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This study establishes limiting distributions for customer waiting
times and queue lengths in treelike networks with single-server nodes.
The main result characterizes the limiting distributions when the network
data (interarrival times, service times and routes) is “asymptotically
stationary.” This is a weak condition covering a variety of networks
including standard ones where the network data is stationary, regenera-
tive, Markovian, satisfies coupling, and so on. The dependencies in the
network data may be customer centered or node centered. The proof is
based on two preliminary results that are of interest by themselves. The
first one justifies the existence of the waiting time and queue length
processes on the entire time axis for any network whose service capacity
has been adequate to handle all the customers as one looks back to the
“beginning of time.” This is a sample-path generalization of a result of
Loynes for a queueing system with stationary data. The second prelimi-
nary result is a characterization of functionals of sequences that preserve
the asymptotic stationarity property. This is somewhat analogous to con-
tinuous-mapping principles for weak convergence. We also present func-
tional central limit theorems for the waiting time processes in a network
when the partial sums of the network data obey a heavy-traffic functional
limit property. The limiting waiting time sequence is a functional of a
process that is typically a multivariate Brownian motion, or a process
with stationary increments and long range dependence such as a frac-
tional Brownian motion.

1. Introduction. A major issue for a stochastic network (e.g., computer,
telecommunications or manufacturing network) is to characterize the limiting
behavior of its queue lengths and the customer waiting times. There are
extensive results in this regard for networks, such as Jackson networks, that
can be analyzed by Markovian or coupling techniques. For other types of
networks with intricate dependencies, little is known about the limiting
behavior of waiting times.

The present study describes the limiting behavior of waiting times and
queue lengths in treelike networks with single-server nodes and general
dependencies on arrivals, routings and services. The dependencies are either
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based on the order of the arrivals to the network (customer centered) or on
the order of arrivals to each node (node centered). In a treelike network, the
subsequence of customers that enter a node is determined by the order in
which customers enter the network and their routes, and the subsequence is
not affected by the service times. This property, which is the key to our
characterization of waiting times, is not satisfied in more general networks
where service times affect the subsequence of arrivals to a node. How to
model waiting times in such networks is an open problem.

A major root of this study is a classical result of Loynes (1962). Consider a
service system that processes units (or customers) one at a time under a
first-in—first-out discipline. The waiting times for the successive units satisfy
the recursive equation W, ; = max{0,V, — U, + W }, n > 0, where V, is the
service time of unit n, the U, is the time between the arrival of units » and
n + 1 and W, is arbitrary. Loynes showed that if (U,,V,) is a stationary,
ergodic sequence with EV, < EU,, then W, converges in distribution to
sup, .o L;4(V; — U,). Moreover, the sequence of waiting times for a finite
time horizon converges in distribution as the horizon length tends to infinity
to a stationary sequence of waiting times. This limit is a sequence of waiting
times for a “stationary version” of the system on the entire time axis.

Our results required a comparable result when the sequence (U,, V,) is not
stationary. This led us to address the issue of finding minimal conditions on
interarrival and services times under which the waiting times and queue
lengths converge in distribution, and the limits are waiting times and queue
lengths of a stationary version of the system. Our first result (Theorem 2)
justifies the existence of a stationary version of a treelike network process on
the entire time axis with finite waiting times under the natural condition
that the service capacity has been adequate to handle all the customers as
one looks back to the “beginning of time” (the cumulative interarrival times
minus the cumulative service times of the last n units tends to infinity as
n — ). This result is based only on recursive dynamical system equations
and does not require assumptions on the distribution, expectations or depen-
dencies of the network data (i.e., routes, interarrival times and service times).
Theorem 2 contains a Loynes-type result (Theorem 3) for the existence of a
stationary treelike network process.

Our analysis uses the relatively new notion that a sequence of random
elements {X,: £ > 0} is asymptotically stationary with respect to convergence
in distribution if {X, ,: k> 0} (the sequence shifted by n time units)
converges in distribution to some sequence {X,: £ > 0} as n — «. The limit-
ing sequence is necessarily stationary. This condition guarantees that X, —,
XO, as n — . In other words, to prove that a sequence converges in distribu-
tion, it suffices to show that it is asymptotically stationary. This is a very
weak condition that is satisfied by most sequences that converge in distribu-
tion (e.g., Markov chains and many other sequences with less structure, such
as those satisfying a coupling property). See Szczotka (1986) for a general
discussion of asymptotic stationarity.
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Our main result, Theorem 8, is for a treelike network whose data is
asymptotically stationary. It says that if the service capacity is adequate and
a few technical conditions hold, then the waiting times and queue lengths at
the nodes are asymptotically stationary and hence have limiting distribu-
tions. Furthermore, the entire network process converges in distribution to a
stationary version of the network. This theorem applies to two types of
indexing schemes for the network information. The first one is customer
centered, where @i, W; are queue lengths and waiting times at node j seen
by the kth unit to enter the network. The second type is node centered, where
the index & on @i, W/ refers to the kth unit to enter node j. The proof of
Theorem 8 uses Theorems 10 and 11 in Section 4, which characterize
functionals of sequences that preserve the asymptotic stationarity property.
These theorems play a role for asymptotic stationarity that is similar to the
role of continuous-mapping principles for weak convergence of probability
measures. They are useful for establishing asymptotic stationarity in a
variety of contexts.

Theorem 8 for one node extends the results of Borovkov (1984, 1987) and
Foss (1991) as well as those of Loynes (1962). The first two authors assume
conditions on the data (U,, V,) that imply a coupling property, from which the
limits follow. Coupling, however, is considerably stronger than asymptotic
stationarity. In particular, Theorem 4.3.3 in Berbee (1979) says coupling is
equivalent to asymptotic stationarity in mean in total variation, which im-
plies asymptotic stationarity [Szczotka (1986)]. Here is another way of de-
scribing the difference between results based on coupling and our results
based on asymptotic stationarity. Under coupling, one usually obtains a
convergence in total variation of random elements Z, — Z, and then ¢(Z,)
automatically converges in total variation and hence in distribution to ¢(Z,)
for “any measurable function” ¢. On the other hand, if Z, is asymptotically
stationary with limit Z, then ¢(Z,) does not automatically converge in
distribution to ¢(Z,). One needs further criteria for such convergence, as we
establish in Section 4.

Kelly and Szczotka (1990) present an analogue of Theorem 8 for a tandem
network in which the system data is asymptotically stationary “in mean
under total variation convergence.” See Boxma (1979) and Kelly (1982) for
examples when a customer requires identical service times at the nodes. In
these strong-convergence settings, the interdeparture times automatically
satisfy the same strong mode of convergence, and so they do not involve the
extra analysis with asymptotically stationary functionals described in Section
4 that is needed for the weaker convergence in distribution. Other results on
the stability of queue lengths in networks with stationary, node-centered
system data are in Baccelli and Foss (1994). Dynamical system equations,
like the classical one above for the waiting times, are studied in Borovkov
(1984, 1987), Brandt, Franken and Lisek (1990) and Baccelli and Liu (1992).
Further applications are in Afanas’eva (1987), Baccelli and Bremaud (1994),
Baccelli and Foss (1994), Borovkov and Schassberger (1994), Foss (1991),
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Franken, Koenig, Arndt and Schmidt (1981), Kelly and Szczotka (1990),
Kalashnikov and Rachev (1990), Konszantopolos and Walrand (1990) and
Szczotka (1986).

