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We consider the Navier–Stokes equation in dimension 2 and more pre-
cisely the vortex equation satisfied by the curl of the velocity field. We show
the relation between this equation and a nonlinear stochastic differential
equation. Next we use this probabilistic interpretation to construct approx-
imating interacting particle systems which satisfy a propagation of chaos
property: the laws of the empirical measures tend, as the number of par-
ticles tends to ∞, to a deterministic law for which marginals are solutions
of the vortex equation. This pathwise result justifies completely the vor-
tex method introduced by Chorin to simulate the solutions of the vortex
equation. Our approach is inspired by Marchioro and Pulvirenti and we
improve their results in a pathwise sense.

1. Introduction. In this paper we consider the equation describing the
velocity of an incompressible fluid in dimension 2. This equation on the velocity
field of the fluid is the well-known Navier–Stokes equation and in dimension 2,
it can be expressed as an equation for the curl of the velocity. In this simplified
form, the Navier–Stokes equation appears as a McKean–Vlasov equation, in
which the coefficient of the drift term K can explode.

About 20 years ago, Chorin proposed a vortex method to simulate the
solutions of this equation. His method consisted of considering some cutoff
drift kernels, assuming the convergence of the cutoff model to the original
model and simulating some cutoff particle approximations. His approach was
not mathematically proved and many authors tried to give a proof of the
convergence.

In 1982, Marchioro and Pulvirenti gave a probabilistic interpretation of the
Navier–Stokes equation due to a nonlinear diffusion. They introduced rigor-
ously a cutoff model and some particle systems and proved a result of conver-
gence for the expectations of the empirical measures of the particle systems
at each fixed time to the solution at this time of the Navier–Stokes equation
with bounded integrable initial data.

Then an open question was the pathwise convergence of these empirical
measures to the law of the nonlinear diffusion, and as an equivalent result
the propagation of chaos for the interacting particle systems.

In 1987, Osada proved a propagation of chaos result for an interacting
particle system without cutoff by an analytical method based on generators
of generalized divergence form, but only for large viscosities and for bounded
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density initial data. The tightness of the laws of the particle systems is always
true and the constraint on the viscosity appears in the identification of the
limit laws.

In this paper, we consider the framework introduced by Marchioro and
Pulvirenti, and give a trajectorial proof of the vortex method by showing a
propagation of chaos result for the stochastic interacting particle system. For
each size n, the n-particle system is defined with a cutoff drift kernel with
cutoff depending on n in a precise asymptotics given by the estimates. One
proves that the laws of the particle systems converge, and also the empirical
measures, as probability measures on the path space, to a probability measure
whose time marginals have density functions with respect to the Lebesgue
measure, which are solutions of the Navier–Stokes equation. One obtains a
trajectorial rate of convergence, which is unfortunately certainly not optimal.

As written at the end of [7], Marchioro and Pulvirenti wished to describe
a unified approach for Navier–Stokes and Euler equations. So they did not
fully exploit the stochastic nature of the Navier–Stokes equation, which we
do in this paper. Our results, performed directly on the path space, yield the
asymptotics of the path functionals such as hitting times or suprema over time
intervals. The Euler equation cannot have the same type of stochastic inter-
pretation since it lacks a Laplacian term, and the exact estimate we obtain
in Corollary 3.6 explodes when the viscosity tends to 0. Then our approach
cannot give better results on the Euler equation than the ones obtained in [7].

We consider here as initial data for the Navier–Stokes equation a bounded
integrable function, not only a bounded density function. We are inspired
by a paper of Jourdain [3], which shows how to take into account bounded
signed measures instead of probability measures as initial conditions in a
McKean–Vlasov context. One considers probability measures on the path
space such that each sample path has a signed weight depending on the initial
data. This trick allows us to have a simpler approach of the initial behavior
than in Marchioro and Pulvirenti.

Notation. We will denote by �·� the Euclidean norm in �2, by �·�∞ the
L∞-norm and by �·�1 the L1-norm in �2. The letter C will denote a real con-
stant which can change from line to line.

