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Consider a function fx B → R, where B is a compact subset of Rm

and consider a “simulation” used to estimate f�x�, x ∈ B with the following
properties: the simulation can switch from one x ∈ B to another in zero
time, and a simulation at x lasting t units of time yields a random variable
with mean f�x� and variance v�x�/t. With such a simulation we can divide
T units of time into as many separate simulations as we like. Therefore,
in principle we can design an “experiment” that spends τ�A� units of time
simulating points in each A ∈ B, where B is the Borel σ-field on B and
τ is an arbitrary finite measure on �B;B�. We call a design specified by
a measure τ a “generalized design.” We propose an approximation for f
based on the data from a generalized design. When τ is discrete, the ap-
proximation, f̂, reduces to a “Kriging”-like estimator. We study discrete
designs in detail, including asymptotics (as the length of the simulation
increases) and a numerical procedure for finding optimal n-point designs
based on a Bayesian interpretation of f̂. Our main results, however, con-
cern properties of generalized designs. In particular, we give conditions
for integrals of f̂ to be consistent estimates of the corresponding integrals
of f. These conditions are satisfied for a large class of functions, f, even
when v�x� is not known exactly. If f is continuous and τ has a density,
then consistent estimation of f�x�, x ∈ B is also possible. Finally, we use
the Bayesian interpretation of f̂ to derive a variational problem satisfied
by globally optimal designs. The variational problem always has a solution
and we describe a sequence of n-point designs that approach (with respect
to weak convergence) the set of globally optimal designs. Optimal designs
are calculated for some generic examples. Our numerical studies strongly
suggest that optimal designs have smooth densities.

1. Introduction. Let f�x�; x ∈ B be an unknown function defined on a
compact region B ⊂ Rm. We can think of f as a function of m parameters
associated with some stochastic model. Consider an idealized simulation (a
simulation “meta-model”) with the following properties:

(P1) A simulation with the parameters set to x ∈ B that runs for t > 0 units
of time yields a random variable, Yt�x�, with mean f�x� and variance
v�x�/t.

(P2) The simulation can switch from one setting of the parameters to another
setting in zero time.
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Neither (P1) nor (P2) will hold exactly in any real simulation. However, for
Monte Carlo and finite horizon simulations they are typically good approxima-
tions, and (P1) and (P2) hold asymptotically in many other cases of interest,
for example, regenerative simulations. In fact, very often Yt�x� will be asymp-
totically unbiased and normally distributed [Iglehart (1978)]. In any case, (P1)
and (P2) serve as a useful meta-model when analyzing problems where mul-
tiple simulations are necessary.

Our goal is to estimate f�x�, x ∈ B while constrained to T units of (simu-
lation) time. Property (P2) allows us to run as many separate simulations as
we like (at various x ∈ B) during our T unit budget. However, (P1) implies
that short simulations have large variances and are therefore not worth very
much individually. On the other hand, if f is continuous, simulations at points
in close proximity will tend to reinforce each other for estimating f in that
neighborhood.

We address the problem of designing efficient experiments for estimating f
using T units of simulation time. Normally a design is specified by a choice of
points, xi ∈ B, i = 1;2; : : : ; n to be simulated, with associated times, ti > 0,
where

∑n
i=1 ti = T. We consider a much larger class of designs which we call

“generalized designs.” Roughly speaking, a generalized design is specified by
a finite measure τ on �B;B�, where τ�A� is interpreted as the amount of time
invested simulating points in the set A ∈ B, and B is the σ-field of Borel sub-
sets of B. Generalized designs were used by Kiefer and Wolfowitz (1959) as a
class of designs that one searches through for an optimal design in regression
experiments, and the idea has been utilized elsewhere [see, e.g., Pukelsheim,
(1993)]. Kiefer and Wolfowitz found that optimal designs were discrete mea-
sures for regressions. Our estimate of f is not a regression and numerical
experiments (including those summarized in Section 5) strongly suggest that
optimal designs in our context are usually measures with densities.

Unless τ is a discrete measure, a generalized design is not “implementable”
in the normal sense. However, in principle (P2) allows us to implement (or
at least closely approximate) designs corresponding to any finite measure. We
will refer to τ as the “simulation time measure,” and define a related measure
µ by

µ�A� =
∫
A
v�x�−1τ�dx�; A ∈ B;(1.1)

where v�x� > 0, x ∈ B. From (P1) we see that v�x� can be interpreted as the
variance of a unit length simulation at x, so v�x�−1 is the asymptotic efficiency
constant of a simulation at x [Hamersley and Hanscomb (1964)]. We will refer
to µ as the “simulation efficiency measure.”

Once we have chosen a simulation design, there remains the problem of
constructing an approximation for f based on the resulting data. We choose
to consider an approximation, f̂, that can be interpreted in two ways.

There is a deterministic interpretation where f̂ is simply a smoothing of
the simulation data. The “smoothing kernel” is uniquely specified by a (given)
symmetric positive definite function, ρ�x;y� [via (3.4)]. Analytic properties of
f̂ are best understood from this perspective.
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We can also consider f to be a realization of a random function, Z, with
zero mean and covariance function given by ρ�x;y�. The best linear unbiased
predictor for Z based on the simulation data is often referred to as a “Kriging”
estimate [see Ripley (1981)]. The Kriging estimate, Ẑ, is the same as f̂. We
can explicitly calculate the expected value of a wide range of (objective) func-
tions involving Z and Ẑ, and therefore search for a design that optimizes
the objective function. If we think of Z as being a “prior” for f; then this
approach can be considered Bayesian. Since f is not known in advance, the
Kriging (or Bayesian) perspective seems appropriate for formalizing optimal
design criteria.

It is very common in the “design and analysis of computer experiments”
literature to assume that an unknown function is a sample from a Gaussian
(or other) random field [Currin, Mitchell, Morris and Ylvisaker (1991), Koehler
and Owen (1996), Sacks, Schiller and Welch (1989) and Sacks, Welch, Mitchell
and Wynn (1989)]. A very flexible technique used for estimating unknown
functions is “universal Kriging,” which allows the random functionZ to have a
nonzero mean. A linear model forE�Z� is assumed, and the weights associated
with the linear model are estimated as part of the process of constructing the
universal Kriging estimate. One can also assume a parametric form for the
covariance function and use one that matches (e.g., via maximum likelihood)
the observed data. The analysis of a universal Kriging-like estimator in our
context is very much harder than the present analysis, due primarily to the
presence of the unknown regression coefficients. Although certain “halfway
measures” are possible, we choose to analyze the case where E�Z� = 0 and
ρ�x;y� is chosen in advance. We feel justified in this choice for the following
reasons. Theorem 3 shows that integrals of f̂ are consistent whenever f�x� and
ρ�x;y� jointly satisfy a fairly mild condition, (3.10), so no added complexity
is necessary to assure consistency. From a Bayesian perspective, one feels
that the random function, Z, should be a good “prior” for f. If a zero mean
Gaussian process with a predetermined covariance structure does not seem
to be a good prior for f; one can run a short “pilot study” (independent of the
main simulation study) to construct a rough (Kriging) estimate of f. The pilot
study estimate f̂0 is then subtracted from f to obtain a new function g = f−f̂0

that can be modeled as a zero mean Gaussian process, Z0 = Z − Ẑ0, whose
covariance structure is easily calculated from Corollary 2.1. Our method can
then be applied to g, resulting in an estimate ĝ from the main simulation
study. Finally, the estimate for f is f̂ = ĝ + f̂0.

Ritter, Wasilkowski and Wozniakowski (1995) obtain sharp bounds on the
minimal L2 error for linear estimation of integrals and approximations of a
multivariate random function based on n observations. They assume noise-
less observations and a covariance function that satisfies a certain condition.
They do not attempt to find optimal n-point designs. Plaskota (1992) analyzes
the case where the (scalar) function to be estimated is an n-times integrated
Wiener process. Noisy data (independent and with constant variance) is in-
cluded in his formulation. He obtains exact asymptotics as the number of
observations increase and finds that an evenly spaced grid is “almost” opti-
mal. The validity of the bounds and asymptotics obtained in these papers (and



ESTIMATING FUNCTIONS BY SIMULATIONS 1187

others that they reference) depends on the unknown function being a sample
path from a particular random field. In our context it is usually difficult to
justify the assumption that f is a sample of a random function. In fact, there
is no real randomness in the observations besides the uncertainty of the sim-
ulations. Our results differ from previous work since the asymptotic analysis
of our estimator does not rely in any way on a (Bayesian) assumption that the
unknown function comes from a particular random field. The Bayesian frame-
work apparently allows for stronger theorems to be proved (e.g., pointwise
convergence vs. convergence of integrals). However, we believe our underly-
ing model is less objectionable and our results are strong enough for most
applications.

