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A MATRIX-VALUED COUNTING PROCESS WITH
FIRST-ORDER INTERACTIVE INTENSITIES
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A matrix-valued counting process that allows for modeling of mul-
tivariate failure-time data is presented. the inclusion of covariates in a
Cox-type regression model is considered, and asymptotic properties of the
estimates of regression parameters appearing in the model are studied.

1. Introduction. The modern theory of counting process and martingales
as treated by Brémaud (1981) and others provides the necessary theoretical
background for the development of rigorous and general theory of regression
models adapted to censored data. The seed of such an approach seems to
reside in the work of Aalen (1975). The more recent books by Fleming and
Harrington (1991) and Andersen, Borgan, Gill and Keiding (1993) take into
account a very broad spectrum of applications for the methodology. In the
multivariate setting, several approaches have been proposed to deal with the
estimation of the multivariate time scale survival function such as, for exam-
ple, the Dabrowska estimator [Dabrowska (1988)] involving conditional and
marginal hazards and the Prentice and Cai estimator [Prentice and Cai (1992)]
considering a Volterra-type equation to relate the marginal failure times to
their covariance function. In both works, the main issue is not related to the
effect that covariates may have on the survival experience, but rather to the
estimation of the survival function. In this work we propose a model to handle
multivariate failure-time data when our main interest is to consider situations
where one is concerned with the effect of covariates on the multiple endpoint
regression, and, hence, our goal is to draw statistical conclusions for such re-
gression parameters in the model. In this context, Cai and Prentice (1995)
consider a marginal model approach with adjustment for covariates of the
marginal estimates. Our proposed model makes use of interactions in the joint
distribution instead of adjustments by the covariance estimation suggested by
them.

2. The matrix-valued counting process model. In order to develop the
model and asymptotic properties, we will consider a bivariate model. The ex-
tension of the results to the k-variate situation is discussed later. Let �T1; T2�
be nonnegative random vector defined in a probability space ��;F ;P�. In prin-
ciple we assume that the elements of such a vector are not necessarily inde-
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pendent and have a joint survival function S12�t1; t2�. The marginal survival
functions are represented by S1�t1� and S2�t2�. We also assume the presence
of censoring, represented by a nonnegative random variable C, independent
of �T1; T2�, defined in the same probability space. Typically, in real life one
does not observe necessarily Th or C; instead, the observed quantities are
Zh = Th ∧ Ch and δh = I�Zh = Th�, where I�A� represents the indicator or
characteristic function. We define the counting processes

Nh�t� = I�Zh ≤ ty δh = 1�; t ≥ 0; h = 1;2;(2.1)

representing a right-continuous function that assumes value zero, jumping to
one when the particular event associated with Th occurs. Since the quantities
in (2.1) are defined on dependent random variables, it makes sense to consider
the process

N = �N�t� = �N1�t�;N2�t��′; t ≥ 0�:(2.2)

We assume that the quantities above are measurable with respect to N #
t =

σ�N#�s�; 0 ≤ s ≤ t�, the self-exciting filtration defined by the vector-valued
counting process N#�t� with elements N#

h�t� = I�Zh ≤ t�. Note that N #
t con-

tains information on the processes Nh�t� as well as on their dependence.
In order to characterize the counting processes above, we define the N #

t -
predictable processes

Yh�t� = I�Zh ≥ t�; t ≥ 0; h = 1;2:

If we pretend for a moment that the components of N are independent, then
the multiplicative intensity model of Aalen (1978) would apply; that is, the
associated intensity process of Nh would be given by

λh�t� = αh�t�Yh�t�; h = 1;2;(2.3)

where αh�t� is the marginal hazard function, defined by

αh�t� = lim
1t→0

P�Th ∈ �t; t+ 1t� � Th > t�
1t

:

Under the assumption of independence, collecting the intensity processes
defined in (2.3) in a vector l, we can write

l�t� =
(
λ1�t�
λ2�t�

)
=
(
α1�t� 0

0 α2�t�

)(
Y1�t�
Y2�t�

)
= a�t�Y�t�;(2.4)

and this fully specifies the counting process defined in (2.2) when indepen-
dence holds. It is our goal now to modify (2.4) in order to get a model for a
more general situation where the independence may not be tenable. In such
a case it is expected that the interpretation for the unknown deterministic
functions αh�t� should change and, also, the off-diagonal elements may be dif-
ferent from zero. Let us approach this situation considering a generalization
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of the heuristic approach given for (2.3) [see, e.g., Andersen, Borgan, Gill and
Keiding (1993) for the univariate case.] In this case one may write

λh�t� = E
{
dNh�t� � N #

t−
}
;(2.5)

and note that N #
t− contains information whether or not one (or both) compo-

nent(s) have failed just before t. If the component h has failed before t, then
expression (2.5) equals zero. In other words, we need to consider the following
situations.

