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HOMOGENIZATION FOR TIME-DEPENDENT
TWO-DIMENSIONAL INCOMPRESSIBLE

GAUSSIAN FLOWS1

BY RENE A. CARMONA AND LIN XU´
Princeton University

Dedicated to the memory of Sergei Kozlov

We consider the diffusive scaling limit for the transport of a passive
scalar in a two-dimensional time-dependent incompressible Gaussian ve-
locity field and in the presence of molecular diffusivity. We prove that
homogenization holds in this limiting regime and we derive some simple
properties of the effective diffusivity tensor.

1. Introduction and results. The study of the large time behavior of
the solutions of the advection]diffusion equation

­ C t , xŽ .
1 s k DC t , x q v t , x = U t , x ,Ž . Ž . Ž . Ž .Ž .

­ t

Ž .when v t, x is an incompressible random vector field which is stationary in
time and homogeneous in space, has attracted the attention of many applied
mathematicians in the last decades. This equation governs the time evolution
of concentrations of passive tracers in a fluid. It is used to study the salinity
or the temperature of the ocean, for example. This equation is also used to
model the spread of pollutants at the surface of the ocean. For all these
reasons, it has been the object of active research both experimently and

Ž w x w x w x w x w x w x w x .theoretically see 1 , 2 , 4 , 6 , 10 , 14 and 19 , for example . A number
of new tools have been developed to understand its rich dynamical scaling
behavior, but so far all the published works have focused on either time-inde-

Ž w x w x w x.pendent flows see, for example, 5 , 13 or 21 or very special time-depen-
Ž w x .dent flows see for example 3 for a remarkable analysis of shear flows . In

this paper, we study the diffusive scaling limit for time-dependent flows.
Let us describe the specific model we work with. We consider the advec-

Ž . 2tion]diffusion equation 1 on the two-dimensional plane R . We restrict
ourselves to the two-dimensional case for the sake of simplicity. Our analysis
Ž .and the results that we prove can be carried out in the general case of
finite-dimensional divergence free Gaussian velocity fields with finitely
Fourier modes. We assume that the medium is incompressible in the sense
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that the velocity field is divergence free. Because the dimension is 2, there
Ž .exists a scalar function f t, x , called the stream function, which satisfies

Ž . H Ž .v t, x s D f t, x or in other words:

­f t , xŽ .
­ x2

2 v t , x s .Ž . Ž .
­f t , xŽ .

y
­ x1

In the general d-dimensional case, the stream function f has to be
replaced by d scalar functions and the technicalities of the proof are more
involved, though the methods remain the same. We shall assume that the
stream function is of the form

n

f t , x s a t cos k x q b t sin k x ,Ž . Ž . Ž . Ž . Ž .Ý i i i i
is1

Ž . 2where k , . . . , k are n points Fourier modes in R and where1 n

� 4a , b , . . . , a , b1 1 n n

are mutually independent scalar Ornstein]Ulhenbeck processes. The form of
this specific model of velocity field is essentially imposed by the conditions of
Ž . Ž . Ž .1 incompressibility, 2 Markov property in time and 3 finite spectral

w xsupport. This last assumption was introduced in 9 as a way to find a
reasonable approximation of an isotropic incompressible Gaussian velocity

w xfield which would be amenable to numerical simulations. See also 6 for more
on the numerical simulations of the transport properties of general Gaussian
velocity fields with Kolmogorov spectra. We assume that

da t s ya a t dt q s dz a t ,Ž . Ž . Ž .i i i i i

db t s ya b t dt q s dz b t ,Ž . Ž . Ž .i i i i i

3Ž .

aŽ .where the a and s are positive constants and where the z t ,i i 1
bŽ . aŽ . bŽ .z t , . . . , z t and z t are 2n independent standard scalar Wiener pro-1 n n

5 5cesses. As usual, we denote by k the Euclidean norm of the vector k . Wei i
shall use the notation P for the probability measure of the space on which
the random velocity field is defined and denote by E the corresponding ex-
pectation.