Of course, since we do not know f beforehand it is tempting to treat it as a
random function. Furthermore, there are results that seem to justify that ap-
proach. Stein (1988) has shown that under reasonable conditions, misspecified
covariance functions do not significantly hinder the estimation of a random
function, and we show here that integrals of f can be estimated consistently
whenever f and ρ jointly satisfy (3.10). Nevertheless we believe our results
better demonstrate the applicability of Kriging-like estimators by avoiding the
explicit assumption that f is a random function. On the other hand, we are
free to take a Bayesian perspective when it is appropriate. We argue that the
Bayesian approach is appropriate in the optimal design problem since pre-
sumably the same optimal design is used for a large class of functions. The
only place we explicitly assume that f is a random function is when we look
for optimal designs.

In the next section we construct f̂ in the case where τ is a discrete measure,
and discuss its relationship with the Kriging estimator, Ẑ. We discuss the
consistency of f̂ and show that f̂ is consistent at points where τ has atoms.
We show how a Bayesian interpretation of f̂ leads to a formulation of an
optimal design problem.

In Section 3 we define f̂ for a generalized simulation design and show that
it has an integral representation, analogous to the discrete case. We also show
that it reduces to the approximation described in Section 2 when τ is discrete.
The construction of f̂�x� involves a function a�x;y�, which satisfies a certain
integral equation. We show that f̂�x� is well defined for generalized designs
by showing that the integral equation has a unique solution. The function
a�x;y� is also shown to have a probabilistic interpretation in terms of the
Gaussian process Z. The main result in Section 3 shows that if a certain inte-
gral equation involving f, (3.10), has a solution, then

∫
B φf̂dµ is a consistent

estimator for
∫
B φfdµ for any L2�µ� function φ. In fact the integrals are con-

sistent even if the variance function v�x� is not known exactly. The integral
equation condition is satisfied by a large class of functions [dense in L2�µ�],
further motivating f̂ as an estimator for functions evaluated by simulation.
We are unable to prove pointwise convergence f̂�x� → f�x� in general. How-
ever, in many cases of interest, consistency of integrals allows us to obtain
convergent estimates of f�x�. (See Remark 3.4, and Example 3 in Section 5.)
In Section 3 we also show that if µn converges weakly to µ (or if τn converges
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weakly to τ and v is continuous) then
∫
B φf̂µn dµn converges in distribution

to
∫
B φf̂µ dµ.

In Section 4 we discuss globally optimal designs. The optimal design prob-
lem is based on the Bayesian interpretation of f̂ in analogy with the develop-
ment in Section 2. Optimal designs can be found by solving a certain varia-
tional problem. We show that a solution is guaranteed to exist for the globally
optimal design. The optimal n-point designs found in Section 2 are shown to
approach (with respect to weak convergence) globally optimal designs, as the
atoms become dense in B.

The proofs of our major theorems are in Appendix A. In Appendix B we de-
scribe a numerical procedure for finding optimal discrete designs (on a given
set of points) based on Newton’s method. In Section 5 we use the procedure to
approximate the globally optimal designs for some generic examples by opti-
mizing on a fairly dense grid of points. Optimal designs appear to be measures
with smooth densities in all our examples, although we have not been able to
establish this property formally.

2. Discrete simulation designs. Normally the only “implementable”
simulation designs are discrete; that is, τ is a discrete measure specified by

τ�A� =
n∑
i=1

ti1�xi ∈ A�; A ∈ B;

where the xi’s are the (distinct) points in B to be simulated and the ti’s are
the corresponding simulation times. Let

Y =
(
Yt1
�x1�;Yt2

�x2�; : : : ;Ytn
�xn�

)′
;(2.1)

be the data from the simulations (where “ ′ ” denotes transpose). Property (P1)
implies that we can write

Yti
�xi� = f�xi� + αiχi;

where χi, i = 1;2; : : : ; n are random variables with zero means, unit variances
and covariances

cij = E�χiχj�
and

α2
i =

v�xi�
ti

:

There are many ways to estimate f�x�, x ∈ B based on Y, the standard,
perhaps, being regression. We propose a different kind of approximation. Let
ρ�x;y�, x;y ∈ B be a bounded, positive definite, symmetric function. Define

γ�x� =
(
ρ�x; x1�; ρ�x; x2�; : : : ; ρ�x; xn�

)′(2.2)

and

0 = R+S;(2.3)
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where

R =




ρ�x1; x1� ρ�x1; x2� · · · ρ�x1; xn�
ρ�x2; x1� ρ�x2; x2� · · · ρ�x2; xn�

:::
:::

: : :
:::

ρ�xn; x1� ρ�xn; x2� · · · ρ�xn; xn�




and

S =




α2
1 α1α2c12 · · · α1αnc1n

α2α1c21 α2
2 · · · α2αnc2n

:::
:::

: : :
:::

αnα1cn1 αnα2cn2 · · · α2
n


 :

Note that Sij = Cov�Yti
�xi�;Ytj

�xj��. Very often S will be a diagonal matrix
since the individual simulations are independent. However, the simulation
designer may choose to use the same stream of random numbers for each
simulation, use likelihood ratios to obtain all the estimates from the same
simulation, or any of a number of other variance reduction or efficiency en-
hancing techniques that can cause the simulations to be dependent.

Our approximation for f based on Y is

f̂�x� = γ�x�′0−1Y; x ∈ B:(2.4)

For each x ∈ B, f̂�x� is a linear combination of the elements of Y. The mo-
tivation for (2.4) comes from a Bayesian approach to estimating f�x� from
Y, which will be described shortly. Most of the important properties of f̂�x�
can be derived directly from (2.4) [or (3.3) and (3.6), which generalize (2.4)]
without utilizing the Bayesian interpretation. We can write

Y = F+ ε(2.5)

where

F =
(
f�x1�; f�x2�; : : : ; f�xn�

)′(2.6)

and

ε = �α1χ1; α2χ2; : : : ; αnχn�′:(2.7)

The mean squared error of f̂�y� is therefore

E
[(
f�y� − f̂�y�

)2] = δ2�y� + σ2�y�;
where

δ�y� = f�y� − γ�y�′0−1F(2.8)

and

σ2�y� = γ�y�′0−1S0−1γ�y�:(2.9)

We will refer to δ�y� and σ2�y� as the bias and variance of f̂�y�, respectively.
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Now, consider a class of simulation designs indexed by T > 0, specified by
simulation time measures τT = Tτ (which are simulations exactly like τ, but
allowed to run for T times as long). Let f̂T be the estimate of f obtained
from τT. Let δT�y� and σ2

T�y� be the corresponding bias and variance terms.
From (2.8) and (2.9) we have

δT�y� = f�y� − γ�y�′0−1
T F

and

σ2
T�y� =

1
T
γ�y�′0−1

T S0
−1
T γ�y�;

where

0T = R+
1
T
S:(2.10)

Since ρ is positive definite, R is guaranteed to be invertible. Using (2.10) we
write

0−1
T = R−1 − 1

T
R−1SR−1 + 1

T2
R−1SR−1S0−1

T :(2.11)

It follows that

lim
T→∞

TδT�xi� = α2
i �R−1F�i; i = 1;2; : : : ; n;(2.12)

and

lim
T→∞

Tσ2
T�y� = γ�y�′R−1SR−1γ�y�; y ∈ B:(2.13)

If y ∈ �x1; x2; : : : ; xn� then (2.13) simplifies to Tσ2
T�xi� → α2

i . From (2.12) and
(2.13) we see that f̂T�xi� is a consistent estimator for f�xi�, but from (2.4)
and (2.5) it follows that

f̂T�y� →p γ�y�′R−1F

(where →p is convergence in probability) which, in general, is not equal to
f�y� unless y ∈ �x1; x2; : : : ; xn�.