1. No component has failed at instant t; that is, Y1�t� = Y2�t� = 1.
2. The first component has failed before t but the second has not; that is,
Y1�t� = 0 and Y2�t� = 1.

3. Only the second component has failed before t; that is, Y1�t� = 1 and
Y2�t� = 0.

4. Both components failed before t, in which case Y1�t� = Y2�t� = 0.

If we want to consider the intensity process for the first component, then
we only consider cases where Y1�t� = 1. This, together with expression (2.5),
allows us to write

λ1�t� = E
{
dN1�t� � N #

t−
}
= p�1�1 �t�Y1�t��1−Y2�t�� + p

�1�
2 �t�Y1�t�Y2�t�;

where p�1�1 �t� = lim1t→0�1t�−1P�T1 ∈ �t; t+1t� � T1 > ty T2 ≤ t� and p�1�2 �t� =
lim1t→0�1t�−1P�T1 ∈ �t; t + 1t� � T1 > ty T2 > t� are conditional hazard
functions. Note that these functions take into consideration the status of the
component 2. Using a similar approach, we can write the intensity λ2�t� for
the other component.

Based on those quantities we can represent the intensity process by the
product of matrices

l�t� =
(
λ1�t�
λ2�t�

)
=
(
Y1�t� 0

0 Y2�t�

)(
α11�t� α12�t�
α21�t� α22�t�

)(
Y1�t�
Y2�t�

)

= Diag�Y�t��a�t�Y�t�;
(2.6)

where the elements of a�t� are given by α11�t� = p
�1�
1 �t�, α12�t� = p

�1�
2 �t� −

p
�1�
1 �t�, α21�t� = p

�2�
1 �t� − p

�2�
2 �t� and α22�t� = p

�2�
2 �t�.

The matrix-valued counting process model is defined in the following way.
Suppose that N1; : : : ;Nn are n copies of the process N defined in (2.2). Then
the matrix-valued counting process is given by

N�t� = �N1�t�; : : : ;Nn�t��;(2.7)

with an associated intensity process given by (2.6). The columns of N are
independent but each column, in this case, consists of two possibly dependent
elements.

As an illustration, let us consider the following parametric model, due to
Sarkar (1987).
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Example. Consider an absolutely continuous bivariate exponential distri-
bution where the joint survival function for the vector �T1; T2� is given by

P�T1 ≥ t1y T2 ≥ t2�

=
{

exp�−�β2 + β12�t2��1−A�β1t2��−γA�β1t1�1+γ; 0 < t1 ≤ t2;
exp�−�β1 + β12�t1��1−A�β2t1��−γA�β2t2�1+γ; 0 < t2 ≤ t1;

where β1 > 0, β2 > 0, β12 > 0, γ = β12/�β1 + β2� and A�z� = 1 − e−z,
z > 0. Note that, if β12 = 0, the joint distribution factorizes in two exponential
distributions and then T1 and T2 are independent.

When no censoring is present, define the bivariate counting process with
elements N1�t� = I�T1 ≤ t�, N2�t� = I�T2 ≤ t� and the predictable processes
Y1�t� = I�T1 ≥ t� and Y2�t� = I�T2 ≥ t�. Then, after some long algebraic
manipulations, we obtain the elements of a�t� that may be obtained by taking
linear combinations of the quantities p�h�i �t� as shown after expression (2.6)
and, hence, the intensity process can be expressed as

(
λ1�t�
λ2�t�

)
=
(
β1 0

0 β2

)(
Y1�t�
Y2�t�

)

+ γ




β1 +
β2

A�β2t�
− β2

A�β2t�
Y1�t�

− β1

A�β1t�
Y2�t� β2 +

β1

A�β1t�




(
Y1�t�
Y2�t�

)
:

The dependence structure becomes explicit in this expression in the sense that
if γ = 0 the resulting expression for the intensity process vector will be the
same one obtained when working with two independent exponential random
variables, with parameters β1 and β2.

