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The paper presents a method of computing the extremal index of a
real-valued, higher-order (kth-order, k ≥ 1) stationary Markov chain �Xn�.
The method is based on the assumption that the joint distribution of k+ 1
consecutive variables is in the domain of attraction of some multivariate
extreme value distribution. We introduce limiting distributions of some
rescaled stationary transition kernels, which are used to define a new
�k−1�th-order Markov chain �Yn�, say. Then, the kth-order Markov chain
�Zn� defined byZn = Y1+· · ·+Yn is used to derive a representation for the
extremal index of �Xn�. We further establish convergence in distribution
of multilevel exceedance point processes for �Xn� in terms of �Zn�. The
representations for the extremal index and for quantities characterizing
the distributional limits are well suited for Monte Carlo simulation.

1. Introduction. The effort of characterizing the tail of the distribution
of the maximum of a large number of observations has long been made by sev-
eral statisticians. Under stationarity of observations, this is usually achieved
by incorporating both the tail of the marginal distribution and the so-called
extremal index. The extremal index is therefore a key parameter for studying
the extremal behavior of a stationary sequence of random variables (r.v.’s). See
Loynes (1965), O’Brien (1974) and Leadbetter, Lindgren and Rootzén (1983).
In this paper, we present a method of computing the extremal index of a real-
valued, kth-order (k ≥ 1) stationary Markov chain. The method is based on the
assumption that the joint distribution of k+ 1 consecutive variables is in the
domain of attraction of some multivariate extreme value distribution. To give a
more complete description of the extremal behavior of the chain, we also estab-
lish convergence in distribution of multilevel exceedance point processes and
give representations for quantities characterizing the distributional limits.

Let �Xnx n ≥ 1� be a (strictly) stationary sequence of r.v.’s with marginal
distribution function (d.f.) F. Then, for all sufficiently large n, it is typically
the case that

P
{
Mn ≤ un

}
≈ Fnθ�un�;(1.1)

where Mn x= max�X1; : : : ;Xn�, un is any high level such that n�1 −F�un��
converges to a positive number as n → ∞ and θ is a fixed number in �0;1�.
The θ is called the extremal index of the sequence �Xn� (see Section 3 for a
rigorous definition) and measures the strength of the dependence of �Xn�. If
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X1; : : : ;Xn are independent, then θ = 1; if X1; : : : ;Xn are very highly depen-
dent, then θ ≈ 0. It is also noted that, when θ > 0, θ−1 may be interpreted
as the asymptotic mean number of exceedances of a high level in a cluster of
the sequence �Xn� under a suitable mixing condition, which was justified by
Leadbetter (1983).

There are basically two directions of modern research in handling the ex-
tremal index θ. One is to find good estimators for θ and study their probabilis-
tic properties. In view of the simple relation (1.1), it is enough to estimate θ
and the tail of the marginal d.f. F in order to estimate the tail of the distribu-
tion of the maximum Mn. The estimation of θ was discussed by Nandagopalan
(1990), Hsing (1991, 1993) and Smith and Weissman (1994). For the estima-
tion of the tail of a probability distribution, see Pickands (1975), Smith (1987)
and Dekkers and de Haan (1989).

The other direction is to compute θ when the dependence structure of �Xn�
is given. It is unfortunately not known how to compute θ analytically except
for some special cases. For instance, Berman (1964) showed that a stationary
standard Gaussian sequence �Xn� has θ = 1 if the autocovariance function
rn = Cov�X1;X1+n� satisfies rn log n→ 0 as n→∞. Later on, Rootzén (1978)
computed θ for a class of moving averages of stable processes and Chernick
(1981) considered a particular stationary first-order autoregressive sequence
to compute θ. For a general stationary sequence, O’Brien (1987) and Rootzén
(1988) found similar characterizations for θ, which seem to be suitable for
applications to Markov chains but still intractable for computational purpose.

The characterizations were used by Smith (1992a) to find a technique for
computing θ of a stationary Markov chain. Assuming the standard Gumbel
marginals and the joint distribution of two successive variables being in the
domain of attraction of a bivariate extreme value distribution, he showed that
the tails of the chain behave like a random walk. As a result, θ is found as the
solution to a Wiener-Hopf integral equation. Perfekt (1994) extended this to
more general margins. Instead of the standard Gumbel marginals, he assumed
that the marginal distribution is in the domain of attraction of a univariate
extreme value distribution. Assuming also the existence of a limiting distri-
bution for the transition probabilities which is in fact another interpretation
of Smith’s assumption for the joint distribution of two successive variables, he
found an expression for θ and further characterized the extremal properties
of the chain in terms of exceedance point processes.

This paper extends the results of Smith and Perfekt to a real-valued, kth-
order stationary Markov chain �Xn�. The kth-order Markov chains are useful
and flexible tools for modeling local dependence in time series. We assume
that the joint distribution of k+1 consecutive variables belongs to the domain
of attraction of some multivariate extreme value distribution, and introduce
limiting distributions of some rescaled stationary transition kernels. These
limiting transition kernels are used to define a new (k − 1)th-order Markov
chain �Yn�, say, from which another kth-order Markov chain �Zn� is defined
as Zn = Y1 + · · · + Yn. The chain �Zn� is then effectively used to give a
representation for the extremal index of the original chain �Xn�. The repre-
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sentation is well suited for Monte Carlo simulation in computing the extremal
index. For a more complete description of the extremal behavior of the chain
�Xn�, we further discuss convergence in distribution of multilevel exceedance
point processes and give representations for quantities characterizing the dis-
tributional limits in terms of the chain �Zn�.

The rest of the paper is organized as follows. Section 2 discusses the do-
main of attraction of a multivariate extreme value distribution and constructs
the limiting distributions generating �Yn� and thus �Zn�. Section 3 gives a
representation for the extremal index of �Xn� in terms of �Zn� and Section
4 establishes convergence in distribution of multilevel exceedance point pro-
cesses for �Xn�. Finally, Section 5 contains four examples which show how
our results are applied.

2. Domains of attraction and limiting transition kernels. In this
section we consider criteria for domains of attraction of multivariate extreme
value distributions and introduce limiting distributions of some rescaled sta-
tionary transition kernels of a kth-order stationary Markov chain. These lim-
iting transition kernels are used to define a new (k−1)th-order Markov chain
which determines the extremal behavior of the original chain.

For a;b;x ∈ <p (p ≥ 1) and for α;β ∈ <, we write

ax + b = �a1x1 + b1; : : : ; apxp + bp�;
αx + β = �αx1 + β; : : : ; αxp + β�:

For a p-dimensional (dim.) d.f. Fp, if there exist p-dim. vectors an > 0 (with
componentwise ordering) and bn ∈ <p, n = 1;2; : : : ; such that

Fn
p�anx + bn� →w Gp�x� as n→∞(2.1)

for some p-dim. nondegenerate d.f. Gp, where→w denotes weak convergence,
then Fp is said to be in the domain of attraction of Gp, written Fp ∈ D �Gp�,
and Gp is called a p-dim. extreme value distribution. Galambos (1987) and
Resnick (1987) have good reviews on multivariate extreme value theory.

For p = 1, F1 ∈ D �G1� is equivalent to the condition that there exists a
ξ ∈ < such that

lim
u↑xF1

1−F1�u+ g�u�x�
1−F1�u�

= �1+ ξx�−1/ξ; 1+ ξx > 0;(2.2)

where xF1
x= sup�xx F1�x� < 1�, and

xF1
= ∞ and g�u� = ξu; if ξ > 0;

g�u� is some strictly positive function, if ξ = 0;

xF1
<∞ and g�u� = −ξ�xF1

− u�; if ξ < 0:

(2.3)

In this case, if we take bn = inf�xx F1�x� ≥ 1− 1/n� and an = g�bn�, we have

Fn
1�anx+ bn� → �ξ�x� x= exp�−�1+ ξx�−1/ξ�;

1+ ξx > 0; as n→∞:
(2.4)
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Therefore, one may take G1 = �ξ. Throughout the paper, the case ξ = 0 is
always interpreted as the limit ξ → 0, that is, �0�x� = exp�−e−x�, x ∈ <,
the standard Gumbel distribution. When ξ = 0, the function g is unique up
to asymptotic equivalence, that is, if there is another g̃ satisfying (2.2), then
g̃�u� ∼ g�u� as u ↑ xF1

. Condition (2.2) is in fact a reformulation of Theorem
1.6.2 of Leadbetter, Lindgren and Rootzén (1983).

The auxiliary function g in (2.3) is assumed to satisfy the following prop-
erties: as u ↑ xF1

,

u+ g�u�x→ xF1
for any x with 1+ ξx > 0;

g�u+ g�u�x�/g�u� → 1+ ξx locally uniformly in x with 1+ ξx > 0;

�xF1
− u�/g�u� → 1/�ξ� if xF1

<∞:
(2.5)

This is obviously true for ξ 6= 0. When ξ = 0, this is of no loss of generality
because, if (2.2) holds for some g which does not satisfy (2.5), then there exists
another g̃ which satisfies (2.2) and (2.5), with g̃�u� ∼ g�u� as u ↑ xF1

. For
details, see Lemmas 1.2 and 1.3 and Proposition 1.4 of Resnick (1987).