Readers familiar with linear prediction might have noticed that (2.4) looks
like a “Kriging” estimate [Ripley (1981)]. Indeed, suppose Z�x�, x ∈ B is a
Gaussian process with zero mean and covariance function, ρ. Since f is an
unknown function we can adopt a Bayesian perspective and assign Z as a
prior for f. We then use the simulation data to construct Ẑ, the mean of the
posterior process, which can be used to estimate Z. The Gaussian process, Z,
is a good prior for f if “typical” sample paths of Z look qualitatively like f. See
Currin, Mitchell, Morris and Ylvisaker (1991) for a discussion about properties
of sample paths of Gaussian processes with various covariance functions.

From the Bayesian perspective the results of the simulation are

Ỹ = ζ + ε;
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where

ζ =
(
Z�x1�;Z�x2�; : : : ;Z�xn�

)′

and ε is given by (2.7). The mean of the posterior process based on Ỹ is

Ẑ�x� = E�Z�x� � Ỹ� = γ�x�′0−1Ỹ:(2.14)

If Ỹ is Gaussian, then Ẑ is also the best linear unbiased predictor for Z [see
Ripley (1981)]. Clearly

E�Ẑ� = 0;(2.15)

and since Cov�Ỹ� = 0, the covariance structure for Ẑ is found to be

E
(
Ẑ�x�Ẑ�y�

)
= γ�x�′0−1γ�y�:(2.16)

Using the variance decomposition formula we can write

ρ�x; x� ≡ Var
(
Z�x�

)
= Var

(
E�Z�x��Ỹ�

)
+E

(
Var�Z�x��Ỹ�

)
:(2.17)

It is well known [see Koehler and Owen (1996), Sacks, Schiller and Welch
(1989)] that Var�Z�x��Ỹ� only depends on the design points �x1; x2; : : : ; xn�
and is therefore a constant with respect to expectation. Considering (2.14) and
(2.16), we obtain

Var�Z�x��Ỹ� = ρ�x; x� − γ�x�′0−1γ�x�:(2.18)

Remark 2.1. If we run the design τ over and over, constructing Ẑ each
time, we will see that the empirical distribution of Ẑ does not match (2.15)
and (2.16). This is because f is not really a random function (i.e., Z ≡ f each
time). The simulation “knows” f in the sense that E�Y� = F. The simulation
yields f̂, whose correct bias and variance are given by (2.8) and (2.9).

Suppose we are interested in finding a design that optimizes some measure
of the quality of f̂. For example, we might want to do the following:

minimize
Dn
T

E

[(∫
B
φ�x�f̂�x�dx−

∫
B
φ�x�f�x�dx

)2]
;(2.19)

where φ�x�, x ∈ B is some bounded Borel function and Dn
T is the class of

discrete measures τ with support on n points and τ�B� = T. [This optimal-
ity criterion is also used by Ritter, Wasilkowski and Wozniakowski (1995).]
Clearly, the optimal design depends on f, which is unknown. It is therefore
impossible to find an optimal design in advance.

In this context, the Bayesian perspective seems appropriate as long as Z
is a reasonable “prior” for f. We substitute the random function Z for f in
(2.19), which yields

E

[(∫
B
φ�x�Ẑ�x�dx−

∫
B
φ�x�Z�x�dx

)2]

=
∫
B

∫
B
φ�x�φ�y�ρ�x;y�dydx− ψ′0−1ψ;
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where

ψ =
∫
B
φ�x�γ�x�dx:

Since φ and ρ do not depend on the design, the optimization problem becomes

maximize
Dn
T

ψ′0−1ψ:(2.20)

Problem (2.20) will always have a solution since Dn
T is compact. However, since

property (P2) allows us to use designs from DT =
⋃∞
n=1 Dn

T it is natural in our
context to

maximize
DT

ψ′0−1ψ:(2.21)

Unfortunately, it is not clear that a solution to (2.21) exists. In fact, our nu-
merical studies (including the examples in Section 5) strongly suggest that
optimal designs are not discrete. [Equations (B.10) and (B.11) may also be
relevant here.]

Remark 2.2. In many applications, the purpose of estimating f is to find
its roots or optimal points as opposed to a linear functional. Our theorems
in Section 3 prove convergence of linear functionals, while pointwise conver-
gence would clearly be preferable for rootfinding and optimization. On the
other hand, Kriging estimators can be used to find roots and optimal points
in adaptive searches [Simon (1997)].

3. Estimating f from a generalized design. This section formalizes
the concept of a generalized design and studies some of its properties. As
above, B is a compact subset of Rm with Borel σ-field B, τ is a nonnegative
finite measure on �B;B� and ρ�x;y�, x, y ∈ B is a bounded, positive definite,
symmetric function. The function v�x�; x ∈ B is assumed to be a positive
Borel function.

The motivation for introducing generalized designs is the desire to get hold
of the situation where the number of simulation points is large. Our numerical
studies (e.g., Section 5) imply that good designs must use large numbers of
points. It follows from (2.5) that the random part of the data from a discrete
simulation design can be specified by the (discrete) stochastic measure

ν�A� =
n∑
i=1

α−1
i χi1�xi ∈ A�; A ∈ B:(3.1)

The data from a generalized design is characterized analogously.
We say a simulation has an (orthogonal) generalized design if it yields data

whose randomness is characterized by an orthogonal stochastic measure ν
[Shiryaev (1984)] where ν�A� has zero mean and

E�ν�A�2� = µ�A�; A ∈ B:(3.2)
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If in addition, ν�A� is normally distributed for all A ∈ B we will call the
design “Gaussian.” In this section we require that ν be an orthogonal stochastic
measure.

Remark 3.1. In order to strictly generalize the material in the preced-
ing section we would need to consider nonorthogonal stochastic measures as
a generalization of (3.1). However, we restrict ourselves in this section to
orthogonal generalized designs, and when we refer to a “generalized design”
it is understood that ν is an orthogonal stochastic measure.

Let f�x�, x ∈ B be a real valued function. The approximation for f based
on the data from a generalized design depends on both the design (specified
by ν) and on ρ. Define

f̂�x� =
∫
B
a�y;x�f�y�µ�dy� +

∫
B
a�y;x�ν�dy�; x ∈ B;(3.3)

where a�y;x�, y, x ∈ B is the solution of the equation

a�z; x� = ρ�z; x� −
∫
B
ρ�z; y�a�y;x�µ�dy�; z; x ∈ B:(3.4)

By (3.2), the measure ν is a.s. absolutely continuous with respect to the
measure µ. Let

λ�y� = dν

dµ
�y�(3.5)

be the Radon–Nikodym derivative. Then (3.3) takes the form

f̂�x� =
∫
B
a�y;x��f�y� + λ�y��µ�dy�:(3.6)

We call f�y� + λ�y� a “generalized observation.” We now show that our defi-
nition of f̂ is consistent with the material in the previous section. Let µ be a
discrete measure with atoms at xi, i = 1;2; : : : ; n. That is,

µ�A� =
n∑
i=1

α−2
i 1�xi ∈ A�; A ∈ B:

Define

ηi�x� = α−2
i a�xi; x�; x ∈ B; i = 1;2; : : : ; n

and

η�x� =
(
η1�x�; η2�x�; : : : ; ηn�x�

)′
:

Letting z = xi, i = 1;2; : : : ; n in (3.4) yields

η�x� = 0−1γ�x�;
where γ�x� and 0 are given by (2.2) and (2.3). Also, in this case,

ν�A� =
n∑
i=1

α−1
i χi1�xi ∈ A�; A ∈ B;
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where χi, i = 1;2; : : : ; n are independent random variables with zero means
and unit variances. Substituting into (3.3) yields (2.4).

The following theorem shows that f̂ is well defined, which boils down to
proving that (3.4) has a unique solution. We also state some properties of
a�·; ·�. We denote the Hilbert space of square integrable functions on B with
respect to µ by L2�µ�.