We are interested in the long-time large-scale behavior of the solutions of
Ž .the advection]diffusion equation 1 . We know that under the rescaling of the

diffusion approximation limit, this solution converges in distribution to the
solution of a stochastic partial differential equation and the moments con-

w xverge to the solution of a deterministic heat equation. See, for example, 7 .
We work here under a different rescaling regime, but we still expect that the
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asymptotics of the first moment of the solution, in other words the limit
x

24 lim E C N t , ,Ž . ½ 5ž /NNª`

which we would like to compute for fixed t and x, be governed by a heat
equation. For each realization of the velocity field, the microscopic motion

Ž .leading to 1 is given by the stochastic differential equation

'dX s 2k dW t q v t , X dt ,Ž . Ž .t t5Ž .
X s x ,0

� Ž . 4 Ž 2 .where W t ; t G 0 is a standard Wiener process with values in R . We
shall assume that this Wiener process is defined on the same probability
space as the velocity field and that it is independent of the Wiener processes

aŽ . bŽ . Ž .z t and z t appearing in the definition of the velocity field. The limit 4i i
can be best understood by means of the behavior of the rescaled microscopic
motion given by the process

1
2Y t s XŽ .N N tN

when N is large. The main result of the paper is the following:

� Ž . 4THEOREM 1.1. The process Y t ; t G 0 converges in distribution to aN
� Ž . 4 Ž .two-dimensional Brownian motion B t ; t G 0 with covariance matrix D k

depending only upon the diffusivity constant k .

As an immediate consequence of this result we have the following corol-
lary.

Ž .COROLLARY 1.1. Assume that for each integer N the scalar function C t, xN
solves the parabolic problem

­ C t , xŽ .N 2s k DC t , x q N v N t , xrN D C t , xŽ . Ž .Ž .Ž .N N6Ž . ­ t
C 0, x s f x ,Ž . Ž .N

Ž .where the initial condition f x is smooth and has compact support. Then the
� Ž .4 2 Ž .function E C t, x converges locally in the L sense to the solution C t, x ofN

Ž .the deterministic parabolic equation

­ C t , xŽ .
s = ? D k =C t , x ,Ž . Ž .Ž .

7Ž . ­ t
C 0, x s f x .Ž . Ž .

Theorem 1.1 is more general than other homogenization results for Gauss-
Ž w x w x w x .ian fields such as 2 , 3 or 20 , for example because of the time dependence

of the velocity field. After the completion of this paper, we received a preprint
w x16 addressing the same homogenization problem for incompressible time-
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dependent Gaussian velocity fields. Even though the results are very similar
in nature, the proofs are very different. Indeed, we derive the time decorrela-
tion estimates needed in the proof from the ergodic properties of the La-

w xgrangian velocity while the authors of 16 use the assumption of compact
support for the time correlation of the Eulerian velocity field. Moreover, our
proof is not restricted to the case k s 0.

ŽOur proof of Theorem 1.1 relies on the ergodic properties of the micro-
.scopic motion in the random velocity field as observed in a frame moving

with X . Such a Lagrangian velocity is a stationary Markov process. This factt
has been known for a long time by workers in homogenization theory. The
difficulty is usually in proving that this process is ergodic enough for the
additive functionals of interest to satisfy a central limit theorem. This is
usually proved by decomposing the additive functional into a martingale part
to which a form of the central limit theorem for martingales can be applied,
and a remainder part which is shown to be negligible in the limit. See, for

w x w x w x w xexample, 21 , 14 , 19 or 18 . Our proof follows these time-honored lines.
Its main thrust is the rewriting of the Lagrangian velocity as a simple
function of a Markov process for which we can give a complete analysis. In
particular we identify the infinitesimal generator, we show that it has a
unique invariant measure and we derive its ergodic properties by providing
an exponential bound for the large-time behavior of the semigroup. This
crucial estimate is obtained by comparison with the Ornstein]Ulhenbeck
semigroup. This comparison argument is important because our Markov

Ž w x.process is not symmetric and the standard arguments see, e.g., 15 cannot
be used directly.