For p ≥ 2, Gp in (2.1) has no such finite-parameter representation as in
(2.4) for G1. A higher-dimensional extension of (2.2) is, however, possible due
to Marshall and Olkin (1983). For simplicity, Fp is assumed to have equal
univariate marginals. That is, let Fp�x� be a p-dim. d.f. with equal univariate
marginals F1�x�, and let Gp�x� be a p-dim. extreme value distribution with
equal univariate marginals G1�x� = �ξ�x� for some ξ ∈ <. Then Fp ∈ D �Gp�
if and only if

lim
u↑xF1

1−Fp�u+ g�u�x�
1−F1�u�

= − logGp�x�; 1+ ξx > 0;(2.6)

where xF1
and g satisfy (2.3) and (2.5). This is a reformulation of Propositions

3.1–3.3 of Marshall and Olkin (1983). As a representation of Gp, Pickands
(1981) showed that there exists a finite positive measureQp on the (p−1)-dim.
unit simplex Sp = �w ∈ <px w ≥ 0;

∑p
i=1wi = 1� satisfying

∫
Sp
wi dQp�w� =

1, i = 1; : : : ; p, such that

Gp�x� = exp
[
−
∫
Sp

max
1≤i≤p

�wi�1+ ξxi�−1/ξ�dQp�w�
]
; 1+ ξx > 0:(2.7)

Now, let �Xnx n ≥ 1� denote a real-valued, kth-order stationary Markov
chain. Here, �Xn� being a kth-order Markov chain means that, for every n,
the conditional distribution of Xn given the past depends only on the k im-
mediate past values. It is clear from the stationarity of �Xn� that the distri-
bution of the whole chain is determined by the joint distribution Fk+1, say,
of �Xn; : : : ;Xn+k� via its successive transition kernels. Assuming Fk+1 is ab-
solutely continuous, we use the following notation: for i = 1; : : : ; k + 1, we
write

xi = �x1; : : : ; xi� ∈ <i; Xi = �X1; : : : ;Xi�;
Fi�xi� = Fi�x1; : : : ; xi� = P�Xn+1 ≤ x1; : : : ;Xn+i ≤ xi�;
fi�xi� = ∂iFi�xi�/�∂x1 : : : ∂xi�;
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and, for j = 1; : : : ; k, we write

xj+1 = �x1; : : : ; xj; xj+1� = �xj; xj+1� ∈ <j+1;

Fj+1�xj+1�xj� = P�Xn+j+1 ≤ xj+1��Xn+1; : : : ;Xn+j� = �x1; : : : ; xj��;
fj+1�xj+1�xj� = ∂Fj+1�xj+1�xj�/∂xj+1 = fj+1�xj+1�/fj�xj�:

We now assume that Fk+1 ∈ D �Gk+1� for some (k + 1)-dim. extreme value
distribution Gk+1 with equal univariate marginals G1 = �ξ for some ξ ∈
<. Then this implies that Fi ∈ D �Gi�, i = 1; : : : ; k + 1, where Gi�xi� x=
Gk+1�xi; xG1

; : : : ; xG1
�, an i-dim. marginal of Gk+1. We therefore have, from

(2.2) and (2.6), that, for each i = 1; : : : ; k+ 1,

lim
u↑xF1

1−Fi�u+ g�u�xi�
1−F1�u�

= − logGi�xi�; 1+ ξxi > 0;(2.8)

where xF1
and g satisfy (2.3) and (2.5). Taking partial derivatives in these

convergences gives a plausibility of the following essential assumption under
which the theory of this paper is developed.

Assumption A. Suppose that

lim
u↑xF1

g�u�f1�u+ g�u�x1�
1−F1�u�

= �1+ ξx1�−1/ξ−1; 1+ ξx1 > 0;

and that, for each j = 1; : : : ; k,

lj�xj+1yxj� x= lim
u↑xF1

g�u�fj+1�u+ g�u�xj+1�u+ g�u�xj�; 1+ ξxj+1 > 0;

exist finite.

Lemma 2.1. For each j = 1; : : : ; k, �1+ ξxj+1�lj�xj+1yxj� must be a func-
tion of

5xj+1 x=
(

1
ξ

log
(

1+ ξx2

1+ ξx1

)
; : : : ;

1
ξ

log
(

1+ ξxj+1

1+ ξxj

))
;

provided that fk+1 is continuous.

Proof. It follows from the properties (2.5) of g that

lj�0y �1+ ξxj+1�−1�xj − xj+1��
= lim

u↑xF1

g�u�fj+1�u�u+ g�u��1+ ξxj+1�−1�xj − xj+1��

= �1+ ξxj+1�lj�xj+1yxj�:

Therefore, �1+ ξxj+1�lj�xj+1yxj� is a function of �1+ ξxj+1�−1�xj−xj+1� and
thus a function of 5xj+1. 2
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It is noted that, when ξ = 0, 5xj+1 is interpreted as �x2−x1; : : : ; xj+1−xj�.
The lj�xj+1yxj� is usually (but not always) given by

(
∂j+1 logGj+1�xj+1�

∂x1 : : : ∂xj+1

)/(
∂j logGj�xj�
∂x1 : : : ∂xj

)
:

Assuming fk+1 is continuous, we define a function hj�yjyy1; : : : ; yj−1� on <j
by letting

hj

(
1
ξ

log
(

1+ ξxj+1

1+ ξxj

)
y 5xj

)
x= �1+ ξxj+1�lj�xj+1yxj�; 1+ ξxj+1 > 0;

which is well defined by Lemma 2.1. We also define, for y1; : : : ; yj−1 ∈ <,

Hj�yyy1; : : : ; yj−1� x= 1−
∫ ∞
y
hj�tyy1; : : : ; yj−1�dt; y ∈ �−∞� ∪ <:

Then, for every fixed yj−1 ∈ <j−1, Hj�yyyj−1� may be considered as a d.f. of
y on �−∞� ∪ <, where it has a mass 1−

∫∞
−∞ hj�tyyj−1�dt at y = −∞, which

is possibly positive, and is absolutely continuous on <, having hj�yyyj−1� as
its density. It is noted that the following are equivalent:

(i) ∀yj−1 ∈ <j−1; Hj�−∞yyj−1� = 0y
(ii) ∀yj−1 ∈ <j−1; hj� · yyj−1� is a p.d.f. on <y

(iii) ∀xj with 1+ ξxj > 0; lj� · yxj� is a p.d.f. on �xx 1+ ξx > 0�:
(2.9)

By p.d.f. we mean probability density function. In fact, these equivalent con-
ditions imply that, as u ↑ xF1

,

Fj+1�u+ g�u�xj+1�u+ g�u�xj� →Hj

(
1
ξ

log
(

1+ ξxj+1

1+ ξxj

)
y 5xj

)
;

1+ ξxj+1 > 0:

The limiting distributions Hj, j = 1; : : : ; k, constructed above can generate
a �−∞� ∪ <-valued, (k− 1)th-order Markov chain �Ynx n ≥ 1� as follows:

1. Y1 ∼H1�y1�.
2. For j=2; : : : ; k, Yj��Y1; : : : ;Yj−1�∼Hj�yjyY1; : : : ;Yj−1� if Y1; : : : ;Yj−1>
−∞; put Yj= −∞, otherwise.

3. For j ≥ k + 1, Yj��Yj−k+1; : : : ;Yj−1� ∼ Hk�yjyYj−k+1; : : : ;Yj−1� if
Yj−k+1; : : : ;Yj−1 > −∞; put Yj = −∞, otherwise.

When k = 1, �Yn� becomes a sequence of i.i.d. r.v.’s with d.f. H1. We also
remark that, when k ≥ 2, the state −∞ is an absorbing state of the chain
�Yn�, that is, once the chain visits the state −∞, it must stay there forever.
Finally, define

Zn x= Y1 + · · · +Yn; n = 1;2; : : : ;(2.10)

so that �Znx n ≥ 1� is a �−∞�∪<-valued, kth-order Markov chain. This chain
plays an important role in examining the extremal behavior of the original
chain �Xn� (see Theorems 3.1 and 4.1).
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Now, suppose that we only know F1 ∈ D ��ξ� for some ξ ∈ <, with auxiliary
function g satisfying (2.3) and (2.5), and that Assumption A holds. Then it can
be shown thatFk+1 ∈ D �Gk+1� for some (k+1)-dim. extreme value distribution
Gk+1 with equal univariate marginals G1 = �ξ if, for each j = 1; : : : ; k, (2.9)
holds [see Yun (1994) for details]. This situation gives a clear description of
the tail behavior of �Xn� as follows. Define φ�x� x= ξ−1�eξx − 1� and x∗F1

x=
inf�xx F1�x� > 0�.

Lemma 2.2. Let �Xnx n ≥ 1� be a kth-order stationary Markov chain, and
let Fk+1 be the d.f. of �X1; : : : ;Xk+1� having a continuous p.d.f. fk+1. Suppose
that F1 ∈ D ��ξ� for some ξ ∈ <, with auxiliary function g satisfying (2.3)
and (2.5), and that Assumption A holds. Let �Znx n ≥ 1� be the kth-order
Markov chain defined by (2.10), and let T be an Exp�1�-distributed r.v. which
is independent of �Zn�. If, for each j = 1; : : : ; k, (2.9) holds, then, for every
p ≥ 2, as u ↑ xF1

,

P
{
��X2 − u�/g�u�; : : : ; �Xp − u�/g�u�� ∈ ·�X1 > u

}

→w P
{
�φ�Z1 +T�; : : : ; φ�Zp−1 +T�� ∈ ·

}
:

Proof. We use the notation

f
�u�
1 �x1� x=

g�u�f1�u+ g�u�x1�
1−F1�u�

y

f
�u�
j+1�xj+1�xj� x= g�u�fj+1�u+ g�u�xj+1�u+ g�u�xj�; 1 ≤ j ≤ ky

ψ
�u�
p �xp� x=





p−1∏
j=1

f
�u�
j+1�xj+1�xj�; 2 ≤ p ≤ k;

( k−1∏
j=1

f
�u�
j+1�xj+1�xj�

)( p−1∏
j=k

f
�u�
k+1�xj+1�xj−k+1; : : : ; xj�

)
;

p ≥ k+ 1y

ψp−1�xp� x=





p−1∏
j=1

lj�xj+1yxj�; 2 ≤ p ≤ k;

