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ON THE MAXIMUM WORKLOAD OF A QUEUE FED BY
FRACTIONAL BROWNIAN MOTION

BY ASsSAF J. ZEEVI! AND PETER W. GLYNN?Z

Stanford University

Consider a queue with a stochastic fluid input process modeled as
fractional Brownian motion (fBM). When the queue is stable, we prove that
the maximum of the workload process observed over an interval of length
t grows like y(log t)Y/(2=2H) where H > 1/2 is the self-similarity index
(also known as the Hurst parameter) that characterizes the fBM and can
be explicitly computed. Consequently, we also have that the typical time
required to reach a level b grows like exp{bZ(l_H )}. We also discuss the
implication of these results for statistical estimation of the tail probabilities
associated with the steady-state workload distribution.

1. Introduction. Triggered by measurements and statistical analysis of
traffic in high-speed networks, recent research has focused on stochastic mod-
els of network traffic that have the properties of long-range dependence and
self-similarity; see, for example, Leland, Taqqu, Willinger and Willson (1993),
Beran, Sherman, Taqqu and Willinger (1995) and Erramilli, Narayan and
Willinger (1997) for a discussion of the statistical evidence that favors such
models. Perhaps the most theoretically important traffic model that exhibits
these properties is fractional Brownian motion (fBM). In fact, just as Brownian
motion is supported as a model of short-range dependency on the basis of
Donsker’s theorem and its generalizations, fBM can be viewed as a natural
limiting approximation to a broad class of more physically plausible models
that describe how traffic in a network is generated from its individual sources;
see Heath, Resnick and Samorodnitsky (1997, 1998), Konstantopoulos and Lin
(1996) and Whitt (1998). Because of both theoretical and statistical evidence
that supports fBM as a possible traffic model, there is significant interest in
trying to reach an understanding of the implications of such long-range depen-
dent traffic for the performance of queues (because queueing effects occur at
the buffers to the switches in a network).

Because fBM is highly non-Markovian (i.e., there is no finite-dimensional
supplementary variable representation of fBM that makes it Markov), it is a
challenging process to analyze as an input to a queue. At this point in time, we
are aware of only two sets of results that describe the performance of a queue
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fed by fBM. The first such result is an asymptotic, owing to Norros (1994) and
Duffield and O’Connell (1995), for the tail probabilities of the steady-state
workload in such a queue. For a description of the result, see Section 2 of this
paper. These results were refined recently by Massoulie and Simonian (1999)
and Hisler and Piterbarg (1999) to give the exact tail asymptotic [see also
Narayan (1998)]. The second set of results, owing to Krishnan (1996), takes
advantage of the self-similarity of fBM to obtain a family of parameter scaling
relationships that hold for the steady-state distribution of a queue fed by fBM.

Our objective in this paper is to establish several additional results that
serve to enhance our understanding of queues fed by fBM. Our main focus
here is on studying the maximum of the workload process over an interval of
length ¢. The analysis of such maximum r.v.’s has a long history within the
queueing literature; see, for example, Cohen (1968) and Iglehart (1972), and
the recent survey by Asmussen (1998). The principal results in this paper are
as follows:

1. The derivation of the asymptotic behavior of the maximum of the work-
load process over an interval of length ¢ as ¢ — oo; see Theorem 1 and
Proposition 2.

2. The development of an asymptotic approximation for the time required by
the workload process to first hit level b when b — o0; see Theorem 2.

3. Some remarks on estimating buffer loss probabilities from observed traffic
and buffer dynamics when the input is fBM; see Proposition 3 (the conver-
gence rate of the associated estimators is very slow, however).

In Section 2 of this paper, we describe the precise model considered here
and discuss the main results. Section 3 contains proofs.

2. Main results. A real-valued process By = (Bg(t): ¢ > 0) is said to be
a fBM with self-similarity index H € [1/2, 1) if By (0) = 0, By has continuous
sample paths and By is a zero-mean stationary increments Gaussian process
with

Cov(By(t), By(s)) = 1/2|t2H +s2H g — s|2H}

for s,# > 0. The case H = 1/2 corresponds to standard Brownian motion.
When H > 1/2, the correlation between two unit-length intervals separated
by time ¢ decays as -2, so that the autocorrelation sequence for (By(k) —
By(k —1):k > 1) is nonsummable. Thus, By describes a long-range depen-
dent process. Additional properties and constructions of fBM are described in
Samorodnitsky and Taqqu [(1994), Section 7.2], and Mandelbrot and Van Ness
(1968).