Theorem 1. For every x ∈ B there exists a unique a�·; x� ∈ L2�µ� satisfying
(3.4). The function a�z; x� is, moreover, bounded and symmetric in its two
variables. If ρ is continuous in both variables, then a�z; x� is continuous in
both variables.

The proof is given in Appendix A.
The function a�x;y� which satisfies (3.4) has a probabilistic interpretation

given by Theorem 2 whose proof is also in Appendix A.

Theorem 2. Let Z�x�, x ∈ B be a Gaussian process, independent of ν, with
E�Z� = 0 and E�Z�x�Z�y�� = ρ�x;y�. Define

Ẑ�x� =
∫
B
a�x;y�Z�y�µ�dy� +

∫
B
a�x;y�ν�dy�:

Then

a�x;y� = E
[(
Z�x� − Ẑ�x�

)(
Z�y� − Ẑ�y�

)]
:

Using (2.16) and (A.9) from the proof of Theorem 2, we have the following
useful result.

Corollary 3.1. When τ is discrete and S is diagonal (independent simu-
lations),

a�x;y� = ρ�x;y� − γ�x�′0−1γ�y�:(3.7)

In Section 2 we showed that f̂ consistently estimates f at the atoms of τ
as the length of the simulation increases. We now establish similar properties
of generalized designs. As in Section 2 we will be assuming that the simu-
lation is governed by a parameter, T, so that the simulation time measure
corresponding to T is Tτ, where τ is a fixed measure. Likewise, the simula-
tion efficiency measure corresponding to T is Tµ. Functions corresponding to
simulations of length T will be subscripted with a T. According to (3.3) and
(3.4), the estimate of f based on a simulation of T units is

f̂T�x� =
∫
B
TaT�y;x�f�y�µ�dy� +

∫
B

√
TaT�y;x�ν�dy�; x ∈ B;(3.8)

where aT�x;y� satisfies

aT�z; x� = ρ�z; x� −T
∫
B
ρ�z; y�aT�y;x�µ�dy�; z; x ∈ B:(3.9)

Our main convergence result is the following theorem.
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Theorem 3. Assume that f ∈ L2�µ� and is representable in the form

f�x� =
∫
B
ρ�z; x�k�z�µ�dz�(3.10)

for some k ∈ L2�µ�. Then for every function φ ∈ L2�µ�,

E

[(∫
B
f̂T�x�φ�x�µ�dx� −

∫
B
f�x�φ�x�µ�dx�

)2]
→ 0;

as T→∞.

We prove Theorem 3 in Appendix A.

Remark 3.2. Equation (3.10) is a Fredholm equation of the first kind,
which does not have a solution k ∈ L2�µ� in general. However, the set of
functions, f, for which a solution exists is dense in L2�µ� [see Tricomi (1985)].
In some cases it is possible to guarantee a solution if f is smooth enough.
For example, if B = �0;1� and if f is twice differentiable with f�0� = f′�0� =
f�1� = f′�1� = 0, then

∫ 1

0
e−�x−y�k�y�dy = f�x�

has a solution,

k�y� = f�y� − f
′′�y�

2
:

Covariance functions of the form ρ�x;y� = ec�x−y� are common in the Kriging
literature [Ripley (1981)].

Remark 3.3. If τ (and therefore µ) is discrete, then (3.10) has a solution
and Theorem 3, in accordance with the results of Section 2, shows that the
values of f̂T at the atoms are consistent estimates of f at those points. On the
other hand, Theorem 3 is not strong enough to obtain the rates of convergence
given by (2.12) and (2.13).

Remark 3.4. We are unable to prove convergence f̂�x� → f�x� if x is not
an atom of τ. However, we can obtain convergent estimates in certain cases.
Fix x ∈ B and let 1n ⊂ B be a sequence of neighborhoods of x, with diameters
decreasing to 0, and let mn be the Lebesgue measure of 1n. Define

InT =m−1
n

∫
1n

f̂T�y�µ�dy�:

If f and v are continuous at x and τ has a density t�·� which is positive and
continuous in a neighborhood of x, then there is a sequence Tn→∞ satisfying

E

[(
v�x�
t�x� I

n
Tn
− f�x�

)2]
→ 0:
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Suppose (as would be typical in practice) we do not know the variance of a
unit length simulation exactly. This misspecified variance is similar in spirit
to the problem considered in Stein (1988). Let ṽ�x� be the “true” variance
of a unit length simulation at x, which we assume is positive and which we
estimate by v�x�. We define µ̃ via (1.1) with ṽ�x� replacing v�x�. The measures
µ and µ̃ are mutually absolutely continuous with density

dµ̃

dµ
�y� = v�y�

ṽ�y� :(3.11)

Since we do not know ṽ�x�, we must use µ�·� and a�·; ·� based on v�x� when
we estimate f. Using (1.1), (3.5) and (3.11), the estimate we obtain from τ is

f̃�x� =
∫
B
a�y;x�

(
f�y� + λ̃�y�

)
µ�dy�;

where

λ̃�y� = dν̃

dµ
=
√
v�y�
ṽ�y�λ�y�:(3.12)

Likewise, from τT we obtain

f̃T�x� =
∫
B
TaT�y;x�

(
f�y� + λ̃�y�

)
µ�dy�;(3.13)

where

λ̃T�y� = T−1/2λ̃�y�:(3.14)

Clearly, f̃T�x� is not the same as f̂T�x�. However, the following result (proved
in Appendix A) shows that f̃T�x� is consistent in the same sense that f̂T�x� is.

Corollary 3.2. Assume that v�y�/ṽ�y� is bounded. Then under the as-
sumptions of Theorem 3,

E

[(∫
B
f̃T�x�φ�x�µ�dx� −

∫
B
f�x�φ�x�µ�dx�

)2]
→ 0;

as T→∞.

We now address the issue of convergence of estimates f̂ if the correspond-
ing measures µ converge weakly. In particular, we show that estimates from
generalized designs are limits of the estimates obtained from discrete designs.
Consider a sequence of generalized simulation designs on B with covariance
functions ρn and efficiency measures µn. We denote all characteristics of the
nth design with subscript n. We assume, in addition to the above assumptions,
that the ρn’s are continuous and the νn�A�;A ∈ B; are normally distributed
(i.e., we require Gaussian generalized designs here).

Along with the sequence of designs we consider another design with covari-
ance function ρ and efficiency measure µ which will be the limiting one in
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the following Theorem 4. As with the designs in the sequence, the orthogonal
measure ν which corresponds to µ is Gaussian.

In all the designs the same function, f�x�; x ∈ B, is estimated. As above,
we are fixing some Borel function φ which is assumed to be bounded. Let

〈
f̂n; φ

〉
n
=
∫
B
f̂n�x�φ�x�µn�dx�

and

�f̂; φ� =
∫
B
f̂�x�φ�x�µ�dx�:

Denote by →w weak convergence of measures defined on �B;B�, and by →d,
convergence in distribution on the real line [Billingsley (1968)].

Theorem 4. Assume that as n→∞, supx;y∈B �ρn�x;y�−ρ�x;y�� → 0 and
µn→w µ. Then

〈
f̂n; φ

〉
n
→d

〈
f̂; φ

〉
:

The proof is in Appendix A.

4. Globally optimal designs. Let MT be the set of measures on �B;B�
satisfying τ�B� = T and let M = ⋃

T>0 MT. Let C be the class of functions
g:B→ R satisfying �g�x�� ≤ 1; x ∈ B, and with Lipschitz constant no larger
than one. We make M a metric space by using

d�τ1; τ2� = sup
g∈C

∣∣∣∣
∫
B
g�x�τ1�dx� −

∫
B
g�x�τ2�dx�

∣∣∣∣

as a distance function. In the topology on M induced by the metric d (the “weak
topology”), the mode of convergence is weak convergence, that is, d�τn; τ� → 0
if and only if τn→w τ [see, e.g., Dudley (1989)]. In the weak topology, MT is a
compact subset of M , and the set of discrete measures DT ⊂ MT is dense in
MT, but not closed.