The other main results of this study describe the limiting behavior of the
treelike network in heavy traffic. There are no stationarity or asymptotic
stationarity assumptions on the data. Section 5 contains multivariate func-
tional central limit theorems for the waiting times at the nodes when the
partial sums of the system data obey a functional limit property. We com-
ment on how to obtain similar functional limit theorems for queue lengths.
The limiting waiting time and queue length sequences are typically function-
als of a multivariate Brownian motion or, more generally, a process with
stationary increments such as a fractional Brownian motion. The latter
processes are gaining attention because ATM teletraffic data appears to
exhibit self-similar properties; see for instance Willinger, Taqqu, Leland and
Wilson (1995).

Theorem 3 in Kelly and Szczotka (1990) is a related, but more restrictive,
limit theorem for a system with stationary waiting times. Reiman (1984) and
Peterson (1991) also proved heavy traffic results for queue lengths (but not
waiting times) in open networks with Markovian-type assumptions on node
operations and routes. Konstantopoulos and Lin (1995) proved similar results
under node-centered service times whose normalized sums converge to frac-
tional Brownian motion. The limiting behavior of the waiting times in these
references under treelike routing can be characterized by our results. How to
model similar waiting times under general routing is an open problem.

The rest of this study is organized as follows. Section 2 addresses the
existence of nonstationary and stationary treelike networks. Section 3 covers
limits of waiting times and queue lengths in symptotically stationary net-
works. Section 4 characterizes functionals that preserve the asymptotic sta-
tionarity property. Heavy traffic limit theorems are in Section 5. Finally,
Sections 6-9 contain proofs of the main results.

2. Existence of nonstationary and stationary networks. This sec-
tion contains preliminaries on the existence of a general treelike network on
the entire time axis and the existence of a stationary version of it.

We shall consider a network shown in Figure 1 consisting of M nodes
labeled 1,..., M that represent service stations or processing points (e.g.,
manufacturing work stations, computers, storage areas). Discrete units repre-
senting customers (parts, data packets, messages, etc.) move through the
nodes where they are served (processed, stored temporarily, etc.). Each node
serves the units one at a time on a first-come—first-served basis and there is
unlimited space for units queueing for service. The network is in the form of a
directed tree with a single root node, hereafter called node 1, and the possible
routes of the units are all the root-to-leaf paths. That is, each unit enters the
network at node 1 and proceeds along some root-to-leaf path (or branch) and
then exits the network.
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Fic. 1. An open treelike network.

Randomness may be present in the units’ arrival times to node 1, their
routes through the network and their service times at the nodes. Assuming
the system has been operating since time —o, we let A} denote the arrival
time to node 1 of unit 2 and adopt the standard conventions that % is in the
set of all integers Z,

) o <A <Al <0<Al <Al < -+ and

M Al > +owplask > +o.

The dependency in these arrival times is arbitrary: there may be multiple
types of units, batch arrivals, arrivals depending the routing and services,
and so on.

We denote the route that unit 2 takes through the network by the random
vector R, = (R},..., RY), where R} =1 or 0 according to whether or not
unit % visits node j. For instance, R_g =(1,1,0,1,0,0,0, 1,0,0) means that
unit —8 visits nodes 1, 2,4, 8, which is necessarily a root-to-leaf path. The
routes may be determined by a variety of mechanisms and may depend on
the arrival and service times. A standard example is that each route R, is a
realization of a one-node-at-a-time routing process in which unit &’s route is
a finite path of a Markov chain. The routes may also be determined by a
unit’s “type,” where all the units of a given type follow the same deterministic
(or random) route and the “type labels” on the units are generated by some
random phenomenon. We make the innocuous assumption that, for each
node j,

+
(2) YRj=» wp.l.
k=0

This ensures that an infinite stream of units visits j, and that, for each unit
k, there are units before and after it that visit j. Denote the random
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subsequence of units that visit node j by
- <K/, <K{|<0<K{<Kj< .

For instance, K} is the third unit after unit 0 that visits node j. We let J,
denote the set of nodes in the network that are reachable in s steps or less: a
unit entering any j € J, \ J,_; will have visited s — 1 nodes previously.

We denote the service times of unit 2 by the random vector V, =
(V},...,VM), where Vj = service time of unit k& at node j if R =1 and
VJ/ = 0 if R{ = 0. This service time does not include the time unit £ waits in
the queue at node j for its service. When unit £ arrives at node j and there
are no units there, its goes into service immediately; otherwise, it joins the
queue and goes into service when the service time of the unit ahead of it
ends. Upon finishing its service at node j, the unit proceeds immediately to
the next node on its route, or exits the network if node j is a leaf node. The
service times have arbitrary dependencies and they may depend on the
service mechanism, the arrival times, the unit’s type, or the unit’s route. This
includes the classic example that the service times at a node are independent
with a common distribution depending on the node, or the dependency
condition that a unit may require the same duration of service at each node it
visits. At this point, we make no assumptions regarding the dependency
among these variables; they will be made in the theorem statements.

Our interest is in describing the interarrival times Uy, waiting times W/
and quantities (or queue lengths) @/ that unit % “sees” at node j. Namely, if
unit & does visit node j (R} = 1), then we have the following:

U/ = the time between the arrival of unit % at node j and the next unit that
visits j.

W/ = the length of time unit 2 waits in the queue at node j for its service.

Q] = the number of units at node j “just before” unit % arrives there
(excluding unit £ but including the units that might exit exactly when

k arrives).
If unit & does not visit node j, then Uj = W/ = @] = 0. We will use the
vector notation U, = (U},...,UM) and define W, and Q, similarly for each

k € Z. In summary, the basic data and the system variables for this treelike
service system are, respectively,

§"' = {52 = (Rk,Ukl,Vk): k € Z}, g = {gk = (Rk’Uk’Vk>Wk’Qk): ke Z}'

We sometimes consider the system on only the positive time axis with
arrival times 0 <A, <A, < --- . The other system variables U/, V/,... are
defined as above only for & > 0. We call this the positive-time system to
distinguish it from the system on the entire time axis. The preceding notation
is customer-centered because the index k on the variables Qf, W/, ... refers
to the kth unit to enter the network. For some applications, however, it is
natural to use node-centered indices where the & refers to the kth unit to
enter node j. We will present our main results with the customer-centered
notation and point out how they also apply with node-centered indices.
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We are now ready to begin our analysis. The following two results, which
are the framework for our later analysis, show how the waiting times and
queue lengths of the network are determined from the system data by
standard recursive equations. First, consider the positive-time system. With
no loss of generality, assume the network is initially empty so that the first
customer to enter (unit K;) has no wait. Otherwise, one would have to specify
additional assumptions on the units initially in the system (where they are
and their residual waiting or service times). Another needed random index is

vj = min{l > k: R{ = 1},
which is the next unit following unit k that visits j. We also let j~ denote the
(unique) node in the tree preceding node j. Finally, we let I(S) denote the

indicator function that equals 1 or 0 according as the statement S is true or
false.