1.1. The vortex equation. Let us consider the velocity flow v�t� x�� t ∈ �+,
x ∈ �2, of a viscous and incompressible fluid in the whole plane. The governing
equation of this motion is the Navier–Stokes equation given by

∂v

∂t
�t� x� + �v · ∇�v�t� x� = ν�v�v� x� − ∇p�

∇ · v�x� t� = 0� v�x� t� → 0 as �x� → +∞ for 0 ≤ t < +∞�
(1.1)

where p is the pressure and ν > 0 the viscosity (assumed to be constant).
It is well known that the Navier–Stokes equation in dimension 2 can be

reformulated in terms of the vorticity flow w�t� x� = curl v�t� x�. More
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precisely, the flow w is solution of the nonlinear partial differential equation

∂w

∂t
�t� x� + �v · ∇�w�t� x� = ν�w�t� x��(1.2)

v�t� x� =
∫
�2
K�x− y�w�t� y�dy(1.3)

for initial data w0, where K�x� is the kernel of Biot and Savart defined by

∀x = �x1� x2� ∈ �2� K�x� = 1
2π

1

�x2
1 + x2

2�
�−x2� x1��(1.4)

Note that ∇ ·K = 0, implying ∇ · v = 0.
The main difficulty of the kernel K is the explosion at 0. However, if w ∈

L∞ ∩L1��2�, (1.3) makes sense, as can be seen as follows.

Lemma 1.1. The functionK is bounded at ∞ and integrable near 0� Let us
introduce

K1 =
∫
B�0�1�

�K�y��dy� K∞ = sup
y∈B�0�1�c

�K�y���

Then, for every function g ∈ L1 ∩L∞ and x ∈ �2�

�K ∗ g�x�� ≤ �g�∞K1 + �g�1K∞�(1.5)

The proof is very simple, and (1.5) is the key point to get an existence and
uniqueness result for the solution of (1.2) if the initial data is assumed to be
bounded and integrable.

Theorem 1.2. Let us consider w0 ∈ L1 ∩L∞� ν > 0 and T > 0. Then:

(i) There exists a unique solution t→ wt ∈ L1∩L∞��2�, a solution of �1�2�
in the weak sense, which means that, ∀φ ∈ C2

b��2�,∫
�2
φ�x�wt�x�dx

=
∫
�2
φ�x�w0�x�dx+ ν

∫ t
0

∫
�2

�φ�x�ws�x�dxds(1.6)

+
∫ t
0

∫
�2

(
K ∗ws�x� · ∇φ�x�

)
ws�x�dxds�

Moreover,

sup
t∈�0�T�

�wt�∞ ≤ �w0�∞� �wt�1 ≤ �w0�1 ∀t ∈ �0�T��(1.7)

(ii) If the initial function w0 is nonnegative, then it is the same for each
wt� t ≥ 0.
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(iii) The function w is a.s. solution of the evolution equation

w�t� x� = Gνt ∗w0�x�
+ ∫ t

0

∫
�2 ∇xGνt−s�x− y� ·K ∗ws�y�ws�y�dyds�

(1.8)

where Gνt is the heat kernel in �2 defined by Gνt�x� = 1/4πtν e−��x�2/4tν�.

Proof. (i) The existence and uniqueness of the weak solution of (1.2)
with initial data w0 in L1 ∩ L∞ are proved, for example, in Marchioro and
Pulvirenti [7], as (1.7) and the positivity.

(ii) By using Fubini’s theorem (allowed by Lemma 1.1 and applied to ws),
we can easily prove that, for every function ψ�t� x� ∈ C1�2

b ��+ × �2�,∫
�2
ψ�t�x�wt�x�dx

=
∫
�2
ψ�0�x�w0�x�dx+ν

∫ t
0

∫
�2
�ψ�s�x�ws�x�dxds

+
∫ t
0

∫
�2
ψ′
s�s�x�ws�x�dxds+

∫ t
0

∫
�2

(
K∗ws�x�·∇xψ�s�x�

)
ws�x�dxds�

Then by choosing for a fixed time t�ψ�s� x� = ∫
�2 G

ν
t−s�x − y�φ�y�dy for

φ ∈ C2
b��2�, we obtain the evolution equation (1.8). In fact, a direct proof of

the existence and uniqueness of the solution of (1.2) in L1 ∩L∞ can be given
by studying (1.8) (see Giga, Miyakawa and Osada [2]). ✷

Let us remark that a simple computation gives an estimate of the L1-norm
of the gradient of Gνt .