Let φx B → R be a (fixed) bounded Borel function. Ideally, we would
like to find τ ∈ MT that minimizes the expected mean squared error of∫
B φ�x�f̂�x�dx. However, the optimal measure depends on f (which is un-

known) and therefore cannot be determined in advance. In Section 2 we formu-
lated the optimal design problem for DT by using the Bayesian interpretation
of f̂. The same reasoning applies in the general case. For τ ∈M , let

Q�τ� = E
[(∫

B
φ�x�Ẑ�x�dx−

∫
B
φ�x�Z�x�dx

)2]
;(4.1)

where Z is a Gaussian process with E�Z�x�� = 0, E�Z�x�Z�y�� = ρ�x;y� and
let

Ẑ�x� =
∫
B
a�u;x�Z�u�µ�du� +

∫
B
a�u;x�ν�du�;(4.2)
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where ν is an orthogonal stochastic measure satisfying E�ν�A�� = 0,
E�ν�A�2� = µ�A� and ν is independent of Z. If we believe that Z is a rea-
sonable prior for f, then designs that minimize Q�τ� can be considered to be
optimal.

By Theorem 2, (4.1) reduces to

Q�τ� =
∫
B

∫
B
φ�x�φ�y�E

((
Ẑ�x� −Z�x�

)(
Ẑ�y� −Z�y�

))
dydx

=
∫
B

∫
B
φ�x�φ�y�a�x;y�dydx:

Optimal designs must therefore satisfy the variational problem,

minimizeτ∈MT
Q�τ�:(4.3)

We have not found a nontrivial example where (4.3) can be solved exactly,
so numerical approaches are necessary. We now justify an approach to approx-
imating optimal designs via discrete designs. For the remainder of this section
we assume that v�x� is continuous.

Lemma 5.1. If v�x� is continuous and ρ is continuous, then the map Qx
M →R is continuous in the weak topology.

Proof. The metric was chosen because d�τn; τ� → 0 if and only if τn→w τ.
Since v�x� is positive and continuous, it follows from (1.1) that τn→w τ implies
µn →w µ. It therefore suffices to show that µn →w µ implies Q�τn� → Q�τ�.
From Lemma 4.1 in Appendix A, an�x;y� → a�x;y� uniformly, where an�x;y�
and a�x;y� satisfy (3.4) for µn and µ, respectively. Since φ is bounded, the
lemma follows. 2

Let

Q∗T = inf
τ∈MT

Q�τ�;

and let AT ⊂MT be the set of optimal designs. That is,

AT =
{
τ ∈MTx Q�τ� = Q∗T

}
:

Since MT is compact in the weak topology, Lemma 5.1 implies Theorem 5.

Theorem 5. The variational problem (4.3) has a solution. That is, AT 6= ∅.

Since DT is dense in MT, for any τ∗ ∈ AT there is a sequence τn →w τ
∗,

where τn ∈ DT, and by Lemma 5.1, Q�τn� → Q∗T. However, there is no
guarantee that there exists τn ∈ DT with Q�τn� = Q∗T. The following lemma
shows that nearly optimal designs must be close to AT. Let d�τn;AT� ≡
inf τ∈AT

d�τn; τ�.

Lemma 6.1. If Q�τn� → Q∗T; then d�τn;AT� → 0.
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Proof. From Lemma 5.1, Q is continuous, so AT is closed. Suppose there
is a sequence �τ̃n�, n = 1;2; : : : satisfying Q�τ̃n� → Q∗T and d�τ̃n;AT� > ε for
all n, where ε > 0. Then there is an open set, O ⊂MT, with AT ⊂ O , such that
τ̃n ⊂ MT\O , n = 1;2; : : :. But MT\O is compact, so there exists τ̃∗ ∈ MT\O
satisfying Q�τ̃∗� = inf τ∈MT\O Q�τ� ≤ infn Q�τ̃n� = Q∗T. But this contradicts
the definition of AT. 2

Let Dn
T ⊂ DT be the set of discrete measures with n (or fewer) atoms, and

let τ∗ ∈ AT. There is a sequence τn ∈ Dn
T, n = 1;2; : : : ; with τn →w τ

∗, so
by Lemma 6.1, Q�τn� → Q∗T. Let τ∗n be optimal in Dn

T. Then Q�τ∗n� ≤ Q�τn�,
so Q�τ∗n� → Q∗T. By Lemma 6.1, for large enough n, τ∗n is very close (with
respect to d) to AT. In order to find, τ∗n, one must optimize over all possible
�x1; x2; : : : ; xn� ⊂ B and ti ≥ 0, i = 1;2; : : : ; n. Theorem 6 shows that one
can find nearly optimal discrete designs by fixing �x1; x2; : : : ; xn� ⊂ B (the
“denser” the better) and optimizing over �t1; t2; : : : ; tn� only.

Theorem 6. Let Sn = �xn1; xn2; : : : ; xnn� ⊂ B be a sequence of finite sub-
sets of B satisfying supx∈B mini≤n �x − xni� → 0 as n → ∞ (i.e., Sn becomes
dense in B), and let DT�Sn� ⊂ Dn

T be measures with support on Sn. Let τ̃∗n be
optimal in DT�Sn�. Then d�τ̃∗n;AT� → 0 and Q�τ̃∗n� → Q∗T.

Proof. Let τ∗ ∈ AT. We first show that there exists a sequence τn ∈
DT�Sn�; n = 1;2; : : : with τn→w τ

∗. Define

Uni =
{
y ∈ Bx �y− xni� ≤ min

j6=i
�y− xnj�

}∖ ⋃
j<i

Unj

to be the points in B closest to xni. The sets Uni, i = 1;2; : : : ; n form a disjoint
partition of B, so we can define τn ∈ DT�Sn� by

τn
(
�xni�

)
= τ∗�Uni�:

Fix ε > 0 and let gx B→ R be continuous. Since B is compact, g is uniformly
continuous, and since by hypothesis maxi diam�Uni� → 0, we can find n large
enough so that g varies by no more than ε/T on any of the Uni’s. Thus,

∣∣∣∣
∫
B
g�x�τn�dx� −

∫
B
g�x�τ∗�dx�

∣∣∣∣ < ε:

Since g and ε are arbitrary, τn →w τ∗. Since Q is continuous, Q�τn� →
Q�τ∗� = Q∗T, and since Q∗T ≤ Q�τ∗n� ≤ Q�τn� we have Q�τ∗n� → Q∗T. Finally,
d�τ∗n;AT� → 0 follows from Lemma 6.1. 2

Remark 4.1. Theorem 6 implies that if we select n points in B evenly
spaced or chosen from some “low dispersion” sequence, then the optimal design
with support on that set will closely resemble an optimal design if n is large
enough. If the optimal design, τ∗, is unique then τ∗n→w τ

∗.
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5. Numerical examples. In this section we illustrate our method by cal-
culating optimal designs and related quantities for some “generic” examples.
We know of no (nondegenerate) examples where the variational problem (4.3)
can be solved analytically. Fortunately, it is possible to calculate the optimal
discrete design on a given finite set of points numerically. Theorem 6 implies
that if the points are dense enough, the resulting design is close (with respect
to weak convergence) to a globally optimal design. In Appendix B we provide
the details for a numerical solution of the optimization problem (2.20) using
Newton’s method.

Example 1. Perhaps the simplest example is estimating functions on the
unit interval B = �0;1� with constant simulation variance v�x� = 1. In this
case the optimal design, τ∗, minimizes

Q�τ� =
∫ 1

0

∫ 1

0
φ�x�φ�y�a�x;y�dydx;

where a�x;y� satisfies

a�x;y� = ρ�x;y� −
∫ 1

0
ρ�x; z�a�z; y�τ�dz�:

Even in this simple case we are unable to find a�x;y� (let alone τ∗) explicitly
for any positive definite covariance function, ρ�x;y�. Figures 1a and 1b show
a�x;y� [determined numerically via (3.7)] when τ is Lebesgue measure and
100 times Lebesgue measure, respectively, and ρ�x;y� = exp�−�x− y�2�.