The Sarkar model is an important member of the family of bivariate ex-
ponential distributions, and there are others, too. Pedroso de Lima and Sen
(1997) have examined these models incorporating the dual intensity functions
based on the current matrix-valued counting process approach, providing a
coherent picture of these bivariate exponential distributions and their placing
in multiple endpoint survival analysis.

3. The bivariate model with covariates. Here we consider the bivari-
ate model specified in (2.6) incorporating covariates as in a Cox-type regression
model. Throughout this section we will assume that t ∈ �0; τ�, τ > 0 and, in
addition to the quantities defined earlier, we also have a set of time-dependent
covariates X1�t�; : : : ;Xq�t�. The covariates are assumed to be observed for all
individuals. For simplicity of presentation we consider only the case q = 1.

For n independent individuals, let N1; : : : ;Nn be copies of N defined in (2.2)
with corresponding intensity processes given by l1; : : : ;ln, where

li�t� =
(
λ1i�t�
λ2i�t�

)
=
(
α
�i�
11 �t�Y1i�t� + α

�i�
12 �t�Y1i�t�Y2i�t�

α
�i�
22 �t�Y2i�t� + α

�i�
21 �t�Y1i�t�Y2i�t�

)
:
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Since for each individual i, one observes the covariate Xi�t�, i = 1; : : : ; n,
we assume that each element of a can be expressed through a multiplicative
form such that

p
�1�
1i �t� = γ11�t� exp�β1Xi�t��;

p
�1�
2i �t� = γ12�t� exp�β1Xi�t��;

p
�2�
1i �t� = γ21�t� exp�β2Xi�t��;

p
�2�
2i �t� = γ22�t� exp�β2Xi�t��

⇒





α
�i�
11 �t� = γ11�t� exp�β1Xi�t��

= αo11�t� exp�β1Xi�t��;

α
�i�
12 �t� = �γ12�t� − γ11�t�� exp�β1Xi�t��

= αo12�t� exp�β1Xi�t��;

α
�i�
21 �t� = �γ21�t� − γ22�t�� exp�β2Xi�t��

= αo21�t� exp�β2Xi�t��;

α
�i�
22 �t� = γ22�t� exp�β2Xi�t��

= αo22�t� exp�β2Xi�t��:

In addition, we simplify further the model with the assumption that
αo11�t� = θ−1

1 αo12�t� and αo22�t� = θ−1
2 αo21�t�, for θh > −1; h = 1;2: Then the

intensity process vector can be written as

li�t� =
(
αo11�t��Y1i�t� + θ1Y1i�t�Y2i�t�� exp�β1Xi�t��
αo22�t��Y2i�t� + θ2Y1i�t�Y2i�t�� exp�β2Xi�t��

)
(3.8)

Based on that, the problem at hand consists in finding estimates for βj and
θj, j = 1;2. Since both failure times (for the two components) are assumed
to be observed at the exact instant they occur, we have that no two compo-
nents can jump at the same instant t for the same subject and, hence, when
estimating β we will consider a likelihood whose contribution of individual
i at time t, if any, will be restricted to λ1i�t�/

∑n
j=1 λ1j�t� when N1i jumps

or λ2i�t�/
∑n
j=1 λ2j�t� when N2i jumps. The likelihood can then be written as

a product of ratios involving those quantities and, considering the propor-
tionality assumption for the off-diagonal terms in a�t�, we are able to can-
cel the unknown baseline functions αoij�t�. Cai and Prentice’s (1995) marginal
model approach relates, in our notation, to λhi�t� = Yhi�t�αohh�t� exp�βXhi�t��,
h = 1;2, where both components depend on the same regression parameter
β. In our case, in (3.8) the parameters θh incorporate dependence among the
components without imposing the homogeneity of the regression parameters
β1, β2.