LEMMA 1. For the positive-time network, the interarrival times, waiting
times and queue lengths are determined recursively as follows: for each s > 1,
jed,Nd, ,and k > K],

(3) U} is prespecified,

V£,1

(4) U/ =Ri| LU~ +Vj -V + W —ij‘), =2,
1=k

b

k-1
(5) W/ = R] max [ Y (V7 -U/)
O<l<k-1 i=h—1

k-1 k-1
©  i-r{ TRl 1w vz % u)
=1 i=k—1
For the proof, see Section 6.
We now consider the existence of the network process on the entire time
axis. To define such a process, it suffices to find waiting times W/ that satisfy

the dynamical system equation (31) derived in Section 6, which is

(7) W{ = R{ max{0,Vj — Uj + Wj},

where S is the last unit before % to enter node j (this is W, ; = max{0,V, —
U, + W} for a single node). The other variables U/ and @} are then automat-
ically determined by the system equations (4) and (6). Accordingly, we say
that the network process exists on the entire time axis if there exist “finite”
waiting times W/ and queue lengths that satisfy the dynamics (7) and (6) and
that W} is the minimal solution of (7) (for each j, if Xj is any other solution
then W/ < Xj w.p.D).

The following result says the network process exists under the mild
condition that the service capacity has been adequate to handle all the
customers as one looks back to the “beginning of time” (the cumulative
interarrival times minus the cumulative service times of the last n units
tends to infinity as n — «).
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THEOREM 2. For the network process on the entire time axis, assume that,
for each j,

0
(8) (U -V/)»o wplask—> —x,
1=k

where U}, for k € Z, are determined recursively by (4) in terms of variables
for the predecessor j~ obtained in previous iterations. Then the network
process exists with interarrival times, waiting times and queue lengths deter-
mined recursively for each s > 1, je J, N\ J,_; and k € Z by (3), (4),

9) W) - R;;sup[ Y (vi- Ux‘)}

120 |i=k—1

and (6) with k — 1 in its first sum replaced by cc.

For the proof, see Section 6.

We now consider stationary systems. Recall that a sequence of random
elements X = {X,: k € 7} is stationary if X =, 6X, where 6 is the usual shift
operator ("X = {X,, ,: k € Z}). This stationary sequence is ergodic if P{X
B} =0 or 1 for each B such that {X € B} = {6X € B}. Similar definitions
apply to sequences indexed by positive integers.

The following is the Loynes (1962) result for tandem nodes extended to
treelike networks; the difference is the need here for the added conditioning
on a unit’s route. It says that if the data sequence &' is stationary and
ergodic and the expected service time is less than the expected interarrival
time (10), then the entire system £ is stationary. This result is a consequence
of the preceding theorem. Here P; and E; denote the conditional probability
and expectation of &' conditioned on the event that unit 0 enters node j. This
P; is also the Palm probability of £' conditioned on R} = 1[e.g., see Brandt,
Franken and Lisek (1990) or Franken, Koenig, Arndt and Schmidt (1981)].
The assumption P{R} = 1} > 0 ensures that units actually visit node j;
otherwise, the node is superfluous.

THEOREM 3. Suppose the system data £' is a stationary, ergodic sequence
that satisfies P(R} = 1} > 0 and

Ki{-1

(10) EVi<E| ¥ U!| <», j=1,...,M.
k=0

Then the network process exists and the system variables § are determined as
in Theorem 2. Furthermore, § is stationary, ergodic and

K{-1

(11) E(U)) =E| ¥ U, Jj=1,...,M.
k=0

For the proof, see Section 7.
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The rest of this section contains further observations about stationary
network processes. Does the stationarity of the system variables &, (for all
the units) also ensure the stationarity of the system variables for a substream
of units that visit a certain node or a subset of nodes? No and yes. Here is an
explanation.

Consider any subset of nodes ¥ {1,..., M}. Let K;  denote the kth unit
that visits . and define the indices & such that -+ < K7, <Ky <0<
K{ < -+ . For instance, K; is the third unit “after” unit 0 that visits .%.
Then the #sector variables are £ = (R}, Uy, V", W,,Q;), k € Z, where
R} = (Rf;: j €.%) and the rest of the vectors are defined similarly. Is £€” a
stationary sequence when the entire system § is? No. But it is stationary
under the conditional probability that an entering unit visits .%.

THEOREM 4. If the entire system & is stationary and ergodic, then the
Fsector £ is stationary and ergodic under the Palm probability of & condi-
tioned that unit 0 visits .%.

This result is an immediate consequence of thg following well-known
property of Palm probabilities applied to &; = ¢(0%7 &), where ¢ is a deter-
ministic function.

LEmMMA 5. Suppose {X,: k € Z} is a stationary sequence and -+ < K_; <
K,<0<K, < - are random indices such that §%X+X € B for some fixed set
B. Then the sequence Y = {0%:X: k € Z} is stationary under the Palm proba-
bility P, of X conditioned that K, = 0. If, in addition, X is ergodic, then Y is
also ergodic under P,.

We have been discussing the stationarity of the network system with
respect to the sequence of units that enter it, that is, stationarity over shifts
in the unit labels. How does this relate to the stationarity of the system in the
continuous-time parameter ¢? Here are some insights on this.

The basic system data {(A},R,,V,): k € Z} is stationary in continuous
time under its probability measure P if its distribution is invariant under
any shift in the time axis; the distribution of {(A} — ¢,R,,V,): k € 7} is the
same for each ¢ € R. Ergodicity of the data in continuous time is also defined
in the obvious way. In this setting, the system data is sometimes called a
stationary, ergodic marked point process—the A}’s are points in time and
(R*,V,) is a “mark” associated with A}. Let P° denote the Palm probability
of the probability P of the data “conditioned” that a unit enters the network
at node 1 at time 0.

THEOREM 6. If the basic system data is stationary and ergodic in continu-
ous time, then the sequence {(U},R,,V,): k € 7} is stationary and ergodic
under P° (with respect to shifts in the labels k). If, in addition, (10) holds
under the probability measure P°, then the entire system sequence & is
stationary and ergodic under P° (with respect to shifts in the labels k).
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The first assertion follows by a standard property of continuous-time Palm
probabilities (similar to the discrete-time Lemma 5), and the second assertion
follows by Theorem 3.

Next, let us consider the continuous-time processes Q(t) = (Q(¢),

LQM(t) and W(¢) = (Wi(2), ..., WY(¢)) of queue lengths and waiting times
seen by the units that arrive at the nodes at or after time ¢. The process
Q,W) ={(Q(),W()): t € R} is stationary in continuous time under P if the
distribution of 6“(Q, W) = {(Q(¢ + u), W(¢ + u)): ¢t € R} is independent of wu.

THEOREM 7. If the system data is stationary in continuous time, then
(Q, W) is stationary in continuous time.

For the proof, see Section 7.

3. Convergence of waiting times and queue lengths. We now con-
sider nonstationary networks and address the following issues. Under what
conditions do the queue length and waiting time vectors Q,, W, for a nonsta-
tionary network converge in distribution as k2 — «? If they do, are their
limits equal in distribution to queue lengths and waiting times for a station-
ary version of the network process? We answer these questions by establish-
ing that if the system data is asymptotically stationary and some technical
conditions hold, then Q,, W, are asymptotically stationary and hence con-
verge in distribution. Furthermore, their limits are equal in distribution to
the queue lengths and waiting times for a stationary network whose system
data is equal in distribution to the limits of the original system data. This
major result requires several preliminary results on asymptotic stationarity
in Section 4.