We now find τ∗ numerically when φ�x� = 1 for two different covariance
functions. Let

�x1; x2; : : : ; xn+1� =
{

0;
1
n
;

2
n
; : : : ;1

}
:

We then search for �t1; t2; : : : ; tn+1� that optimizes (B.1), (B.2) and (B.3).
In Figures 2a and 2b we plot the “density” of τ∗ based on n + 1 = 51

points for various values of T when ρ�x;y� = exp�−10�x − y�� and ρ�x;y� =
exp�−10�x− y�2�; respectively. We cannot be certain, based on the numerical
calculation, that τ∗ has a density, although the results seem to suggest that
it does.

Example 2. We next consider the simplest two-dimensional case. Let B =
�0;1�2, v�x� = 1 and φ�x� = 1. Figure 3 shows the “density” of τ∗ based on
n = 961 points (31 × 31 grid) when T = 100 and ρ�x;y� = exp�−�x − y�2�,
where � · � is Euclidian distance.

Example 3. Returning to B = �0;1�, we wish to estimate f�0:5� when
v�x� = 1+ x. Since only integrals of f̂ are provably consistent, we choose

φ�x� =
{

50; if 0:49 < x < 0:51;

0; otherwise.



ESTIMATING FUNCTIONS BY SIMULATIONS 1201

Fig. 1.
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Fig. 2.
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Fig. 3.

We are therefore searching for a design that minimizes

E

[(
50
∫ 0:51

0:49
f̂�x�dx− 50

∫ 0:51

0:49
f�x�dx

)2]
≈ E

[(
f̂�0:5� − f�0:5�

)2]
:

Figure 4 shows the “density” of τ∗ for various values of K when T = 1 and
ρ�x;y� = exp�−K�x− y��.

The shapes of the optimal densities are interesting. When K is very small,
the Gaussian process Z�x�, 0 ≤ x ≤ 1 is essentially a constant [see Currin,
Mitchell, Morris and Ylvisaker (1991)]. In that case there is no need to simu-
late at x = 0:5, so the optimal design spends most of its time at x ≈ 0 where
v�x� is smallest. When K = 0:1, the optimal design spends virtually no time
near x = 0:5. As K increases, the value of Z�x�, x 6= 0:5 becomes less valuable
for predicting Z�0:5�. By the time K = 1, the optimal design is spending the
majority of time near x = 0:5, although the density is skewed left due to the
asymmetry in v�x�.

APPENDIX A

Proof of Theorem 1. Consider the equation
∫
B
ρ�z; y�g�y�µ�dy� + g�z� = 0; z ∈ B:(A.1)

We prove that (A.1) has only the trivial solution for g�·� ∈ L2�µ�. Multiplying
(A.1) by g�z� and integrating with respect to µ�dz� we get

∫
B

∫
B
ρ�z; y�g�y�g�z�µ�dy�µ�dz� +

∫
B
g2�z�µ�dz� = 0:

Since ρ is positive definite, the first integral is nonnegative, and hence g�z� =
0 µ-a.e.
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Fig. 4.

Since (A.1) has only the trivial solution, by Fredholm’s alternative [Hutson
and Pym (1980)], Theorem 7.3.7], (3.4) has a unique solution in L2�µ� for every
x ∈ B.

Next, by (3.4),

∫
B

∫
B
ρ�z; y�a�y;x�a�z; x�µ�dy�µ�dz� +

∫
B
a2�z; x�µ�dz�

=
∫
B
a�z; x�ρ�z; x�µ�dz�;

so by the positive definiteness of ρ,

∫
B
a2�z; x�µ�dz� ≤

∫
B
a�z; x�ρ�z; x�µ�dz�:

Applying the Cauchy–Schwarz inequality yields

∫
B
a2�z; x�µ�dz� ≤

∫
B
ρ2�z; x�µ�dz�:(A.2)

Since ρ is bounded, the boundedness of a�·; ·� follows by (A.2) and (3.4).
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To show that a�·; ·� is symmetric, multiply each term in (3.4) by a�z;u� and
integrate with respect to µ�dz�. This yields

∫
B

∫
B
ρ�z; y�a�y;x�a�z;u�µ�dy�µ�dz� +

∫
B
a�z; x�a�z;u�µ�dz�

=
∫
B
ρ�z; x�a�z;u�µ�dz�:

(A.3)

The two terms on the left of (A.3) are symmetric in �x;u� [since ρ�·; ·� is
symmetric], so the term on the right must be symmetric. We apply (3.4) to the
right side of (A.3), obtaining

∫
B
ρ�z; x�a�z;u�µ�dz� = ρ�x;u� − a�x;u�;

implying that a�·; ·� is symmetric.
Now, let ρ be continuous. The continuity of a would follow from

lim
δ→0

sup
�z1−z2�<δ

sup
x
�a�z1; x� − a�z2; x�� = 0(A.4)

and

lim
δ→0

sup
�x1−x2�<δ

sup
z
�a�z; x1� − a�z; x2�� = 0:

By symmetry, we need prove only (A.4). By (3.4) and the Cauchy–Schwarz
inequality,

sup
x

∣∣a�z1; x� − a�z2; x�
∣∣

≤ sup
x
�ρ�z1; x� − ρ�z2; x��

+ sup
y
�ρ�z1; y� − ρ�z2; y�� sup

x

(∫
B
a2�y;x�µ�dy�

)1/2

µ�B�1/2:

(A.5)

Since ρ is uniformly continuous on B and (A.2) holds, (A.4) is proved. The
theorem is proved. 2

Proof of Theorem 2. First we show that the integral
∫
B
a�x;y�Z�y�µ�dy�

is well defined a.e. Since E�Z�y�Z�y′�� = ρ�y;y′�,

E

(∫
B
a�x;y�Z�y�µ�dy�

)2

=
∫
B

∫
B
a�x;y�a�x;y′�ρ�y;y′�µ�dy�µ�dy′�;

which is finite by the boundedness of a�·; ·� and ρ�·; ·�. Again, using

E�Z�x�Z�y�� = ρ�x;y�;
along with the fact that ν and Z are independent, yields

E
(
Ẑ�x�Z�y�

)
=
∫
B
a�x;u�ρ�u;y�µ�du�:
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Applying (3.4) yields

E
(
Ẑ�x�Z�y�

)
= ρ�x;y� − a�x;y�:

Similarly, we can write

E
(
Ẑ�x�Ẑ�y�

)
=
∫
B

∫
B
a�x; z�a�y;u�ρ�z;u�µ�dz�µ�du�

+E
∫
B

∫
B
a�x; z�a�y;u�ν�dz�ν�du�:

(A.6)

Using (3.4) twice yields
∫
B

∫
B
a�x; z�a�y;u�ρ�z;u�µ�dz�µ�du�

= ρ�x;y� − a�x;y� −
∫
B
a�x; z�a�y; z�µ�dz�:

(A.7)

Using the fact that for g ∈ L2�µ�,

E

[(∫
B
g�z�ν�dz�

)2]
=
∫
B
g�z�2µ�dz�

[Shiryaev (1984)], it follows that

E
∫
B

∫
B
a�z; x�a�u;y�ν�dz�ν�du� =

∫
B
a�z; x�a�z; y�µ�dz�:(A.8)

Combining (A.6), (A.7), (A.8) and the symmetry of a�·; ·� yields

E
(
Ẑ�x�Ẑ�y�

)
= ρ�x;y� − a�x;y�:(A.9)

Putting all the pieces together proves the theorem. 2

Proof of Theorem 3. For the proof of Theorem 3 we need to study prop-
erties of aT�·; ·� as T→∞. For this proof, φ ∈ L2�µ� is fixed. Introduce

aT�z� =
∫
B
aT�z; x�φ�x�µ�dx�:(A.10)

Then aT�·� ∈ L2�µ� since aT�·; ·� is bounded by Theorem 1 and φ�·� ∈ L2�µ�.
Let Lx L2�µ� → L2�µ� be the operator defined by

Lh�x� =
∫
B
ρ�y;x�h�y�µ�dy�; h ∈ L2�µ�:

Note that by the assumption on ρ, L is continuous, symmetric and positive
definite. Denote also

bT = TaT ∈ L2�µ�
and let � · � be the norm and �·; ·� be the inner product on L2�µ�.