Let I'(¢) be the cumulative amount of work input to the system over [0, £].
We assume that I'(¢) = At + 0By (t) for t > 0 and o, A > 0, so that the input
to the system is fBM. Given that I' = (I'(¢):¢ > 0) has continuous sample
paths, we view I' as a fluid inflow to the queue. If the service mechanism
deterministically serves work at rate u > 0, then the workload present in the
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system at time ¢ is given by
1) W(t) = I(¢) — ¢ — min[I'(s) — ps];
<s<

see Harrison (1985) for additional details on this representation of the work-
load. Put X(¢) = I'(¢) — nt. Because X = (X(¢):t > 0) evolves freely of
any boundary behavior, we call X the free process. On the other hand, W =
(W(¢):¢t = 0) is nonnegative. The mapping that carries the free process X
into the nonnegative process W is called the regulator mapping. We therefore
call the workload process W that appears here a regulated fBM process. We
prefer the term “regulator mapping” over “reflection mapping” to differentiate
this map from the Skorohod mapping that appears in the theory of reflected
diffusions; see Lions and Sznitman (1984).
Let p := A/p and suppose that the traffic intensity p < 1. Then

(2) W(t) = W(oc0)
as t — oo, where W(oco) = max{X(s):s > 0}. The tail asymptotics of the
steady-state workload are known.

PROPOSITION 1. Suppose p < 1. Then:

(1) P(W(oc0) > b) = P(X(t*) > b), where t* := Hb/((1 — H)n(1 — p));

(i) b2H-21log P(W(o0) > b) — —6* as b — oo, where

_ (e -p)*? 1

0" 202 H?H(1— H)20-1)

The lower bound (i) is owing to Norros (1994), whereas the asymptotic
(i1) can be found in Duffield and O’Connell (1995). Related results appear
in Chang, Yao and Zajic (1996) and O’Connell and Procissi (1999). Because
W(o0) is expressed easily in terms of X, these types of tail asymptotics can
be attacked directly in terms of the free process alone. It is also known [see
Konstantopoulos, Zazanis and De Veciana (1996)] that if p < 1, one can con-
struct a probability space supporting both the process X and a stationary
process W* = (W*(¢):¢ > 0) such that:

1) W=(t) =4 W(c0) for ¢ > 0, where Z denotes equality in distribution,
(i) W*(¢) =T'(¢) — ut + {W*(0) v L*(¢)} for ¢t > 0,

where L*(¢) = —min{I'(s) — us: s € [0, £]} is the nondecreasing process “regu-
lating” the fBM. Thus, W* is a stationary version of the workload process for
our system, in which the input process is fBM.

Our main focus in this paper is to study the two maximum r.v’s:

M(t) = max W(s),

M*(t) = max W*(s).
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It is natural to expect that these two r.v’s behave in an asymptotically identical
fashion for large ¢. Furthermore, it is known, in substantial generality, that
the asymptotic behavior of M*(¢) is closely related to the tail behavior of
W*(¢t). In particular, under suitable mixing conditions on W*, M*(¢) should
behave asymptotically like the maximum of |at| i.i.d. copies of W(o0), for
some a € (0, 1); see Leadbetter, Lindgren and Rootzén (1983) for such results.
In principle, this then yields the asymptotic behavior of M*(¢) (because the
maximum behavior for i.i.d. sequences is well known).

The difficulty with this approach is the verification of the requisite mixing
properties in our present setting. Such a methodology is particularly effective
when W* is regenerative; see Asmussen (1998) for many examples of queueing-
related maximum processes that can be readily studied by taking advantage of
the regenerative cycle structure of W*. Such regenerations are easily identified
for many commonly used short-range dependent input processes (e.g., Markov-
modulated arrivals). However, because of the non-Markov nature of fBM, it
is unclear that any regenerative structure is present in regulated fBM. In
addition, the more general mixing conditions that permit us to view M*(¢) as
the maximum of i.i.d. r.v’s seem difficult to verify directly, given that W* is
non-Markov and has long-range dependent input. However, our main result
(based on a different style of argument) proves that the asymptotics suggested
in the preceding text are indeed correct in a suitable asymptotic sense.

THEOREM 1. If p <1, then

M (t) ( 1 >1/<2—2H>

W = 0" as t — oo,
M(t) 1\ V/(2-2H) t
W = @ as t — oo.

In fact, the foregoing convergence is actually in L, for all p € [1, 00).

