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This study establishes limiting distributions for customer waiting
times and queue lengths in treelike networks with single-server nodes.
The main result characterizes the limiting distributions when the network

Ž .data interarrival times, service times and routes is ‘‘asymptotically
stationary.’’ This is a weak condition covering a variety of networks
including standard ones where the network data is stationary, regenera-
tive, Markovian, satisfies coupling, and so on. The dependencies in the
network data may be customer centered or node centered. The proof is
based on two preliminary results that are of interest by themselves. The
first one justifies the existence of the waiting time and queue length
processes on the entire time axis for any network whose service capacity
has been adequate to handle all the customers as one looks back to the
‘‘beginning of time.’’ This is a sample-path generalization of a result of
Loynes for a queueing system with stationary data. The second prelimi-
nary result is a characterization of functionals of sequences that preserve
the asymptotic stationarity property. This is somewhat analogous to con-
tinuous-mapping principles for weak convergence. We also present func-
tional central limit theorems for the waiting time processes in a network
when the partial sums of the network data obey a heavy-traffic functional
limit property. The limiting waiting time sequence is a functional of a
process that is typically a multivariate Brownian motion, or a process
with stationary increments and long range dependence such as a frac-
tional Brownian motion.

Ž1. Introduction. A major issue for a stochastic network e.g., computer,
.telecommunications or manufacturing network is to characterize the limiting

behavior of its queue lengths and the customer waiting times. There are
extensive results in this regard for networks, such as Jackson networks, that
can be analyzed by Markovian or coupling techniques. For other types of
networks with intricate dependencies, little is known about the limiting
behavior of waiting times.

The present study describes the limiting behavior of waiting times and
queue lengths in treelike networks with single-server nodes and general
dependencies on arrivals, routings and services. The dependencies are either
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Ž .based on the order of the arrivals to the network customer centered or on
Ž .the order of arrivals to each node node centered . In a treelike network, the

subsequence of customers that enter a node is determined by the order in
which customers enter the network and their routes, and the subsequence is
not affected by the service times. This property, which is the key to our
characterization of waiting times, is not satisfied in more general networks
where service times affect the subsequence of arrivals to a node. How to
model waiting times in such networks is an open problem.

Ž .A major root of this study is a classical result of Loynes 1962 . Consider a
Ž .service system that processes units or customers one at a time under a

first-in]first-out discipline. The waiting times for the successive units satisfy
� 4the recursive equation W s max 0, V y U q W , n G 0, where V is thenq1 n n n n

service time of unit n, the U is the time between the arrival of units n andn
Ž .n q 1 and W is arbitrary. Loynes showed that if U , V is a stationary,0 n n

ergodic sequence with EV - EU , then W converges in distribution to0 0 n
y1 Ž .sup Ý V y U . Moreover, the sequence of waiting times for a finitelF 0 isl i i

time horizon converges in distribution as the horizon length tends to infinity
to a stationary sequence of waiting times. This limit is a sequence of waiting
times for a ‘‘stationary version’’ of the system on the entire time axis.

Ž .Our results required a comparable result when the sequence U , V is notn n
stationary. This led us to address the issue of finding minimal conditions on
interarrival and services times under which the waiting times and queue
lengths converge in distribution, and the limits are waiting times and queue

Ž .lengths of a stationary version of the system. Our first result Theorem 2
justifies the existence of a stationary version of a treelike network process on
the entire time axis with finite waiting times under the natural condition
that the service capacity has been adequate to handle all the customers as

Žone looks back to the ‘‘beginning of time’’ the cumulative interarrival times
minus the cumulative service times of the last n units tends to infinity as

.n ª ` . This result is based only on recursive dynamical system equations
and does not require assumptions on the distribution, expectations or depen-

Ž .dencies of the network data i.e., routes, interarrival times and service times .
Ž .Theorem 2 contains a Loynes-type result Theorem 3 for the existence of a

stationary treelike network process.
Our analysis uses the relatively new notion that a sequence of random

� 4elements X : k G 0 is asymptotically stationary with respect to convergencek
� 4 Ž .in distribution if X : k G 0 the sequence shifted by n time unitskqn

˜� 4converges in distribution to some sequence X : k G 0 as n ª `. The limit-k
ing sequence is necessarily stationary. This condition guarantees that X ªn DD

X̃ , as n ª `. In other words, to prove that a sequence converges in distribu-0
tion, it suffices to show that it is asymptotically stationary. This is a very
weak condition that is satisfied by most sequences that converge in distribu-

Žtion e.g., Markov chains and many other sequences with less structure, such
. Ž .as those satisfying a coupling property . See Szczotka 1986 for a general

discussion of asymptotic stationarity.
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Our main result, Theorem 8, is for a treelike network whose data is
asymptotically stationary. It says that if the service capacity is adequate and
a few technical conditions hold, then the waiting times and queue lengths at
the nodes are asymptotically stationary and hence have limiting distribu-
tions. Furthermore, the entire network process converges in distribution to a
stationary version of the network. This theorem applies to two types of
indexing schemes for the network information. The first one is customer
centered, where Q j , W j are queue lengths and waiting times at node j seenk k
by the kth unit to enter the network. The second type is node centered, where
the index k on Q j , W j refers to the kth unit to enter node j. The proof ofk k
Theorem 8 uses Theorems 10 and 11 in Section 4, which characterize
functionals of sequences that preserve the asymptotic stationarity property.
These theorems play a role for asymptotic stationarity that is similar to the
role of continuous-mapping principles for weak convergence of probability
measures. They are useful for establishing asymptotic stationarity in a
variety of contexts.

Ž .Theorem 8 for one node extends the results of Borovkov 1984, 1987 and
Ž . Ž .Foss 1991 as well as those of Loynes 1962 . The first two authors assume

Ž .conditions on the data U , V that imply a coupling property, from which then n
limits follow. Coupling, however, is considerably stronger than asymptotic

Ž .stationarity. In particular, Theorem 4.3.3 in Berbee 1979 says coupling is
equivalent to asymptotic stationarity in mean in total variation, which im-

w Ž .xplies asymptotic stationarity Szczotka 1986 . Here is another way of de-
scribing the difference between results based on coupling and our results
based on asymptotic stationarity. Under coupling, one usually obtains a

Ž .convergence in total variation of random elements Z ª Z, and then f Zn n
Ž .automatically converges in total variation and hence in distribution to f Zn

for ‘‘any measurable function’’ f. On the other hand, if Z is asymptoticallyn
Ž .stationary with limit Z, then f Z does not automatically converge inn

Ž .distribution to f Z . One needs further criteria for such convergence, as wen
establish in Section 4.

Ž .Kelly and Szczotka 1990 present an analogue of Theorem 8 for a tandem
network in which the system data is asymptotically stationary ‘‘in mean

Ž . Ž .under total variation convergence.’’ See Boxma 1979 and Kelly 1982 for
examples when a customer requires identical service times at the nodes. In
these strong-convergence settings, the interdeparture times automatically
satisfy the same strong mode of convergence, and so they do not involve the
extra analysis with asymptotically stationary functionals described in Section
4 that is needed for the weaker convergence in distribution. Other results on
the stability of queue lengths in networks with stationary, node-centered

Ž .system data are in Baccelli and Foss 1994 . Dynamical system equations,
like the classical one above for the waiting times, are studied in Borovkov
Ž . Ž . Ž .1984, 1987 , Brandt, Franken and Lisek 1990 and Baccelli and Liu 1992 .

Ž . Ž .Further applications are in Afanas’eva 1987 , Baccelli and Bremaud 1994 ,
Ž . Ž . Ž .Baccelli and Foss 1994 , Borovkov and Schassberger 1994 , Foss 1991 ,
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Ž . Ž .Franken, Koenig, Arndt and Schmidt 1981 , Kelly and Szczotka 1990 ,
Ž . Ž .Kalashnikov and Rachev 1990 , Konszantopolos and Walrand 1990 and

Ž .Szczotka 1986 .
The other main results of this study describe the limiting behavior of the

treelike network in heavy traffic. There are no stationarity or asymptotic
stationarity assumptions on the data. Section 5 contains multivariate func-
tional central limit theorems for the waiting times at the nodes when the
partial sums of the system data obey a functional limit property. We com-
ment on how to obtain similar functional limit theorems for queue lengths.
The limiting waiting time and queue length sequences are typically function-
als of a multivariate Brownian motion or, more generally, a process with
stationary increments such as a fractional Brownian motion. The latter
processes are gaining attention because ATM teletraffic data appears to
exhibit self-similar properties; see for instance Willinger, Taqqu, Leland and

Ž .Wilson 1995 .
Ž .Theorem 3 in Kelly and Szczotka 1990 is a related, but more restrictive,

Ž .limit theorem for a system with stationary waiting times. Reiman 1984 and
Ž . ŽPeterson 1991 also proved heavy traffic results for queue lengths but not

.waiting times in open networks with Markovian-type assumptions on node
Ž .operations and routes. Konstantopoulos and Lin 1995 proved similar results

under node-centered service times whose normalized sums converge to frac-
tional Brownian motion. The limiting behavior of the waiting times in these
references under treelike routing can be characterized by our results. How to
model similar waiting times under general routing is an open problem.