Let d = �d1; d2�, with dk = �βk; θk� and suppose the true parameter value
is represented by do. Then the log-likelihood can be expressed as

logL�d� =
∫ τ

0

( n∑
i=0

2∑
h=1

βhXi�t� + log�Yhi�t� + θhY1i�t�Y2i�t��

− log
{ n∑
j=1

exp�βhXj�t���Yhj�t� + θhY1j�t�Y2j�t��
})
dNhi�t�:
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Computation of the score vector takes place for a pair of parameters for
each component. Therefore it is convenient to consider a partitioned vector
where the first element is a two-vector containing the derivatives of the log-
likelihood with respect to the parameters related to the first component and
the same quantities for the second element with information related to the
second component. It should be noted that the score vector is also a stochastic
process in �0; τ�. For t = τ, we write

U�τyd� =
(

U�1��τyd�
U�2��τyd�

)
;

where the first element of U�h� = �U�h�1 ;U
�h�
2 �′, h = 1;2, is given by

U
�h�
1 �τyd� =

∂ logL�d�
∂βh

=
∫ τ

0

n∑
i=1

(
Xi�t� −

∑n
j=1Xj�t�wj�dh; t�∑n

j=1wj�dh; t�

)
dNhi�t�;

(3.9)

and where wj�dh; t� = exp�βhXj�t���Yhj�t�+θhY1j�t�Y2j�t��. Note that (3.9)
is similar to the expression one obtains when considering the univariate case.
The basic difference relies on the possibly time-dependent weights wj that
are taking into account the predictable processes associated with both compo-
nents. The second element for the score vector is given by

U
�h�
2 �τyd� =

∂ logL�d�
∂θh

=
∫ τ

0

n∑
i=1

(
Y1i�t�Y2i�t�

Yhi�t� + θhY1i�t�Y2i�t�

−
∑n
j=1 exp�βhXj�t��Y1j�t�Y2j�t�∑n

j=1wj�dh; t�

)
dNhi�t�:

(3.10)

Maximum partial likelihood estimators (MPLE) can be obtained by solving
the equations U�τyd� = 0, which need to be computed iteratively. Let us denote
the MPLE by d̂. Asymptotic properties of such estimators are studied using
the standard martingale theory. Hence, we first note that expressions (3.9) and
(3.10) can be written as martingales when d = do. This is done in a manner
similar to the univariate case, developed in Andersen and Gill (1982). First we
note that dNhi�t� = Nhi�t� −Nhi�t−� = dMhi�t� − λhi�t�dt, where Mhi�t� is
a local square integrable martingale. Plugging this quantity into expressions
(3.9) and (3.10), we obtain a difference of two integrals, one involving the
martingale Mhi and the other involving the intensity process. It turns out
that the latter equals zero. Therefore, it follows that the first element of the
score function can be written as

U
�h�
1 �τydo� =

∫ τ
0

n∑
i=1

(
Xi�t� −

∑n
j=1Xj�t�wj�doh; t�∑n

j=1wj�doh; t�

)
dMhi�t�;(3.11)
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and, hence, (3.11) is also a square integrable martingale. A similar result
follows for the second element of the score vectors; that is,

U
�h�
2 �τydo� =

∫ τ
0

n∑
i=1

(
Y1i�t�Y2i�t�

Yhi�t� + θohY1i�t�Y2i�t�

−
∑n
j=1 exp�βohXj�t��Y1j�t�Y2j�t�∑n

j=1wj�doh; t�

)
dMhi�t�;

also a square integrable martingale. These facts are used to derive the asymp-
totic distribution for the score function, incorporating Rebolledo’s central limit
theorem for martingales. Such a theorem assumes that the predictable vari-
ation processes satisfy certain conditions. In order to compute such processes,
denoted by �· ; ·�, the following processes are defined:

S
�j�
h �d; t� = �1/n�

n∑
i=1

X
j
i �t��Yhi�t� + θhY1i�t�Y2i�t�� exp�βhXi�t��; j=0;1;2;

S
�3�
h �d; t� = �1/n�

n∑
i=1

exp�βhXi�t��Y1i�t�Y2i�t�;

S
�4�
h �d; t� = �1/n�

n∑
i=1

Y1i�t�Y2i�t�
Yhi�t� + θhY1i�t�Y2i�t�

exp�βhXi�t��;

S
�5�
h �d; t� = �1/n�

n∑
i=1

Xi�t�Y1i�t�Y2i�t� exp�βhXi�t��:

Defining also U�h;n�j = n−1/2U
�h�
j , j = 1;2, and using well-known properties of

the predictable processes involved, the predictable variation process of U�h;n�1
will be given by