The cases of heavy traffic and unstable queues are the subject of the fol-
lowing proposition.

PROPOSITION 2.
() If p > 1, then
tH(M(t) — u(p— 1)t) = o (0,1) ast— oo.
(i) If p = 1, then
tHEM(t)= o¢ ast— oo,

where ¢ :=max,.; maxy.,..[Bg(r) — Bg(v)].
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Let T'(b) := inf{¢t > 0: W(¢) > b} and note that {T'(b) < t} = {M(¢) > b}.
Because of this relationship between T'(b) and M(¢), Theorem 1 and Propo-
sition 2 together yield asymptotic approximations for 7'(d) that are valid for
large b.

THEOREM 2.

1) If p < 1, then

1;))5(1#(}? = 60" asb— co.
(i) If p =1, then
Zl(/l;{) = (c&)VH as b — .
(i) If p > 1, then
b—H(T(b) - L) = (;yﬁla - A#(0,1) as b — oc.
m(p—1) m(p—1)

If W were regenerative, (i) could be obtained by appealing, for example, to
the regenerative approach described in Glasserman and Kou (1995). However,
as discussed earlier, it is unclear how to implement this idea in the current
fBM setting.

We conclude this section with some discussion of the implications of the
results for estimation of loss probabilities in finite buffer queues based on
real-time measurement of traffic. Such loss-probability estimators could poten-
tially be useful in admission control for high-speed networks. To connect the
infinite capacity model considered so far in this paper to a finite buffered
system, we view the exceedence probability P(W(occ) > b) as a surrogate for
the loss probability in a buffer of size b fed by fBM. Recall that if & is large,
Proposition 1 asserts that P(W(co) > b) is essentially determined by 6* and
H. Thus, P(W(oc0) > b) can be roughly (i.e., in a logarithmic scale) estimated
once estimators for 0* and H are determined. In the short-range dependent
context, several authors have proposed estimating 6* from observed traffic
using the maximum workload r.v. M(t); see Berger and Whitt (1995) and Hsu
and Walrand (1996). Theorem 1 states that if H is known, then 6* can also be
successfully estimated from long-range dependent traffic using M(¢).

Of course, in general, H itself would also need to be estimated from incom-
ing traffic. Assume that the process I' is observable, so that we can form the
r.v. H(t) from the traffic observed over [0, ¢], where

H(t) = (log(l)risag[X(s) — s@])/log t.
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PROPOSITION 3.

(i) For 0 <t <1, let B%(t) = By(t) — tBy(1) be the fractional Brownian
bridge process. Then

(log t)(H(¢) - H) = ¢

as t — oo, where { :=logmax{oB%(s):0 <s < 1}.
({1) If p < 1, then

(M(t))2(lfH(t)) 1
log ¢ o

as t — o0.

Proposition 3 asserts that the parameters H and 6* can be consistently
estimated, using the maximum workload r.v. M(¢), when the input process is
fractional Brownian motion.

REMARK 1. Another natural estimator to consider in this context is the so-
called moving average estimator, which is constructed as follows. Fix a(¢) and
m(¢) := [¢/a(t)]|. Chop up the observation window [0, ¢] into m(¢) subwindows
of length a(¢) each, and a remainder that is a fraction of a(¢) in length. Let
M;(t) :=sup{W(s):s € [( — D)a(t), ia(t)]} for i =1,2,..., m(¢t) and let H(t)
be as in Proposition 3. Then the moving average estimator is defined to be

_ 1 ’"X(t:) (Mi(t))2(17H(t))
m(t) ;5 (log a(?))
Using the results of Theorem 1 and Proposition 3, we can establish that y(¢) =

(6.

3. Proofs. For brevity, set

y(¢)

1
21— H)

Otherwise, notation and definition follow Section 2.

Bi=

3.1. Proofof Theorem 1. The proof of the theorem involves establishing the
usual upper and lower bounds; that is, our goal is to prove that for arbitrary
positive constant & > 0, we have

M*(t) 1-8\"\ 00
® P((log 0P 2( o ) )—’ b

M*(t) 148\ o0
@ H3’<<logt>ﬁ Z( o ) )—’ 0

from which the convergence in probability follows. We then argue that essen-
tially the same proof yields convergence for M(¢) as well. Finally, we prove
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the uniform integrability of the family {M*(¢)/(log t)P},.,, which establishes
the L? convergence.