The paper is organized as follows. The next section is devoted to the
analysis of the velocity field in a Lagrangian frame. We establish the Markov
property, we identify the infinitesimal generator and we derive the ergodic
properties which are needed in the proof of the results stated above. Section 3
contains the proof of these results. Section 4 is devoted to the analysis of the

Ž .dependence of the effective diffusivity matrix D k upon the diffusivity
constant k .

2. The velocity field in a Lagrangian frame. We first fix the initial
2 Ž .point x g R and we denote by X the solution of the equation of motion 5 .t

We then define the Lagrangian velocity field as

8 v t , z s v t , X q z .Ž . Ž . Ž .˜ t

for z g R2. Obviously
H ˜v t , z s = f t , zŽ . Ž .˜

with

f̃ t , z s f t , X q zŽ . Ž .t
n

˜s a t cos k z q b t sin k z ,Ž . Ž . Ž . Ž .˜Ý i i i i
is1
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where

a t s a t cos k X q b t sin k X ,Ž . Ž . Ž . Ž . Ž .˜i i i t i i t

b̃ t s ya t sin k X q b t cos k X ,Ž . Ž . Ž . Ž . Ž .i i i t i i t

for i s 1, . . . , n. Notice that

n
H ˜9 v t , X s v t , 0 s k b t ,Ž . Ž . Ž . Ž .˜ Ýt i i

is1

H w 2 1 xTwhere we use the notation k s k y k . In the same way that thei i i
Ž .distribution of the original velocity field v t, x is determined by the 2n-

dimensional Ornstein]Ulhenbeck process

v t s a t , b t , . . . , a t , b t ,Ž . Ž . Ž . Ž . Ž .Ž .1 i n n

the distribution of the Lagrangian velocity field is determined by the process

˜ ˜v t s a t , b t , . . . , a t , b t .Ž . Ž . Ž . Ž . Ž .˜ ˜ ˜Ž .1 i n n

The sample paths of this process are continuous by construction. Because of
the homogeneity in space of the original velocity field, for each i s 1, . . . , n,

Ž .the scaling parameter and the standard deviation of the processes a ti
Ž .and b t have to be the same and consequently the distribution of thei

�Ž Ž . Ž .. 4 2Ornstein]Ulhenbeck process a t , b t : t G 0 in R is invariant under thei i
˜Ž Ž . Ž ..rotations of the plane. Since the couple a t , b t is merely a rotation of˜i i

Ž Ž . Ž ..the couple a t , b t , they have the same norms. Also, for i / j, thei i
˜ ˜�Ž Ž . Ž .. 4 �Ž Ž . Ž .. 4processes a t , b t : t G 0 and a t , b t : t G 0 are dependent even˜ ˜i i j j

�Ž Ž . Ž .. 4 �Ž Ž . Ž .. 4though the processes a t , b t : t G 0 and a t , b t : t G 0 are inde-i i j j
� Ž . 4pendent. The process v t ; t G 0 is a diffusion process whose ergodic proper-

Ž .ties are well known. In particular, its unique invariant measure is the
Gaussian measure

n da db ??? da dbŽ .1 1 n n

n 2 2a ??? a yÝ a a q bŽ .1 n is1 i i is exp da db ??? da db .1 1 n nn 2 2 2p s ??? s s1 n i

10Ž .

Ž . w Ž .We shall prove that n is also the distribution of v t if the process v t is˜
xstarted with its invariant distribution . The first important result of this

� Ž . 4section concerns the Markov property of the process v t ; t G 0 . It is˜
contained in the statement of the following theorem where we also identify
the infinitesimal generator.