Lemma 3.1. As T→∞, �L�bT −φ�; bT −φ� → 0.
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Proof. We first rewrite (4.2) in operator form. Multiplying through by
φ�x� and integrating with respect to µ�dx�, we get

LbT + aT = Lφ:(A.11)

This yields

�LbT; bT� + �aT; bT� = �Lφ; bT�:(A.12)

Since �aT, bT� = T�aT; aT� ≥ 0 and since L is symmetric, by (4.5) and (4.6),

�LbT; bT� ≤ �Lφ; bT� = �LbT; φ� = �Lφ;φ� − �aT; φ�;
and an application of the Cauchy–Schwarz inequality yields

�LbT; bT� ≤ �Lφ;φ� + �aT� �φ�:(A.13)

We now prove that

lim
T→∞

�aT� = 0:(A.14)

By (A.12) and the definition of bT,

T�LaT; aT� + �aT�2 = �Lφ;aT�;(A.15)

which implies, since L is positive definite, that

�aT�2 ≤ �Lφ;aT� ≤ �Lφ� �aT�:
Hence

�aT� ≤ �Lφ�:(A.16)

On the other hand, (A.15) obviously gives

�LaT; aT� ≤
1
T
�Lφ;aT�;

which coupled with (A.16) yields

�LaT; aT� ≤
1
T
�Lφ�2:

Next, since L is positive definite, by another application of the Cauchy–
Schwarz inequality,

�Lφ;aT� ≤ �Lφ;φ�1/2�LaT; aT�1/2 ≤ �Lφ;φ�1/2
�Lφ�√
T
;

and invoking (A.15) once again, we get

�aT�2 ≤ �Lφ;aT� ≤
1√
T
�Lφ;φ�1/2�Lφ�;

proving (A.14). In view of (A.13) and (A.14),

lim sup
T→∞

�LbT; bT� ≤ �Lφ;φ�:(A.17)
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Since L is positive definite there exists a symmetric operator Ŝ such that
L = Ŝ2 [Hutson and Pym (1980)]. Inequality (A.17) then implies that

sup
T

�ŜbT� <∞;

so the set �ŜbT; T > 0� is weakly relatively compact [Hutson and Pym (1980),
Theorem 6.3.7]. Let c be its weak accumulation point. Since (A.11) is easily
seen to imply that, for arbitrary ψ ∈ L2�µ�,

�ŜbT; Ŝψ� + �aT; ψ� = �Ŝφ; Ŝψ�;
(A.14) necessarily implies

�c; Ŝψ� = �Ŝφ; Ŝψ�;
or (use again that Ŝ is symmetric)

�Ŝc;ψ� = �Ŝ2φ;ψ�;
and since ψ is arbitrary,

Ŝc = Ŝ2φ:

Multiplying with Ŝ and using L = Ŝ2, we get

L�c− Ŝφ� = 0:

Since L is positive definite, this implies that c − Ŝφ = 0; µ-a.e. This proves
that ŜbT weakly converges to Ŝφ as T→∞.

We now prove that the convergence is strong. Write

�ŜbT − Ŝφ�2 = �ŜbT; ŜbT� − 2�ŜbT; Ŝφ� + �Ŝφ; Ŝφ�:
Since �ŜbT; Ŝφ� → �Ŝφ; Ŝφ�, �ŜbT; ŜbT� = �LbT; bT� and �Ŝφ; Ŝφ� =
�Lφ;φ�, we conclude by (A.17) that

lim
T→∞

�ŜbT − Ŝφ�2 = 0:

Since �L�bT −φ�; bT −φ� = �ŜbT − Ŝφ�2, the lemma is proved. 2

Corollary A.1. LbT converges weakly to Lφ in L2�µ�.

This follows from the Cauchy–Schwarz inequality: if ψ ∈ L2�µ�, then
∣∣�L�bT −φ�; ψ�

∣∣ ≤
〈
L�bT −φ�; bT −φ

〉1/2�Lψ;ψ�1/2:

Corollary A.2.

lim
T→∞

〈
L�bT −φ�; bT

〉
= 0:

This follows since
∣∣〈L�bT −φ�; bT

〉∣∣ ≤
∣∣〈L�bT −φ�; bT −φ

〉∣∣+
∣∣〈L�bT −φ�; φ

〉∣∣:
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Proof of Theorem 3. It is easy to see that f̂T ∈ L2�µ� a.s. By (4.1), in
the notation of the proof of Lemma 3.1,

∫
B
f̂T�x�φ�x�µ�dx� = �bT; f� +

√
T
∫
B
aT�y�ν�dy�:

We prove the theorem by showing that

lim
T→∞
�bT; f� = �φ;f�(A.18)

and

lim
T→∞

E

[√
T
∫
B
aT�y�ν�dy�

]2

= 0:(A.19)

By hypothesis, f = Lk, so

�bT; f� = �bT;Lk� = �LbT; k�;
and the latter converges to �Lφ;k� = �φ;Lk� = �φ;f� by Corollary A.1. Limit
(A.18) is proved.

Next, since ν is an orthogonal measure,

E

[√
T
∫
B
aT�y�ν�dy�

]2

= T
∫
aT�y�2µ�dy� = T�aT�2:

By (A.12), since bT = TaT,

T�aT�2 = �Lφ; bT� − �LbT; bT�:
An application of Corollary A.2 completes the proof of (A.19). 2

Proof of Corollary 3.2. Using (3.12), (3.13) and (3.14) we write
∫
B
f̃T�x�φ�x�µ�dx� − �bT; f� =

√
T
∫
B
aT�y�ν̃�dy�:

Thus, by (3.11),

E

[(∫
B
f̃T�x�φ�x�µ�dx� − �bT; f�

)2]
= T

∫
B
aT�y�2µ̃�dy�

≤ cT
∫
B
aT�y�2µ�dy�;

where c is a bound on v�y�/ṽ�y�. The result follows from (A.18) and (A.19). 2

Proof of Theorem 4. We begin the proof with a lemma. It is more general
than it is required for Theorem 4 but this generality is exploited in the proof
of Theorem 5.

Lemma 4.1. Under the conditions of Theorem 4,

lim
n→∞

sup
z; x∈B

∣∣an�z; x� − a�z; x�
∣∣ = 0:
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Proof. By Theorem 1, the functions an and a are elements of the space
C�B×B� of continuous functions on B×B with uniform norm. We prove, first,
that the sequence �an; n ≥ 1� is relatively compact in C�B ×B�. For this we
check the conditions of the Arzelà–Ascoli theorem. Estimate (A.2) in the proof
of Theorem 1 yields, by (3.4) applied to an and ρn,

sup
z; x
�an�z; x�� ≤ sup

z; x
�ρn�z; x�� + sup

z; x
ρ2
n�z; x�µn�B�:(A.20)

Since µn→ µ weakly,

sup
n
µn�B� <∞:(A.21)

This and the fact that ρn → ρ uniformly, shows that the right-hand side of
(A.20) is bounded in n. Thus

sup
n

sup
z;x
�an�z; x�� <∞;(A.22)

verifying the first condition of the Arzelà–Ascoli theorem.
For the second condition, let δ > 0 and use the fact that the an’s are sym-

metric to write

sup
�z1−z2�<δ
�x1−x2�<δ

∣∣an�z1; x1� − an�z2; x2�
∣∣ ≤ 2 sup

�z1−z2�<δ
sup
x

∣∣an�z1; x� − an�z2; x�
∣∣:

Inequality (A.5) applied to an and ρn yields

sup
x

∣∣an�z1; x� − an�z2; x�
∣∣ ≤ sup

x

∣∣ρn�z1; x� − ρn�z2; x�
∣∣

+ sup
y

∣∣ρn�z1; y� − ρn�z2; y�
∣∣ sup
x;y

∣∣an�x;y�
∣∣µn�B�:

The sup�z1−z2�<δ of the right-hand side converges to 0 as n→∞ and δ→ 0 by
(A.21), (A.22) and since ρn→ ρ uniformly. Thus

lim
δ→0

lim sup
n→∞

sup
�z1−z2�<δ;
�x1−x2�<δ

∣∣an�z1; x1� − an�z2; x2�
∣∣ = 0;

verifying the second condition of the Arzelà–Ascoli theorem.
Let ã be an accumulation point of �an; n ≥ 1� in C�B × B�. That is,

an′�y;x�→ ã�y;x� uniformly on B×B for some subsequence �n′�. We have
∣∣∣∣
∫
B
ρn′�z; y�an′�y;x�µn′�dy� −

∫
B
ρ�z; y�ã�y;x�µ�dy�

∣∣∣∣

≤
∫
B

∣∣ρn′�z; y� − ρ�z; y�
∣∣ ∣∣an′�y;x�

∣∣µn′�dy�

+
∫
B

∣∣ρ�z; y�
∣∣ ∣∣an′�y;x� − ã�y;x�

∣∣µn′�dy�

+
∣∣∣∣
∫
B
ρ�z; y�ã�y;x�µn′�dy� −

∫
B
ρ�z; y�ã�y;x�µ�dy�

∣∣∣∣:

(A.23)
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The first integral on the right of (A.23) tends to 0 uniformly in z, x ∈ B as
n′ → ∞ by (A.21), (A.22) and since ρn′ → ρ uniformly. The second integral
tends to 0 uniformly in z, x ∈ B as n′ → ∞ since an′ → ã uniformly, ρ is
bounded and (A.21) holds.

Consider the last integral. Since ã�y;x�, y;x ∈ B is continuous,

ρ�z; y�ã�y;x�

is continuous in y for all z, x ∈ B. Moreover, the family �ρ�z; y�ã�y;x�, y ∈ B�,
z; x ∈ B, of functions is equicontinuous; that is,

lim
δ→0

sup
z∈B
x∈B

sup
�y1−y2�<δ

∣∣ρ�z; y1�ã�y1; x� − ρ�z; y2�ã�y2; x�
∣∣ = 0:

This implies [see, e.g., Billingsley (1968), problem 8, Section 2] that since
µn→w µ,

∫
B
ρ�z; y�ã�y;x�µn′�dy� →

∫
B
ρ�z; y�ã�y;x�µ�dy�

as n′ →∞ uniformly in z; x ∈ B. Hence

sup
z∈B
x∈B

∣∣∣∣
∫
B
ρn′�z; y�an′�y;x�µn′�dy� −

∫
B
ρ�z; y�ã�y;x�µ�dy�

∣∣∣∣→ 0

as n′ →∞. Thus the left-hand side of (A.23) converges to 0 uniformly in �z; x�.
Since ρn→ ρ uniformly and the an and ρn satisfy (3.4), we see that ã satisfies
the equation

∫
B
ρ�z; y�ã�y;x�µ�dy� + ã�z; x� = ρ�z; x�;

that is, ã = a by Theorem 1. The lemma is proved. 2

Proof of Theorem 4. Let

a�y� =
∫
B
a�y;x�φ�x�µ�dx�; y ∈ B

and

an�y� =
∫
B
an�y;x�φ�x�µn�dx�; y ∈ B:

By the definitions of an, f̂n, a and f̂, we have

�f̂n; φ�n =
∫
B
an�y�f�y�µn�dy� +

∫
B
an�y�νn�dy�

and

�f̂; φ� =
∫
B
a�y�f�y�µ�dy� +

∫
B
a�y�ν�dy�:
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Lemma 4.1 easily implies that

lim
n→∞

sup
y

∣∣an�y� − a�y�
∣∣ = 0;(A.24)

and hence

lim
n→∞

∫
B
an�y�f�y�µn�dy� =

∫
B
a�y�f�y�µ�dy�:

Also, since the νn are orthogonal measures, for ε > 0,

P

(∣∣∣∣
∫
B

(
an�y� − a�y�

)
νn�dy�

∣∣∣∣ > ε
)
≤ ε−2E

[∫
B

(
an�y� − a�y�

)
νn�dy�

]2

= ε−2
∫
B

(
an�y� − a�y�

)2
µn�dy�;

which tends to 0 as n → ∞ by (A.24) and (A.21). So the theorem would be
proved if

∫
B
a�y�νn�dy� →d

∫
B
a�y�ν�dy�:(A.25)

Since the νn are Gaussian orthogonal measures, for any t1; t2; : : : ; tk, and
A1;A2; : : : ;Ak where Aj ∩Aj′ = ∅ if j 6= j′,

E exp
(
i
k∑
`=1

t`νn�A`�
)
= exp

(
− 1

2

k∑
`=1

t2`µn�A`�
)
;

which implies that for any continuous function g on B,

E exp
(
i
∫
B
g�y�νn�dy�

)
= exp

(
− 1

2

∫
B
g2�y�µn�dy�

)
;

and likewise,

E exp
(
i
∫
B
g�y�ν�dy�

)
= exp

(
− 1

2

∫
B
g2�y�µ�dy�

)
:

Hence, since a is bounded and continuous and µn→w µ, for t ∈ R,

lim
n→∞

E exp
(
it
∫
B
a�y�νn�dy�

)
= lim

n→∞
exp

(
− 1

2t
2
∫
B
a�y�2µn�dy�

)

= exp
(
− 1

2t
2
∫
B
a�y�2µ�dy�

)

= E exp
(
it
∫
B
a�y�ν�dy�

)
;

proving (A.25). The theorem is proved. 2
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APPENDIX B

We fix n design points �x1; x2; : : : ; xn� ∈ B and search for a corresponding
set of simulation times �t1; t2; : : : tn� that solves

maximize h�t1; t2; : : : ; tn� = ψ′0−1ψ;(B.1)

subject to
n∑
i=1

ti = T;(B.2)

ti ≥ 0; i = 1;2; : : : ; n:(B.3)

The nonnegativity constraint (B.3) can be handled by defining

s2
i = ti; i = 1;2; : : : ; n:(B.4)

Using Lagrange multipliers, we find that for some λ,

1
si

∂h

∂si
= λ; i = 1;2; : : : ; n:(B.5)

Using (B.4), we can write (B.2) and (B.5) as

G�s1; s2; : : : ; sn� ≡




1
s1

∂h

∂s1
− 1
s2

∂h

∂s2
1
s1

∂h

∂s1
− 1
s3

∂h

∂s3
:::

1
s1

∂h

∂s1
− 1
sn

∂h

∂sn
n∑
i=1

s2
i −T




=




0

0
:::

0

0




;(B.6)

which can be solved by Newton’s method. If S is diagonal then ∂0/∂tk has
only a single nonzero entry, �∂0/∂tk�kk = −�vk/t2k� [where vk ≡ v�xk�]. Using
∂0−1/∂tk = −0−1�∂0/∂tk�0−1; we obtain

∂h

∂tk
= vk
t2k
�0−1ψ�2k;(B.7)

∂2h

∂t2k
= 2vk

t3k

(
vk
tk
0−1
kk − 1

)
�0−1ψ�2k(B.8)

and

∂2h

∂tk∂t`
= 2

vkv`

t2kt
2
`

0−1
k` �0−1ψ�k�0−1ψ�`:(B.9)

The Jacobian of G�s1; s2; : : : ; sn� can be obtained from (B.4) and (B.6)–(B.9)
via the chain rule.
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Remark B.1. Clearly (B.7) implies that

∂h

∂tk
> 0:(B.10)

Let 0̂ be the covariance matrix for �Y1;Y2; : : : ;Yn� \ �Yk�. Writing 0 as

0 =




0̂ γ�xk�
γ�xk�′ ρ�xk; xk� +

vk
tk




we obtain [using the block matrix inverse formula, e.g., Searle, (1982)]

0−1
kk =

(
ρ�xk; xk� − γ�xk�′0̂−1γ�xk� +

vk
tk

)−1

:

Since ρ�xk; xk�−γ�xk�′0̂−1γ�xk� is the variance of Z�xk�−Ẑ�xk� based on the
simulation data at �x1; x2; : : : ; xn�\�xk�, it follows that

0−1
kk <

tk
vk
;

and from (B.8) we see that

∂2h

∂t2k
< 0:(B.11)

From (B.10) and (B.11) it seems plausible to conjecture that no discrete design
can be optimal.
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