PROOF OF THE LOWER BOUND (3). Again, we break up the proofinto several
steps.

Step 1. Fix A € (0, t), so that

W*(¢)> X(¢t) — inf X(s)
(5) O<s<t
> X(t)— X(t - A).

This gives
M*(t) = max W*(s)
<s<t

>  max W*(kA)
k=1,2,...,[¢/A]

= k:lg??ﬁt/AJ[X(kA) — X((k—1)A)]

= max YgeA)
1<k<[t/A]

and note that
Y™ = X(kA) — X((E - 1)A)
Z oBy(A) — u(1 - p)A
oA By(1) - u(1 - p)A

1N

using the properties of stationary increments and self-similarity of fBM. Set

7 _ YV 4 (- p)A
e AHg

with o2 = Var B;. Then, because fBM is a Gaussian process, we have that the

sequence {Z l}lLtz/lA lisa stationary sequence of standardized Gaussian r.v’s, the
so-called fractional Gaussian noise. In addition,

E[(YY + m(1 — p)A)YSY, + 11— p)A)]
o2A\2H

pz(l) =

= o Flo B B((1+ O8) ~ o B ()]

- %[(Z + D2 — (20 + (e~ 1],

where the last step follows from the covariance structure of the fractional
Gaussian noise sequence [cf. Proposition 7.2.9 in Samorodnitsky and
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Taqqu (1994)]. Thus
pz(€) ~ H2H — 1)¢*12

as £ — oo.

Step 2. Note that {Z i}LLt:/f lis a stationary sequence of standard Gaussian
r.v’s, with p;(£)log ¢ — 0. Thus, we can appeal to Theorem 4.3.3 in Leadbetter
et al. (1983), which states that for a sequence of real numbers u,, and a
standardized Gaussian sequence, say {Z;}/,, with the preceding properties,
we have

m
P(\/ Zi Z um) — 1+e_7
i=1

if and only if
mP(Z >u,)—> 71

as m — oo, with 7 € [0, co]. To apply the theorem, we let A = A(¢) depend on
t and choose A(t) carefully. Fix 6 € (0, 1) and set

_ B
<19*810gt) ,
a(t) + w(1 — p)A(t
w(ty e °O :A(H(t)m ()

7(t) = m(@)P(Z; > u(?))
with m(¢) := [¢/A(¢)]. Noting that

a(t):

P<,:§) YW > a(t)) - p(j{z(/t: Z,> u(t)),

we are left with the task of showing that 7(¢) — oo, which will establish the
lower bound. The crucial step is to choose A(¢) carefully, so that for «(¢) as
before, 7(¢) — co. The only feasible choice turns out to be

2(1 — €)o?H? 1/(2—2H)
)

for any € € (0, 8]. Plugging this value into u(¢), straightforward algebra
verifies that indeed 7(¢f) — oo as required. In verifying this, we use the
standard bound on the Gaussian tail probability, namely, P(Z; > u(?)) >
c(u(t))~! exp{—u?(t)/2}. Unfolding the arguments, we have that

(e = (') ) 1

A(t) = <

as required.
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PrOOF OF THE UPPER BOUND (4). The proof will be broken up into several
steps.

Step 1. Consider the following discretization of the continuous time prob-
lem. Recall that M*(¢) = sup{W*(s):s € [0, ¢]}. Set

Y, = sup W¥*(s).

seli—1, 1)

Then, trivially, M*(¢) < \/l[ﬂ1 Y;. Observe that by stationarity of W* it follows
that (Y;) form a sequence of identically distributed random variables. Fix
8 > 0. Then, using the union bound, we have

P(M*(t) > (%)B(log t)B) < MP<Y1 > (%)B(log t)B).

Step 2. The goal here is to estimate the tail behavior of Y;. Start by
observing that

Yy < W(0) + max (X(s) - 0127123)((7))

(6)
< W*(0) + max X(s) - min X(s).

<s

Thus,
1+8\"
Pl =P Yl > 7 (log t)B

P(W'(0) + max X(5) - in X(5) > (%)ﬁaog 0*)

0<s<1

p(wo = (1522) qog o)

Q:

IA

A

+ lP(max X(s) > %(%)B(log t)B)

0<s<1

Qs
+ IP(— in X(s) > 1(ﬁ)ﬁ(log t)B>,
0<s<1 2\ o0*
Q@3
where we used the fact that 8 > 1 implies (1+ 6) > (1 + §/2)F + (8/2)".