�U�h;n�1 ;U
�h;n�
1 ��t� =

∫ t
0

(
S
�2�
h �do; s� −

�S�1�h �do; s��2

S
�0�
h �do; s�

)
αohh�s�ds:

Similarly,

�U�h;n�2 ;U
�h;n�
2 ��t� =

∫ t
0

(
S
�4�
h �do; s� −

�S�3�h �do; s��2

S
�0�
h �do; s�

)
αohh�s�ds

and

�U�h;n�1 ;U
�h;n�
2 ��t� =

∫ t
0

(
S
�5�
h �do; s� −

S
�1�
h �do; s�S

�3�
h �do; s�

S
�0�
h �do; s�

)
αohh�s�ds:

Now, parallel to the univariate case, we enlist a set of conditions.
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C.1.
∫ τ

0 αhh�s�ds <∞.

C.2. We assume that sup�t∈�0;τ�y δ∈D� �S
�j�
h �d; t� − s

�j�
h �d; t�� →P 0, with s�0�h

bounded away from zero on D ×�0; τ� and s�j�h continuous functions of d on D ,
j = 1; : : : ;5, where D is a neighborhood of the true parameter vector.

C.3. There exists γ > 0, such that n−1/2 sup�1≤i≤ny t∈�0;τ�� �Xi�t��Yhi�t� ×
I�βohXi�t� > −γ�Xi�t��� →P 0.

C.4. There exists a positive definite matrix S, with elements involving the
limiting functions s�j�h �·; ·�, as defined below.

The following theorem relates to the asymptotic distribution for the score
function.

Theorem 1. For a bivariate counting process with intensity process defined
by (3.8) under the regularity conditions C.1–C.3, the stochastic process n−1/2U,
with U defined in (3.9) and (3.10), converges in distribution to a continuous
Gaussian martingale W with the cross-covariance function E �W�s��W�t��′� =
S�s ∧ t� given by

S�t� =
(

S1�t� 0
0 S2�t�

)
;

where for each h�= 1;2�, Sh�t� is a matrix with elements

�Sh�t��11 =
∫ t

0

(
s
�2�
h �do; s� −

�s�1�h �do; s��2

s
�0�
h �do; s�

)
αohh�s�ds;

�Sh�t��22 =
∫ t

0

(
s
�4�
h �do; s� −

�s�3�h �do; s��2

s
�0�
h �do; s�

)
αohh�s�ds;

�Sh�t��12 =
∫ t

0

(
s
�5�
h �do; s� −

s
�1�
h �do; s�s

�3�
h �do; s�

s
�0�
h �do; s�

)
αohh�s�ds:

Proof. The proof exploits a technique by Andersen and Gill (1982), with
some modifications, to include our contemplated more general setup. We refer
to Pedroso de Lima (1995) for details.

The asymptotic distribution of the maximum partial likelihood is given by
the following theorem. Our derivation is based on the classical Le Cam (1956)
approach for the usual maximum likelihood estimator, and here also we refer
to Pedroso de Lima (1995) for the details.

Theorem 2. Let d̂ be a value that maximizes the partial likelihood and
suppose that conditions C.1–C.4 hold. Then, if do is the true value for the
parameter d,

√
n� d̂− do � →D N �0;S−1�:
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We include the following corollaries to conclude our discussion.

Corollary 1. The estimator d̂ is a consistent estimator for do.

This corollary is a direct consequence of the theorem; that is, one can im-
mediately verify that �̂d− do� = op�1�

Corollary 2. The covariance matrix S can be consistently estimated by

n−1I �̂d�.

Corollary 2 follows from the assumptions made in Theorem 2 and from
Corollary 1. In fact, since d̂ is a consistent estimator, there exists a value n0
such that, for all n ≥ n0 it will be in the neighborhood D , such that condition
C.4 will be true, and, hence, each element of the matrix n−1I �̂d� converges to
the respective element of S.

4. The model with K > 2 components. In the case of more than two
components in the model, its intensity process is somewhat more complex due
to the multiplicity of higher order combinations of the predictable processes. To
illustrate this point, let us consider the case with three components, involving
the nonnegative random vector T = �T1; T2; T3�′. As in the bivariate case,
define the matrix-valued counting process (2.7) where each column now is
given by a 3× 1 vector of counting processes Ni = �N1i; N2i; N3i�′, based on
n copies Ti of T. Also, the predictable vector is given by Yi = �Y1i; Y2i; Y3i�′,
where Yhi�t� = I�Zhi ≥ t�.