We will use the following terminology. A sequence of random elements

={X,,: k € 7} is_asymptotically stationary (in the sense of weak conver-
gence) if "X —, X as n — o for some sequence X. In particular, X, >4 X

as n — o, This hmlt X is stationary, since "X g X and 67X g X
imply 0X = = X. Hereafter we use a tilde over a sequence to denote that 1t is
such a statlonary limit. The preceding notions are defined similarly for
one-sided sequences X = {X,: £ > 0}. Szczotka (1986) discusses details of this
(weak) asymptotic stationarity and applies it to obtain limiting distributions
of general queueing systems. He also discusses the convergence of "X to X
for five other stronger modes of convergence, including convergence in total
variation and strong convergence in mean. The family of (weak) asymptotic
stationary sequences is rather large; it contains most of the standard se-
quences that have limiting distributions, such as Markov chains, regenera-
tive or semistationary sequences, periodic sequences and it even contains
asymptotically stationary sequences in the five other convergence modes. Our
results apply (with slight differences) to asymptotic stationarity under these
other modes of convergence as well, but we will not give details on this.
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We are now ready for our main result. It applies to the network on the
entire time axis as well as the positive-time system, but we will state it only
for the latter (more interesting) case. It says that if the system data &' is
asymptotically stationary, the service capacity is adequate (10) and some
technical continuous-mapping conditions hold (12)-(14), then the system & is
asymptotically stationary.

THEOREM 8. Suppose the system data &' is asymptotically stationary and

its stationary limit éT =R, ULV) is ergodic and satisfies the hypotheses of
Theorem 3. In addition, assume that, for each j and & > 0,

8}=0,

=0 foreachn >1,

n—1

sup Y. (Vi - ujl)| >

n'<l<n—1k=n-1

(12) lim lim supP{

n' - w©

n— o
Ki-1

(13) PA\W{+Vi= Y Ul

(14) hm lim sup P =0.

!>

R'r]-zfl = R{z = 17 anfl + Vrlzjfl = Zi:IUrgfia
forsomel e {n' +1,...,n}

n—ow

Then § is asymptotically stationary and its stationary limit £ (on the entire
time axis) is ergodic. Moreover, the variables U,W,Q for the limit § are
functions of the data &' as in Theorem 2.

For the proof, see Section 8.

REMARKS. (a) From Theorem 11, it follows that (12) is also a necessary
condition for the asymptotic stationarity of the waiting time sequence. Condi-
tion (14) plays a similar role for the queue length sequence.

(b) Conditions (13) and (14) are not needed in the proof of Theorem 8 to
obtain the asymptotic stationarity of the waiting time vector; they are only
needed for the asymptotic stationarity of the queue lengths. In other words,
Theorem 8 holds without these conditions and without reference to queue
lengths.

(c) Condition (13) is a natural condition that simply rules out the possibil-
ity of having arrivals and departures at the same time.

ExamMpPLE 9 (Single service station). Consider Theorem 8 for a single
service station whose interarrival and service time sequence {(U,,V,): k > 0}
is asymptotically stationary and its stationary limit ((U,,V,): k e} is er-
godic and satisfies EV, < EU,. If (12) holds, then (U, V,,W,): k =0} is
asymptotically stationary and its stationary limit {(U,,V,,W,): k € Z} is
ergodic, where
k=1 ;

Wk=sup[ Y (Vﬂ—Uf)}, keZ.
i=k—1
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If, in addition, (14) is satisfied without the R’s and j’s and
n—1
P{WO+VO= D Uk}=0, n>1,
k=0

then {(U,,V,,W,,Q,): k > 0} is asymptotically stationary and its stationary
limit {(TU,, V,, W,, Qk): k € 7} is ergodic, where

o k-1
Q, = ZI(Wkl"‘VklZ ) Ul)a keZ.
-1 i=k—1

Results for node-centered indices. The treelike network with node-centered
indices has system data and system variables

g, = (D,,U0;,V,) and &, =(D,,U,,V,,W,,Q,), kel.

The index % now refers to the k2th unit served at node j (instead of the kth
unit to enter the network), and Dj is such that the kth unit served at node j
is the (k + D{)th unit served at the previous node j~, and D} = 0. This
“difference” vector D,, which takes the place of the routing vector R, is the
vehicle for relating the customer indices at the nodes. In particular, the kth
unit to be served at node j has the index v,(i, j) at any preceding node i,
where these indices are defined by vy,(j, j) = £ and the backward recursion

Y (i7,7) = (i, ) + D} ;)

for each i on the branch from node 1 to j.

The information in this node-centered system is simply a reindexing of the
information of the customer-centered system (somewhat like a randomly
indexed subsequence X, being related to the sequence X, ). Consequently,
all the preceding results and those in the next section apply to this setting. In
particular, by obvious relabeling of information (requiring no analysis),
Lemma 1 and Theorems 2-8 hold with the following minor changes.

1. The Rj’s equal 1.
2. Expression (5) is replaced by
Ul = Z »Ulg+l + Vk]Jr1+D£+1 - ij+D£ + ng+1+D£+1 - ng+D-,i'
1=Dj,

3. The sum YKi;! in Theorem 3 is replaced by 3,1,.a,, and a similar
replacement is done in expressions (19) and (20) in Theorem 8.

4. Functionals that preserve asymptotic stationarity. The continu-
ous-mapping principle is a useful tool for establishing weak convergence of
probability measures [Billingsley (1968)]. This section contains similar princi-
ples for establishing asymptotic stationarity. They are of interest by them-
selves and are the basis for proving Theorem 8.
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Throughout this section, we assume that X = {X,: £ € Z} is an asymptoti-
cally stationary sequence of random elements in a Polish space E and its
limit is X. We consider the sequence

Y, = ¢k(0kx)> kelZ,

where ¢, is a measurable function from E’ to a Polish space E'. We say that
Y is an asymptotically stationary functional of X if

(6"X,60"Y) >, (X,Y) and Y, =¢(6'X), kez,

where ¢ is a measurable function from E? to E'. This says that (X,Y) is
asymptotically stationary and Y is a stationary functional of X. The next two
theorems give criteria for establishing the asymptotic stationarity of this Y.

THEOREM 10. Suppose Xe &y w.p.1, where
%, = {x: ¢,(x,) = ¢$(x) forany x, — x},
which is the set of points at which ¢, converges “continuously” to ¢. Then Y is

an asymptotically stationary functional of X.

PrROOF. Define #,(x) = (x,{¢,,, (0*x): k € Z}) and
%, = {x: ¥,(x,) = ¥(x) = (x,{¢(0*%): k € Z}) for any x,, - x].

A little thought shows &, = %, and so Xe &, w.p.1. Then by the “gener-
alized” continuous mapping principle [Theorem 5.5 in Billingsley (1968)], we
have ("X, 6"Y) = ¢,(0"X) >, ¢+X) = X,Y). O

The next result is a more general criterion for asymptotic stationary
functionals. Here d and d' are metrics on the respective spaces £ and E’.

THEOREM 11. Suppose
(15) $.(X) > $(X) asn -,
(16) P{f( is in the continuity set of (,bk} =1, kel.

Then Y is an asymptotic stationary functional of X if and only if, for any
>0,
(17) lim lim sup P{d'(¢, (0"X), ¢,(6"X)) > &} = 0.

n'-w 5 5

For the proof, see Section 8.