Lemma 1.3.

�∇xGνt�L1��2� ≤
A√
νt
�(1.9)

where A is a real constant and then
∫ t
0 �∇xGνt−s�L1��2� ds < +∞.

2. The nonlinear martingale problem and the stochastic differen-
tial equation associated with the two-dimensional Navier–Stokes
equation. We are in a McKean–Vlasov context. If the initial function w0
is a density function on �2, it is natural to associate with the weak form (1.6)
of the Navier–Stokes equation a nonlinear martingale problem and a nonlin-
ear stochastic differential equation, by interpreting a solution as the time-
marginal flow of a probability measure on C��0�T���2�. Here, we will use a
trick due to Jourdain [4] to pass from a density function to every bounded
integrable function.

In the following discussion, we will consider an initial bounded and inte-
grable function w0 on �2. We assume moreover that w0 is not the function
identically equal to 0.
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We define the bounded function h from the initial condition w0 by

∀x ∈ �2� h�x� = w0�x��w0�1

�w0�x��
� with the convention

0
0
= 0�(2.1)

Let us remark that, for each x ∈ �2,

− �w0�1 ≤ h�x� ≤ �w0�1�(2.2)

and that

w0�x�dx = h�x� �w0�x��
�w0�1

dx� where
�w0�
�w0�1

�

is thus a density of probability measure.
Now, for Q a probability measure on C��0�+∞���2�, we define the flow

�Q̃t�t≥0 of signed measures on �2 by

∀B Borel subset of �2� Q̃t�B� = EQ
(
1B�Xt�h�X0�

)
�(2.3)

where X denotes the canonical process on C��0�+∞���2�. (One associates
with each sample path a signed weight depending on the initial position.)

Lemma 2.1 will be useful in the following discussion.

Lemma 2.1. (i) For each t ≥ 0, the signed measure Q̃t is bounded, and its
total mass is less than �w0�1.

(ii) IfQt is absolutely continuous with respect to the Lebesgue measure, then
Q̃t also has a bounded density.

Proof. Since the function h is bounded by �w0�1 and using (2.3), the
lemma is obvious. ✷

Equation (1.2) understood in its weak form leads naturally to the following
definition.

Definition 2.2. The probability measure P ∈ � �C��+��2�� is a solution
of the nonlinear martingale problem �� � if, for each φ ∈ C2

b��2�,

φ�Xt� −φ�X0� −
∫ t
0
K ∗ P̃s�Xs� · ∇φ�Xs�ds− ν

∫ t
0
�φ�Xs�ds

is a P-martingale, where X is the canonical process on C��+��2�, P0 has the
law ��w0�x��/�w0�1�dx and Ps = P ◦X−1

s .

This nonlinear martingale problem is related to the following nonlinear
stochastic differential equation.
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Definition 2.3. Let us consider a random �2-valued variableX0 with dis-
tribution ��w0�x��/�w0�1�dx, and letB be a two-dimensional Brownian motion
independent of X0. A solution X ∈ C��+��2� of the nonlinear stochastic dif-
ferential equation satisfies, ∀t ∈ �+,

Xt =X0 +
√

2νBt +
∫ t
0
K ∗ P̃s�Xs�ds�

Ps is the marginal at time s of the law of Xs�
(2.4)

Notation. We denote by �̂∞�C��+��2�� the space of probability measures
on C��+��2� whose marginals Ps at time s are absolutely continuous with
respect to the Lebesgue measure on �2, for every s ∈ �+, and have a density
in L∞��2�. For such probability measures, there exists a measurable func-
tion �s� x� → p̃�s� x� in L∞ such that, ∀s ∈ �0�T�� P̃s�dx� = p̃�s� x�dx (cf.
Meyer [9], page 194). We call this function p̃ a measurable version of the
densities of �Ps�. We will prove the following theorem.