The rest of this study is organized as follows. Section 2 addresses the
existence of nonstationary and stationary treelike networks. Section 3 covers
limits of waiting times and queue lengths in symptotically stationary net-
works. Section 4 characterizes functionals that preserve the asymptotic sta-
tionarity property. Heavy traffic limit theorems are in Section 5. Finally,
Sections 6]9 contain proofs of the main results.

2. Existence of nonstationary and stationary networks. This sec-
tion contains preliminaries on the existence of a general treelike network on
the entire time axis and the existence of a stationary version of it.

We shall consider a network shown in Figure 1 consisting of M nodes
Žlabeled 1, . . . , M that represent service stations or processing points e.g.,

.manufacturing work stations, computers, storage areas . Discrete units repre-
Ž .senting customers parts, data packets, messages, etc. move through the

Ž .nodes where they are served processed, stored temporarily, etc. . Each node
serves the units one at a time on a first-come]first-served basis and there is
unlimited space for units queueing for service. The network is in the form of a
directed tree with a single root node, hereafter called node 1, and the possible
routes of the units are all the root-to-leaf paths. That is, each unit enters the

Ž .network at node 1 and proceeds along some root-to-leaf path or branch and
then exits the network.
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FIG. 1. An open treelike network.

Randomness may be present in the units’ arrival times to node 1, their
routes through the network and their service times at the nodes. Assuming
the system has been operating since time y`, we let A1 denote the arrivalk
time to node 1 of unit k and adopt the standard conventions that k is in the
set of all integers Z,

??? F A1 F A1 F 0 - A1 F A1 F ??? andy1 0 1 2
1Ž .

A1 ª "` w.p.1 as k ª "`.k

The dependency in these arrival times is arbitrary: there may be multiple
types of units, batch arrivals, arrivals depending the routing and services,
and so on.

We denote the route that unit k takes through the network by the random
Ž 1 M . jvector R s R , . . . , R , where R s 1 or 0 according to whether or notk k k k

Ž .unit k visits node j. For instance, R s 1, 1, 0, 1, 0, 0, 0, 1, 0, 0 means thaty8
unit y8 visits nodes 1, 2, 4, 8, which is necessarily a root-to-leaf path. The
routes may be determined by a variety of mechanisms and may depend on
the arrival and service times. A standard example is that each route R is ak
realization of a one-node-at-a-time routing process in which unit k ’s route is
a finite path of a Markov chain. The routes may also be determined by a
unit’s ‘‘type,’’ where all the units of a given type follow the same deterministic
Ž .or random route and the ‘‘type labels’’ on the units are generated by some
random phenomenon. We make the innocuous assumption that, for each
node j,

"`
j2 R s ` w.p.1.Ž . Ý k

ks0

This ensures that an infinite stream of units visits j, and that, for each unit
k, there are units before and after it that visit j. Denote the random
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subsequence of units that visit node j by

??? F K j F K j F 0 - K j F K j F ??? .y1 0 1 2

For instance, K j is the third unit after unit 0 that visits node j. We let J3 s
denote the set of nodes in the network that are reachable in s steps or less: a
unit entering any j g J R J will have visited s y 1 nodes previously.s sy1

We denote the service times of unit k by the random vector V sk
Ž 1 M . j jV , . . . , V , where V s service time of unit k at node j if R s 1 andk k k k
V j s 0 if R j s 0. This service time does not include the time unit k waits ink k
the queue at node j for its service. When unit k arrives at node j and there
are no units there, its goes into service immediately; otherwise, it joins the
queue and goes into service when the service time of the unit ahead of it
ends. Upon finishing its service at node j, the unit proceeds immediately to
the next node on its route, or exits the network if node j is a leaf node. The
service times have arbitrary dependencies and they may depend on the
service mechanism, the arrival times, the unit’s type, or the unit’s route. This
includes the classic example that the service times at a node are independent
with a common distribution depending on the node, or the dependency
condition that a unit may require the same duration of service at each node it
visits. At this point, we make no assumptions regarding the dependency
among these variables; they will be made in the theorem statements.

Our interest is in describing the interarrival times U j, waiting times W j
k k

Ž . jand quantities or queue lengths Q that unit k ‘‘sees’’ at node j. Namely, ifk
Ž j .unit k does visit node j R s 1 , then we have the following:k

U j s the time between the arrival of unit k at node j and the next unit thatk
visits j.

W j s the length of time unit k waits in the queue at node j for its service.k
Q j s the number of units at node j ‘‘just before’’ unit k arrives therek

Žexcluding unit k but including the units that might exit exactly when
.k arrives .

If unit k does not visit node j, then U j s W j s Q j s 0. We will use thek k k
Ž 1 M .vector notation U s U , . . . , U and define W and Q similarly for eachk k k k k

k g Z. In summary, the basic data and the system variables for this treelike
service system are, respectively,

j† s j† s R , U1 , V : k g Z , j s j s R , U , V , W , Q : k g Z .� 4Ž .� 4Ž .k k k k k k k k k k

We sometimes consider the system on only the positive time axis with
arrival times 0 F A F A F ??? . The other system variables U j, V j, . . . are0 1 k k
defined as above only for k G 0. We call this the positive-time system to
distinguish it from the system on the entire time axis. The preceding notation
is customer-centered because the index k on the variables Q j , W j, . . . refersk k
to the kth unit to enter the network. For some applications, however, it is
natural to use node-centered indices where the k refers to the kth unit to
enter node j. We will present our main results with the customer-centered
notation and point out how they also apply with node-centered indices.
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We are now ready to begin our analysis. The following two results, which
are the framework for our later analysis, show how the waiting times and
queue lengths of the network are determined from the system data by
standard recursive equations. First, consider the positive-time system. With
no loss of generality, assume the network is initially empty so that the first

Ž .customer to enter unit K has no wait. Otherwise, one would have to specify1
Žadditional assumptions on the units initially in the system where they are

.and their residual waiting or service times . Another needed random index is

n j s min l ) k : R j s 1 ,� 4k l

which is the next unit following unit k that visits j. We also let jy denote the
Ž . Ž .unique node in the tree preceding node j. Finally, we let I S denote the
indicator function that equals 1 or 0 according as the statement S is true or
false.

LEMMA 1. For the positive-time network, the interarrival times, waiting
times and queue lengths are determined recursively as follows: for each s G 1,
j g J R J and k G K j,s sy1 1

3 U 1 is prespecified,Ž . k

n jy1k
j j jy jy jy jy jy

j j4 U s R U q V y V q W y W , j G 2,Ž . Ýk k l n k n kk kž /lsk

ky1
j j j j5 W s R max V y U ,Ž . Ž .Ýk k i i

0FlFky1 iskyl

ky1 ky1
j j j j j j6 Q s R I R y 1 q W q V G U .Ž . Ý Ýk k kyl kyl kyl iž /

ls1 iskyl

For the proof, see Section 6.
We now consider the existence of the network process on the entire time

axis. To define such a process, it suffices to find waiting times W j that satisfyk
Ž .the dynamical system equation 31 derived in Section 6, which is

7 W j s R j max 0, V j y U j q W j ,Ž . � 4k k b b b

Ž �where b is the last unit before k to enter node j this is W s max 0, V ynq1 n
4 . j jU q W for a single node . The other variables U and Q are then automat-n n k k

Ž . Ž .ically determined by the system equations 4 and 6 . Accordingly, we say
that the network process exists on the entire time axis if there exist ‘‘finite’’

j Ž . Ž .waiting times W and queue lengths that satisfy the dynamics 7 and 6 andk
j Ž . Ž jthat W is the minimal solution of 7 for each j, if X is any other solutionk k
j j .then W F X w.p.1 .k k

The following result says the network process exists under the mild
condition that the service capacity has been adequate to handle all the

Žcustomers as one looks back to the ‘‘beginning of time’’ the cumulative
interarrival times minus the cumulative service times of the last n units

.tends to infinity as n ª ` .
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THEOREM 2. For the network process on the entire time axis, assume that,
for each j,

0
j j8 U y V ª ` w. p.1 as k ª y`,Ž . Ž .Ý l l

lsk

j Ž .where U , for k g Z, are determined recursively by 4 in terms of variablesk
for the predecessor jy obtained in previous iterations. Then the network
process exists with interarrival times, waiting times and queue lengths deter-

Ž . Ž .mined recursively for each s G 1, j g J R J and k g Z by 3 , 4 ,s sy1

ky1
j j j j9 W s R sup V y UŽ . Ž .Ýk k i i

lG0 iskyl

Ž .and 6 with k y 1 in its first sum replaced by `.