The preceding discussion of asymptotically stationarity for “two-sided”
sequences also applies to “one-sided” sequences X = {X,: k£ > 0}. Here the
limit of "X = (X,, X,,,,...) is a one-sided stationary sequence X. This X
can be extended as usual to a two-sided stationary sequence, which we also
denote by X.
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5. Treelike networks in heavy traffic. This section characterizes the
asymptotic behavior of the treelike network in heavy traffic. The results are
multivariate functional central limit theorems for waiting times. One can
obtain analogous limit theorems for the joint convergence of queue lengths
and waiting times using the approach in Serfozo, Szczotka and Topolski
(1994), which also covers a novel relationship between the two sequences. But
we will confine the following discussion only to waiting times.

Consider the network on the positive time axis. Recall that Kj is the label
of the kth unit that enters node j or unit k’s local rank at j. We change
notation slightly in this section and let U/,V/,W/,... denote the system
variables associated with unit K} (e.g., W/ is now the waiting time of the kth
entry to j instead of the kth entry to 1 as before; this W} is WIQ in the old
notation). This new notation eliminates those system variables for a node
that were previously set to zero whenever units did not visit the node.

We shall consider the network on the positive time axis under the assump-
tion that it also depends on another parameter n that indirectly represents
the underlying “traffic intensity.” The intensity increases as n increases,
which causes the waiting times and queue lengths to increase. For simplicity,
the parameter n is suppressed from the system variables. Our aim is to
describe the asymptotic behavior of the waiting times W/ as both &k and n
tend to o.

Our analysis involves the weak convergence of random elements in the
space D = [0, ) of real-valued functions on [0, ) that are right-continuous
with left-hand limits, and D is endowed with the Skorohod topology. We will
characterize the convergence of the waiting times via the waiting time
processes

W/(t) = b, "Wy, ., t>0,

where [a] is the integer part of a and a,, b, are constants that converge to
infinity. These waiting times are node-oriented waiting times in that the
subscript £ (or [a,t]) refers to the kth unit to enter node j. Later we consider
the slightly different route-oriented waiting times where k& refers to the kth
unit that traverses a certain route.

The following result describes the convergence of the waiting time pro-
cesses in terms of the convergence of the processes

[a,t] [a,t]
Xi(t) =b,:1( > v,g—A;gw), W) = LR, t=0.
k=1 k=1

The X; represents the difference in partial sums of the service times at node
J and interarrival times at node 1 for those units that visit j, and 7/ is the
normalized number of visits of units to node j. The “heavy traffic” condition
for the network is implicit in assumption (18) on the convergence of the X/’s.
We will use the mapping 2 from D to D defined by

h(x)(t) = sup(x(t) —x(s)), t>0.

s<t
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Also, x o y(¢) = x(y(¢)) is the composition of x and y in D and, if x € D has
nondecreasing paths, its inverse is x(¢) = inf{s: x(s) > t}. Finally, we say
that a random element Z of D has stochastically continuous paths if
PiZit-)=Z@W} =1, teR,.

THEOREM 12. Suppose
(18) (Xi,7):1<j<M)—,{(X/,7):1<j<M)

(19) b,V 55,0, 1<j<M,

where each X’ has stochastically continuous paths and each v/ has continu-
ous strictly increasing paths. Then
(20) (X, Wi, n]):1<j<M} -, {(X/,W/,77):1<j <M},

no’ n

where the W/ are defined recursively by

(21) Wi=hlX/ - ¥ Wierio/|.
i€B;-

and B;- is the branch of nodes from 1 to j~ (when j = 1, the summation term
is 0). Also, each W' has stochastically continuous paths.

For the proof, see Section 9.

Note that assumption (18) does not specify the form of the limiting process
(X1,..., X™). This process may be a Brownian motion when the system has
short range dependencies, or it might be a fractional Brownian motion or
other process with stationary increments when the system has long range
dependencies. The latter types of limits are becoming of interest in modeling
ATM networks; see for instance Konstantopoulos and Lin (1995) and Kon-
stantopoulos and Walrand (1990).

The waiting times in Theorem 12 were node indexed in that they were for
the kth entries into the nodes. We now consider route-indexed waiting times
indexed by the customers that travel certain routes. Let ¥ denote the set of
leaf nodes in the network (the last nodes where the units exit the network).
For each I €.%, the kth unit that traverses the branch of nodes B, from 1 to /
is unit K! and its local rank at node j € B, is y, = kalRf Then the waiting
time of this unit at node j is Wy’ We also consider the waiting times of an
arbitrary unit entering the network. Let L, denote the last node (a leaf of the
tree) that the kth unit entering the network visits. This kth unit has the
local rank y, = ¥¥,_,RJ. at node j € B,, and its waiting time at j is Wka

COROLLARY 13. (1) If the hypotheses of Theorem 12 hold, then the normal-
ized waiting times of the units traversing the branches satisfy

(22) {(b,jlWyJ[‘an.]:j € Bl): l ef/} -, {(Wforfo%l:j €B)):1 EfZ},

where W/ are given by (21). Furthermore, the normalized sojourn times of the
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units traversing the branches satisfy

(23) {bnl Y (Wyf[‘ + Vi, ]) le_?} —)9{ Y Wfoffo%l:le_f/}.

JEB; JjEB,
(i) If (19) holds and, for any v, — o,
(L, {(X,7): 1 <j < M}) >, (L, {(X/,77): 1 < j < M})

(24)
in{1,..., M} x D*,

then the normalized waiting times for the units entering the network satisfy

(25) {b; 1w

Han1” J < BL[“n']} —g (Werlije BL}'

For the proof, see Section 9.

The preceding results apply to a variety of contexts in which the network
data satisfies the heavy-traffic functional limit property (18). An elementary
illustration is below. First, a preliminary observation. Suppose Y, ;, = (Y,
je€dJ), k>1, are independent identically distributed random vectors that
satisfy

supEIYnjy — wil?T? <o, lim Cov(Y,) , Y/ ) = o

ijo
n—w J

where ) = EY),, g,;> 0 and &> 0. Then, as a variation of a result in
Prokhorov (1956), the vector process n /2 Z"”' (Y, |u.n) converges in dis-
tribution to a Wiener process 7' = (77: j € J ) w1th covarlance matrix o;;. We
say that such a sequence Y, ,, k > 1, satisfies a FCLT(7) if it satisfies the

preceding conditions.

ExamPLE 14 (Route-dependent services). Suppose the network data satis-
fies the following conditions. Here the heavy-traffic parameter n is not
suppressed.

(A1) The “arrival-rate process” 7,/(t) = n~'X}*} R/ , converges in distribu-
tion as n — « to the function A;Z, where A; is a pos1t1ve constant.

(A2) The interarrival times {U 1 k> 1} satisfy a FCLT(7°) and they are
independent of the service times.

(A3) The service times {V;/',: j € B,, | €%} satisfy a FCLT(?), where V',
denotes the service time of the kth arrival to node J that exits the network
from node /.

(A4) The limit ¢; = lim n'? [AEU} | — X, c oA 'EVYY ] exists.

n— o

Under these conditions, the waiting time processes (n~'/*W/ ,,;: 1 <j < m)
converge in dlstrlbutlon to the processes (W/: 1 <j < m) that are determined
recursively by W/ = h(X/ — Licg W' {0F A7 1.), where

(26) X/(t) = X (Nt) - 0N ) -
le?

cjt,
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and the Weiner processes 77/’ are independent of 7. This is an application
of Theorem 12 and its proof is in Section 9. This result readily extends to
stationary service times instead of independent ones as in [Serfozo, Szczotka
and Topolski (1994)] or to other types of dependencies on the data.