( k−1∏
j=1

lj�xj+1yxj�
)( p−1∏

j=k
lk�xj+1yxj−k+1; : : : ; xj�

)
;

p ≥ k+ 1y

ηp−1�yp−1� x=





p−1∏
j=1

hj�yjyyj−1�; 2 ≤ p ≤ k;

( k−1∏
j=1

hj�yjyyj−1�
)( p−1∏

j=k
hk�yjyyj−k+1; : : : ; yj−1�

)
;

p ≥ k+ 1:
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Then, for every p≥2, since limu↑xF1
f
�u�
1 �x1�ψ

�u�
p �xp�= �1+ ξx1�−1/ξ−1ψp−1�xp�,

1 + ξxp > 0, and since �1 + ξx1�−1/ξ−1ψp−1�xp� is a p.d.f. on �0; x�ξ� ×
�x∗�ξ; x�ξ�

p−1, we have, by Scheffé’s theorem [Billingsley (1985), Theorem
16.11], for any wp−1 with 1+ ξwp−1 > 0, as u ↑ xF1

,

P
{
�X2 − u�/g�u� ≤ w1; : : : ; �Xp − u�/g�u� ≤ wp−1�X1 > u

}

=
∫ ∞

0

∫ w1

−∞
: : :
∫ wp−1

−∞
f
�u�
1 �x1�ψ

�u�
p �xp�dxp : : : dx2 dx1

→
∫ x�ξ

0

∫ w1

x∗�ξ

: : :
∫ wp−1

x∗�ξ

�1+ ξx1�−1/ξ−1ψp−1�xp�dxp : : : dx2 dx1:

This, if we put x1 = φ�t� and xj = φ�t + y1 + · · · + yj−1�, j = 2; : : : ; p, is
equal to

∫ ∞
0

∫ φ−1�w1�−t

−∞

∫ φ−1�w2�−t−y1

−∞
: : :
∫ φ−1�wp−1�−t−

∑p−2
j=1 yj

−∞

× e−tηp−1�yp−1�dyp−1 : : : dy2 dy1 dt

= P
{
Y1 ≤ φ−1�w1� −T;Y2 ≤ φ−1�w2� −T−Y1; : : : ;

Yp−1 ≤ φ−1�wp−1� −T−
p−2∑
j=1

Yj

}

= P
{
φ�Z1 +T� ≤ w1; : : : ; φ�Zp−1 +T� ≤ wp−1

}
;

where �Yn� is the chain in (2.10). This completes the proof. 2

Although Lemma 2.2 is useful for obtaining a representation of the extremal
index of �Xn� (see Section 3), it cannot be applied when (2.9) fails for some
j = 1; : : : ; k. In Section 3, we shall handle this case by imposing Assumption B
below in addition to Assumption A. For this, we need the following definition.

Definition 2.3. A class of real-valued functions defined on < is said to be
locally uniformly integrable over an unbounded interval if the class is uni-
formly integrable over any compact subset of that interval.

For example, real-valued functions defined on < are locally uniformly inte-
grable if they are dominated by a continuous function.

Assumption B. Suppose that there exists a u∗ < xF1
such that the class

{
g�u�f1�u+ g�u�x1�

1−F1�u�
x u∗ ≤ u < xF1

}

of functions of x1 is locally uniformly integrable over �x�ξ; x∗�ξ�, and that, for
each j = 1; : : : ; k and for every fixed xj with 1 + ξxj > 0, there exists a
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u∗j�xj� < xF1
such that the class

{
g�u�fj+1�u+ g�u�xj+1�u+ g�u�xj�x u∗j�xj� ≤ u < xF1

}

of functions of xj+1 is also locally uniformly integrable over �x�ξ; x∗�ξ�.

Assumptions A and B are satisfied by a large class of models for Fk+1.
In particular, the following lemma shows that Assumptions A and B hold
automatically if Fk+1 is itself a multivariate extreme value distribution. We
here remark that, when ξ > 0, the auxiliary function g�u� = ξu in (2.3) can
be replaced by g�u� = 1+ ξu without any distortion in developing the whole
story of this paper. For convenience of proof, this replacement is adopted in
the following lemma.

Lemma 2.4. Let �Xnx n ≥ 1� be a kth-order stationary Markov chain, and
let Fk+1 be the d.f. of �X1; : : : ;Xk+1� having a continuous p.d.f. fk+1. If Fk+1
is a multivariate extreme value distribution with F1 = �ξ for some ξ ∈ <,
then Assumptions A and B hold and the limit lj�xj+1yxj� in Assumption A is
given by

(
∂j+1 logFj+1�xj+1�

∂x1 : : : ∂xj+1

)/(
∂j logFj�xj�
∂x1 : : : ∂xj

)
;(2.11)

provided that ∂j logFj�xj�/�∂x1 : : : ∂xj� is not zero, where g�u� = 1+ ξu.

Proof. When ξ = 0, the validity of the choice g�u� = 1 follows from
the fact that F1 = �0. First, we check Assumption A. The first statement is
elementary and so the details are omitted here. For the second statement, for
each i = 1; : : : ; k+ 1, let Vi�xi� x= − logFi�xi� and consider

fi�xi� =
∂i exp�−Vi�xi��
∂x1 : : : ∂xi

= exp�−Vi�xi��
[
− ∂iVi�xi�
∂x1 : : : ∂xi

+ · · · + �−1�i
i∏
s=1

∂Vi�xi�
∂xs

]

= exp�−Vi�xi��
i∑

m=1

bi;m�xi�; 1+ ξxi > 0;

where

bi;m�xi� x= �−1�m
∑

�Di;1;:::;Di;m�

m∏
r=1

∂�Di; r�Vi�xi�
�∂xs�s∈Di; r

;

the �Di;1; : : : ;Di;m� varying on the partitions of �1; : : : ; i� such that each
of Di;1; : : : ;Di;m contains at least one element. By �∂xs�s∈Di; r

we mean
∂xi1 · · · ∂xip if Di; r = �i1 < · · · < ip�: Thus, for any u with g�u� = 1+ ξu > 0,

fi�u+ g�u�xi� = exp�−Vi�u+ g�u�xi��
i∑

m=1

bi;m�u+ g�u�xi�:
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Here, since Fi is an i-dim. extreme value distribution, we see, from (2.7) with
p;Gp replaced by i;Fi respectively, that, for any t > 0, Vi�ξ−1�tξ − 1� +
tξxi� = t−1Vi�xi�, and so, by taking t = �g�u��1/ξ = �1 + ξu�1/ξ > 0, we
have Vi�u+ g�u�xi� = Vi�ξ−1�tξ − 1� + tξxi� = t−1Vi�xi� = �g�u��−1/ξVi�xi�.
Further, since, for each r = 1; : : : ;m,

∂�Di; r�Vi�u+ g�u�xi�
�∂�u+ g�u�xs��s∈Di; r

= �g�u��−�Di; r� ∂
�Di; r�Vi�u+ g�u�xi�
�∂xs�s∈Di; r

and �Di;1� + · · · + �Di;m� = i, we have bi;m�u+g�u�xi� = �g�u��−i−m/ξbi;m�xi�.
Therefore, for any u with g�u� = 1+ ξu > 0,

fi�u+ g�u�xi� = �g�u��−i exp�−�g�u��−1/ξVi�xi��
i∑

m=1

�g�u��−m/ξbi;m�xi�:

This enables us to write that, for each j = 1; : : : ; k and for any u;xj+1 with
g�u� = 1+ ξu > 0 and 1+ ξxj+1 > 0,

g�u�fj+1�u+ g�u�xj+1�u+ g�u�xj�
= g�u�fj+1�u+ g�u�xj+1�/fj�u+ g�u�xj�
= exp�−�g�u��−1/ξ�Vj+1�xj+1� −Vj�xj���

×
( j+1∑
m=1

�g�u��−m/ξbj+1;m�xj+1�
)/( j∑

m=1

�g�u��−m/ξbj;m�xj�
)
:

(2.12)

Since �g�u��−1/ξ → 0 as u ↑ xF1
= x�ξ , the functional form of (2.12) guar-

antees the existence of the limit lj�xj+1yxj� in Assumption A. Moreover,
if ∂jVj�xj�/�∂x1 : : : ∂xj� is not zero, then it is obvious from (2.12) that
lj�xj+1yxj� is given by (2.11).