For the proof, see Section 6.
We now consider stationary systems. Recall that a sequence of random

� 4elements X s X : k g Z is stationary if X s u X, where u is the usual shiftk DD
Ž n � 4. �operator u X s X : k g Z . This stationary sequence is ergodic if P X gkqn

4 � 4 � 4B s 0 or 1 for each B such that X g B s u X g B . Similar definitions
apply to sequences indexed by positive integers.

Ž .The following is the Loynes 1962 result for tandem nodes extended to
treelike networks; the difference is the need here for the added conditioning
on a unit’s route. It says that if the data sequence j † is stationary and
ergodic and the expected service time is less than the expected interarrival

Ž .time 10 , then the entire system j is stationary. This result is a consequence
of the preceding theorem. Here P and E denote the conditional probabilityj j
and expectation of j† conditioned on the event that unit 0 enters node j. This

† j wP is also the Palm probability of j conditioned on R s 1 e.g., see Brandt,j 0
Ž . Ž .xFranken and Lisek 1990 or Franken, Koenig, Arndt and Schmidt 1981 .
� j 4The assumption P R s 1 ) 0 ensures that units actually visit node j;0

otherwise, the node is superfluous.

THEOREM 3. Suppose the system data j† is a stationary, ergodic sequence
� j 4that satisfies P R s 1 ) 0 and0

K jy11
j 110 EV - E U - `, j s 1, . . . , M .Ž . Ý0 kž /ks0

Then the network process exists and the system variables j are determined as
in Theorem 2. Furthermore, j is stationary, ergodic and

K jy11
j 111 E U s E U , j s 1, . . . , M .Ž . Ž . Ýj 0 j kž /ks0

For the proof, see Section 7.
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The rest of this section contains further observations about stationary
Žnetwork processes. Does the stationarity of the system variables j for allk

.the units also ensure the stationarity of the system variables for a substream
of units that visit a certain node or a subset of nodes? No and yes. Here is an
explanation.

� 4 SSConsider any subset of nodes SS ; 1, . . . , M . Let K denote the kth unitk
that visits SS and define the indices k such that ??? F K SS F K SS F 0 -y1 0
K SS F ??? . For instance, K SS is the third unit ‘‘after’’ unit 0 that visits SS .1 3

SS Ž SS SS SS SS SS .Then the SS-sector variables are j s R , U , V , W , Q , k g Z, wherek k k k k k
SS Ž j . SS

SSR s R : j g SS and the rest of the vectors are defined similarly. Is j ak K k

stationary sequence when the entire system j is? No. But it is stationary
under the conditional probability that an entering unit visits SS .

THEOREM 4. If the entire system j is stationary and ergodic, then the
SS-sector j SS is stationary and ergodic under the Palm probability of j condi-
tioned that unit 0 visits SS .

This result is an immediate consequence of the following well-known
SS Ž K SS

k .property of Palm probabilities applied to j s f u j , where f is a deter-k
ministic function.

� 4LEMMA 5. Suppose X : k g Z is a stationary sequence and ??? F K Fk y1
K F 0 - K F ??? are random indices such that u K k X g B for some fixed set0 1

� K k 4B. Then the sequence Y s u X: k g Z is stationary under the Palm proba-
bility P of X conditioned that K s 0. If, in addition, X is ergodic, then Y is0 0
also ergodic under P .0

We have been discussing the stationarity of the network system with
respect to the sequence of units that enter it, that is, stationarity over shifts
in the unit labels. How does this relate to the stationarity of the system in the
continuous-time parameter t? Here are some insights on this.

�Ž 1 . 4The basic system data A , R , V : k g Z is stationary in continuousk k k
time under its probability measure P if its distribution is invariant under

�Ž 1 . 4any shift in the time axis; the distribution of A y t, R , V : k g Z is thek k k
same for each t g R. Ergodicity of the data in continuous time is also defined
in the obvious way. In this setting, the system data is sometimes called a
stationary, ergodic marked point process}the A1 ’s are points in time andk
Ž k . 1 0R , V is a ‘‘mark’’ associated with A . Let P denote the Palm probabilityk k
of the probability P of the data ‘‘conditioned’’ that a unit enters the network
at node 1 at time 0.

THEOREM 6. If the basic system data is stationary and ergodic in continu-
�Ž 1 . 4ous time, then the sequence U , R , V : k g Z is stationary and ergodick k k

0 Ž . Ž .under P with respect to shifts in the labels k . If, in addition, 10 holds
under the probability measure P 0, then the entire system sequence j is

0 Ž .stationary and ergodic under P with respect to shifts in the labels k .
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The first assertion follows by a standard property of continuous-time Palm
Ž .probabilities similar to the discrete-time Lemma 5 , and the second assertion

follows by Theorem 3.
Ž . Ž 1Ž .Next, let us consider the continuous-time processes Q t s Q t ,

M Ž .. Ž . Ž 1Ž . M Ž ... . . ,Q t and W t s W t , . . . , W t of queue lengths and waiting times
seen by the units that arrive at the nodes at or after time t. The process
Ž . �Ž Ž . Ž .. 4Q, W s Q t , W t : t g R is stationary in continuous time under P if the

uŽ . �Ž Ž . Ž .. 4distribution of u Q, W s Q t q u , W t q u : t g R is independent of u.

THEOREM 7. If the system data is stationary in continuous time, then
Ž .Q, W is stationary in continuous time.

For the proof, see Section 7.

3. Convergence of waiting times and queue lengths. We now con-
sider nonstationary networks and address the following issues. Under what
conditions do the queue length and waiting time vectors Q , W for a nonsta-k k
tionary network converge in distribution as k ª `? If they do, are their
limits equal in distribution to queue lengths and waiting times for a station-
ary version of the network process? We answer these questions by establish-
ing that if the system data is asymptotically stationary and some technical
conditions hold, then Q , W are asymptotically stationary and hence con-k k
verge in distribution. Furthermore, their limits are equal in distribution to
the queue lengths and waiting times for a stationary network whose system
data is equal in distribution to the limits of the original system data. This
major result requires several preliminary results on asymptotic stationarity
in Section 4.

We will use the following terminology. A sequence of random elements
� 4 ŽX s X : k g Z is asymptotically stationary in the sense of weak conver-k

n ˜ ˜ ˜.gence if u X ª X as n ª ` for some sequence X. In particular, X ª XDD n DD 0

˜ n ˜ nq1 ˜as n ª `. This limit X is stationary, since u X ª X and u X ª XDD DD
˜ ˜imply u X s X. Hereafter we use a tilde over a sequence to denote that it isDD

such a stationary limit. The preceding notions are defined similarly for
� 4 Ž .one-sided sequences X s X : k G 0 . Szczotka 1986 discusses details of thisk

Ž .weak asymptotic stationarity and applies it to obtain limiting distributions
n ˜of general queueing systems. He also discusses the convergence of u X to X

for five other stronger modes of convergence, including convergence in total
Ž .variation and strong convergence in mean. The family of weak asymptotic

stationary sequences is rather large; it contains most of the standard se-
quences that have limiting distributions, such as Markov chains, regenera-
tive or semistationary sequences, periodic sequences and it even contains
asymptotically stationary sequences in the five other convergence modes. Our

Ž .results apply with slight differences to asymptotic stationarity under these
other modes of convergence as well, but we will not give details on this.
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We are now ready for our main result. It applies to the network on the
entire time axis as well as the positive-time system, but we will state it only

Ž . †for the latter more interesting case. It says that if the system data j is
Ž .asymptotically stationary, the service capacity is adequate 10 and some

Ž . Ž .technical continuous-mapping conditions hold 12 ] 14 , then the system j is
asymptotically stationary.