2 n Ž .THEOREM 2.1. The R -valued stochastic process v T is the 2n-dimen-˜
sional diffusion process with infinitesimal generator

11 LL s LL q k LL X ,Ž . k 0
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where
n 2 2 n1 ­ ­ ­ ­

2 ˜LL s s q y a a q b˜Ý Ý0 i i i i2 2 ž /ž /˜ ˜2 ­ a­ a ˜˜ ­ b ­ biiis1 is1i i

n ­ ­˜ ˜q k = k b b y ãŽ .Ý i j j i iž /˜­ ã ­ bii , js1 i

12Ž .

and

n 2 2 2­ ­ ­
X ˜ ˜ ˜LL s b b y 2b a q a a k k˜ ˜ ˜ Ž .Ý i j i j i j i j˜ž /­ a ­ a ˜ ˜˜ ˜ ­ a ­ b˜ ­ b ­ bi ji , js1 i j i j

13Ž .
n ­ ­ 2˜ 5 5y a q b k .˜Ý i i iž /˜­ ã ­ biis1 i

Ž . 1 2 2 1We use the notation k = k s k k y k k for the cross product of thei j i j i j
two-dimensional vectors k and k .i j

REMARKS. Observing the velocity field in a Lagrangian frame is not a new
w x w xidea. See, for example, 17 and 18 . It has been routinely used in recent

works on homogenization even though attention has been restricted to sta-
Ž .tionarity i.e., time independent velocity fields.

The observation that the velocity field in a Lagrangian frame still has the
Markov property will be crucial to us, not merely for its own sake, but
because we are able to use this fact to derive useful ergodic properties and

Ž .precise estimates by comparison arguments involving simpler processes .
The quadratic form of the coefficients of the second order part of the

operator LL X is nonnegative definite and consequently the operator LL isk

strongly elliptic.
The spectral properties of the generator LL corresponding to the case0

w xk s 0 play a crucial role in the proof given in 8 of the positivity of the
Lyapunov exponent of the Jacobian flow.

w xPROOF. According to the Stroock]Varadhan theory 25 , we use the mar-
tingale formulation of diffusion processes. To prove the desired result, it is
sufficient to check that, for any smooth function F with compact support in
R2 n,

tF w x14 M t s F v t y F v 0 y LL F v s dsŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž .˜ ˜ ˜H k
0

is a martingale. In order to do this, we rewrite

˜ ˜F v t s F a t , b t , . . . , a t , b tŽ . Ž . Ž . Ž . Ž .Ž .˜ ˜ ˜Ž .1 1 n n

˜s F a t , b t , . . . , a t , b t , XŽ . Ž . Ž . Ž .Ž .1 1 n n t

Ž . Ž .as a function of the original Ornstein]Ulhenbeck processes a t , b t , . . . ,1 1
Ž . Ž . w Ž . Ž .a t , b t and the tracer motion X recall formula 2 and the definition 5n n t
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xof X . We then apply Ito’s formula. Using the obvious fact thatˆt

d a , b s 0,i j t

2w xd a , a s d b , b s s d ,i j i j i i , jt t

w x w xd X , a s d X , b s 0,i it t

w xd X , X s 2k dtt

Ž . Ž .and taking into account equations 3 and 5 , a simple calculation yields
n ­Ft a bM t s v s cos X dz s q sin X dz sŽ . Ž . Ž . Ž . Ž . Ž .Ž .˜ Ž .Ý HF s i t i­ ã0 iis1

­ F
a bq v s ysin X dz s q cos X dz sŽ . Ž . Ž . Ž . Ž .Ž .˜ Ž .s i t i˜­ bi

15Ž .

n ­ F ­ Ft ˜'q 2k b y a k dW t ,Ž .Ž .˜Ý H i i iž /˜­ ã ­ b0 iis1 i

which is obviously a martingale. This completes our proof. I

Next we identify the adjoints of the components of the infinitesimal
Ž .generator LL . The ergodic properties of the process v t will follow. Recall˜k

that the adjoints of the operators LL and LL X are the operators LL U and LL XU,0 0
satisfying

16 G LL F dn s F LL U G dnŽ . H H0 0
2n 2 nR R

and

17 G LL XF dn s F LL XU G dnŽ . H H
2n 2 nR R

for all real-valued smooth functions F and G with compact supports in R2 n.

