, then

(8.38) P\Bis not occupied at some t e 107 S^ A ™ 1 1 < C13 exp{ -
21\ / CX14

/or appropriate C13 and C14 > 0. /TI both cases,
R^
15
I?2

(8.39) |D(^i)|> — onJ <™

and

P(K(^} < \e4(m* A JV2), |^(^)| < 2-J°e5m2, S^ < -
(8.40) l 2 S

/ C 1
< C13exp --~i .

I S j

Using Proposition 8.36, we are now able to control the behavior of ^ over
the interval [0, <j], where a = (S + ^3) A (2/5) and S is to be prescribed. We
give the following summary, which involves reasoning analogous to that in
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(6.26M6.30) arid (8.13H8.16). By (8.39) and (8.40), we note that if B is
initially occupied or well occupied, then £gi, for Sj < 2/S, typically belongs
to one of the following analogs of Fn and F21 in (8,12):

( 1 J?2

£: K(f) > ^(™* A JV2), \D( Ol * jg
(8.41)

/ J?2\
F21 - f: !^U)1 > 2-'°55m2, \D( f )l > — n *£.

I i0;
For fsi e JFn, we set S = Sj. On S < 2/5, we can then apply Proposition 6.3,
with 5=1/30 and a = [s4(m2 A N2)/2\. (If S > 2/8, we can stop the
procedure.) For fsi e F21, we apply Proposition 8.3, with s = 2"Jo^5 and
e' - 1/15, to obtain the analog of (6.27), with S = S^ + s2. (This small
choice of e is reflected in the error bound and requires a correspondingly
small choice of S.) We then apply Proposition 6.3, with s = 1/30 and a =
l£4(m2 A N2)l We get in both cases, as the reader can check, that if B is
initially occupied or well occupied, then (8.14)-(8.16) continue to hold for the
same values of ei9 i = 4, 5. [The "extra factor of 2" in sf^ = 4s4 is used in
(8.15), and the coefficient 2 in (6.5) is used in (8.16) to compensate for the
factor "Al/2" in the first half of (8.41).] The desired behavior of &, at
t e [0, S], also follows from our computations. The bounds (8.37) and (8.38)
give us the behavior of ^ over [0, S], for the case Fn. Together with (8.4),
these bounds also give us the behavior over [0, S] for F21, (The relationship
#5 = 2J'le5 = 2 X 2Jo£5 is used to show that, under si = e'iy i = 4,5, B typi-
cally remains occupied over [Sj,S] in the latter case.) These results can
together be formulated as the following analog of Proposition 6,31.

PROPOSITION 8.42. Suppose that m A N is large relative to 1/8. If B is
initially occupied, then for appropriate C15 and C16 > 0,

( CIB(8.43) P(& £ Eat some t e [0 ,<r] ) < C15exp - ~J-

and

( C16(8.44) P(B is not occupied at a) < C15 exp< - ——
I *

IfB is initially well occupied, then

(8.45) P(B is not occupied at some t e [0, cr]) < C15 exp< —

and

I cw(8.46) P(Bis not well occupied at a) < C15 exp< - —-

^16
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Proceeding as in Section 6, one can iterate the procedure given in Proposi-
tion 8.42 until time 2/8 is reached. This gives the following analog of
Proposition 6.36.

PROPOSITION 8.47. Suppose that m A N is large relative to 1/8. If B is
initially occupied, then for appropriate C16 > 0 and C17,

n\ c17 / c16(8.48) pl^eEatsometelQt-llz——expl- _
I L °\l ° \ °

If B is initially well occupied, then
i . r 2i\ c17 / cle\

(8.49) P\ B is not occupied at some t e 0, — < ——exp{ — —— > .
\ L 8l! 8 I d I

We need one last lemma before demonstrating Proposition 8.6. Note that
this is the first place we require the assumption that X > dm2 in our
computations. The function Y(t) denotes the Lebesgue measure of the set of
times s e [0, t] where \ff(f-8)\ > %m2 (e6 = 1/8,000) and, as before, Z^t) is
the number of monomers that have bonded in B and Z3(£) is the number of
polymers that have bonded in B by time t.

LEMMA 8.50. Suppose that A > 5m2 and that m2 is large relative to 1/8,
Then, for appropriate C18 > 0,

/ / 1 \ 1 \ { C18R2

(8.51) P F > — < 2 e x p -
8) ~~ 28j *\ 8

PROOF. Under |^f(£s)| > ^6m2, the rate at which polymers bond inside B
is greater than 48^m2R2. Setting

Z3(t)=Z3(Y-\t)),
it follows that Z3(t) dominates a Poisson process with this intensity. So, by
(5.10),

PWA) ^^e^2^2) ^expl-c^em2^2}.
\ \ ^ d / /

It follows, that

(8.52) Wz3(i) < s6m*Rz and Wi) > -£-} < exp{-c4S6m2R2}.
\ \ 0 / \ ^ / £»O ]

On the other hand, since monomers bond in B at rate at most 7jR2,
/ / 1 \ UR2 \ i 7c4R2

(8.53) p|Zl(-)^^-)^«p(——1-

by (5.10). The bounds given for Z^l/S) and Z3(l/8) in (8.52) and (8.53) are
inconsistent with (8.28) for m2 large relative to 1/8. It therefore follows from
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(8.52) and (8.53), that for appropriate C18 > 0,
1\ 1 \ ( C18R2

TUP^Js2expr
[Note that if one wishes to couple different systems here along the lines of the
discussion at the end of Section 4, then the coupling should be done over the
time scale given by Z3(OJ D

Using Proposition 8.47 and Lemma 8.50, we show Proposition 8.6,

PROOF OF PROPOSITION 8.6. If B(z) is occupied at time 0, the square
contains polymer atoms for all t < T = 1/8, except on a set with probability
given in (8.48). On the complement t?6 of this exceptional set, there can be no
monomers in J3(0). Let W denote those configurations where either B(0) is
well occupied or \D(g)\ > R2/15. It follows from Lemmas 8.1 and 8.50, and
the above observation, that

(8.54) *e|0,- | :£,e
o

1 \ 2C17 / C16^is*—6 3*"
Denote the complement of the exceptional set in (8.54) by G7.

On G6, there is always a vacant site in B(z) for t < 1/S, since gt e E. So,
when \D(gt)\> R2/15, polymer atoms desorb from D(^) at rate at least
(1/5R2)(R2/15) = 1/75. Let r denote the first time B(Q) is well occupied. It
follows from (8.54) and this observation, that, on the restriction {r > I/8} C\
G7, the rate of desorption of polymer atoms from D(gt) up to time 1/8 is at
least 1/75 more than one-half of the time. It follows that

1\ 2C17 ( CIB] f 1 \
P(T> « J * -r^rTr exp\ iwa/-

If one applies the strong Markov property at time r, one obtains that, over
[r, T + 2/5], B(0) is occupied off of an exceptional set whose probability is
given in (8.49). So? if B(z) is initially occupied,

P(B(0) is not occupied at some t e [ T 9 2 T ] )
(8.55) 3C17 / C16\ / 1 \

^"T-exp\~~^rexp\ i5o«/-
For sufficiently small 8 > 0, it is clear that the right-hand side of (8.55) is
dominated by 8. This gives (8.7), and completes the proof of Proposition 8.6. D
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