THEOREM 8. Suppose the system data j† is asymptotically stationary and
˜† ˜ ˜ 1 ˜Ž .its stationary limit j s R, U , V is ergodic and satisfies the hypotheses of

Theorem 3. In addition, assume that, for each j and « ) 0,

ny1
j j12 lim lim sup P sup V y U ) « s 0,Ž . Ž .Ý k k½ 5n9ª` nª` n9FlFny1 ksnyl

˜ jK y1n
j j j˜ ˜ ˜13 P W q V s U s 0 for each n G 1,Ž . Ýj 0 0 k½ 5

ks0

R j s R j s 1, W j q V j G Ýl U j ,ny l n nyl nyl is1 nyi14 lim lim sup P s 0.Ž . ½ 5n9ª` � 4for some l g n9 q 1, . . . , nnª`

˜ ŽThen j is asymptotically stationary and its stationary limit j on the entire
˜ ˜ ˜ ˜.time axis is ergodic. Moreover, the variables U, W, Q for the limit j are

˜†functions of the data j as in Theorem 2.

For the proof, see Section 8.

Ž . Ž .REMARKS. a From Theorem 11, it follows that 12 is also a necessary
condition for the asymptotic stationarity of the waiting time sequence. Condi-

Ž .tion 14 plays a similar role for the queue length sequence.
Ž . Ž . Ž .b Conditions 13 and 14 are not needed in the proof of Theorem 8 to

obtain the asymptotic stationarity of the waiting time vector; they are only
needed for the asymptotic stationarity of the queue lengths. In other words,
Theorem 8 holds without these conditions and without reference to queue
lengths.

Ž . Ž .c Condition 13 is a natural condition that simply rules out the possibil-
ity of having arrivals and departures at the same time.

Ž .EXAMPLE 9 Single service station . Consider Theorem 8 for a single
�Ž . 4service station whose interarrival and service time sequence U , V : k G 0k k

˜ ˜�Ž . 4is asymptotically stationary and its stationary limit U , V : k g Z is er-k k
˜ ˜ Ž . �Ž . 4godic and satisfies EV - EU . If 12 holds, then U , V , W : k G 0 is0 0 k k k

˜ ˜ ˜�Ž . 4asymptotically stationary and its stationary limit U , V , W : k g Z isk k k
ergodic, where

ky1
j j˜ ˜ ˜W s sup V y U , k g Z.Ý ž /k i i

lG0 iskyl
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Ž .If, in addition, 14 is satisfied without the R’s and j’s and

ny1
˜ ˜ ˜P W q V s U s 0, n G 1,Ý0 0 k½ 5

ks0

�Ž . 4then U , V , W , Q : k G 0 is asymptotically stationary and its stationaryk k k k

˜ ˜ ˜ ˜�Ž . 4limit U , V , W , Q : k g Z is ergodic, wherek k k k

` ky1
˜ ˜ ˜ ˜Q s I W q V G U , k g Z.Ý Ýk kyl kyl iž /

ls1 iskyl

Results for node-centered indices. The treelike network with node-centered
indices has system data and system variables

j† s D , U1 , V and j s D , U , V , W , Q , k g Z.Ž .Ž .k k k k k k k k k k

ŽThe index k now refers to the kth unit served at node j instead of the kth
. junit to enter the network , and D is such that the kth unit served at node jk

Ž j . y 1is the k q D th unit served at the previous node j , and D s 0. Thisk k
‘‘difference’’ vector D , which takes the place of the routing vector R , is thek k
vehicle for relating the customer indices at the nodes. In particular, the kth

Ž .unit to be served at node j has the index g i, j at any preceding node i,k
Ž .where these indices are defined by g j, j s k and the backward recursionk

g iy, j s g i , j q D iŽ . Ž .k k g Ž i , j.k

for each i on the branch from node 1 to j.
The information in this node-centered system is simply a reindexing of the

Žinformation of the customer-centered system somewhat like a randomly
.indexed subsequence X being related to the sequence X . Consequently,n kk

all the preceding results and those in the next section apply to this setting. In
Ž .particular, by obvious relabeling of information requiring no analysis ,

Lemma 1 and Theorems 2]8 hold with the following minor changes.

1. The R j ’s equal 1.k
Ž .2. Expression 5 is replaced by

D
j
kq1

y y y y yj j j j jj
j j j jU s U q V y V q W y W .Ýk kql kq1qD kqD kq1qD kqDkq 1 k kq1 k

j
lsDk

3. The sum ÝK j
1y1 in Theorem 3 is replaced by Sy1 and a similarks0 ksg Ž1, j.0

Ž . Ž .replacement is done in expressions 19 and 20 in Theorem 8.

4. Functionals that preserve asymptotic stationarity. The continu-
ous-mapping principle is a useful tool for establishing weak convergence of

w Ž .xprobability measures Billingsley 1968 . This section contains similar princi-
ples for establishing asymptotic stationarity. They are of interest by them-
selves and are the basis for proving Theorem 8.
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� 4Throughout this section, we assume that X s X : k g Z is an asymptoti-k
cally stationary sequence of random elements in a Polish space E and its

˜limit is X. We consider the sequence

Y s f u k X , k g Z,Ž .k k

where f is a measurable function from EZ to a Polish space E9. We say thatk
Y is an asymptotically stationary functional of X if

n n ˜ ˜ ˜ k ˜u X, u Y ª X, Y and Y s f u X , k g Z,Ž . Ž .Ž .DD k

Z Ž .where f is a measurable function from E to E9. This says that X, Y is
˜ ˜asymptotically stationary and Y is a stationary functional of X. The next two

theorems give criteria for establishing the asymptotic stationarity of this Y.

˜THEOREM 10. Suppose X g CC w. p.1, wheref

CC s x: f x ª f x for any x ª x ,� 4Ž . Ž .f n n n

which is the set of points at which f converges ‘‘continuously’’ to f. Then Y isn
an asymptotically stationary functional of X.

Ž . Ž � Ž k . 4.PROOF. Define c x s x, f u x : k g Z andn kqn

CC s x: c x ª c x ' x, f u k x : k g Z for any x ª x .� 4Ž . Ž . Ž .� 4Ž .c n n n

˜A little thought shows CC s CC , and so X g CC w.p.1. Then by the ‘‘gener-c f c

w Ž .xalized’’ continuous mapping principle Theorem 5.5 in Billingsley 1968 , we
n n n ˜ ˜ ˜Ž . Ž . Ž . Ž .have u X, u Y s c u X ª c X s X, Y . In DD

The next result is a more general criterion for asymptotic stationary
functionals. Here d and d9 are metrics on the respective spaces E and E9.

THEOREM 11. Suppose

P˜ ˜15 f X ª f X as n ª `,Ž . Ž . Ž .n

˜16 P X is in the continuity set of f s 1, k g Z.Ž . � 4k

Then Y is an asymptotic stationary functional of X if and only if, for any
« ) 0,

17 lim lim sup P d9 f u nX , f u nX ) « s 0.� 4Ž . Ž . Ž .Ž .n9 n
n9ª` nª`

For the proof, see Section 8.
The preceding discussion of asymptotically stationarity for ‘‘two-sided’’

� 4sequences also applies to ‘‘one-sided’’ sequences X s X : k G 0 . Here thek
n ˜ ˜Ž .limit of u X s X , X , . . . is a one-sided stationary sequence X. This Xn nq1

can be extended as usual to a two-sided stationary sequence, which we also
˜denote by X.
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5. Treelike networks in heavy traffic. This section characterizes the
asymptotic behavior of the treelike network in heavy traffic. The results are
multivariate functional central limit theorems for waiting times. One can
obtain analogous limit theorems for the joint convergence of queue lengths
and waiting times using the approach in Serfozo, Szczotka and Topolski
Ž .1994 , which also covers a novel relationship between the two sequences. But
we will confine the following discussion only to waiting times.

Consider the network on the positive time axis. Recall that K j is the labelk
of the kth unit that enters node j or unit k ’s local rank at j. We change
notation slightly in this section and let U j, V j, W j, . . . denote the systemk k k

j Ž jvariables associated with unit K e.g., W is now the waiting time of the kthk k
entry to j instead of the kth entry to 1 as before; this W j is W j

j in the oldk K k
.notation . This new notation eliminates those system variables for a node

that were previously set to zero whenever units did not visit the node.
We shall consider the network on the positive time axis under the assump-

tion that it also depends on another parameter n that indirectly represents
the underlying ‘‘traffic intensity.’’ The intensity increases as n increases,
which causes the waiting times and queue lengths to increase. For simplicity,
the parameter n is suppressed from the system variables. Our aim is to
describe the asymptotic behavior of the waiting times W j as both k and nk
tend to `.