Theorem 2.4. Let us consider a bounded integrable functionw0. Then there
exists a unique solution P ∈ �̂∞�C��+��2�� to the martingale problem �� �
such that P0�dx� = ��w0�x��/�w0�1�dx.

Moreover, for each t ∈ �+, the signed bounded measure P̃t is absolutely
continuous with respect to the Lebesgue measure, and each measurable version
of its density is almost surely bounded and equal to the function wt defined in
Theorem 1.2.

Proof. (i) If P ∈ �̂∞�C��0�T���2�� is a solution of �� � and p̃t a mea-
surable version of the densities of P̃t, then by multiplying by h�X0� and by
taking the expectation in �� �, we get that p̃ is a weak solution of (1.2) with
initial condition w0. Then by the uniqueness given in Theorem 1.2, for each
t ∈ �+� p̃t�x� = wt�x� a.s.

(ii) Let us consider this unique weak solution w of (1.2) issued from w0.
Then wt is for each t a bounded integrable function. We say that Pw ∈
� �C��+��2�� is a solution of the classical martingale problem (�w) if, for
each φ ∈ C2

b��2�,

φ�Xt� −φ�X0� − ν
∫ t
0
�φ�Xs�ds−

∫ t
0
K ∗ws�Xs� · ∇φ�Xs�ds

is a Pw-martingale and Pw0 �dx� = ��w0�x��/�w0�1�dx. This martingale prob-
lem is well posed. Indeed, by Lemma 1.1 and (1.7), for each s ≥ 0,

�K ∗ws�∞ ≤K1�ws�∞ +K∞�ws�1 ≤K1�w0�∞ +K∞�w0�1 = K̂�w0�(2.5)

so the drift coefficient is bounded, and by Girsanov’s theorem, we get the exis-
tence and uniqueness of the solution of ��w�. Moreover, every time marginal
of Pw admits a density Pws , and multiplying by h�X0� all the terms of the
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martingale problem and taking expectations, we obtain immediately that the
flow �p̃ws �s∈�+ is a solution of the weak equation: for each φ ∈ C2

b��2�,∫
�2
φ�x�p̃wt �x�dx

=
∫
�2
φ�x�w0�x�dx+ ν

∫ t
0

∫
�2

�φ�x�p̃ws �x�dxds�(2.6)

+
∫ t
0

∫
�2

(
K ∗ws�x� · ∇φ�x�p̃ws �x�dxds

)
�

Then the flow p̃t is a solution of

∂p̃w

∂t
+ �K ∗w · ∇�p̃w = ν�p̃w� p̃w0 = w0�

Since the divergence of the drift term is equal to 0, we can adapt the proof
of Theorem 6.2.2 in Lewandowski [6] and obtain, for each t ∈ �+, for each
q ∈ �∗

+,

�p̃wt �q ≤ �w0�q�
and since w0 belongs to L∞ ∩ L1, we conclude by taking q → +∞ that, for
each t ∈ �0�T�,

�p̃wt �∞ ≤ �w0�∞�(2.7)

(iii) Let us now prove the existence and uniqueness of a solution of (2.6)
in L∞��0�T��L1 ∩ L∞�. We obtain as before by Fubini’s theorem and due to
Lemma 1.1 that p̃w is a solution of the following evolution equation:

p̃w�t� x� = Gνt ∗w0�x�

+
∫ t
0

∫
∇xGνt−s�x− y�K ∗ws�y�p̃w�s� y�dy�

(2.8)

Let us prove the uniqueness of the solution of (2.8) in L∞��0�T��L∞�. Let q
and q′ be two solutions. Then

q�t� x� − q′�t� x�

=
∫ t
0

∫
∇xGνt−s�x− y�K ∗ws�y�

(
q�s� y� − q′�s� y�)dyds�

Thus, by (1.9) and (2.5),

�q�t� ·� − q′�t� ·��∞
≤

∫ t
0

∥∥∥ ∫ ∇xGνt−s�x− y�K ∗ws�y�
(
q�s� y� − q′�s� y�)dy∥∥∥

∞
ds

≤ K̂�w0�
∫ t
0
�q�s� ·� − q′�s� ·��∞�∇xGνt−s�∞ ds

≤ AK̂�w0�√
ν

∫ t
0

�q�s� ·� − q′�s� ·��∞√
t− s ds�
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We are almost in a standard Gronwall situation. By an iteration, we obtain