PROPOSITION 2.1. The adjoint operators LL U and LL XU are given by0

n 2 2 n1 ­ ­ ­ ­
U 2 ˜LL s s q y a a q b˜Ý Ý0 i i i i2 2 ž /ž /˜ ˜2 ­ a­ a ˜˜ ­ b ­ biiis1 is1i i

n ­ ­˜ ˜y k = k bj b y ãŽ .Ý i j i iž /˜­ ã ­ bii , js1 i

18Ž .

and LL XU s LL X.

The proof is a straightforward application of the formula of integration by
parts.

REMARK. The above characterization implies that n is an invariant mea-
Ž . Ž s. Žsure for the diffusion process v t and that the symmetrization LL s LL q˜ 0 0
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U .LL r2 of LL is the generator of the 2n-dimensional Ornstein]Ulhenbeck0 0
Ž . Ž . Ž .process v t comprising the original coefficients a t and b t . This remarki i

Žis of crucial importance because of the spectral gap and the ensuing ergodic
. Ž s.properties of the latter. Similarly, we shall use the notations LL for thek

symmetrizations of the operator LL .k

The quadratic form DD corresponding to the symmetric operator LL Ž s. is0 0

DD F s F yLL Ž s.F dnŽ . Ž .H0 0
2nR

s F yLL F dnŽ .H 0
2nR

22n1 ­ F ­F
2s s q dnÝH i ž /2n ž /˜2 ­ ã ­ bR iis1 i

for any real-valued smooth functions F with compact support. The quadratic
form corresponding to LL XŽ s. is given by

DDX F s F yLL XF dnŽ . Ž .H
2nR

2n ­ F ­ F˜s b y a k dn .˜ÝH i i i
2n ž /˜­ ã ­ bR iis1 i

Therefore the quadratic form DD s DD q k DDX of the symmetric operator LL Ž s.
k 0 k

satisfies
DD F G DD F .Ž . Ž .k 0

The operator yLL Ž s. is a nonnegative self-adjoint operator on the Hilbert0
2Ž 2 n .space L R , dn and its spectrum is the set of numbers p a q1 1

??? qp a for nonnegative integers p , . . . , p . In particular, this implies thatn n 1 n

inf DD F s aŽ .0
2� 4F : H F dns0, H F dns1

if we set a s min a . Consequentlyis1, . . . , n i

19 inf DD F G a .Ž . Ž .k
2� 4F : H F dns0, H F dns1

² : 5 5PROPOSITION 2.2. Let us denote by ? , ? the inner product and by ? the
2Ž 2 n . 2Ž 2 n .norm of the Hilbert space L R , dn . If F g L R , dn is real and such

that HF dn s 0, then

5 5 5 520 exp t LL F F exp ya t F .Ž . Ž . Ž .k

PROOF. Let us set

5 5 2g t s F with F s exp t LL F .Ž . Ž .t t k
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Then a direct calculation yields

dg tŽ .
² : ² :s F , LL F q LL F , Ft k t k t tdt

² Ž s. :s y2 F , yLL Ft k t

21Ž .

s y2 DD FŽ .k

Ž .and since HF dn s 0, it follows from 19 thatt

² :22 DD F G a F , FŽ . Ž .k t t t

Ž . Ž .and 21 and 19 imply that

dg tŽ .
23 F y2a g t ,Ž . Ž .

dt
Ž . Ž . y2 a tfrom which the inequality g t F g 0 e follows. This completes the proof.

I

The following corollary is an immediate consequence of the above esti-
mation.