Our analysis involves the weak convergence of random elements in the
w . w .space D s 0, ` of real-valued functions on 0, ` that are right-continuous

with left-hand limits, and D is endowed with the Skorohod topology. We will
characterize the convergence of the waiting times via the waiting time
processes

W j t s by1W j , t G 0,Ž .n n w a t xn

w xwhere a is the integer part of a and a , b are constants that converge ton n
infinity. These waiting times are node-oriented waiting times in that the

Ž w x.subscript k or a t refers to the kth unit to enter node j. Later we considern
the slightly different route-oriented waiting times where k refers to the kth
unit that traverses a certain route.

The following result describes the convergence of the waiting time pro-
cesses in terms of the convergence of the processes

w x w xa t a tn n
j y1 j 1 j y1 j

jX t s b V y A , t t s a R , t G 0.Ž . Ž .Ý Ýn n k K n n kw a t xnž /ks1 ks1

The X j represents the difference in partial sums of the service times at noden
j and interarrival times at node 1 for those units that visit j, and t j is then
normalized number of visits of units to node j. The ‘‘heavy traffic’’ condition

Ž . jfor the network is implicit in assumption 18 on the convergence of the X ’s.n
We will use the mapping h from D to D defined by

h x t s sup x t y x s , t G 0.Ž . Ž . Ž . Ž .Ž .
sFt



TREELIKE QUEUEING NETWORKS 555

Ž . Ž Ž ..Also, x( y t s x y t is the composition of x and y in D and, if x g D has
Ž . � Ž . 4nondecreasing paths, its inverse is x t s inf s: x s ) t . Finally, we sayˆ

that a random element Z of D has stochastically continuous paths if
� Ž . Ž .4P Z t y s Z t s 1, t g R .q

THEOREM 12. Suppose

18 X j , t j : 1 F j F M ª X j, t j : 1 F j F M� 4Ž . Ž .� 4Ž .n n DD

19 by1V j ª 0, 1 F j F M ,Ž . n w a ?x DDn

where each X j has stochastically continuous paths and each t j has continu-
ous strictly increasing paths. Then

20 X j , W j, t j : 1 F j F M ª X j, W j, t j : 1 F j F M ,� 4Ž . Ž .� 4Ž .n n n DD

where the W j are defined recursively by

21 W j s h X j y W i (t i (t j .Ž . ˆÝž /
yigB j

y Žyand B is the branch of nodes from 1 to j when j s 1, the summation termj
. jis 0 . Also, each W has stochastically continuous paths.

For the proof, see Section 9.
Ž .Note that assumption 18 does not specify the form of the limiting process

Ž 1 M .X , . . . , X . This process may be a Brownian motion when the system has
short range dependencies, or it might be a fractional Brownian motion or
other process with stationary increments when the system has long range
dependencies. The latter types of limits are becoming of interest in modeling

Ž .ATM networks; see for instance Konstantopoulos and Lin 1995 and Kon-
Ž .stantopoulos and Walrand 1990 .

The waiting times in Theorem 12 were node indexed in that they were for
the kth entries into the nodes. We now consider route-indexed waiting times
indexed by the customers that travel certain routes. Let LL denote the set of

Ž .leaf nodes in the network the last nodes where the units exit the network .
For each l g LL , the kth unit that traverses the branch of nodes B from 1 to ll
is unit K l and its local rank at node j g B is g ' ÝK l

k R j . Then the waitingk l k ns1 n

time of this unit at node j is W j . We also consider the waiting times of angk
Žarbitrary unit entering the network. Let L denote the last node a leaf of thek

.tree that the kth unit entering the network visits. This kth unit has the
local rank g X s Ýk R j at node j g B and its waiting time at j is W j

X .k k 9s1 k 9 L gk k

Ž .COROLLARY 13. i If the hypotheses of Theorem 12 hold, then the normal-
ized waiting times of the units traversing the branches satisfy

22 by1W j : j g B : l g LL ª W j(t j(t l : j g B : l g LL ,Ž . ˆŽ .½ 5½ 5ž /n g l DD lw a ?xn

j Ž .where W are given by 21 . Furthermore, the normalized sojourn times of the
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units traversing the branches satisfy

23 by1 W j q V j : l g LL ª W j(t j(t l : l g LL .Ž . ˆÝ Ýž /n g w a ?x DD ½ 5½ 5w a ?x nn
jgB jgBl l

Ž . Ž .ii If 19 holds and, for any n ª `,n

L , X j , t j : 1 F j F M ª L, X j, t j : 1 F j F M� 4Ž .� 4Ž . Ž .ž /n n n DDn24Ž .
� 4 2 lin 1, . . . , M = D ,

then the normalized waiting times for the units entering the network satisfy

25 by1W j
X : j g B ª W j(t j : j g B .Ž . � 4½ 5n g L DD Lw a ?x w a ?xn n

For the proof, see Section 9.
The preceding results apply to a variety of contexts in which the network

Ž .data satisfies the heavy-traffic functional limit property 18 . An elementary
Ž jillustration is below. First, a preliminary observation. Suppose Y s Y :n, k n, k

.j g J , k G 1, are independent identically distributed random vectors that
satisfy

< j j < 2q« i jsup E Y y m - `, lim Cov Y , Y s s ,Ž .n , 1 n n , 1 n , 1 i j
nª`n

where m j s EY j , s ) 0 and « ) 0. Then, as a variation of a result inn n, 1 i j
Ž . y1r2 < nt < Ž .Prokhorov 1956 , the vector process n Ý Y y m converges in dis-ks1 n, k n

Ž j .tribution to a Wiener process WW s WW : j g J with covariance matrix s . Wei j
Ž .say that such a sequence Y , k G 1, satisfies a FCLT WW if it satisfies then, k

preceding conditions.

Ž .EXAMPLE 14 Route-dependent services . Suppose the network data satis-
fies the following conditions. Here the heavy-traffic parameter n is not
suppressed.

Ž . jŽ . y1 w nt x jA1 The ‘‘arrival-rate process’’ t t s n Ý R converges in distribu-n ks1 n, k
tion as n ª ` to the function l t, where l is a positive constant.j j

Ž . � 1 4 Ž 0.A2 The interarrival times U : k G 1 satisfy a FCLT WW and they aren, k
independent of the service times.

Ž . � jl 4 Ž . jlA3 The service times V : j g B , l g LL satisfy a FCLT WW , where Vn, k l n, k
denotes the service time of the kth arrival to node j that exits the network
from node l.

Ž . 1r2w y1 1 y1 jl xA4 The limit c s lim n l EU y Ý l EV exists.j nª` j n, 1 l g LL l n, 1

Ž y1r2 j .Under these conditions, the waiting time processes n W : 1 F j F mn, w nt x
Ž j .converge in distribution to the processes W : 1 F j F m that are determined

j Ž j iŽ y1 ..recursively by W s h X y Ý W l l ? , wherejg B i jyj

26 X j t s WW jl ly1 t y WW 0 ly1 t y c t ,Ž . Ž . Ž . Ž .Ý l j j
lg LL
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and the Weiner processes WW jl are independent of WW 0. This is an application
of Theorem 12 and its proof is in Section 9. This result readily extends to

wstationary service times instead of independent ones as in Serfozo, Szczotka
Ž .xand Topolski 1994 or to other types of dependencies on the data.

6. Proofs of expressions for system variables. This section contains
Ž . Ž .the proofs of expressions 4 ] 6 for the system variables as functions of the

Ž .data for the positive-time system Lemma 1 and for the system on the entire
Ž .time axis Theorem 2 .

PROOF OF LEMMA 1. Consider a fixed state s and a node j g J R Js sy1
j Ž . Ž .that is reachable in exactly s steps. If R s 0, then 4 ] 6 are automaticallyk

true. Therefore we only consider the case R j s 1. To formulate the interar-k
rival times, let A j

j denote the time at which the first unit enters node j andK1

define
ky1

j j j j
j27 A s A q U , k G K ,Ž . Ýk K i 11

jisK1

which is the arrival time of unit k to node j. Also note that

n
jy1k

y y yj j j
j28 A y A s U .Ž . Ýn k lk

lsk

Now, the arrival time A j for j G 2 is equal to its departure time from nodek
jy, and so

29 A j s A jy q W jy q V jy
.Ž . k k k k

In light of this, it is clear that, if R j s 1, thenk

30 U j s R j A j
j y A j .Ž . Ž .k k n kk

Ž . Ž . Ž .Applying 29 to both of these arrival times and using 28 yields 4 . Next,
note that when R j s 1, by the definition of waiting times and A j s A j q U j

k k b b

Ž .from 29 , we have

W j s R j max 0, departure time from j of unit b y A jŽ .� 4k k k

s R j max 0, V j y U j q W j ,� 4k b b b

31Ž .