�q�t� ·� − q′�t� ·��∞
≤ C

∫ t
0

1√
t− s

∫ s
0

�q�u� ·� − q′�u� ·��∞√
s− u duds

≤ C
∫ t
0
�q�u� ·� − q′�u� ·��∞

∫ t
u

1√
t− s√s− u dsdu

≤ C
∫ t
0
�q�u� ·� − q′�u� ·��∞ du�

Therefore,

sup
t∈�0�T�

�q�t� ·� − q′�t� ·��∞ = 0

and the uniqueness in (2.8) is proved. Hence p̃w is the unique solution of (2.8)
and since w satisfies this equation,

sup
t∈�0�T�

�p̃w�t� ·� −w�t� ·��∞ = 0�

So the probability measure Pw is a solution of the nonlinear martingale
problem �� �.

(iv) Let us now prove the uniqueness of a solution of this martingale prob-
lem. Let P and Q be two solutions. By the same reasoning as before, it is easy
to prove that �P̃t�t≥0 and �Q̃t�t≥0 are equal to �w�t� x�dx�t≥0. Hence P and
Q are solutions of the classical well-posed martingale problem ��w� and are
then equal, and Theorem 2.4 is proved. ✷

Remark 2.5. The function K∗w is bounded but not Lipschitz. So we have
existence and uniqueness in law for the nonlinear SDE �2�4�, but we do not
have a strong uniqueness result.

3. An approximating system.

3.1. A model with cutoff. Let us consider as in Marchioro and Pulvirenti [7]
a cutoff kernel Kε defined in the following way. We denote by g�r� =
−�1/2π� ln r the fundamental solution of the Poisson equation. One knows
that, for x ∈ �2, K�x� = ∇⊥g��x��. For each ε > 0, we consider gε defined
as gε�r� = g�r� if �r� ≥ ε and arbitrarily extended to an even C2��� function
such that �g′

ε�r�� ≤ �g′�r�� and �g′′
ε�r�� ≤ �g′′�r��. Then we define

Kε�x� = ∇⊥gε��x���
The function Kε is then Lipschitz continuous and bounded and we denote by
Mε the maximum value of Kε on �2 and by Lε a Lipschitz constant.

We now define the interacting particle system we are interested in.
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Definition 3.1. Consider a sequence �Bi�i∈� of independent Brownian
motions on �2 and an �2-valued sequence of independent variables �Zi0�i∈�
distributed according to ��w0�x��/�w0�1�dx and independent of �Bi�i∈�. For a
fixed ε, for each n ∈ �∗ and 1 ≤ i ≤ n, let us consider the interacting processes
defined by

Z
in� ε
t = Zi0 +

√
2νBit +

∫ t
0
Kε ∗ µ̃n� εs �Zin� εs �ds�(3.1)

where

µn�ε = 1
n

n∑
j=1

δZjn� ε ∈ �
(
C��+��

2�)
is the empirical measure of the system:

µ̃n� εs = 1
n

n∑
j=1

h�Zj0�δZjn� εs
�

We also define the limiting independent processes by

�Zi�εt = Zi0 +
√

2νBit +
∫ t
0
Kε ∗ P̃εs��Zi�εs �ds�(3.2)

where Pεs is the law of �Zi�εs .

Proposition 3.2. (i) For each T > 0 and for each n, there exist a unique
�pathwise� solution to the interacting particle system �3�1� in C��0�T�� �2n�
and a unique �pathwise� solution to the nonlinear equation �3�2� in C��0�
T���2�.