6. Proofs of expressions for system variables. This section contains
the proofs of expressions (4)—(6) for the system variables as functions of the
data for the positive-time system (Lemma 1) and for the system on the entire
time axis (Theorem 2).

Proor oF LEMMA 1. Consider a fixed state s and a node j € J, \ J,_;
that is reachable in exactly s steps. If R} = 0, then (4)—(6) are automatically
true. Therefore we only consider the case R{ = 1. To formulate the interar-
rival times, let A% ; denote the time at which the first unit enters node j and
define

-1
(27) A=A+ L UL k=K,
i=K]

which is the arrival time of unit %2 to node j. Also note that

vi—1

(28) Al -Af - X U
=k

Now, the arrival time Aj for j > 2 is equal to its departure time from node
Jj~, and so

(29) A=A +W/ +V/.
In light of this, it is clear that, if R} = 1, then
(30) Ul = Rj(Aj; — A}).

Applying (29) to both of these arrival times and using (28) yields (4). Next,
note that when R} = 1, by the definition of waiting times and A} = A} + Uj
from (29), we have
W/ = R] max{0, (departure time from j of unit g) — A/}
31 _ ) ) )
(31) = R max{0,V§ — Uj + W/},

where 8 = max{l/ < k: RJ = 1} is the last unit before & to enter node j. Using
(31) in an induction argument proves (5). Finally, by the definition of queue
lengths, we have

E-1
Q= L I(R] =1 AL, + W, + V], =A4]).
=1

Here unit & — [ is counted if it enters j and departs at or after Aj. Applying
(27) to Aj yields (6). O



558 K.-H. CHANG, R. SERFOZO AND W. SZCZOTKA

The following is the proof of the existence of the network process on the
entire time axis.

ProOOF OF THEOREM 2. The proof will be by induction on the stage parame-
ter s. The arguments for s = 1 and a general s are essentially the same, and
so we present the argument only for the latter case. Accordingly, assume the
assertion is true for some s — 1 > 1 and that J,\ J,_; is not empty (other-
wise the induction is already complete; recall that s < M). Similarly to the
positive-time network, expression (4) determines U/ from previously defined
variables, which exist under the induction hypothesis. Next, note that Wy
defined by (9) is finite for each & because of assumption (8). If R} = 0, then
(9) is true. If R} = 1, then W/ given by (9) must satisfy the system dynamics
(31). But this is true since
B-1

X

i=g—1

W/ = Rjmax

O,‘/Bj—l[,gj+?ug)l

(W—wﬂ

= R max{0,V{ — Uj + Wj}.
Thus, the waiting times are finite and are determined by (9) for j € J, \ J,_;.
Furthermore, arguing as in the proof of Lemma 1 of Loynes (1962), one can
show that W} is the minimal solution of (31).
Similarly to the positive-time network, expression (6) with 2 — 1 in the

first sum replaced by « defines the queue lengths @}, and they will be finite
if, for each k&,

(32) { = lim sup

r— —ow

E-1
Wi+Vvi— Y UZJ) = —o  w.p.l.

Using the representation above for W/, and letting S, = Y- X(V/ — U/), we
have

r—1
{ = limsup{R{sup[ Y (VI -UY)

k-1
rvi- S o)

ro —ow 120 | i=r—1
k-1
< limsupsup|S,_,— Y, V/| < limsup supS,
r->—o [>0 i=r+1 r->—«o [l<r
= limsupS, = -~  w.p.l

r— —o
The last line follows because sup, _, S; is decreasingas r » —»and S, » —»
w.p.1. by the hypothesis (8). This proves (32), which completes the induction
step for s. O

7. Proofs of stationarity results. This section contains the proofs of
Theorems 3 and 7 for stationary systems.

We will use the property that certain functions of stationary ergodic
processes are also stationary and ergodic. This hereditary property is an
immediate consequence of the definitions of stationarity and ergodicity.
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LeEmMMA 15. Suppose{X,: k € 7} is a stationary sequence and Y, = ¢(6*X),
k € Z, where ¢ is a measurable function. Then ((X,,Y,): k € 7} is stationary,
and it is also ergodic when X is.

We will call a sequence Y as in Lemma 15 a stationary functional of X.
This concept is transitive in the following sense.

LEmma 16. If Y is a stationary functional of X and Z is a stationary
functional of X,Y), then Z is a stationary functional of X.

PrOOF. Suppose ¢,y are the measurable functions such that Y, =
$(0"X), Z, = ¢(6*(X,Y)). Then Z, = f(6*X), where f(x) = (x,{p(6*x)}) is
clearly measurable. This proves the assertion. O

We are now ready to prove the Loynes-type result on the existence of
stationary networks.

PrROOF OF THEOREM 3. For each stage s > 1, define U(s) = (U’: j € J,),
and define V(s), W(s), Q(s) similarly. Keep in mind that s is not a time index
—Theorems 7 and 12 use W(¢) to denote waiting time processes where ¢ is a
time parameter. To prove Theorem 3, it suffices by Lemma 15 to show that
U(s), W(s), Q(s) are finite stationary functionals of the data &' and (11) holds
for each j € J,. We will prove this statement by induction on s. Since the
argument for s = 1 is essentially the same as that for a general s, we will
present only the latter (more interesting) case.

Accordingly, assume the induction hypothesis is true for some s — 1 > 1.
Suppose J, \ J,_; is not empty; otherwise the induction is already complete.
It follows from (4) that we can write

(33) U,(s) = (6" (R, U(s — 1), V(s — 1), W(s — 1))),
where f = (f;: j € J,), k{(x) = min{l > 0: r/ = 1} and
fi(r,u,v,w)

) Ug s ifj=1,
(34 J
B{-1
ril X uf +voli, — vl +wl,, —wi |, ifjed N {1}
1=0

Here r,u,v,w are in the space of realizations of (R,U(s — 1),V(s — 1),

W(s — 1)). This random vector is a stationary functional of &" by the induc-

tion hypothesis, and an easy check shows that f is a measurable function.

Thus, Lemmas 15 and 16 ensure that U(s) is a stationary functional of &'.

Also, U(s) is clearly finite since each term on the right side of (33) is finite.
Next, observe that, similarly to (33), we can write

W.(s) =g(0*(R,U(s),V(s))),  Qu(s) = k(6" (R,U(s),V(s),W(s))),
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where g =(g;: j€J), h=(h;: j€J) and g; and h; are the functions
defined on the right sides of equations (5) and (6), respectively. Clearly g and
h are measurable. Then Lemma 15 ensures that W(s) is a stationary func-
tional of (R, U(s), V(s)). The latter is a stationary functional of &', and so
Lemma 16 ensures that W(s) is a stationary functional of &'. Similarly, Q(s)
is a stationary functional of &£. The finiteness of W(s) and Q(s) will be
established shortly.