Step 3. Our goal is to prove that []1Q; — 0 for i = 1, 2, 3. First consider
@, and note

max X(s) = gnaxl(aBH(s) —w(l—p)s) < max oBy(s).

0<s<1 <s<
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To clinch the result, we need an estimate on the tail behavior of the maximum
of standard fBM on a fixed interval. We appeal to Theorem 5.5 of Adler (1990),
applied as in his Corollary 5.6, which, when specialized to the case of fBM,
yields

(7) [P’(max By(s) > x) ~P(Z > x),

0<s<1

where Z ~ .#7(0, 1). This implies that
[t1Q2 — 0,

because, for B > 1, standard estimates on the Gaussian tail give [¢t|P(Z >
c(log t)?) — 0, and @, ~ P(Z > c(log t)?) using (7), where ¢ > 0 is a generic
constant that premultiplies the logarithmic term. We next consider @5. The
key is to note that

~ min X(s) Z max (u(1 - p)s + 7By (s))

0<s<1 0<s

= (1= p)+omax By(s)

because (Bg(s):s € [0, 1]) Z (—Bg(s):s € [0, 1]). Therefore, upper bounding
Q5 by the sum of the probabilities involving the maximum and the minimum,
respectively, the previously established result for @, can be applied [with
different constants premultiplying (log ¢)#] to give that [t]@5 — 0. It remains
to show that [t]Q; — O or, equivalently, a(¢) := log[¢] 4+ log @ — —oc. The
result in Proposition 1 implies that

log P[W*(O) > (1 + 8/2)/0*)B(logt)ﬁ}

li =—(1 .
tlgi log ¢ (14+6/2)

Consequently we have that
a(t) = log(t) +1log @,
log P|W*(0) > ((1+6/2)/6")" (log t)ﬁ})

= log(t) (1 + Tog ?

—> —OQ.

Thus, [t]@; — 0. Going back to Step 1 we see that [¢]P(Y; > x(¢)) — 0. Thus

(i =) -0

which establishes the upper bound.

PROOF SKETCH FOR M(¢). Note that for the process M(¢), W(0) = 0
because the free process X (¢) starts at 0. The proof of the lower bound then
holds, with equality replacing the first inequality in (5). The upper bound
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on the tail probability of Y, in (6) holds with W(¢) replacing W*(¢), and the
bounds on P; still hold because W*(0) > 0 a.s. The rest of the arguments
deal with estimates on the tails of the free process and carry through without
change.

PROOF OF L, CONVERGENCE. Fix p € [1,00). It suffices to show that the
sequence (M*(t)/(log t)P)P is uniformly integrable. A sufficient condition for
this is

(8) sup [

t>2

o] =

where the estimator can be arbitrarily defined as O for ¢ < 2. To this extent,
define

Klzinf{y>0:suchthat log P(W (0)>x)<_49 }

PV =-5, VEzy

and note that K; < oo follows from Proposition 1, that is,

log P{W*(0) > x} - 0*
x1/B -2

lim sup
X—>00

Let

K, = inf[x > O:P((I)EinBH(S) > y) <2P(Z = y), Vy > x},

where Z ~ .#7(0, 1). The finiteness of K, follows from Step 3 of the proof of
the upper bound (3.4). Then, setting K = max{K, K,, 4/6*}, we have

[E[ M*(1)

p+1 0o
(10gt)ﬁj| :/0 (p+1)yPP(M*(t)> y(logt)?)dy

K
- [O (p+1)y?P(M*(t)> y(logt)?)dy
©) + [T (p+ 1y PO (0> y(0g 1)) dy

< Kptl —i—/:(p—i— 1)y?[¢t]P(W*(0)> y(logt)? /2)dy

I,

+/:(p+ 1)y? LtJP(max X(S)—(glsiéllX(s)> y(logt)B/Z)dy,

0<s<1

R,
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where the inequality follows from Step 1 of the proof of the upper bound (4).
Now,

1= [ (p+ Dy? LLIPW(0) > y(log 1) /2)dy

e (logl#])* (| logP(W"(0) > (y(og 1)")/2)
A e e e L

2
[T+ vy esp|ostent/2)(1- 55 ) Jay

2
(b) oo .
< /K (p + 1)yPel=0"/®xoelt)? gy,

<<§>‘”“ (p+1)!
~ o) (log[¢))p+DP”

where (a) and (b) follow from the definition of K. Using the bound on @3 in
Step 4 of the proof of the upper bound and by definition of K, it is clear that
there exists a C < oo such that R, < C/(log t)(?*Y# [in fact, it is clear that
R, = o(I,)]. Combining (9), the upper bound on I, from the preceding equation
and the bound on R,, we have proved (8). Thus, the sequence (M*(¢)/(log ¢)#)P
is uniformly integrable. Putting all four parts of the proof together completes
the proof of Theorem 1. O