(ii) For each T > 0,

E

(
sup
t≤T

∣∣∣Zin� εt − �Zi�εt
∣∣∣) ≤ Mε√

nLε
exp��w0�1TLε��(3.3)

Proof. By the boundedness of h, the proof of the first assertion is stan-
dard and can be adapted from Sznitman [12], Theorem 1.1, and the second
assertion comes from an easy adaptation of the computations in Jourdain and
Méléard [4], Proposition 2.3. See also Jourdain [3]. ✷

3.2. The approximating interacting particle system. We now considerT > 0
and a sequence �εn� tending to 0 such that

lim
n

Mεn√
nLεn

exp��w0�1TLεn� = 0�(3.4)

with the notation of the previous section. For each n and given indepen-
dent Brownian motions �Bi�1≤i≤n, we consider a coupling between the n par-
ticle system �Zin = Zin�εn� defined with the drift Kεn as in (3.1), and the
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corresponding n independent limiting processes �Yin = �Zi�εn defined for each
t ≤ T and n by

�Yint = Zi0 +
√

2νBit +
∫ t
0
Kεn ∗ P̃ns ��Yins �ds�(3.5)

where Pns is the common law of �Yins .
By the same arguments as before, Pns admits a density function pns and then

P̃ns admits a density function p̃ns , which is a weak solution of the equation

∂p̃n

∂t
= ν/p̃n − �Kεn ∗ p̃n · ∇�p̃n� pn0 = w0�(3.6)

Indeed, to prove it, we compute φ��Yint � for a smooth function φ by Itô’s for-
mula, multiply it by h�Zi0� and take expectations. By the same reasoning as
in the proof of Theorem 2.4 and since w0 ∈ L1 ∩L∞ and Kεn ∗ p̃n is bounded
by Mεn

and has a divergence equal to 0, we can prove the following result.

Proposition 3.3.

sup
n

sup
t∈�0�T�� x∈�2

�p̃nt �x�� ≤ �w0�∞�(3.7)

It is moreover easy to prove by standard arguments that p̃n is a solution
of the evolution equation

p̃nt �x� = Gνt ∗w0�x� +
∫ t
0
∇xGνt−s ∗ �p̃ns ·Kεn ∗ p̃ns ��x�ds�(3.8)

Let us now introduce for each n the coupling of processes �Zin� �Yin�
�Xi�1≤i≤n, where � �Xi� are independent copies of X defined as in (2.4) on a
certain probability space and Zin� �Yin are driven, for each i respectively, fol-
lowing the same Brownian motion as �Xi. We will now compare the two pro-
cesses �Yin and �Xi. So, we need to estimate w− p̃n. Using (1.8) and (3.8), we
obtain

p̃nt �x� −wt�x� =
∫ t
0

∫
�2

∇xGνt−s�x− y�(3.9)

× (
Kεn ∗ p̃ns �y�p̃ns �y� −K ∗ws�y�ws�y�

)
dyds�

We will prove the following result.

Theorem 3.4. Let us define the norm

���f��� = �f�1 + �f�∞�
The space of real functions f on �2 such that ���f��� < +∞ is obviously a
complete space. Then

sup
t≤T

���p̃nt −wt��� ≤
C1√
ν
εn���w0���2

√
T exp�C2���w0���T��(3.10)

where C1 and C2 are real constants.
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The proof begins with a lemma.

Lemma 3.5. For each t ≤ T, for each x ∈ �2,∣∣∣∣ ∫
�2

(
Kεn�x− y� −K�x− y�)P̃nt �y�dy

∣∣∣∣ ≤ 2εn�w0�∞�(3.11)

and then

�Kεn ∗ p̃nt −K ∗wt�∞ ≤ 2εn�w0�∞ + �K1 +K∞����p̃nt −wt����(3.12)

Proof. (i) Since Kεn and K coincide for �x� ≥ εn, we have

∫
�2

(
Kεn�x− y� −K�x− y�)p̃nt �y�dy

≤
∫
�x−y�≤εn

�Kεn�x− y� −K�x− y�� �p̃nt �y��dy

≤
∫
�x−y�≤εn

(�Kεn�x− y�� + �K�x− y��)�p̃nt �y��dy
≤ 2

∫
�x−y�≤εn

�K�x− y�� �p̃nt �y��dy

≤ 2�w0�∞
∫
�z�≤εn

�K�z��dz by (3.7)

≤ 2εn�w0�∞ by an easy computation.