� j 4where b s max l - k: R s 1 is the last unit before k to enter node j. Usingl
Ž . Ž .31 in an induction argument proves 5 . Finally, by the definition of queue
lengths, we have

ky1
j j j j j jQ s I R s 1, A q W q V G A .Ž .Ýk kyl kyl kyl kyl k

ls1

Here unit k y l is counted if it enters j and departs at or after A j . Applyingk
Ž . j Ž .27 to A yields 6 . Ik
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The following is the proof of the existence of the network process on the
entire time axis.

PROOF OF THEOREM 2. The proof will be by induction on the stage parame-
ter s. The arguments for s s 1 and a general s are essentially the same, and
so we present the argument only for the latter case. Accordingly, assume the

Žassertion is true for some s y 1 G 1 and that J _ J is not empty other-s sy1
.wise the induction is already complete; recall that s F M . Similarly to the

Ž . jpositive-time network, expression 4 determines U from previously definedk
variables, which exist under the induction hypothesis. Next, note that W j

k
Ž . Ž . jdefined by 9 is finite for each k because of assumption 8 . If R s 0, thenk

Ž . j J Ž .9 is true. If R s 1, then W given by 9 must satisfy the system dynamicsk k
Ž .31 . But this is true since

by1
j j j j j jW s R max 0, V y U q sup V y UŽ .Ýk k b b i i½ 5lG0 isbyl

s R j max 0, V j y U j q W j .� 4k b b b

Ž .Thus, the waiting times are finite and are determined by 9 for j g J R J .s sy1
Ž .Furthermore, arguing as in the proof of Lemma 1 of Loynes 1962 , one can

j Ž .show that W is the minimal solution of 31 .k
Ž .Similarly to the positive-time network, expression 6 with k y 1 in the

first sum replaced by ` defines the queue lengths Q j , and they will be finitek
if, for each k,

ky1
j j j32 z ' lim sup W q V y U s y` w.p.1.Ž . Ýr r iž /rªy` isr

j ky1Ž j j.Using the representation above for W , and letting S s Ý V y U , wer r isr i i
have

ry1 ky1
j j j j jz s lim sup R sup V y U q V y UŽ .Ý Ýr i i r i½ 5

rªy` lG0 isryl isr

ky1
jF lim sup sup S y V F lim sup sup SÝry l i l

rªy` rªy`lG0 lFrisrq1

s lim sup S s y` w.p.1.r
rªy`

The last line follows because sup S is decreasing as r ª y` and S ª y`lF r l r
Ž . Ž .w.p.1. by the hypothesis 8 . This proves 32 , which completes the induction

step for s. I

7. Proofs of stationarity results. This section contains the proofs of
Theorems 3 and 7 for stationary systems.

We will use the property that certain functions of stationary ergodic
processes are also stationary and ergodic. This hereditary property is an
immediate consequence of the definitions of stationarity and ergodicity.
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� 4 Ž k .LEMMA 15. Suppose X : k g Z is a stationary sequence and Y s f u X ,k k
�Ž . 4k g Z, where f is a measurable function. Then X , Y : k g Z is stationary,k k

and it is also ergodic when X is.

We will call a sequence Y as in Lemma 15 a stationary functional of X.
This concept is transitive in the following sense.

LEMMA 16. If Y is a stationary functional of X and Z is a stationary
Ž .functional of X, Y , then Z is a stationary functional of X.

PROOF. Suppose f, c are the measurable functions such that Y sk
Ž k . Ž kŽ .. Ž k . Ž . Ž � Ž k .4.f u X , Z s c u X, Y . Then Z s f u X , where f x s c x, f u x isk k

clearly measurable. This proves the assertion. I

We are now ready to prove the Loynes-type result on the existence of
stationary networks.

Ž . Ž j .PROOF OF THEOREM 3. For each stage s G 1, define U s s U : j g J ,s
Ž . Ž . Ž .and define V s , W s , Q s similarly. Keep in mind that s is not a time index

Ž .}Theorems 7 and 12 use W t to denote waiting time processes where t is a
time parameter. To prove Theorem 3, it suffices by Lemma 15 to show that
Ž . Ž . Ž . † Ž .U s , W s , Q s are finite stationary functionals of the data j and 11 holds

for each j g J . We will prove this statement by induction on s. Since thes
argument for s s 1 is essentially the same as that for a general s, we will

Ž .present only the latter more interesting case.
Accordingly, assume the induction hypothesis is true for some s y 1 G 1.

Suppose J _ J is not empty; otherwise the induction is already complete.s sy1
Ž .It follows from 4 that we can write

33 U s s f u k R, U s y 1 , V s y 1 , W s y 1 ,Ž . Ž . Ž . Ž . Ž .Ž .Ž .k

Ž . jŽ . � j 4where f s f : j g J , k r s min l ) 0: r s 1 andj s 1 l

f r, u, v, wŽ .j

1¡u , if j s 1,0
j34Ž . k y1~ 1s y y y y yj j j j j j

j j � 4r u q v y v q w y w , if j g J R 1 .Ý0 l k Žr . 0 k Žr . 0 s1 1¢ ž /ls0

Ž Ž . Ž .Here r, u, v, w are in the space of realizations of R, U s y 1 , V s y 1 ,
Ž .. †W s y 1 . This random vector is a stationary functional of j by the induc-

tion hypothesis, and an easy check shows that f is a measurable function.
Ž . †Thus, Lemmas 15 and 16 ensure that U s is a stationary functional of j .

Ž . Ž .Also, U s is clearly finite since each term on the right side of 33 is finite.
Ž .Next, observe that, similarly to 33 , we can write

W s s g u k R, U s , V s , Q s s h u k R, U s , V s , W s ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .k k
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Ž . Ž .where g s g : j g J , h s h : j g J and g and h are the functionsj s j s j j
Ž . Ž .defined on the right sides of equations 5 and 6 , respectively. Clearly g and

Ž .h are measurable. Then Lemma 15 ensures that W s is a stationary func-
Ž Ž . Ž .. †tional of R, U s , V s . The latter is a stationary functional of j , and so

Ž . † Ž .Lemma 16 ensures that W s is a stationary functional of j . Similarly, Q s
† Ž . Ž .is a stationary functional of j . The finiteness of W s and Q s will be

established shortly.
j j jŽ .We now prove 11 for j g J . Consider a fixed j and let U , V , W denotes i k i

j Žinterarrival, service and waiting times of unit K the k-unit that actuallyk
. Ž .visits node j . Then from 4 ,

y y y y yj j j j j j35 U s U q V y V q W y W .Ž . k k kq1 k kq1 k

Iterating this on jy and all the other nodes back to node 1, it follows that

j 1 l l l lU s U q V y V q W y W ,Ý ž /k k kq1 k kq1 k
ylgB j

where B y is the set of nodes comprising the 1-to-jy branch. Summing thej
last equation on k, we get

n n
j 136 U s U q z ,Ž . Ý Ýk k n

ks1 ks1

where
l l l lz s V y V q W y W .Ý ž /n nq1 1 nq1 1

ylgB j

�Ž Ž . Ž . Ž .. 4Since R , U s , V s , W s : k g Z is stationary and ergodic, it follows byk k k k
�Ž Ž . Ž . Ž .. 4Lemma 5 that U s , V s , W s : i g Z is stationary and ergodic under thei i i

Palm probability P . Therefore, by the ergodic theorem for Palm probabilities,j
we have the following convergences w.p.1 under P ;j

n
y1 j j y1n U ª E U , n z ª 0,Ž .Ý i j 0 n

is1

n
y1 1 1n U q z ª E U .Ž .Ý i n j 0ž /

is1

Ž .Now because of the equality 36 , the preceding first and third limits must be
j j jŽ . Ž .equal, which proves 11 here K s 0 and U s U w.p.1 under P .0 0 0 j

Ž . Ž .It remains to prove that W s and Q s are finite. They will be finite by
Ž .Theorem 2, provided that 8 holds for j g J . Now, the ergodic theorems

Ž . Ž .under P and conditions 10 , 11 imply thatj

0
y1 j j j jn V y U ª E V y E U F 0 w.p.1 under P .Ž . Ž .Ž .Ý i i j 0 j 0 j

isyn

This limit is also true under P; see for instance, Theorem A1.3.4 of Brandt,
Ž . Ž .Franken and Lisek 1990 . Thus 8 follows for j g J . Is
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The following is the proof that the queue length and waiting time pro-
cesses are stationary in continuous time if the data is.