We now prove (11) for j € J,. Consider a fixed j and let U/, V/, W/ denote
interarrival, service and waiting times of unit K} (the k-unit that actually
visits node j). Then from (4),

(35) Oi=Tf + Vi~V + Wiy~ Wi
Iterating this on j~ and all the other nodes back to node 1, it follows that
O =0+ X (Vi = Vi + Wiy = W),
leB;-

where B;- is the set of nodes comprising the 1-toj~ branch. Summing the

last equation on %k, we get
(36) LU= LU+,
k=1 k=1

where

Since {(R,, U,(s),V,(s), W,(s)): k € 7} is stationary and ergodic, it follows by
Lemma 5 that {(U,(s), V.(s), W,(s)): i € Z} is stationary and ergodic under the
Palm probability P;. Therefore, by the ergodic theorem for Palm probabilities,
we have the following convergences w.p.1 under P;;

n' YU - E(Uj), n'g -0,

i=1

nl(Zl‘fHa

i=1

- Ej(ﬁol).

Now because of the equality (36), the preceding first and third limits must be
equal, which proves (11) (here Kj = 0 and Uj = Uj w.p.1 under P)).

It remains to prove that W(s) and Q(s) are finite. They will be finite by
Theorem 2, provided that (8) holds for j € J,. Now, the ergodic theorem
under P; and conditions (10), (11) imply that

0
nt Y (V/-U/)— E/(V§) - E;(Uj) <0 w.p.1under P,
This limit is also true under P; see for instance, Theorem A1.3.4 of Brandt,
Franken and Lisek (1990). Thus (8) follows for j € J,. O
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The following is the proof that the queue length and waiting time pro-
cesses are stationary in continuous time if the data is.

ProOF OF THEOREM 7. First note that the quantity in the system at time ¢
is
(37) Q(t) = X QII(A}_, <t<A})
k=1
(only one of the terms in the sum is not zero). A short proof shows that
Aj = A}, + S, where S| = h;(6*(R, U, V)) for a measurable function % ;. Then
we can write

Q(t+u)=2QI(A, —u+S,<t<A, ,—u+S,).
k
A similar expression holds for the waiting time W/(y + u). From these
representations and the continuous-time stationarity of the system data, it
follows that the distribution of 0*(Q, W) is independent of u. Thus (Q, W) is
stationary in continuous time. O

8. Proofs of asymptotic stationarity results. We begin with the proof
that the network is asymptotically stationary if its data is.

Proor or THEOREM 8. For each stage s > 1, define the one-sided interar-
rival vector U(s) = {(Uj: j € J,): k > 0}, and define the service, waiting and
queue length vectors V(s), W(s), Q(s) similarly (keep in mind that s is not a
time parameter). We will show by induction that (R, U(s), V(s), W(s), Q(s)) is
asymptotically stationary for each s. Again, the argument for s = 1 is similar
to that for general s, and so we present only the latter case. To this end,
assume the induction hypothesis for s — 1 > 1 and assume J, \ J,_; is not
empty. We will prove the induction statement for s by establishing the
following properties:

(i) U(s) is an asymptotically stationary functional of (R,U(s — 1),
V(s — 1),W(s — 1));
(i) W(s) is an asymptotically stationary functional of (R, U(s), V(s));
(ii1) Q(s) is an asymptotically stationary functional of (R,U(s), V(s),
W(s)).

To prove (i), first note that, similarly to (33) for the two-sided vectors, we can
write

U,(s) =f(6*(R,U(s — 1),V(s — 1), W(s — 1))).
A straightforward proof shows that the function f= (f;: j € J,) is continu-
ous. By the induction hypothesis, we know that (R, U(s — 1), V(s — 1), W(s —
1)) is asymptotically stationary. Then to prove statement (i), it suffices by

Theorem 10 to show that the limit (R, U(s -1, V(s — 1),W(s — 1)) is in the
domain of f w.p.1. We need only check that K] < o w.p.1 for each j, which is
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equivalent to ¥;_,Rj =  w.p.1. However, this is true since this sum is the
limit in distribution as n — = of ©5_ R’ ., which equals % w.p.1. by assump-
tion (2).

Next consider statement (ii). From (5), we have W,(s) = ¢,(6*n), where
b = (¢ j €J)),

-1
(38) oite ) = rd max | (o7l
(R,,0,0), if k<0,
VTV (R, U(s),Vi(s)), ifk=0.

By the induction hypothesis, (R,U(s), V(s)) is asymptotically stationary.
Then clearly m is also asymptotically stationary and its limit is % =
(R, U(s), V(s)).

To prove statement (ii), it suffices to show that W(s) is an asymptotically
stationary functional of m. To this end, we will apply Theorem 11. Define
d)f(r u,v) by the right side of (88) with k& = . Note that ¢(q) equals
Wo(s) (W§: j € J,). By Theorem 2, the ¢(#)) will be finite if (8) holds for the
limit g But this follows by the ergodic theorem and the assumption that g
satisfies (10). It is also clear that ¢,(f) — ¢() w.p.1 as & — «. Next, note
that each ¢, is continuous, and so 7 is in the continuity set of ¢, w.p.1.
Finally, by the definition of ¢,, the condition

hm lim sup P{| ¢, (6™) — ¢,(6™)| > &} =0

n— o

is implied by assumption (12). Thus, by Theorem 11, W(s) is an asymptoti-
cally stationary functional of 7.
We now prove statement (iii) by a similar argument. From (6), we know

that Q,(s) = Us,(0%¢), where s, = (y/: j € J),

(R, U,(s),V,(s),W(s)), ifk=>0,
(R,,0,0,0,), if k <0,

E-1
(39) ll/k(PUVW)—rOZI(rl—1+wJ +UJ >Zu1
=1 i=1

By the induction hypothesis, it follows that  is asymptotically stationary
with limit { = (R, U(s), V(s), W(s)). Define ¢/(r,u, v, w) by the right side of
(39) with k& =« and let ¢ = (y7: j € J,). The y(Z) is the two-sided Q,(s) =
(Q{: J_€ J), which is finite by Theorem 2 since assumption (8) holds for the
limit £. Clearly, U, (£) = ¢({) w.p.1l as k — ». Next, note that

(40) discontinuity set of , ¢ |J U D;,,
JjeJ  l=1
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where

!

= el J J o= J

D; = {(r,u,v,w):r!, = 1+wl, +v/,= Y ul,}
i=1

Since { is stationary, the assumption (13) and Lemma 5 ensure P{{ D;}=0
for each j,l. This and (40) imply that  is in the continuity set of ¥, w.p.1.
Next, note that by the definition of ¢,, it follows that

{I$,.(67C) — 9,(6"¢)| > e} = U B/(n’,n),

jEJS

where

k
(41)

for some k € {n’ +1,...,n}},

which is the event in (14). This and (14) imply
lim limsup P{| ¥, (6"C) — ¢,(0%)| > &}

n— o

< ), lim limsupP{B’(n’,n)} = 0.

;
jed, M 7T now

Thus, by Theorem 11, Q(s) is an asymptotically stationary functional of {,
which proves statement (iii). This completes the proof of Theorem 8; the last
assertion of Theorem 8 follows from Theorem 3. O

The following is the proof of the key continuous-mapping principle for
asymptotic stationarity.

PRrOOF OF THEOREM 11. Because E and E7 are Polish spaces, the conver-
gence (0"X,0"Y) -, (X,Y), is equivalent to the finite-dimensional vector
convergence h,(0"X) — A(X), for each I, where

ho(X) = (24, busr(0°%)): k 1),

h(x) = ((x,, (0" x)): R €1)
and 7 is an interval. Then the assertion to be proved is that
h,(60"X) -, h(X) for each I, if and only if (17) holds.