In order to compute the intensity processes, we need to consider the 23 = 8
possibilities represented by the combinations of 0’s and 1’s of the elements of
the vector Yi�t� but only four (for which the corresponding predictable process
is not zero at time t) are meaningful for each component. For example, for
the first component we consider only the cases where Y1i�t� = 1, as otherwise
the component will have already failed and the conditional hazard function
will be zero. The following notations are then introduced for the conditional
hazard functions (dropping out the subscript i to simplify the notation).

When Y1�t� = Y2�t� = Y3�t� = 1, the conditional hazard is given by

p
�1�
123�t� = lim

1t→0

P�T1 ∈ �t; t+ 1t� � T1 > t; T2 > t; T3 > t�
1t

y

when Y1�t� = Y2�t� = 1 and Y3�t� = 0,

p
�1�
12 �t� = lim

1t→0

P�T1 ∈ �t; t+ 1t� � T1 > t; T2 > t; T3 ≤ t�
1t

y

when Y1�t� = Y3�t� = 1 and Y2�t� = 0,

p
�1�
13 �t� = lim

1t→0

P�T1 ∈ �t; t+ 1t� � T1 > t; T2 ≤ t; T3 > t�
1t

y
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when Y1�t� = 1 and Y2�t� = Y3�t� = 0,

p
�1�
1 �t� = lim

1t→0

P�T1 ∈ �t; t+ 1t� � T1 > t; T2 ≤ t; T3 ≤ t�
1t

;

so that the intensity process will be given by one of the four expressions above,
that, depending on the value of Y, can be written as

λ1�t� = α
�1�
1 �t�Y1�t� + α

�1�
13 �t�Y1�t�Y3�t� + α

�1�
12 �t�Y1�t�Y2�t�

+ α�1�123�t�Y1�t�Y2�t�Y3�t�:
(4.12)

The same scheme applies to the second and third components, with only
changes in the indices:

λ2�t� = α
�2�
2 �t�Y2�t� + α

�2�
23 �t�Y2�t�Y3�t� + α

�2�
12 �t�Y1�t�Y2�t�

+ α�2�123�t�Y1�t�Y2�t�Y3�t�y
(4.13)

λ3�t� = α
�3�
3 �t�Y3�t� + α

�3�
23 �t�Y2�t�Y3�t� + α

�3�
13 �t�Y1�t�Y3�t�

+ α�3�123�t�Y1�t�Y2�t�Y3�t�:
(4.14)

Based on expressions (4.12)–(4.14), we may note that each expression has
a term involving the predictable process for the corresponding component,( 3

2

)
terms involving the product of two predictable processes and one term

involving the product of the three processes Yh�t�, h = 1;2;3. This struc-
ture resembles the usual multifactor analysis of variance or categorical data
models, where typically one considers models involving the main effects and
interactions of various orders. When collecting all three quantities defined
above in a vector of intensity processes, to emphasize these interactions, one
may rewrite the model as

l�t� =



λ1�t�
λ2�t�
λ3�t�


 =



α
�1�
1 �t�
0

0


Y1�t� +




0

α
�2�
2 �t�
0


Y2�t�

+




0

0

α
�3�
3 �t�


Y3�t� +



α
�1�
12 �t�
α
�2�
12 �t�
0


Y1�t�Y2�t�

+



α
�1�
13 �t�
0

α
�3�
13 �t�


Y1�t�Y3�t� +




0

α
�2�
23 �t�
α
�3�
23 �t�


Y2�t�Y3�t�

+




α
�1�
123�t�
α
�2�
123�t�
α
�3�
123�t�


Y1�t�Y2�t�Y3�t�;

(4.15)
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where the first three terms on the r.h.s. of expression (4.15) represent the
main effects, the following three terms the first-order interaction and the last
term the second-order interaction.