Second, we check Assumption B. For the first statement, observe that, for
any u with g�u� = 1+ ξu > 0,

g�u�f1�u+ g�u�x1�
1−F1�u�

= a�u��1+ ξx1�−1/ξ−1 exp�−�g�u��−1/ξ�1+ ξx1�−1/ξ�;

1 + ξx1 > 0, where a�u� = �g�u��−1/ξ/�1 − exp�−�g�u��−1/ξ��. Here, since
a�u� → 1 as u ↑ xF1

, there exists a u∗ such that a�u� ≤ 3/2 whenever u∗ ≤
u < xF1

. Thus, whenever u∗ ≤ u < xF1
,

g�u�f1�u+ g�u�x1�
1−F1�u�

≤ 3
2
�1+ ξx1�−1/ξ−1; 1+ ξx1 > 0;

where the right-hand side is a continuous function of x1. For the second state-
ment, consider (2.12) again. Here, fix xj with 1 + ξxj > 0 and let m∗ denote
the smallest m, 1 ≤ m ≤ j, such that bj;m�xj� 6= 0, that is, bj;m�xj� = 0 for
1 ≤m ≤m∗−1 and bj;m∗�xj� 6= 0. Then, for 1 ≤m ≤m∗−1, bj+1;m�xj+1� = 0
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also for any xj+1 with 1 + ξxj+1 > 0 since, otherwise, lj�xj+1yxj� cannot be
finite. Thus (2.12) is reduced to

g�u�fj+1�u+ g�u�xj+1�u+ g�u�xj�
= exp�−�g�u��−1/ξ�Vj+1�xj+1� −Vj�xj���

×
( j+1−m∗∑

r=0

�g�u��−r/ξbj+1;m∗+r�xj+1�
)/( j−m∗∑

r=0

�g�u��−r/ξbj;m∗+r�xj�
)
:

Here, the denominator of the right-hand side converges to bj;m∗�xj� as u ↑ xF1
,

which implies bj;m∗�xj� > 0 since, otherwise, that is, if bj;m∗�xj� < 0, then
fj�u+g�u�xj� < 0 for all u sufficiently close to xF1

. Also, there exists a u∗j�xj�
such that

∑j−m∗
r=0 �g�u��−r/ξbj;m∗+r�xj� ≥ �1/2�bj;m∗�xj� whenever u∗j�xj� ≤

u < xF1
. Therefore, since Vj+1�xj+1� ≥ Vj�xj�, we conclude that, whenever

u∗j�xj� ≤ u < xF1
,

g�u�fj+1�u+ g�u�xj+1�u+ g�u�xj�

≤ 2
bj;m∗�xj�

j+1−m∗∑
r=0

�g�u∗j�xj���−r/ξ�bj+1;m∗+r�xj+1��;

1+ξxj+1 > 0, where the right-hand side is a continuous function of xj+1. The
proof is complete. 2

3. Representation of extremal index. In this section, we derive a rep-
resentation for the extremal index of a kth-order stationary Markov chain
using the chain defined by (2.10). This turns out to be very useful in comput-
ing the extremal index by means of Monte Carlo simulation.

Let �Xnx n ≥ 1� be a stationary sequence of r.v.’s with marginal d.f. F1. For
a sequence �unx n ≥ 1� of real numbers, we write: for 1 ≤ s ≤ t ≤ n, define
A
�n�
s; t to be the class of all intersections of the events �Xi ≤ un�, s ≤ i ≤ t,

and, for q = 1; : : : ; n− 1, write

αn;q = max
{
�P�A ∩B� −P�A�P�B��x

A ∈ A
�n�

1; s ; B ∈ A
�n�
s+q;n;1 ≤ s ≤ n− q

}
:

(3.1)

If αn;qn → 0 as n → ∞ for some sequence qn = o�n�, then the condition
D�un� is said to hold for �Xn�. The condition D�un�, which is weaker than the
usual strong mixing, was introduced by Leadbetter (1974) and is a widely used
mixing condition to restrict long-range dependence of the events �Xi ≤ un�.

Assume that, for each τ > 0, there exists a sequence �un�τ�x n ≥ 1� of real
numbers such that

n�1−F1�un�τ��� → τ as n→∞:(3.2)

The sequence �Xn� is said to have extremal index θ, 0 ≤ θ ≤ 1, if, for each
τ > 0, P�Mn ≤ un�τ�� → e−θτ as n→∞. It is noted that, by Theorem 1.7.13
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of Leadbetter, Lindgren and Rootzén (1983), if F1 is continuous, then, for each
τ > 0, there always exists a sequence �un�τ�� satisfying (3.2). Now, assume
that, for each τ > 0, D�un�τ�� holds for �Xn�. Then, by O’Brien (1987) [see
also Rootzén (1988)], the sequence �Xn� has extremal index θ if and only if,
for some τ0 > 0,

P�Xi ≤ un�τ0�; 2 ≤ i ≤ pn�X1 > un�τ0�� → θ as n→∞;(3.3)

where �pnx n ≥ 1� is a sequence of positive integers such that

pn = o�n�; nαn;qn = o�pn�; qn = o�pn�;(3.4)

the αn;q being given in (3.1) with un=un�τ0� and the qn= o�n� being such that
αn;qn→0 (e.g., one may take pn as the integer part of max�nα1/2

n;qn; �nqn�1/2��.
Following Smith (1992a) [see also Perfekt (1994)], if we further assume that

lim
p→∞

lim
n→∞

pn∑
i=p

P�Xi > un�X1 > un� = 0(3.5)

with un = un�τ0�, then (3.3) is equivalent to the existence of

θ = lim
p→∞

lim
u↑xF1

P�Xi ≤ u; 2 ≤ i ≤ p�X1 > u�:(3.6)

In case of a Markov chain, (3.6) can be reduced to a more appealing form
from a computational point of view. Specifically, let �Xnx n ≥ 1� be a kth-
order stationary Markov chain. Then, Lemma 2.2 says that, under the same
assumptions of the lemma, (3.6) is reduced to

θ = lim
p→∞

P�Z1 ≤ −T; : : : ;Zp ≤ −T� = P
{
sup
i≥1

Zi ≤ −T
}
;(3.7)

where �Znx n ≥ 1� is the kth-order Markov chain defined by (2.10) and T
an Exp�1�-distributed r.v. which is independent of �Zn�. Representation (3.7)
is particularly helpful in computing θ by simulation. However, it should be
noted that (2.9) was required to hold for each j = 1; : : : ; k in Lemma 2.2. The
following theorem handles the general case where (2.9) may fail possibly for
some j = 1; : : : ; k.

Theorem 3.1. Let �Xnx n ≥ 1� be a kth-order stationary Markov chain,
and let Fk+1 be the d.f. of �X1; : : : ;Xk+1� having a continuous p.d.f. fk+1 such
that Fk+1 ∈ D �Gk+1� with auxiliary function g satisfying (2.3) and (2.5), where
Gk+1 is some �k + 1�-dim. extreme value distribution with equal univariate
marginals G1 = �ξ for some ξ ∈ <. Suppose that Assumptions A and B hold
and that

lim
M→∞

lim
u↑xF1

sup
{
P�Xk+1 > u�Xk = xk�x

min
1≤i≤k

xi ≤ u− g�u��1−M−ξ�/ξ
}
= 0:

(3.8)
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Let �un�τ��, τ > 0, be sequences satisfying (3.2). Assume that D�un�τ�� holds
for each τ > 0 and that, for some τ0 > 0, (3.5) holds with un = un�τ0�, where
�pn� is a sequence satisfying (3.4). Then, �Xn� has extremal index θ given by

θ = log�Gk�0�/Gk+1�0�� −P
{

max
1≤i≤k

Zi ≤ −T; sup
i≥k+1

Zi > −T
}
;(3.9)

where �Znx n ≥ 1� is the kth-order Markov chain defined by (2.10) and T an
Exp�1�-distributed r.v. which is independent of �Zn�.

Proof. We begin with (3.6). Letting θ�u�p = P�Xi ≤ u; Xp > u; 2 ≤ i ≤
p− 1�X1 > u�, p ≥ k+ 2, and using (2.8), (3.6) can be rewritten as

θ = lim
u↑xF1

P�Xi ≤ u;2 ≤ i ≤ k+ 1�X1 > u� − lim
p→∞

lim
u↑xF1

p∑
j=k+2

θ
�u�
j

= log�Gk�0�/Gk+1�0�� −
∞∑

p=k+2

lim
u↑xF1

θ
�u�
p ;

and thus it is enough to show that, for each p ≥ k+ 2,

lim
u↑xF1

θ
�u�
p = P�Zi ≤ −T; Zp−1 > −T; 1 ≤ i ≤ p− 2�:

For M> 1, let c�u�ξ �M� x= u−g�u��1−M−ξ�/ξ, d�u�ξ �M� x= u+g�u��Mξ−1�/ξ,
and, for fixed p ≥ k+ 2, define the events

A�u;M� =
{
u < X1 ≤ d

�u�
ξ �M�; Xi ≤ u; u < Xp ≤ d

�u�
ξ �M�; 2 ≤ i ≤ p− 1

}
;

B�u;M� =
{
u < X1 ≤ d

�u�
ξ �M�; c

�u�
ξ �M� < Xi ≤ u; u < Xp ≤ d

�u�
ξ �M�;

2 ≤ i ≤ p− 1
}
;

Cj�u;M� =
{
u < X1 ≤ d

�u�
ξ �M�; c

�u�
ξ �M� < Xi ≤ u; Xj ≤ c

�u�
ξ �M�;

Xm ≤ u; u < Xp ≤ d
�u�
ξ �M�; 2 ≤ i ≤ j− 1; j+ 1 ≤m ≤ p−1

}
;

j = 2; : : : ; p− 1:

Then, since limM→∞ limu↑xF1
P�Xs > d

�u�
ξ �M��X1 > u� = 0 from (2.2) for

s ≥ 1, we have limu↑xF1
θ
�u�
p = limM→∞ limu↑xF1

P�A�u;M��X1 > u�. Also note
that

P�A�u;M��X1 > u� = P�B�u;M��X1 > u�

+
p−1∑
j=2

P�Cj�u;M��X1 > u�:
(3.10)
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We now show that, for j = 2; : : : ; p− 1,

lim
M→∞

lim
u↑xF1

P
{
u < X1 ≤ d

�u�
ξ �M�; Xj ≤ c

�u�
ξ �M�;

Xp > u�X1 > u
}
= 0;

(3.11)

and thus limM→∞ limu↑xF1
P�Cj�u;M��X1 > u� = 0. For this, let r be the

integer part of �p− j− 1�/k and consider

P
{
Xj ≤ c

�u�
ξ �M�; Xp > u�X1 = u+ g�u�x1

}

≤
r−1∑
s=0

P
{
Xj+sk ≤ c

�u�
ξ �M�r+1−s�/�r+1��;