We have used that, by definition, �Kεn�x− y�� ≤ �K�x− y��.
(ii) For x ∈ �2,∣∣Kεn ∗ p̃nt �x� −K ∗wt�x�

∣∣
≤ 2εn�w0�∞ +

∫
�2

�K�x− y�� ∣∣p̃nt �y� −wt�y�∣∣dy
≤ 2εn�w0�∞ +K∞�p̃nt −wt�1 +K1�p̃nt −wt�∞� ✷

Let us now prove Theorem 3.4.

Proof. We consider (3.9). Then

�p̃nt �x�−wt�x��

≤
∣∣∣∣∫ t0

∫
�2
∇xGνt−s�x−y�·

(
p̃ns �y�

(
Kεn ∗p̃ns �y�−K∗ws�y�

)

+K∗ws�y��p̃ns �y�−ws�y��
)
dyds

∣∣∣∣
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≤
∫ t
0

∫
�2
�∇xGνt−s�x−y��

(
�p̃ns �y���2εn�w0�∞+�K∞+K1����p̃ns −ws����

+K̂�w0����p̃ns −ws���
)
dyds�

by (3.12), (2.5) and (1.5)

≤ A√
ν

∫ t
0

1√
t−s

(�w0�∞�2εn�w0�∞+�K∞+K1����p̃ns −ws����

+K̂�w0����p̃ns −ws���
)
ds

≤ A√
ν

(
4εn�w0�2

∞
√
T+2�K∞+K1����w0���

∫ t
0

1√
t−s ���p̃

n
s −ws���ds

)
�

Consider now the L1-norm of p̃nt −wt and in a similar way,∫
�2

�p̃nt �x� −wt�x��dx

≤
∫ t
0

1√
t− s�p̃

n
s �1

(
2εn�w0�∞ + �K∞ +K1����p̃ns −ws����ds

+
∫ t
0

1√
t− s�K ∗ws�∞�p̃ns −ws�1 ds

≤ A√
ν

(
4εn���w0���2

√
T+ 2�K∞ +K1����w0���

∫ t
0

1√
t− s ���p̃

n
s −ws���ds

)
�

By associating the two previous results, we obtain

���p̃nt −wt��� ≤
A√
ν

(
8εn���w0���2

√
T+ 2���w0���

∫ t
0

1√
t− s ���p̃

n
s −ws���ds

)
�

We iterate twice this inequality and obtain finally by Gronwall’s lemma
that

sup
t≤T

���p̃nt −wt��� ≤
C1√
ν
εn���w0���2

√
T exp�C2���w0���T�� ✷

Adding now (3.12) and (3.10), we deduce the following result.

Corollary 3.6. For each t ≤ T,

�Kεn ∗ p̃nt −K ∗wt�∞ ≤ ATεn�(3.13)

where

AT = 2�w0�∞ + �K∞ +K1�
C1√
ν
εn���w0���2

√
T exp�C2���w0���T��

We are now able to obtain our main theorem.
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Theorem 3.7. Let us consider a sequence of limiting independent processes
solution on a certain probability space of the stochastic differential equation

�Xit = Zi0 +
√

2νBit +
∫ t
0
K ∗ p̃s� �Xis�ds�(3.14)

where �Bi�i∈� are independent Brownian motions on �2 and �Zi0�i∈� are �2-
valued iid random variables independent of �Bi�i∈� and with law P0�dx� =
��w0�x��/�w0�1�dx� w0 being a bounded integrable function on �2. The prob-
ability measure Ps is the common law of the �Xis, and p̃s the density of the
signed measure P̃s associated with Ps by �2�3�.

On the other hand, let us consider T > 0 and a sequence �εn�n∈� of real
numbers such that �with the notation of Section 3�1�,

lim
n

Mεn√
nLεn

exp��w0�1TLεn� = 0�

We consider on the same probability space the coupled n-particle system
�Zin�1≤i≤n defined by

Zint = Zi0 +
√

2νBit +
∫ t
0

1
n

n∑
j=1

h�Zj0�Kεn�Zins −Zjns �ds�(3.15)

Then, for each 1 ≤ i ≤ n,

lim
n→+∞E

(
sup
t≤T

�Zint − �Xit�
)
= 0(3.16)

[in the precise asymptotics given by �3�20�].
This implies the propagation of chaos and the convergence in law �uniformly

in time� of the weighted empirical measures µ̃ns = �1/n�∑n
i=1 h�Zi0�δZins to P̃s

associated with the law of �Xi, and P̃s has a density equal to the solution w of
the Navier–Stokes equation with initial data w0, as seen in Theorem 2�4.