Whenever the second-order interaction is negligible, the above expression
turns out to be

l�t� = Diag�Y�t��a�t�Y�t�;(4.16)

and that resembles (2.6).
The same reasoning can be offered for higher dimension problems, taking

into account the additional complications due to higher-order interactions. For
example, for a K component problem, the intensity process will involve up to
the �K−1�th order interaction. In fact, in this situation, each component will
have intensity process that can be written as

λj�t� = βj�t�Yj�t�
[
1+

∑

�l∈�1;:::;K�\j�
γjl�t�Yl�t�

+
∑

�l6=l′∈�1;:::;K�\j�
δjll′�t�Yl�t�Yl′�t� + · · ·

]
;

where βj = α
�j�
jj , γjl = α

�j�
jl /α

�j�
jj , δ�j�jll′ = α

�j�
jll′/α

�j�
jj depend on the conditional

hazard functions as in the case K = 3. In this representation the first term
inside parenthesis is related to the independent situation, the second term
with the first-order interaction, and so on. If it is reasonable to assume that
the second and higher-order interactions are null, then this model can be
rewritten as in (2.6) and (4.16); that is, in general,

l�t� =




Y1�t� : : : 0
:::

: : :
:::

0 : : : YK�t�







α11�t� : : : α1K�t�
:::

: : :
:::

αK1�t� : : : αKK�t�







Y1�t�
:::

YK�t�


:(4.17)

We conclude this section with a brief remark on the assumption that the
second or higher-order interactions are null. It may be noted that the model
represented by (4.17) has K2 infinite-dimensional parameters represented by
the functions αij�t�. In order to reduce the dimensionality of the parameter
space and to enhance estimability, additional assumptions are usually im-
posed on such models. This also enables us to study asymptotic properties
of the estimators in a reduced model with greater flexibility. If higher-order
interactions are allowed in the model, then the problem becomes much more
complex. Assuming that interactions are null is a common practice in some
fields of statistics (such as factorial experiments, multivariate paired compar-
isons) and we adopt this approach since we believe the simplifications are
considerable. However, further investigation on the implications of such as-
sumption is needed. A more careful examination shows that this assumption
entails assuming that the failure times are conditionally independent. For ex-
ample, when K = 3, assuming that there is no second-order interaction is
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equivalent to saying that, given one of the failure times, the other two are
conditionally independent. Finally we note that in the case where K = 2, no
assumption is needed since the model will involve only first-order interactions
that are being taken into account in model (4.17).

5. Application to the two-sample problem. Suppose that in a compar-
ative clinical trial one is interested in studying the occurrence of two events,
possibly censored, where each patient is randomized in one of two groups,
placebo and treatment. Our main interest resides in studying the efficacy of
treatment with respect to prolonging the time for the occurrence of one (or
both) events. Here, K = 2 and we define a time-independent covariate Xi

assuming values zero or one, depending on whether a particular individual i
is assigned to the placebo or treatment groups. The variable Nki�t� indicates
if the kth event has occurred for individual i at time t.

Asymptotic properties for the MPLE are given by Theorems 1 and 2, and
we proceed to appraise the assumptions described there. Note that for a fixed
t, each one of the S�j�k �·; t� may be thought of as an average of independent
and identically distributed random variables. Therefore, one may apply the
Khintchine law of large numbers and verify the pointwise (for each t) conver-
gence (in probability) to appropriate deterministic functions. If this function
is monotone, then considering the stochastic version of the Rockafellar lemma
presented in Heiller and Willers (1988), we obtain that the pointwise conver-
gence is equivalent to the uniform convergence in assumption C.2.

Thus, for S�0�h �do; t� = �1/n�
∑n
i=1wi�doh; t� we note that

E �wi�doh; t�� = π0
(
SPl
h �t� + θohSPl

12�t�
)
+ π1 exp�βoh�

(
STr
h �t� + θohSTr

12�t�
)
;

where π0 = 1− π1 = P�Xi = 0� is the probability that a particular individual
will be assigned to placebo, SPl

h �t� = P�Thi ≥ t � Xi = 0� is the marginal
survival function related to component h and SPl

12�t� = P�T1i ≥ ty T2i ≥ t �
Xi = 0� is the joint survival function. The functions STr

h �t� and STr
12�t� are

similarly defined for the treatment group. Since both survival functions are
nonincreasing functions, the uniform convergence in C.2 follows.

Similarly, E �Xj
i �Yhi�t� + θohY1i�t�Y2i�t�� exp�βohXi�� = π1 exp�βoh��STr

h �t� +
θohSTr

12�t��, for j = 1;2, so that the monotonicity of STr
h �t� and STr

12�t� takes care

of S�1�h �t� and S�2�h �t�.
Note that E �Y1i�t�Y2i�t� exp�βohXi�� = �π0SPl

12�t�+π1 exp�βoh��STr
12�t�, is also

a monotone function, and, hence, the uniform convergence for S�3�h �t� follows
from the pointwise convergence.