2Ž 2 n .COROLLARY 2.1. If F is an arbitrary function of L R , dn which satisfies
2Ž 2 n .HF dn s 0, then there exists a unique G g L R , dn such that

G dv s 0 and LL G s F .H k

PROOF. We first notice that the integral
`

G s exp t LL F dtŽ .H k
0

2Ž 2 n .converges in L R , dn ; because of the above estimation, the function G so
defined satisfies HG dn s 0 as an immediate consequence of Proposition 2.1.
By construction we have LL G s F and uniqueness follows from the followingk

2Ž 2 n .argument. If G g L R , dn is such that

G dn s 0 and LL G s 0,H k

Ž .then DD G s 0 and consequently DD G s 0 by 2 from which it follows thatk 0
G s 0. I

Ž .3. Proof of the main result. Recalling formula 9 giving the La-
Ž . Ž . Ž .grangian velocity v t, X s v t, 0 , one sees that the equation of motion 5˜t

can be rewritten in the form

t'24 X s x q 2k W t q Av s dsŽ . Ž . Ž .˜Ht
0

Ž .for some constant deterministic 2 = 2n matrix A. The first part of the proof
�Ž y1 . 42is concerned with the tightness of the sequence N X ; N s 1, 2, . . .N t t G 0

of processes. We use Kolmogorov’s criterion. We shall prove that for each
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T ) 0 there exists a constant C ) 0 such thatT

41 1 2
2 225 E X y X F C t y sŽ . N t N s T½ 5N N

Ž .for all 0 F s, t F T. Obviously, it follows from 24 and the properties of the
increments of a Wiener process that it is enough to prove

41 2N t 226 E Av u du F C t y sŽ . Ž .˜H T4 ½ 52N N s

for all 0 F s, t F T. Using the stationarity of the process v it is enough to˜
prove that one has

41 t
27 sup E Av u du F CŽ . Ž .˜H½ 5't 0tG0

Ž .for some constant C. Obviously, the estimate 27 will hold if we can prove
that

ty1r228 sup E exp « t A v u du - `Ž . Ž .˜H i½ 5ž /00FtF`

where « s "1 and where i s 1, 2. We use the notation A for the ith row ofi
Ž .the matrix A. Coming back to 28 and using the Feynman]Kac formula, we

can rewrite the expectation in an operator form as

ty1r2 y1r2E exp « t A v u du s exp t LL q t F 1, 1² :Ž .˜ Ž .Ž .H i k½ 5ž /029Ž .
y1r2F exp t LL q t F 1 ,Ž .Ž .k

Ž .where we use the notation F for the linear function v ¨ F v s « A v and 1˜ ˜ ˜i
for the constant function identically equal to 1 and the norm in the rightmost

2Ž 2 n .expression is the norm of the Hilbert space L R , dn . Using the same
argument as in the proof of Proposition 2.2, one proves easily that

y1r2exp t LL q t F 1 F exp yl tŽ .Ž .Ž .n t

if we denote by l the infimum of the spectrum of the self-adjoint operatort
yLL Ž s. y ty1r2F. Using Jensen’s inequality for the time integral in the expo-0

Ž .nential, one sees that the expectation in 28 remains bounded as t o 0.
Consequently, the proof of the tightness will be complete if we can prove that

Ž .l s O 1rt when t ª `. Since the operator of multiplication by the functiont
ty1r2F is a yLL Ž s.-bounded perturbation in the sense of the lemma on page 170

w xof 22 , one can use the perturbation theory for the eigenvalues of the discrete
spectrum of self-adjoint operators to conclude. Indeed, for t large enough, the
infimum of he spectrum of the operator yLL Ž s. y ty1r2F is an isolated eigen-0
value l . Moreover this eigenvalue is an analytic function of ty1r2 for ty1r2

t
in a neighborhood of 0. Finally we have the expansion

l s l q a ty1r2 q a ty1 q o ty1 ,Ž .t ` 0 1
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where l denotes the infimum of the spectrum of the unperturbed operator`

yLL Ž s.. Obviously l s 0. Consequently, the proof of the tightness will be0 `

complete if we can prove that a s 0. But this fact is immediate if we use the0
explicit formula

² :a s 1, F1 s F v dn vŽ . Ž .˜ ˜H0

w xfor a . This formula is derived in detail in the finite-dimensional case in 22 ,0
pages 6 and 7, but its proof applies as well to the present situation of a
regular analytic family.