First suppose that (17) holds. Let p denote the Prokhorov metric for
distributions of random elements. Then

p(ha(67X), h(X)) < p(h,(6"X), },(9"X))
+ p(ho (0"X), 1 (X)) + p(R(X), (X))

(42)
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Now the last two terms converge to 0 as n and n’ tend to » by (16), (15) and
the asymptotic stationarity of X. Also, using the metric « for convergence in
probability [see, for instance, Dudley (1968)], we have

p(h,(0"X),h,(0"X)) < a(h,(0"X),h,(0"X)) = a($,(0"X), ¢,(0"X)).
These observations and (17) yield
lim p(h,(0"X), h(X)) < lim limsupa((¢,(0"X), ¢,(0"X))) = 0.

n— o

Thus %,(6"X) —_, h(X) for each I.

Conversely, assume the last convergence statement holds. Then using the
Skorohod w.p.1 representation of convergence in distribution, one can show
[as with Theorem 1 in Szczotka (1990)] that there exist X* X* on a common
probability space such that X* =, "X, X* =, X and

(43) h,(X%) - h(X*) w.plasn — o«
Let d be the metric on E! X E'! defined by

d((x¥), (%:9)) = L [d(x1, %) + (3 52)]
Now, applying (43),
P{d'(¢,/(6"X), $,(0"X)) > &} = P{d(h,(X}), h,(X})) > ¢}
< P{d(h,(X%), h(X*)) > /2}
+ P{d(h(X*), h,(X%)) > /2}
- P{d(h, (X*), h(X*)) > &/2} asn — =,

Assumption (15) ensures that the last term also converges to 0 as n’ — .
These observations prove (17). O

9. Proofs of heavy-traffic results. The following proofs concern the
heavy-traffic limiting behavior of the waiting time process.

PrOOF OF THEOREM 12. We begin by deriving a convenient representation
for the waiting time process. By (5), we have

[a,t]-1
Wi(t) =b,' max [ Y (V/-U)

OSkS[ant]*l V=[(lnt]—k

— max (Xi(6) - Xi(k/a,)) = sup(Xi(1) - Xi(5)),

l1<k<la,t s<t
where
_ [a,t]-1
Xit) =51 X (W-U).
v=1
That is,

(44) Wi(t) = h()_(,{)(t).
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Next, we express X/ in terms of X,. Note that by the definition of arrival
times,

k-1
(45) L U/=4f -4l and A=A+ T (W + V),
y= i€B;-

where vy, = v,(i, j) = XXt |R! which is the local rank at node i of unit Kj
(the kth unit that enters j). The last sum in (45) is the time that unit Kj

spends at nodes in B;-. From these expressions,

k-1 k

T (V- U) - | D vl - viai- E (Wi,

v=1 v=1 g iEBj—
Then the stochastic process version of this equality (where % is replaced by
[a,t) is

)_(rjl(t) = X,{(t) - Z W,f(a,ZI 7[(1”75]) - brflv[{;nt]

1EB;-

+b A —b 1 ) Vi

Yia,t’
ieB- "

(46)

Finally, note that
(47) arfly[a”t] = Tni ° '?nj(t) - arfl’

since Ri; = 1 and

la,s]
(48) Ti(t) = inf{s: Y R/> ant} = a;lK[jant]H.
v=1

The limiting behavior of the preceding random processes, which is the
issue before us, is established via the following weak convergence properties
concerning A and the composition, addition and inverse mappings; see Whitt
(1980).

(W) If Z, -, Z in D and Z has stochastically continuous paths, then
MZ,) -, K(Z) and h(Z) also has stochastically continuous paths.

(i) If(Y,, Z,) -, (Y, Z)in D? and the discontinuity sets of the processes
Y and Z are disjoint w.p.1 (which is true if one has stochastically continuous
paths), then Y, + Z, -, Y + Z.

Gii) If (Z,,7,) =, (Z,7) in D? where 7, has nondecreasing paths, 7 has
continuous nondecreasing paths and Z has stochastically continuous paths,
then Z, o7, >, Zo71 and Z o 7 also has stochastically continuous paths.

(iv) If 7, », 7 in D, where 7, has nondecreasing paths and 7 has
continuous nondecreasing paths, then 7, -, 7 in D.

We are now ready to establish the asserted convergence statements. Recall
that the set of nodes in the network reachable within s steps is J,. We will
prove by induction on s that
(49) (X7, Wi, ni,70):jed,) = (X, W/, e, #):jed), s=>1,

n’‘n’’'n
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and each W/ has stochastically continuous paths. Consider this convergence
for s = 1, which is only for j = 1. From (44) and (46), we have W,! = h(X} —
b, 'V, ,+b,'A}), since B;- is the empty set. Also, under the hypotheses
(X,}, N }V}l 1 b, 1Al) -, (X',0,0). These facts along with the hypotheses
and precedmg weak convergence properties justify (49) for j = 1.

Next, suppose (49) is true for some s and consider any j & J, ;\J,,
assuming this set is nonempty—otherwise the induction is complete. Recall
the representation (44), which is W/(¢) = A(X/)Xt), where X/ is given by (46).
Applying the induction hypothesis and the other assumptions to (46) and
using the preceding weak convergence properties, it follows that

x>, X=X = ¥ Wieriod,
1EB;-
[the last three terms in (46) and the last term in (47) converge in distribution
to zero], and X’ has stochastically continuous paths. Furthermore, by a
similar argument for joint convergence,

{Xri’Wni’ Xr]z’ )_(rjl L€ Js?j € Js+1 \Js}
S (XL, WX, Xied,, jed,  \J}.
This along with W/(¢) = A(X/Xt) and the weak convergence property of h

yields (49) for s + 1. This completes the induction and the proof of Theo-
rem 12. O

ProOF OF COROLLARY 13. Similarly to (46) and (47), we have
b, "W, =Wi(5/o%l(t) —a,), b, Wi = Wiori(t).

Ylant) V[a t]

Using these representations and the result (20) in weak convergence argu-
ments like the proof of Theorem 12 yields (22) and (23). Analogously, (25)
follows since one can show, under assumptions (19) and (24), that
(L[a i (X),7): 1 < j < M}) converges jointly in distribution with {W/: 1 <
j< M . O

ProoF oF EXxAMPLE 14. Consider the process

[nt]

Xijl(t) =n"" ( Z VJ AK7 m])

Ki [nt] K{;,[nt]
(50) - Y a2y (le _EVJI ) —n vz Yy (Unl,k _ EU”1’1)
le? k=1 k=1

- nl/Z[n_ K] .wEU', — Y n 'K}, EV],
le¥
By property (iv) above, (48) and assumption (A1), it follows that the process
n'KJ (n¢] converges in distribution to the function A; 1¢. This and assump-
tion (A4) ensure that the last line in (50) converges in distribution to c;t.
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Then applying assumptions (A2) and (A3) to (50) and using property (iii) and
the convergence of n™'K} ,,, it follows that (X]: 1 <j <m) -, (X/: 1 <

Jj <m), which are defined by (26). This and assumption (Al) yield the
convergence (18). Also, assumption (A3) yields (19). Thus the assertion in
Example 14 follows by Theorem 12. O
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