Xj+�s+1�k > c
�u�
ξ �M�r−s�/�r+1���X1 = u+ g�u�x1

}

+P
{
Xj+rk ≤ c

�u�
ξ �M1/�r+1��;Xp > u�X1 = u+ g�u�x1

}

≤
r∑
s=0

sup
{
P�Xk+1 > c

�u�
ξ �M�r−s�/�r+1���Xk = yk�x

min
1≤i≤k

yi ≤ c
�u�
ξ �M�r+1−s�/�r+1��

}
;

which is because �Xn� is a kth-order stationary Markov chain. Thus, using
the properties (2.5) of g, it can be seen that (3.8) implies

lim
M→∞

lim
u↑xF1

P
{
Xj≤ c

�u�
ξ �M�; Xp>u�X1=u+g�u�x1

}
=0 uniformly in x1:

This, together with the first statement of Assumption A, shows that (3.11)
holds. We therefore have limu↑xF1

θ
�u�
p = limM→∞ limu↑xF1

P�B�u;M��X1 >

u� from (3.10) and (3.11). Here, using the same notation as in the proof of
Lemma 2.2, P�B�u;M��X1 > u� can be rewritten as

∫ �Mξ−1�/ξ

0

∫ 0

�M−ξ−1�/ξ
: : :
∫ 0

�M−ξ−1�/ξ

∫ �Mξ−1�/ξ

0

× f�u�1 �x1�ψ
�u�
p �xp�dxpdxp−1 : : : dx2 dx1;

which converges to

∫ �Mξ−1�/ξ

0

∫ 0

�M−ξ−1�/ξ
: : :

∫ 0

�M−ξ−1�/ξ

∫ �Mξ−1�/ξ

0

×�1+ξx1�−1/ξ−1ψp−1�xp�dxp dxp−1 : : : dx2 dx1
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as u ↑ xF1
by applying Assumptions A and B successively. Finally, since �Mξ−

1�/ξ↑ x�ξ and �M−ξ − 1�/ξ↓ x∗�ξ as M→∞, we have, by letting M→∞,

lim
u↑xF1

θ
�u�
p =

∫ x�ξ
0

∫ 0

x∗�ξ

: : :
∫ 0

x∗�ξ

∫ x�ξ
0

×�1+ ξx1�−1/ξ−1ψp−1�xp�dxp dxp−1 : : : dx2 dx1;

which, if we put x1 = φ�t� and xj = φ�t + y1 + · · · + yj−1�, j = 2; : : : ; p, is
equal to

∫ ∞
0

∫ −t
−∞

∫ −t−y1

−∞
: : :
∫ −t−∑p−3

j=1 yj

−∞

∫ ∞
−t−∑p−2

j=1 yj

× e−tηp−1�yp−1�dyp−1 dyp−2 : : : dy2 dy1 dt

= P
{
−∞ < Y1 ≤ −T; : : : ;−∞ < Yp−2 ≤ −T−

p−3∑
j=1

Yj;

Yp−1 > −T−
p−2∑
j=1

Yj

}

= P�Z1 ≤ −T; : : : ;Zp−2 ≤ −T; Zp−1 > −T�;
where �Yn� is the chain in (2.10). This completes the proof. 2

Remark 3.2.

1. When k = 1, representation (3.9) coincides with (3.7) since

log�G1�0�/G2�0�� = lim
u↑xF1

P�X2 ≤ u�X1 > u�

= 1− lim
u↑xF1

P�X2 > u�X1 > u�

= 1−P�Z1 > −T� = P�Z1 ≤ −T�:
Therefore, (3.9) can be viewed as a direct extension of Smith (1992a) [see
also Perfekt (1994)]. However, when k ≥ 2, (3.9) may not coincide with
(3.7) since, for i ≥ 3, limu↑xF1

P�Xi > u�X1 > u� need not be equal to
P�Zi−1 > −T� without further assumptions (see Corollary 3.3 below).

2. Recently, Perfekt (1997) extended the results of Perfekt (1994) for a Markov
chain to a higher-order case under a weaker condition than (3.8), but with
a stronger assumption on the limiting transition kernel. Translated to our
setting, he let the sup in (3.8) be taken over max1≤i≤k xi ≤ u − g�u��1 −
M−ξ�/ξ and assumed the existence of a limiting transition kernel so that
the resulting chain can visit and leave the state −∞ unless there occurred k
successive visits of that state before, which is not allowed in our framework.
Recall that the chain �Zn� defined in (2.10) cannot leave the state −∞ once
it is visited. In view of the increase of strength of dependence of variables
as k increases, we believe condition (3.8) is not so strong in practice.
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Sometimes the Gk+1 in Theorem 3.1 may be infeasible to find out explicitly
or the quantity log�Gk�0�/Gk+1�0�� in (3.9) may be intractable to compute.
The following corollary strengthens condition (3.8) to remove these possible
difficulties.

Corollary 3.3. For k ≥ 2 in Theorem 3.1, drop the assumptions Fk+1 ∈
D �Gk+1� and (3.8), and suppose instead that F1 ∈ D ��ξ� for some ξ ∈ <, with
auxiliary function g satisfying (2.3) and (2.5), and that, for each j = 2; : : : ; k,

lim
M→∞

lim
u↑xF1

sup
{
P�Xj+1 > u�Xj = xj�x

min
1≤i≤j

xi ≤ u− g�u��1−M−ξ�/ξ
}
= 0:

(3.12)

Then, �Xn� has extremal index θ given by (3.7).

Proof. Letting θ�u�p = P�Xi ≤ u; Xp > u; 2 ≤ i ≤ p− 1�X1 > u�, p ≥ 3,
(3.6) is rewritten as

θ = 1− lim
u↑xF1

P�X2 > u�X1 > u� −
∞∑
p=3

lim
u↑xF1

θ
�u�
p :

By the same argument as in the proof of Theorem 3.1, it can be shown from
(3.12) that, for each p ≥ 3, limu↑xF1

θ
�u�
p = P�Zi ≤ −T;Zp−1 > −T;1 ≤

i ≤ p − 2�. Since limu↑xF1
P�X2 > u�X1 > u� = P�Z1 > −T�, the proof is

complete. 2

4. Exceedance point processes. In this section, we establish conver-
gence in distribution of multilevel exceedance point processes for a kth-order
stationary Markov chain and give representations for quantities character-
izing the distributional limits in terms of the extremal index of the original
chain and the chain defined by (2.10).

Let �Xnx n ≥ 1� be a stationary sequence of r.v.’s with marginal d.f. F1.
Assume that, for each τ > 0, there exists a sequence �un�τ�x n ≥ 1� of real
numbers satisfying (3.2). For each τ > 0, letN�τ�n be the point process on �0;∞�
defined by

N
�τ�
n �B� x=

∞∑
i=1

δi/n�B�1�Xi>un�τ��(4.1)

for Borel sets B ⊂ �0;∞�, where δi/n�·� denotes the Dirac measure with mass
1 at i/n. Thus, N�τ�n is the point process of time-normalized exceedances of the
level un�τ� by the r.v.’sX1;X2; : : : : TheN�τ�n gives a more complete description
of the extremal behavior of �Xn� than Mn since, for instance, �Mn ≤ un�τ�� =
�N�τ�n ��0;1�� = 0�.

For a fixed r ≥ 1, let τ1 > · · · > τr > 0 and write Nn x= �N
�τ1�
n ; : : : ;N

�τr�
n �,

a multilevel exceedance point process for �Xn�. Then, by (3.2), un�τ1� < · · · <
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un�τr� for all sufficiently large n. For convergence in distribution of Nn as
n → ∞, we need a slightly stronger mixing condition than Leadbetter’s one.
Specifically, for sequences �u�j�n x n ≥ 1�, j = 1; : : : ; r, of real numbers, we
write: for 1 ≤ s ≤ t ≤ n, define B

�n�
s; t to be the σ-field generated by the events

�Xi ≤ u
�j�
n �, s ≤ i ≤ t, 1 ≤ j ≤ r, and, for q = 1; : : : ; n− 1, write

βn;q = max
{
�P�A ∩B� −P�A�P�B��x

A ∈ B
�n�
1; s; B ∈ B

�n�
s+q;n; 1 ≤ s ≤ n− q

}
:

(4.2)

If βn;qn → 0 as n → ∞ for some sequence qn = o�n�, then the condition

4�u�1�n ; : : : ; u�r�n � is said to hold for �Xn�. This mixing condition was introduced
by Hsing (1987) and is weaker than the strong mixing.

Now, assume that the sequence �Xn� has extremal index θ > 0 and that,
for each σ > 0, 4�un�στ1�; : : : ; un�στr�� holds for �Xn�. We use the nota-
tion: let I x= �i ∈ �0;1; : : :�rx i1 ≥ · · · ≥ ir; i1 ≥ 1�, and for each i ∈ I , write
i�j� x= �i1−1; : : : ; ij−1; ij+1; : : : ; ir�, j = 0;1; : : : ; r (i.e., i�0� = i); let P�j�n �·� x=
P�·�X1 > un�τj��, j = 1; : : : ; r, and we mean �N�τ1�

n �B�; : : : ;N�τr�n �B�� by
Nn�B� for Borel sets B ⊂ �0;∞�. Then, by Perfekt (1994) [see also Hsing
(1984) and Rootzén (1988)], Nn = �N

�τ1�
n ; : : : ;N

�τr�
n � converges in distribution

to some point process �N�τ1�; : : : ;N�τr�� as n→∞ if and only if, for each i ∈ I ,
there exists a constant π�i� such that

r∑
j=1

τj

τ1

[
P�j�n

{
Nn

(
�1/n;pn/n�

)
= i�j�

}

−P�j�n
{
Nn

(
�1/n;pn/n�

)
= i�j−1�

}]
→ θπ�i�

(4.3)

as n→∞, where �pnx n ≥ 1� is a sequence of positive integers such that

pn = o�n�; nβn;qn = o�pn�; qn = o�pn�;(4.4)

the βn;q being given in (4.2) with u�j�n = un�τj�, 1 ≤ j ≤ r, and the qn = o�n�
being such that βn;qn → 0. In this case, π is a probability measure on I and,
moreover, for each σ > 0, �N�στ1�

n ; : : : ;N
�στr�
n � converges in distribution to a

point process �N�στ1�; : : : ;N�στr�� with Laplace transform

E
[
exp

(
−

r∑
j=1

∫ ∞
0
gj dN

�στj�
)]

= exp
[
−θστ1

∫ ∞
0
�1−L�g1�x�; : : : ; gr�x���dx

]
; gj ≥ 0;

(4.5)

where L is the Laplace transform of π; thus, each marginal N�στj� is a com-
pound Poisson process with intensity θστj.
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Returning to our proposed model, let �Xnx n ≥ 1� be a kth-order stationary
Markov chain. Then (4.3) can be characterized in terms of the chain defined
by (2.10). Specifically, for each τ > 0, let S�τ� be the point process on �0;∞�
defined by

S�τ��B� x=
∞∑
i=1

δi�B�1�Zi+T>− log τ�(4.6)

for Borel sets B ⊂ �0;∞�, where �Znx n ≥ 1� is the kth-order Markov chain
defined by (2.10) and T an Exp�1�-distributed r.v. which is independent of
�Zn�. Finally, for each j = 1; : : : ; r, writing

S�j� x= �S�τ1/τj�; : : : ; S�τr/τj��;(4.7)

we have the following.