The second part of the proof consists of proving that there is only
one possible limit point. This will prove that the sequence of processes
�Ž y1 . 4 2

2N X ; N s 1, 2, . . . is indeed convergent. For every l g R , one hasN t t G 0

t tX'30 lX s lx q 2k d l W s q F v s ds,Ž . Ž . Ž .Ž . Ž .˜H Ht l
0 0

where we use the notation F for the linear functionl
n

˜ ˜ ˜v s a , b , . . . , a , b ¨ F v s lAv s k = l b .Ž . Ž .˜ ˜ ˜ ˜ ˜ Ýž /1 1 n n l i i
is1

The proof relies on an approximation of the bounded variation term in the
Ž .right-hand side of equation 30 by a martingale. Let U be the unique meank , l

zero solution of the equation LL U s F . Then this bounded variation termk k , l l
can be written in the form

t Uk , lF v s ds s U v t y U v 0 y M .Ž . Ž . Ž .Ž . Ž . Ž .˜ ˜ ˜H l k , l k , l t
0

For typographical reasons we shall use the notation M for the martingalet
M Uk , l. Henceforth:t

1 1 1 1
2

2lX s lx q U v N t y U v 0Ž . Ž .Ž .˜ ˜Ž .N t k , l k , lN N N N
'1 2k 2N t

2y M q d lW s .Ž .Ž .HN tN N 0

The sum of the first three terms converges to zero for fixed t since
21 1 22lim sup E U v N t s lim sup U dn s 0.Ž . Ž .˜Ž . Hk , l k , l2½ 5 2nN N RNª` Nª`

More generally, this convergence is in the sense of the convergence of the
finite-dimensional marginals. Since we have already proved that the family of
processes in the left-hand side is tight, the result will follow from the control
and the identification of the limit of the continuous local martingale

'1 2k 2N tŽN .
2M s M y d lW sŽ .Ž .Ht N tN N 0
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Ž w x.by means of the central limit theorem for martingales see, e.g., 11 . To use
this result it is enough to prove the convergence of the quadratic variation of
this continuous local martingale. The quadratic variation of M is given byt
the ‘‘operateur carre du champ.’’ More precisely,´ ´

t 2w xM , M s LL U y 2U LL U v s ds,Ž .Ž .˜Ht k k , l k , l k k , l
0

from which we get

w ŽN . ŽN . xM , M

22n1 ­U ­U2 k , l k , lN t 2s s v s q v sŽ . Ž .Ž . Ž .˜ ˜ÝH i2 ˜ž /­ aN ˜ ­ b0 iis1 i

2
n ­U ­Uk , l k , l˜q2k l y b y a k v s ds.Ž .Ž .˜ ˜Ý i i iž /˜ž /­ ã ­ biis1 i

The ergodic theorem for an additive functional of the ergodic Markov process
Ž w x.see, e.g., 23 implies that the right-hand side converges, for each fixed t, to
Ž X Ž . . Ž .l D k l t where the effective diffusivity matrix D k is, by its quadratic
form,

22n ­U ­Uk , l k , l2lD k l s s q dnŽ . ÝH i ž /2n ž /˜­ ã ­ bR iis1 i

2n ­U ­Uk , l k , l 1˜q 2k l y b y a k˜ÝH 1 i i i
2n ž /˜­ až ˜ ­ bR iis1 i

31Ž .

2n ­U ­Uk , l k , l 2˜q l y b y a k dn˜Ý2 i i iž /˜­ a /˜ ­ biis1 i

for any l in R2. Consequently, the martingale convergence theorem implies
Ž . 2that 1rN l ? X converges weakly to a process of Brownian motion withN t

Ž .variance]covariance matrix D k . I

The method, used in our proof to approximate the additive functional of an
ergodic Markov process by a martingale, has been proven to be very useful in
other contexts, for example in the study of the long-time behavior of a

Ž w x w x w x.random dynamics see, e.g., 13 , 15 or 24 .