Proof.

E

(
sup
t≤T

�Zint − �Xit�
)
≤ E

(
supt≤T �Zint − �Yi�nt �

)

+E
(

sup
t≤T

��Yi�nt − �Xit�
)

≤ Mεn√
nLεn

exp��w0�1TLεn� +E
(

sup
t≤T

��Yi�nt − �Xit�
)
�

(3.17)

But

��Yi�nt − �Xit� ≤
∫ t
0
�Kεn ∗ p̃ns ��Yi�ns � −Kεn ∗ p̃ns � �Xis��ds

+
∫ t
0
�Kεn ∗ p̃ns � �Xis� −K ∗w� �Xis��ds�
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The second term on the right-hand side is controlled due to Corollary 3.6. It
remains to study the first term on the right-hand side, which we do following
[7], Lemma 3.1 and Theorem 3.1. It is proved that, for x and z in �2,∣∣Kεn ∗ p̃ns �x� −Kεn ∗ p̃ns �z�∣∣ ≤ C0��w0�1 + �w0�∞�φ�x� z��
where

φ�x� z� = φ̃��x− z���
and φ̃�r� = r�1 − ln r� if 0 < r < 1 and φ̃�r� = 1 if r ≥ 1. Let us remark that
the function φ̃ is nondecreasing and concave.

Then, by noting C = C0��w0�1 + �w0�∞�, one deduces that

��Yi�nt − �Xit� ≤ ATεn +C
∫ t
0
φ��Yi�ns � �Xis�ds�

Then

E

(
sup
u≤t

��Yi�nu − �Xiu�
)

≤ ATεn +C
∫ t
0
E

(
sup
u≤s
φ
(�Yi�nu � �Xiu)

)
ds

≤ ATεn +C
∫ t
0
E

(
sup
u≤s
φ
(�Yi�nu � �Xiu)

)
ds

≤ ATεn +C
∫ t
0
E

(
φ̃

(
sup
u≤s

��Yi�nu − �Xiu�
))
ds since φ̃ is nondecreasing

≤ ATεn +C
∫ t
0
φ̃

(
E

(
sup
u≤s

��Yi�nu � �Xiu�
))
ds by concavity of φ̃.

Let us denote by H�t� = E�supu≤t ��Yi�nu − �Xiu��. Then, by the previous compu-
tations,

H�t� ≤ ATεn +C
∫ t
0
φ̃�H�s��ds�(3.18)

As in [7], we introduce the solution h�x0� t� of the equation

z′�t� = Cφ̃(z�t�)� z�0� = x0 > 0�

Then, if x0 < 1 and if t0 = inf�t� h�x0� t� > 1�,

h�x0� t� = xexp�−Ct�
0 exp

(
1 − e−Ct) if h�x0� t� < 1� t < t0

= 1 +C�t− t0� if h�x0� t� ≥ 1� t ≥ t0
and if x0 ≥ 1� h�x0� t� = x0 +Ct. Hence, by (3.18), we have

H�t� ≤ h�ATεn� t��
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But since εn tends to 0 as n tends to ∞, for n sufficiently large, we deduce
that

H�t� ≤ �ATεn�exp�−Ct� exp�1 − e−Ct�
and, finally,

E

(
sup
u≤T

��Yi�nu − �Xiu�
)
≤ �ATεn�exp�−CT� exp�1 − e−CT�(3.19)

for n sufficiently large.
Now, by (3.17), and (3.19), we finally deduce that

E

(
sup
t≤T

�Zint − �Xit�
)

≤ Mεn√
nLεn

exp��w0�1TLεn� + �ATεn�exp�−CT� exp�1 − e−CT��
(3.20)

where C = C0��w0�1 + �w0�∞� and then tends to 0 when n tends to ∞. ✷
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