Theorem 4.1. Let �Xnx n ≥ 1� be a kth-order stationary Markov chain,
and let Fk+1 be the d.f. of �X1; : : : ;Xk+1� having a continuous p.d.f. fk+1.
Suppose that F1 ∈ D ��ξ� for some ξ ∈ <, with auxiliary function g satisfying
(2.3) and (2.5), and that Assumptions A and B hold. Further, suppose that,
when k = 1, (3.12) holds for j = 1; when k ≥ 2, (3.12) holds for each j =
2; : : : ; k. Let �un�τ��, τ > 0, be sequences satisfying (3.2), and let N

�τ�
n , τ > 0,

be the point processes defined by (4.1). Assume that �Xn� has extremal index
θ > 0 and that, for some fixed τ1 > · · · > τr > 0, 4�un�στ1�; : : : ; un�στr�� holds
for each σ > 0. Assume further that (3.5) holds with un = un�τ1�, where �pn� is

a sequence satisfying (4.4). Then, for each σ > 0, �N�στ1�
n ; : : : ;N

�στr�
n � converges

in distribution to the point process �N�στ1�; : : : ;N�στr�� characterized by (4.5),
with π given by

π�i� = θ−1
r∑
j=1

τj

τ1

[
P�S�j���0;∞�� = i�j�� −P

{
S�j���0;∞�� = i�j−1�

}]
; i ∈ I ;

where S�j�, j = 1; : : : ; r, are the point processes defined by (4.7).

Proof. Using (3.5), it follows from (4.3) that it is enough to show that, for
each j = 1; : : : ; r,

lim
p→∞

lim
n→∞

P�j�n �Nn��1/n;p/n�� = i� = P�S�j���0;∞�� = i�

for any i = �i1; : : : ; ir� with i1 ≥ · · · ≥ ir ≥ 0. Again, this follows if we show
that, for each p ≥ 2,

P�j�n �Nn��1/n;p/n�� = i� → P�S�j���0; p− 1�� = i� as n→∞:
Here, the left-hand side can be expressed as a linear combination of 1 and
probabilities of the form

P�j�n �Xmi
≤ un�τvi�; Xms

> un�τvs�; i = 1; : : : ; s− 1�
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for s = 1; : : : ; p, 2 ≤ m1 < · · · < ms ≤ p and v1; : : : ; vs ∈ �1; : : : ; r�; thus,
writing u�v�n = un�τv�, v = 1; : : : ; r, and A�n� = �Xmi

≤ u�vi�n ; Xms
> u

�vs�
n ; 1 ≤

i ≤ s− 1�, it suffices to show that

P�j�n �A�n�� → P
{
Zmi−1 +T ≤ − log�τvi/τj�;
Zms−1 +T > − log�τvs/τj�; 1 ≤ i ≤ s− 1

}(4.8)

as n → ∞, where �Zn� and T are the same as in (4.6). To show this, for
M > 1 and v = 1; : : : ; r, let c�n�ξ �M;v� x= u�v�n − g�u�j�n ��τv/τj�−ξ�1 −M−ξ�/ξ
and d�n�ξ �M;v� x= u�v�n +g�u�j�n ��τv/τj�−ξ�Mξ−1�/ξ. Then, from (2.2), (2.5) and
(3.2), we have

�u�v�n − u�j�n �/g�u�j�n � → ��τv/τj�−ξ − 1�/ξ;

�c�n�ξ �M;v� − u�j�n �/g�u�j�n � → �M−ξ�τv/τj�−ξ − 1�/ξ;

�d�n�ξ �M;v� − u�j�n �/g�u�j�n � → �Mξ�τv/τj�−ξ − 1�/ξ

(4.9)

as n → ∞ for v = 1; : : : ; r. If ms = 2, then (4.8) can be shown similarly as
below without using condition (3.12) and so the details are omitted. We now
assume that ms ≥ 3, and define the events

B�n;M� =
{
Xl > c

�n�
ξ �M;vs�; 2 ≤ l ≤ms − 1

}
;

Ct�n;M� =
{
Xl > c

�n�
ξ �M;vs�; Xt ≤ c

�n�
ξ �M;vs�; 2 ≤ l ≤ t− 1

}
;

t = 2; : : : ;ms − 1:

Then, for any M> 1, we have

P�j�n �A�n�� = P�j�n �A�n� ∩B�n;M�� +
ms−1∑
t=2

P�j�n �A�n� ∩Ct�n;M��:

Here, using (2.5), (3.12) and (4.9), it can be shown by a similar argument as
in showing (3.11) that, for t = 2; : : : ;ms − 1,

lim
M→∞

lim
n→∞

P�j�n
{
u
�j�
n < X1 ≤ d

�n�
ξ �M;j�; Xt ≤ c

�n�
ξ �M;vs�; Xms

> u
�vs�
n

}
= 0;

and thus limM→∞ limn→∞P�j�n �A�n� ∩Ct�n;M�� = 0, since

lim
M→∞

lim
n→∞

P�j�n �Xh > d
�n�
ξ �M;v�� = 0

from (2.2) for h ≥ 1 and v = 1; : : : ; r. Therefore, if we further define the event

D�n;M� =
{
u
�j�
n < X1 ≤ d

�n�
ξ �M;j�; c�n�ξ �M;vs� < Xl ≤ d

�n�
ξ �M;j�;

c
�n�
ξ �M;vs� < Xmi

≤ u�vi�n ; u
�vs�
n < Xms

≤ d�n�ξ �M;vs�;

2 ≤ l ≤ms − 1; 1 ≤ i ≤ s− 1
}
;
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then we have

lim
n→∞

P�j�n �A�n�� = lim
M→∞

lim
n→∞

P�j�n �A�n� ∩B�n;M��

= lim
M→∞

lim
n→∞

P�j�n �D�n;M��:

Finally, using the fact that �Mξ�τv/τj�−ξ − 1�/ξ ↑ x�ξ and �M−ξ�τv/τj�−ξ −
1�/ξ ↓ x∗�ξ as M→∞ for v = 1; : : : ; r, it can be shown by applying Assump-
tions A and B successively that

lim
M→∞

lim
n→∞

P�j�n �D�n;M�� = P
{
Zmi−1 +T ≤ − log�τvi/τj�;

Zms−1 +T > − log�τvs/τj�; 1 ≤ i ≤ s− 1
}
:

The details are similar to those in the proof of Theorem 3.1 and so are omitted.
This completes the proof. 2

Remark 4.2. In Theorem 4.1, if (2.9) holds for each j = 1; : : : ; k as in
Lemma 2.2, then Assumption B and condition (3.12) are, of course, unneces-
sary.

5. Examples. Let �Xnx n ≥ 1� denote a kth-order stationary Markov
chain, and let Fk+1, fk+1 denote the d.f., p.d.f. of �X1; : : : ;Xk+1�, respectively.
In this section, we consider four examples of Fk+1 to compute the extremal
index of �Xn�. Some of these examples were practically used in modeling
multivariate extremes in environmental data [see Coles and Tawn (1991) and
Smith, Tawn and Coles (1997)].