PROOF OF THEOREM 7. First note that the quantity in the system at time t
is

`
j j j j37 Q t s Q I A - t F AŽ . Ž . Ž .Ý k ky1 k

ks1

Ž .only one of the terms in the sum is not zero . A short proof shows that
j 1 j j Ž kŽ ..A s A q S , where S s h u R, U, V for a measurable function h . Thenk k k k j j

we can write

Q j t q u s Q j I A1 y u q S j F t - A1 y u q S j .Ž . Ž .Ý k k k kq1 kq1
k

jŽ .A similar expression holds for the waiting time W y q u . From these
representations and the continuous-time stationarity of the system data, it

uŽ . Ž .follows that the distribution of u Q, W is independent of u. Thus Q, W is
stationary in continuous time. I

8. Proofs of asymptotic stationarity results. We begin with the proof
that the network is asymptotically stationary if its data is.

PROOF OF THEOREM 8. For each stage s G 1, define the one-sided interar-
Ž . �Ž j . 4rival vector U s s U : j g J : k G 0 , and define the service, waiting andk s

Ž . Ž . Ž . Žqueue length vectors V s , W s , Q s similarly keep in mind that s is not a
. Ž Ž . Ž . Ž . Ž ..time parameter . We will show by induction that R, U s , V s , W s , Q s is

asymptotically stationary for each s. Again, the argument for s s 1 is similar
to that for general s, and so we present only the latter case. To this end,
assume the induction hypothesis for s y 1 G 1 and assume J R J is nots sy1
empty. We will prove the induction statement for s by establishing the
following properties:

Ž . Ž . Ž Ž .i U s is an asymptotically stationary functional of R, U s y 1 ,
Ž . Ž ..V s y 1 , W s y 1 ;
Ž . Ž . Ž Ž . Ž ..ii W s is an asymptotically stationary functional of R, U s , V s ;
Ž . Ž . Ž Ž . Ž .iii Q s is an asymptotically stationary functional of R, U s , V s ,
Ž ..W s .

Ž . Ž .To prove i , first note that, similarly to 33 for the two-sided vectors, we can
write

U s s f u k R, U s y 1 , V s y 1 , W s y 1 .Ž . Ž . Ž . Ž .Ž .Ž .k

Ž .A straightforward proof shows that the function f s f : j g J is continu-j s
Ž Ž . Ž . Žous. By the induction hypothesis, we know that R, U s y 1 , V s y 1 , W s y

.. Ž .1 is asymptotically stationary. Then to prove statement i , it suffices by
˜ ˜ ˜ ˜Ž Ž . Ž . Ž ..Theorem 10 to show that the limit R, U s y 1 , V s y 1 , W s y 1 is in the

˜ jdomain of f w.p.1. We need only check that K - ` w.p.1 for each j, which is1
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` ˜ jequivalent to Ý R s ` w.p.1. However, this is true since this sum is theks0 k
limit in distribution as n ª ` of Ý` R j which equals ` w.p.1. by assump-ks0 nqk

Ž .tion 2 .
Ž . Ž . Ž . Ž k .Next consider statement ii . From 5 , we have W s s f u h , wherek k

Ž j .f s f : j g J ,k k s

y1
j j j j38 f r, u, v s r max v y u ,Ž . Ž . Ž .Ýk 0 i i

0FlFky1 isyl

R , 0, 0 , if k - 0,Ž .0
h sk ½ R , U s , V s , if k G 0.Ž . Ž .Ž .k k k

Ž Ž . Ž ..By the induction hypothesis, R, U s , V s is asymptotically stationary.
Then clearly h is also asymptotically stationary and its limit is h s˜
˜ ˜ ˜Ž Ž . Ž ..R, U s , V s .

Ž . Ž .To prove statement ii , it suffices to show that W s is an asymptotically
stationary functional of h. To this end, we will apply Theorem 11. Define

jŽ . Ž . Ž .f r, u, v by the right side of 38 with k s `. Note that f h equals˜
˜ ˜ jŽ . Ž . Ž . Ž .W s s W : j g J . By Theorem 2, the f h will be finite if 8 holds for the˜0 0 s

˜ ˜limit j. But this follows by the ergodic theorem and the assumption that j
Ž . Ž . Ž .satisfies 10 . It is also clear that f h ª f h w.p.1 as k ª `. Next, note˜ ˜k

that each f is continuous, and so h is in the continuity set of f w.p.1.˜k k
Finally, by the definition of f , the conditionk

n nlim lim sup P f u h y f u h ) « s 0� 4Ž . Ž .n9 n
n9ª` nª`

Ž . Ž .is implied by assumption 12 . Thus, by Theorem 11, W s is an asymptoti-
cally stationary functional of h.

Ž . Ž .We now prove statement iii by a similar argument. From 6 , we know
Ž . Ž k . Ž j .that Q s s c u z , where c s c : j g J ,k k k k s

R , U s , V s , W s , if k G 0,Ž . Ž . Ž .Ž .k k k k
z sk ½ R , 0, 0, 0, , if k - 0,Ž .0

ky1 l
j j j j j j39 c r, u, v, w s r I r y 1 q w q v G u .Ž . Ž . Ý Ýk 0 yl yl yl yiž /

ls1 is1

By the induction hypothesis, it follows that z is asymptotically stationary
˜ ˜ ˜ ˜ ˜ jŽ Ž . Ž . Ž .. Ž .with limit z s R, U s , V s , W s . Define c r, u, v, w by the right side of

j ˜ ˜Ž . Ž . Ž . Ž .39 with k s ` and let c s c : j g J . The c z is the two-sided Q s ss 0
˜ jŽ . Ž .Q : j g J , which is finite by Theorem 2 since assumption 8 holds for the0 s

˜ ˜ ˜Ž . Ž .limit j. Clearly, c z ª c z w.p.1 as k ª `. Next, note thatk

ky1

40 discontinuity set of c ; D ,Ž . D Dk jl
jgJ ls1s



TREELIKE QUEUEING NETWORKS 563

where
l

j j j jD s r, u, v, w : r y 1 q w q v s u .Ž . Ýj yl yl yl yil ½ 5
is1

˜ ˜Ž . � 4Since z is stationary, the assumption 13 and Lemma 5 ensure P z g D s 0jl˜Ž .for each j, l. This and 40 imply that z is in the continuity set of c w.p.1.k
Next, note that by the definition of c , it follows thatk

n n jc u z y c u z ) « s B n9, n ,� 4Ž . Ž . Ž .Dn9 n
jgJs

where

k
j j j j j j˜ ˜ ˜ ˜ ˜B n9, n s R s 1, R y 1 q W q V G UŽ . Ýn nyk nyk nyk nyl½

ls1
41Ž .

� 4for some k g n9 q 1, . . . , n ,5
Ž . Ž .which is the event in 14 . This and 14 imply

n nlim lim sup P c u z y c 0 z ) «� 4Ž . Ž .n9 n
n9ª` nª`

F lim lim sup P B j n9, n s 0.� 4Ž .Ý
n9ª` nª`jgJs

Ž .Thus, by Theorem 11, Q s is an asymptotically stationary functional of z ,
Ž .which proves statement iii . This completes the proof of Theorem 8; the last

assertion of Theorem 8 follows from Theorem 3. I

The following is the proof of the key continuous-mapping principle for
asymptotic stationarity.