We also have the same result for S�4�h �t� since

E
[

Y1i�t�Y2i�t�
Yhi�t� + θohY1i�t�Y2i�t�

exp�βohXi�
]
= 1

1+ θoh
�π0SPl

12�t� + π1 exp�βoh��STr
12�t�

is also a monotone function of t.
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For S�5�h , note that E �XiY1i�t�Y2i�t� exp�βohXi�� = π1 exp�βoh�STr
12�t� is a

monotone function of t. It follows then, for j = 1; : : : ;5 the uniform condition
C.2 is true. Moreover, as n→∞,

�U�h;n�1 ;U
�h;n�
1 ��t� →P π0π1 exp�βoh�

∫ t
0

[
STr
h �u� + θohSTr

12�u�
][

SPl
h �u� + θohSPl

12�u�
]

×
{
π0
[
SPl
h �u� + θohSPl

12�u�
]

+ π1 exp�βoh�
[
STr
h �u� + θohSTr

12�u�
]}−1

αoh�u�du;

�U�h;n�2 ;U
�h;n�
2 ��t� →P

∫ t
0

[
π0SPl

12�u� + exp�βoh�π1STr
12�u�

]

×
[
π0�SPl

h �u� − SPl
12�u�� + π1 exp�βoh��STr

h �u� − STr
12�u��

]

×
[
π0�SPl

h �u� + θohSPl
12�u��

+ π1 exp�βoh��STr
h �u� + θohSTr

12�u��
]−1 αoh�u�
�1+ θoh�

du;

�U�h;n�1 ;U
�h;n�
2 ��t� →P π0π1 exp�βoh�

∫ t
0

[
STr

12�u�SPl
h �u� − STr

h �u�SPl
12�u�

]

×
{
π0
[
SPl
h �u� + θohSPl

12�u�
]

+ π1 exp�βoh�
[
STr
h �u� + θohSTr

12�u�
]}−1

αoh�u�du:

Since in this case the continuity in conditions C.2 and C.3 are trivial, the
asymptotic convergence of n1/2�̂d− do� is given by a normal distribution with
mean zero and covariance matrix S whose elements can be estimated by

�Ŝh�11 =
∫ τ

0

{ �YTr
h· �t� + θ̂hYTr

12·�t�� exp�β̂h�
�YPl

h·�t� + θ̂hYPl
12·�t�� + �YTr

h· �t� + θ̂hYTr
12·�t�� exp�β̂h�

−
( �YTr

h· �t� + θ̂hYTr
12·�t�� exp�β̂h�

�YPl
h·�t� + θ̂hYPl

12·�t�� + �YTr
h· �t� + θ̂hYTr

12·�t�� exp�β̂h�

)2}
dN̄h·�t�;

�Ŝh�22 =
1

�1+ θ̂h�2
∫ τ

0
dN̄11

h· �t�

−
∫ τ

0

(
YPl

12·�t� + exp�β̂h�YTr
12·�t�

�YPl
h·�t� + θ̂hYPl

12·�t�� + �YTr
h· �t� + θ̂hYTr

12·�t�� exp�β̂h�

)2

dN̄h·�t�;

�Ŝh�12 = �Ŝh�21

=
∫ τ

0

(
YTr

12·�t� exp�β̂h�
�YPl

h·�t� + θ̂hYPl
12·�t�� + �YTr

h· �t� + θ̂hYTr
12·�t�� exp�β̂h�

− �Y
Pl
12·�t� +YTr

12·�t� exp�β̂h���YTr
h· �t� + θ̂hYTr

12·�t�� exp�β̂h�
��YPl

h·�t� + θ̂hYPl
12·�t�� + �YTr

h· �t� + θ̂hYTr
12·�t�� exp�β̂h��2

)
dN̄h·�t�;
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where at time t, YTr
h �t� and YPl

h �t� represent the number of individuals with
the component h at risk for treatment and placebo groups respectively, YTr

12·�t�
and YPl

12·�t� represent the number of individuals with both components at risk
for treatment and placebo groups, and N̄11

h· �t� represents the number of fail-
ures divided by n for those individuals with no failure in any component.
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