Since we focus on only the absolutely continuous case forFk+1, there always
exist sequences �un�τ��, τ > 0, satisfying (3.2). On the other hand, it is not
easy to show directly from the functional form of Fk+1 (or fk+1) that D�un�τ��
holds for each τ > 0. We follow instead a general method used by O’Brien
(1987), Rootzén (1988) and Smith (1992a), which involves the concept of Harris
chain. For a detailed consideration of the Harris chain, the reader is referred
to Nummelin (1984) and Asmussen (1987). We begin with a Markov chain
�Jnx n ≥ 1� on �E;E �, where E is a general state space and E a σ-field in
E. We call R ∈ E recurrent if P�Jn ∈ R infinitely often�J1 = x� = 1 for
every x ∈ E, and further, we call R ∈ E a regeneration set if R is recurrent
and if, for some n0 ≥ 2, the P�Jn0

∈ · �J1 = x�, x ∈ R, contain a common
component, that is, there exist 0 < ε < 1 and some probability measure λ
on �E;E � such that P�Jn0

∈ A�J1 = x� ≥ ελ�A�, A ∈ E , x ∈ R. A Markov
chain with a regeneration set is called a Harris chain, and if in addition the
regeneration set has a finite mean recurrence time, then it is called a positive
recurrent Harris chain. An aperiodic positive recurrent Harris chain is also
called a Harris ergodic chain. According to O’Brien (1987), it is known that,
if f: E → < is a measurable function and �Jn� a stationary Harris ergodic
chain, then the stationary sequence �f�Jn�� is strongly mixing.
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Returning to the kth-order stationary Markov chain �Xn�, we take Jn =
�Xn;Xn+1; : : : ;Xn+k−1�, n = 1;2; : : : ; so that �Jn� is a stationary Markov
chain on �E;E �, where E = <k [or �0;∞�k] and E = B�E�, the Borel σ-field
in E. Then, since fk+1 in our examples is positive, continuous and bounded
on E and since, for any B ∈ E ,

P�Jk+1 ∈ B�J1 = �x1; : : : ; xk��

=
∫
B
fk+1�y1�x1; : : : ; xk�fk+1�y2�x2; : : : ; xk; y1� · · ·

× fk+1�yk�xk; y1; : : : ; yk−1�dyk;

it can be seen that �Jn� is a stationary Harris chain, using the same type of
arguments as in Example 3.1 of Asmussen (1987). Moreover, Smith (1992b)
showed that �Jn� for k = 1 in Example 5.2 below is, in fact, geometrically
ergodic. Similar arguments can be applied to �Jn� for k ≥ 2 and �Jn� in
other examples below to show that the corresponding �Jn� is geometrically
ergodic. Geometric ergodicity is a stronger concept than ergodicity. Therefore,
choosing the first coordinate function for fx E→ <, that is, f�x1; : : : ; xk� = x1,
makes �Xn� = �f�Jn�� strongly mixing.

Example 5.1 (Multivariate gamma distribution). Let �Xn� be a kth-order
stationary Markov chain in which Fk+1 is a multivariate gamma distribution
with parameter α > 0, that is, Fk+1 is defined by its density fk+1 as [see
Johnson and Kotz (1972), page 217]:

fk+1�xk+1� =
1

0�α�

{
exp

(
−
k+1∑
s=1

xs

)} ∫ x̃k+1

0
tα−1ekt dt; xk+1 > 0;(5.1)

where x̃k+1 x= min�x1; : : : ; xk+1�. We are going to apply Theorem 3.1 to find
the extremal index θ of �Xn�. It is readily checked that Fk+1 ∈ D �Gk+1�
with auxiliary function g�u� = 1, where Gk+1�xk+1� = exp�−∑k+1

i=1 exp�−xi��,
xk+1 ∈ <k+1. Obviously, G1 = �0. Since every lower-dimensional marginal
density function fi�xi�, i = 1; : : : ; k, is of the same form as (5.1), it can be
easily shown that, for each j = 1; : : : ; k,

lj�xj+1yxj� = lim
u→∞

fj+1�u+ xj+1�u+ xj�

= �1− 1/j� exp�jx̃j+1 − xj+1 − �j− 1�x̃j�; xj+1 ∈ <j+1;

which shows that Assumption A holds. Notice here that (2.9) holds for each
j = 2; : : : ; k, but that (2.9) fails for j = 1. Assumption B is elementary. For
condition (3.8), observe that

fk+1�xk+1�xk�=
exp�−xk+1�

∫ x̃k+1
0 tα−1ekt dt

∫ x̃k
0 tα−1e�k−1�t dt

≤ exp�x̃k+1−xk+1�; xk+1>0:

Thus, for x̃k ≤ u− logM,

P�Xk+1 > u�Xk = xk� ≤
∫ ∞
u

exp�x̃k+1 − xk+1�dxk+1 = exp�x̃k − u� ≤
1
M
;
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from which (3.8) follows. Therefore, if we verify the basic condition (3.5),
then (3.9) implies θ = log�Gk�0�/Gk+1�0�� = 1, since l1�x2yx1� = 0 so that
H1�−∞� = 1 and thus that Zn = −∞, n ≥ 1.

To verify (3.5), observe first that, for each j = 1; : : : ; k and for any yj ∈ <j,
lim
y0→∞

fj+1�y0 + y1 + · · · + yj�y0; y0 + y1; : : : ; y0 + y1 + · · · + yj−1�

= hj�yjyyj−1�

=
{
�1− 1/j� exp��j− 1��yj + γ�yj−1���; if yj < −γ�yj−1�;
�1− 1/j� exp�−yj − γ�yj−1��; if yj ≥ −γ�yj−1�;

where γ�yj−1� = max�y1 + · · · + yj−1; y2 + · · · + yj−1; : : : ; yj−1;0�. Here, no-
tice that, for each j = 2; : : : ; k,

∫∞
−∞ yjhj�yjyyj−1�dyj = �j − 2�/�j − 1� −

γ�yj−1�, which is obviously negative for large y1; : : : ; yj−1, and that h1�y1� =
0. Therefore, there exist 0 < t < 1, y∗ ∈ < such that, for each j = 1; : : : ; k,∫∞
−∞ exp�tyj�hj�yjyyj−1�dyj < 1 whenever y1; : : : ; yj−1 > y∗. Using this, it

can be seen that there exist 0 < η < 1, x∗ > 0 such that, for each j = 1; : : : ; k,

E
{
exp�t�Xn+j −Xn+j−1����Xn;Xn+1; : : : ;Xn+j−1� = xj

}
≤ η(5.2)

whenever x1; : : : ; xj > x∗. Let �un� be a sequence satisfying (3.2) with un =
un�τ� for some τ > 0. Then inequalities (5.2) can be successively used to show
that, for each i ≥ 2,

P
{
X2 > x

∗; : : : ;Xi−1 > x
∗; Xi > un�X1 > un

}

= P
{
X2 > x

∗; : : : ;Xi−1 > x
∗; exp�t�Xi − un�� > 1�X1 > un

}

≤ ηi−1 exp�−tun�
∫∞
un

exp�tx1�f1�x1�dx1

1−F1�un�
→ ηi−1

1− t as n→∞:
(5.3)

On the other hand, since sup�P�Xi > un�Xj = xj�x x̃j ≤ x∗� = O�n−1� for
i ≥ k+ 1 and j = 1; : : : ; k, it follows that, for each i ≥ k+ 1,

i−1∑
s=2

P
{
X2 > x

∗; : : : ;Xs−1 > x
∗; Xs ≤ x∗; Xi > un�X1 > un

}

= O�n−1�
i−1∑
s=2

P
{
X2 > x

∗; : : : ;Xs−1 > x
∗; Xs ≤ x∗�X1 > un

}

= O�n−1�:

(5.4)

From (5.3) and (5.4), it therefore follows that (3.5) holds for any pn = o�n�.

Example 5.2 (Logistic model). Let �Xn� be a kth-order stationary Markov
chain in which Fk+1 follows the law of the logistic model with two parameters
ξ ∈ < and r ≥ 1, that is,

Fk+1�xk+1� = exp
[
−
{k+1∑
s=1

�1+ ξxs�−r/ξ
}1/r]

; 1+ ξxk+1 > 0:(5.5)
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The bivariate case for this model was used by several statisticians [e.g., see
Tawn (1988) and Smith (1992a)]. This model may be considered as a basic
model for modeling multivariate extremes because of its simple structure, yet
it gives independence of variables through complete dependence. The Fk+1 is
itself a multivariate extreme value distribution with F1 = �ξ and the lower-
dimensional marginal d.f.’s Fi�xi�, i = 1; : : : ; k, are also of form (5.5). We
remove the case r = 1 which corresponds to the independence ofXn; : : : ;Xn+k.
Although this model has two parameters, the extremal index θ of �Xn� is
invariant under the choice of ξ. Therefore, we consider only the case ξ = 0
and, of course, g�u� = 1. Then, for each i = 1; : : : ; k + 1, since logFi�xi� =
−�∑i

s=1 exp�−rxs��1/r, we apply Lemma 2.4 to have, for each j = 1; : : : ; k,

lj�xj+1yxj� = lim
u→∞

fj+1�u+ xj+1�u+ xj�

= jr− 1
∑j
s=1 exp�r�xj+1 − xs��

{
1+ 1

∑j
s=1 exp�r�xj+1 − xs��

}1/r−j−1

;

xj+1 ∈ <j+1:

Notice here that (2.9) holds for each j = 1; : : : ; k. Therefore, from Lemma 2.2,
the extremal index θ of �Xn� is given by (3.7), provided that the basic condition
(3.5) is justified. For k = 1, (3.5) was verified by Smith (1992a). A similar
argument as in Example 5.1 can be used here for general k ≥ 1. Specifically,
observe first that, for each j = 1; : : : ; k,

lim
y0→∞

Fj+1�y0 + y1 + · · · + yj�y0; y0 + y1; : : : ; y0 + y1 + · · · + yj−1�

=Hj�yjyyj−1�

=
{

1+ exp�−ryj�
1+∑j−1

s=1 exp�r�ys + · · · + yj−1��

}1/r−j

; yj ∈ <j:

(5.6)

Here, notice that H1 has a negative mean and that, for each j = 2; : : : ; k,
there exists a y∗j−1 = �y∗1; : : : ; y∗j−1� of large values such that Hj� · yy∗j−1� has
a negative mean. But, since Hj�yjyyj−1� ≥ Hj�yjyy∗j−1�, yj ∈ <, whenever
yj−1 ≥ y∗j−1, Hj� · yyj−1� has also a negative mean whenever yj−1 ≥ y∗j−1.
Therefore, there exist 0 < t < 1, y∗ ∈ < such that, for each j = 1; : : : ; k,∫∞
−∞ exp�tyj�Hj�dyjyyj−1� < 1 whenever y1; : : : ; yj−1 > y

∗. This again implies
that there exist 0 < η < 1, x∗ ∈ < such that, for each j = 1; : : : ; k, (5.2) holds
whenever x1; : : : ; xj > x∗. The remaining part of the proof of (3.5) is exactly
the same as in Example 5.1.