PROOF OF THEOREM 11. Because E and EZ are Polish spaces, the conver-
n n ˜ ˜Ž . Ž .gence u X, u Y ª X, Y , is equivalent to the finite-dimensional vectorDD

n ˜Ž . Ž .convergence h u X ª h X , for each I, wheren

h x s x , f u k x : k g I ,Ž . Ž .Ž .Ž .n k nqk
42Ž .

h x s x , f u k x : k g IŽ . Ž .Ž .Ž .k

and I is an interval. Then the assertion to be proved is that

n ˜h u X ª h X for each I , if and only if 17 holds.Ž . Ž .Ž .n DD

Ž .First suppose that 17 holds. Let r denote the Prokhorov metric for
distributions of random elements. Then

n ˜ n nr h u X , h X F r h u X , h u XŽ . Ž . Ž .Ž . Ž .Ž .n n n9

n ˜ ˜ ˜q r h u X , h X q r h X , h X .Ž . Ž . Ž . Ž .Ž . Ž .n9 n9 n9
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Ž . Ž .Now the last two terms converge to 0 as n and n9 tend to ` by 16 , 15 and
the asymptotic stationarity of X. Also, using the metric a for convergence in

w Ž .xprobability see, for instance, Dudley 1968 , we have

r h u nX , h u nX F a h u nX , h u nX s a f u nX , f u nX .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .n n9 n n9 n n9

Ž .These observations and 17 yield
n ˜ n nlim r h u X , h X F lim lim sup a f u X , f u X s 0.Ž . Ž . Ž .Ž . Ž .Ž .Ž .n n9 n

nª` n9ª` nª`

n ˜Ž . Ž .Thus h u X ª h X for each I.n DD

Conversely, assume the last convergence statement holds. Then using the
Skorohod w.p.1 representation of convergence in distribution, one can show
w Ž .x Uas with Theorem 1 in Szczotka 1990 that there exist X , X* on a commonn

U n ˜probability space such that X s u X, X* s X andn DD DD

43 h XU ª h X* w.p.1 as n ª `.Ž . Ž . Ž .n n

I ILet d be the metric on E = E9 defined by

d x, y , x, y s d x , x q d9 y , y .Ž . Ž . Ž . Ž .˜ ˜ ˜ ˜Ž . Ý k k k k
kgl

Ž .Now, applying 43 ,
U Un nP d9 f u X , f u X ) « s P d h X , h X ) «� 4Ž . Ž . Ž . Ž .� 4Ž . Ž .n9 n n9 n n n

UF P d h X , h X* ) «r2Ž . Ž .� 4Ž .n9 n

Uq P d h X* , h X ) «r2Ž . Ž .� 4Ž .n n

ª P d h X* , h X* ) «r2 as n ª `.Ž . Ž .� 4Ž .n9

Ž .Assumption 15 ensures that the last term also converges to 0 as n9 ª `.
Ž .These observations prove 17 . I

9. Proofs of heavy-traffic results. The following proofs concern the
heavy-traffic limiting behavior of the waiting time process.

PROOF OF THEOREM 12. We begin by deriving a convenient representation
Ž .for the waiting time process. By 5 , we have

w xa t y1n
j y1 j jW t s b max V y UŽ . Ž .Ýn n n n

w x0FkF a t y1n w xns a t ykn

j j j js max X t y X kra s sup X t y X s ,Ž . Ž . Ž . Ž .Ž . Ž .n n n n n
w x1FkF a t sFtn

where
w xa t y1n

j y1 j jX t s b V y U .Ž . Ž .Ýn n n n
ns1

That is,
j j44 W t s h X t .Ž . Ž . Ž .Ž .n n
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jNext, we express X in terms of X . Note that by the definition of arrivaln n
times,

ky1
j j j j 1 i i

j45 U s A y A , and A s A q W q V ,Ž . Ý Ý Ž .n k 1 k K g gk kk
yns1 igB j

Ž . K j
k i jwhere g ' g i, j ' Ý R , which is the local rank at node i of unit Kk k ns1 n k

Ž . Ž . jthe kth unit that enters j . The last sum in 45 is the time that unit Kk
spends at nodes in B y. From these expressions,j

ky1 k
j j j 1 j j i i

jV y U s V y A y V q A y W q V .Ž .Ý Ý Ý Ž .n n n K k 1 g gk kk
yns1 ns1 igB j

ŽThen the stochastic process version of this equality where k is replaced by
w x.a t isn

j j i y1 y1 jX t s X t y W a g y b VŽ . Ž . Ý Ž .n n n n w a t x n w a t xn n
yigB j

q by1A j y by1 V i .Ýn 1 n g w a t xn
yigB j

46Ž .

Finally, note that

47 ay1g s t i (t j t y ay1 ,Ž . Ž .ˆn w a t x n n nn

since R i
j s 1 andK k

w xa sn
j j y1 j48 t t s inf s : R ) a t s a K .Ž . Ž .ˆ Ýn n n n w a t xq1n½ 5

ns1

The limiting behavior of the preceding random processes, which is the
issue before us, is established via the following weak convergence properties
concerning h and the composition, addition and inverse mappings; see Whitt
Ž .1980 .

Ž .i If Z ª Z in D and Z has stochastically continuous paths, thenn DD
Ž . Ž . Ž .h Z ª h Z and h Z also has stochastically continuous paths.n DD
Ž . Ž . Ž . 2ii If Y , Z ª Y, Z in D and the discontinuity sets of the processesn n DD

ŽY and Z are disjoint w.p.1 which is true if one has stochastically continuous
.paths , then Y q Z ª Y q Z.n n DD

Ž . Ž . Ž . 2iii If Z , t ª Z, t in D , where t has nondecreasing paths, t hasn n DD n
continuous nondecreasing paths and Z has stochastically continuous paths,
then Z (t ª Z(t and Z(t also has stochastically continuous paths.n n DD

Ž .iv If t ª t in D, where t has nondecreasing paths and t hasn DD n
continuous nondecreasing paths, then t ª t in D.ˆ ˆn DD

We are now ready to establish the asserted convergence statements. Recall
that the set of nodes in the network reachable within s steps is J . We wills
prove by induction on s that

49 X j , W j, t j, t j : j g J ª X j, W j, t j, t j : j g J , s G 1,Ž . Ž .� 4ˆ ˆŽ .½ 5n n n n s DD s
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and each W j has stochastically continuous paths. Consider this convergence
Ž . Ž . 1 Ž 1for s s 1, which is only for j s 1. From 44 and 46 , we have W s h X yn n

y1 1 y1 1 . yb V q b A , since B is the empty set. Also, under the hypotheses,n w a ?x n 1 1n
Ž 1 y1 1 y1 1 . Ž 1 .X , b V , b A ª X , 0, 0 . These facts along with the hypothesesn n w a ?x n 1 DDn

Ž .and preceding weak convergence properties justify 49 for j s 1.
Ž .Next, suppose 49 is true for some s and consider any j g J _ J ,sq1 s

assuming this set is nonempty}otherwise the induction is complete. Recall
j j jŽ . Ž . Ž .Ž . Ž .the representation 44 , which is W t s h X t , where X is given by 46 .n n n

Ž .Applying the induction hypothesis and the other assumptions to 46 and
using the preceding weak convergence properties, it follows that

j j j i i jX ª X ' X y W (t (t ,ˆÝn DD
yigB j

w Ž . Ž .the last three terms in 46 and the last term in 47 converge in distribution
jxto zero , and X has stochastically continuous paths. Furthermore, by a

similar argument for joint convergence,
i i j jX , W , X , X : i g J , j g J _ J� 4n n n n s sq1 s

i i j jª X , W , X , X : i g J , j g J _ J .� 4DD s sq1 s

j jŽ . Ž .Ž .This along with W t s h X t and the weak convergence property of hn n
Ž .yields 49 for s q 1. This completes the induction and the proof of Theo-

rem 12. I

Ž . Ž .PROOF OF COROLLARY 13. Similarly to 46 and 47 , we have

by1W j s W j t j(t l t y ay1 , by1W j
X s W j(t j t .Ž . Ž .ˆŽ .n g n n n n n g n nw a t x w a t xn n

Ž .Using these representations and the result 20 in weak convergence argu-
Ž . Ž . Ž .ments like the proof of Theorem 12 yields 22 and 23 . Analogously, 25

Ž . Ž .follows since one can show, under assumptions 19 and 24 , that
Ž Ž j j. 4. � jL , X , t : 1 F j F M converges jointly in distribution with W : 1 Fw a t x n n nn

4j F M . I

PROOF OF EXAMPLE 14. Consider the process
w xnt

j y1r2 j 1
jX t s n V y AŽ . Ýn n , k K n , w nt xž /

ks1

K l K j
n , w nt x n , w nt x

y1r2 jl jl y1r2 1 1s n V y EV y n U y EUŽ . Ž .Ý Ý Ýn , k n , 1 n , k n , 1
ks1 ks1lg LL

50Ž .

1r2 y1 j 1 y1 l jly n n K EU y n K EV .Ýn , w nt x n , 1 n , w nt x n , 1
lg LL

Ž . Ž . Ž .By property iv above, 48 and assumption A1 , it follows that the process
ny1K j converges in distribution to the function ly1 t. This and assump-n, w nt x j

Ž . Ž .tion A4 ensure that the last line in 50 converges in distribution to c t.j
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Ž . Ž . Ž . Ž .Then applying assumptions A2 and A3 to 50 and using property iii and
y1 j Ž j . Ž jthe convergence of n K , it follows that X : 1 F j F m ª X : 1 Fn, w nt x n DD

. Ž . Ž .j F m , which are defined by 26 . This and assumption A1 yield the
Ž . Ž . Ž .convergence 18 . Also, assumption A3 yields 19 . Thus the assertion in

Example 14 follows by Theorem 12. I
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