4. Effectivediffusivity. In this section, we shall derive some qualitative
Ž .properties of the effective diffusivity D k introduced above. It is not hard to
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see that this quantity is well defined when k s 0. In fact,
22n ­U ­U0, l 0, l2lD 0 l s s q dn ,Ž . ÝH i ž /2n ž /˜­ ã ­ bR iis1 i

2Ž 2 n .where U is the unique mean 0 function in L R , dn satisfying0, l

LL U s F .0 0, l l

The dependence of the effective diffusivity upon the molecular diffusivity k is
highly nonlinear and describing this dependence is a very interesting and

Ž w x w xvery difficult question in general see, nevertheless, 3 and 13 for results in
.the case of time-independent velocity fields . In the next proposition we

attempt to give some qualitative information on this dependence.

Ž . Ž . Ž .PROPOSITION 4.1. If the matrix D k is defined as in 31 , then i
Ž . Ž . Ž . Ž . X Ž . Xlim D k s D 0 and ii D k ) 2kI in the sense that l D 0 l ) 2k l l,k x 0

for all nonzero vectors l g R2.

Ž .REMARK. The claim in part i gives the leading order of the behavior of
Ž .D k for small k . However, the analysis of the higher-order terms of a

possible expansion is an interesting and completely open problem.
Ž . ŽThe lower bound given in part ii confirms rigorously at least for our

.model the well-known principle of diffusivity enchancement for incompress-
ible flows. There is an extensive literature on this problem for incompressible

w xflows and especially for stationary flows. See 12 and references therein for
more on this phenomenon.

Ž .PROOF. Equation 31 gives
22n ­U ­Uk , l k , lX 2l D k l s s q dnŽ . ÝH i ž /2n ž /˜­ ã ­ bR iis1 i

2n ­U ­Uk , l k , l 1˜q 2k b y a k˜ÝH i i i
2n ž /½ ž ˜­ ã ­ bR iis1 i

2n ­U ­Uk , l k , l 2˜q b y a k dn˜Ý i i iž / 5ž ˜­ ã ­ biis1 i

n ­U ­Uk , l k , lX ˜2k l l y 4k b y a k l dnŽ .˜ÝH i i i
2n ž /˜­ ã ­ bR iis1 i

s A q A q A y A .1 2 3 4

We use integration by parts to compute the last term. We obtain
n

˜ ˜A s 4k a b U y a b U dn˜ ˜ÝH ž /4 i i k , l i i k , l
2nR is1

s 0.
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This implies that
22n ­U ­Uk , l k , lX 2l D k l s s q dnŽ . ÝH i ž /2n ž /˜­ ã ­ bR iis1 i

2n ­U ­Uk , l k , l 1˜q 2k b y a k˜ÝH i i i
2n ž /½ ž ˜­ ã ­ bR iis1 i

2n ­U ­Uk , l k , l X2˜q b y a k dn q 2k l l˜Ý i i iž / 5ž ˜­ ã ­ biis1 i

) 2k lXl.
In the above, we used the fact that U is not identically 0. This completesk , l

Ž .the proof of part ii .
Multiplying both sides of the definition LL U s F by U and integratingk k , l l k , l

with respect to n ,

DD U s y U F dnŽ . Hk k , l k , l l
2n32 RŽ .

F C U ,l k , l

where C is a constant which depends only upon l and the Fourier modes k .l i
Ž .On the other hand, from 19 we have

2D U G a UŽ .k , l k , l

5 5 Ž .since U has mean zero. Hence, U F C ra , and together with 32 , thisk , l k , l l
implies that

D U F C 2ra .Ž .k , l 1
2Ž .Thus the set of U ’s parameterized by k is compact in the L n because ofk , l

the well-known H 1 embedding theorem. A standard argument from the L2

theory of elliptic equations gives that U converges to U in the sense ofk , l 0, l
Ž .the D norm as defined in Section 2. Hence, on account of the equality in 32 ,0

the second term A tends to 0 as k goes to 0 and the convergence of the2
energies

lim DD U s DD U ,Ž . Ž .0 k , l 0 0, l
k x0

from which we conclude that
lim D k s D 0 .Ž . Ž .
k x0

This completes the proof. I
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