Representation (3.7) can be effectively used to compute the extremal index
θ of �Xn� using simulation. The algorithm to generate �Zn� based on Hj,
j = 1; : : : ; k, with the inverse transform method is as follows.

Algorithm 1.

1. Generate independent, U�0;1�-distributed random numbers U1;U2; : : : :
2. Z0 ← 0.
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3. For 1 ≤ j ≤ k, Zj←−r−1�log�Ur/�1−rj�
j − 1� + log �∑j

s=1 exp�−rZs−1���.
4. For j ≥ k+1, Zj←−r−1�log�Ur/�1−rk�

j − 1�+ log �∑j
s=j−k+1 exp�−rZs−1���.

For each fixed k = 1;2;3;4;5;10, I computed

θp = P�Z1 ≤ −T; : : : ;Zp ≤ −T�(5.7)

based on 105 simulations of the process �Zn� and T, varying p = 10;20;50;
100;200;500 for every 1/r = 0:1;0:2; : : : ;0:9. It is noted that the worst-
case standard error of each computed value is about 0.0016. According to
the simulations, for lower k, θp becomes stable very quickly over all pos-
sible values of r. For higher k, the convergence of θp is somewhat slow,
particularly for middle range of 1/r. However, the simulation results sug-
gest that θ ≈ θ500 can be used as a good approximation in practice unless
k > 10. For k > 10, it is recommended that higher values of p be used.
The final results for the extremal index θ based on θ500 are summarized in
Table 1 and plotted in Figure 1 to give visualization of the overall trend.
As expected intuitively, θ is decreasing as the order k of the chain �Xn�
grows, which is simply because the clusters of high-level exceedances tend
to be widened as k increases.

Example 5.3 (Mixture model). Let �Xn� be a kth-order stationary Markov
chain in which Fk+1 is a multivariate extreme value distribution defined by

Fk+1�xk+1� = exp

[
−α

{
k+1∑
s=1

�1+ ξxs�−r/ξ
}1/r

− �1− α�
k+1∑
s=1

�1+ ξxs�−1/ξ

]
;

1+ ξxk+1 > 0;

where 0 < α < 1, r > 1 and ξ ∈ <. We call this a mixture model since
− logFk+1�xk+1� is given as a convex combination of those of the logistic model
and the independence model. This is, in fact, a special case of the asymmetric
logistic model developed by Tawn (1990) and considered here since it yields a

Table 1
Extremal index in logistic model

k

1/r 1 2 3 4 5 10

0.1 0.017 0.005 0.002 0.002 0.001 0.001
0.2 0.060 0.024 0.013 0.009 0.006 0.002
0.3 0.131 0.056 0.033 0.024 0.017 0.009
0.4 0.222 0.110 0.068 0.051 0.039 0.018
0.5 0.328 0.184 0.126 0.096 0.076 0.042
0.6 0.450 0.284 0.213 0.170 0.143 0.085
0.7 0.582 0.414 0.332 0.284 0.251 0.167
0.8 0.718 0.574 0.499 0.448 0.410 0.314
0.9 0.861 0.772 0.715 0.677 0.650 0.568



432 S. YUN

Fig. 1. Plot of extremal index in logistic model.

nontrivial extremal index θ where (2.9) does not hold for all j = 1; : : : ; k. As
before, θ is invariant under the choice of ξ so that we consider only the case
ξ = 0 and, of course, g�u� = 1. First, using Lemma 2.4, it can be seen that
H1�y1� = 1 − α + α�1 + exp�−ry1��1/r−1, y1 ∈ �−∞� ∪ <, and that, for each
j = 2; : : : ; k, Hj�yjyyj−1� is given by (5.6). Here, since H1�−∞� = 1− α > 0,
we apply Theorem 3.1 to compute θ. Verification of condition (3.8) is tedious
and omitted here [see Yun (1994) for details]. For the basic condition (3.5), a
similar method as in Example 5.2 can be used. Therefore, the extremal index
θ of �Xn� is given by (3.9) with Gk�0�, Gk+1�0� replaced by Fk�0�, Fk+1�0�,
respectively, that is, θ = limp→∞ θp, where

θp = α��k+ 1�1/r − k1/r� + 1− α−P
{

max
1≤i≤k

Zi ≤ −T; max
k+1≤i≤p

Zi > −T
}
:

The algorithm to generate �Zn� based on Hj, j = 1; : : : ; k, is as follows.

Algorithm 2.

I. When k = 1:
1. Generate independent, U�0;1�-distributed random numbersU1;U2; : : : :
2. Z0 ← 0.
3. For j ≥ 1:

(i) If U2j−1 > α or Zj−1 = −∞, then Zj←−∞.
(ii) IfU2j−1 ≤ α andZj−1 > −∞, thenZj← Zj−1−r−1 log�Ur/�1−r�

2j −1�.
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II. When k ≥ 2:
1. Generate independent, U�0;1�-distributed random numbers U0;U1;
U2; : : : :

2. Z0 ← 0.
3. If U0 > α, then Z1 = Z2 = · · · ← −∞.
4. If U0 ≤ α, then use steps 3 and 4 of Algorithm 1.

Since this model still contains two parameters 0 < α < 1 and r > 1,
my simulation study was limited to the case where α = 1/r. For each fixed
k = 1;2;3;4;5;10, I calculated θp based on 105 simulations of the pro-
cess �Zn� and T, varying p = 10;20;50;100;200;500 for every α = 1/r =
0:1;0:2; : : : ;0:9. According to these simulations, the convergence rate of θp
turns out to be very similar to that of θp in the logistic model. Therefore,
θ ≈ θ500 can be used as a good approximation unless k > 10. The final results
for the extremal index θ based on θ500 are plotted in Figure 2. One thing inter-
esting is that θ is smoothly decreasing from 1 as α = 1/r increases and then
rapidly increasing toward 1 again after a certain point. This is not surprising
because the model approaches the independence model as α = 1/r approaches
either endpoint 0 or 1.

Example 5.4 (Multivariate F-distribution). Let �Xn� be a kth-order sta-
tionary Markov chain in which Fk+1 is a multivariate F-distribution with

Fig. 2. Plot of extremal index in mixture model.
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parameter ν (ν: a positive integer), which is defined by its density fk+1 as [see
Johnson and Kotz (1972), page 240]:

fk+1�xk+1� =
0��1+ k/2�ν�
�0�ν/2��k+2

·
∏k+1
s=1 x

ν/2−1
s

�1+∑k+1
s=1 xs�

�1+k/2�ν ; xk+1 > 0:(5.8)

Here, the univariate marginal F1 is the F(ν; ν)-distribution so that F1 ∈
D ��2/ν�. This model is therefore considered here as an example for which
ξ = 2/ν is positive. It is readily checked that Fk+1 ∈ D �Gk+1� with auxiliary
function g�u� = 2ν−1u, where Gk+1�xk+1�, 1+ 2ν−1xk+1 > 0, is given by

− logGk+1�xk+1� =
k+1∑
i=1

�1+ 2ν−1xi�−ν/2 +
∑

D⊂�1;:::;k+1�
�D�≥2

�−1��D�−1Jk+1�Dyxk+1�;

the Jk+1�Dyxk+1� being defined by

�2/ν�r−10��r+ 1�ν/2�
0�ν��0�ν/2��r−1

∫ ∞
xi1

: : :
∫ ∞
xir

∏r
s=1�1+ 2ν−1ys�ν/2−1

�∑r
s=1�1+ 2ν−1ys���r+1�ν/2 dyr

for D = �i1 < · · · < ir� ⊂ �1; : : : ; k + 1� with r ≥ 2. Using the fact that
every lower-dimensional marginal density function fi�xi�, i = 1; : : : ; k, is of
the same form as (5.8), it can be easily seen that, for each j = 1; : : : ; k,

lj�xj+1yxj� = lim
u→∞

g�u�fj+1�u+ g�u�xj+1�u+ g�u�xj�

= 0��1+ j/2�ν�
0�ν/2�0��j+ 1�ν/2� ·

2/ν
1+ 2ν−1xj+1

{
1+ 2ν−1xj+1

∑j+1
s=1 �1+ 2ν−1xs�

}ν/2

×
{∑j

s=1�1+ 2ν−1xs�∑j+1
s=1 �1+ 2ν−1xs�

}�j+1�ν/2

; x1; : : : ; xj+1 > −ν/2:

Notice here that each lj�xyxj� is the p.d.f. of the r.v. X = �∑j
s=1�xs +

ν/2��/�1/B − 1� − ν/2, where B ∼ Beta�ν/2; �j + 1�ν/2�. Therefore, from
Lemma 2.2, the extremal index θ of �Xn� is given by (3.7). Here, the basic
condition (3.5) is assumed to hold.

The algorithm to generate �Zn� is as follows.

Algorithm 3.

1. Z0 ← 0.
2. For 1 ≤ j ≤ k, generate Bj from Beta�ν/2; �j + 1�ν/2� and Zj ←

2−1ν�log�∑j
s=1 exp�2ν−1Zs−1�� − log�1/Bj − 1��.
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Fig. 3. Plot of extremal index in multivariate F-distribution.

3. For j ≥ k + 1, generate Bj from Beta�ν/2; �k + 1�ν/2� and Zj ←
2−1ν�log�∑j

s=j−k+1 exp�2ν−1Zs−1�� − log�1/Bj − 1��.

For each fixed k = 1;2;3;4;5;10, I computed θp defined by (5.7), based on
105 simulations of the process �Zn� and T, varying p = 10;20;50;100;200;
500 for every ν = 1;2; : : : ;10. The convergence rate of θp turns out to be faster
than that in the logistic model. The simulation results for the extremal index
θ based on θ500 are plotted in Figure 3.
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