3.2. Proof of Theorem 2 and Propositions 2 and 3.

PROOF OF PROPOSITION 2. For p =1,
M(t) =4 max gnax[(rBH(s) — oBg(u)]
<s<tO<u=<s

= o max max|[Bg(rt) — Bg(vt)]

0<r<10<v<r

H

1N

ot max max[Bg(r) — Bg(v)]

0<r<10<v<r
= ot

For p > 1, consider the sequence of unit increments of fBM (sometimes referred
to as fractional Gaussian noise), which is a stationary Gaussian sequence.
From the properties of its spectral density [cf. Propositions 7.2.9 and 7.2.10
in Samorodnitsky and Taqqu (1994)], we easily see that its spectral measure
does not have point masses, which in turn, for stationary Gaussian processes,
is a necessary and sufficient condition for ergodicity. Details of this argument
can be found, for example, in Rozanov [(1967), page 163]. Consequently, the
pointwise ergodic theorem gives

By(t) R

0 a.s.,
t
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so X(t) = p(p — 1)t + 0Bg(t) > +oo a.s. Set ¥ := inf{X(¢):¢ > 0}. Hence,
there exists Ty < oo s.t. for ¢ > T,

W(t) = X(t) -,
sofor ¢t > T,

max X(s) — ¥ < max W(s) < max W(s)+ max X(s)— V.
O<s<t 0<s<T, 0<s<t

O<s<t
whereas u(p—1) > 0,
max X(s) — X(¢) = max[oBy(s) + u(p — 1)s — 0By(t) — p(p — 1)¢]

[N

max[oBy(t) — oBy(s) — w(p — 1)(t = s)]

0<s<t

N

max[oBy(s) — pu(p — 1)s]
= W(c0)
with W(oo) < oo almost surely. So,
H(M(8) - X(1) = 0,
which concludes the proof. O

ProOF OF THEOREM 2. Claim (i) follows from the relationship {M*(¢) >
b} = {T(b) < t} and taking a sequence

6*
. 1/B
(10) ty = exp{b 1+6}
so that ¢, — oo as b 1 0o. Then, by Theorem 1,
146 B
(11) P(M*(t) > ( ; log 1) ) 50

and the convergence holds also along the subsequence ¢,. In particular, sub-
stituting (10) into (11), we have

Py <1-5) =0

6*bl/B ~

with &' := §/(1 + 8). The upper bound follows similarly.
(i1) Follows from
PO VET() < t) = P(M(tbYH) > b)
= P(dYH)y T M (b ™) > t7H)
— P(oé =t
= P((c&) " < ).
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(ii1) The argument follows along the lines of Theorem 6 of Glynn and Whitt
(1988). Fix x € R. Then

P (1o m) =)

= P(T(b) < ﬁ + bu>

= P(M(ty) = b); ty, := b/(u(p — 1)) + xb™

= P(t, 7 (M(ty) — w(p — D)ty) = (b — plp — 1)ty)t; ™)
= P(Z =z —x(u(p - 1)) (as b — o0)
=P((u(p— 1) M7 < x),

where Z ~ 0.47(0, 1) by Theorem 1. Whereas x is arbitrary, the convergence
holds for all continuity points of the limiting (Gaussian) cdf, and the proof is
complete. O

PROOF OF PROPOSITION 3. Claim (i) follows from

Xit))

M(t) := sup (X(s) —s

0<s<t

sup <UBH(st) _ st@)

0<s<1

otfl sup (By(s) —sBy(1)).

0<s<1

1N

Taking logs from both sides and rearranging gives the result.
(i1) The trick is to reduce the problem to that studied in Theorem 1, that
is, replace H(t) with H. Write
(M()PA=HO)  (M(£)X0~1) (M(£))20-H)
log ¢ log ¢ (M(¢))*(-H)

_ M(z) 2(1-H) )
B (W) (M(2))

1I,

and observe that

by Theorem 1 and the continuous mapping theorem. As for II,, observe that

log IT, = 2(H — H(t))log M(2).
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Now, by part (i) we have

1
H - H(t)| = —
1 - HOl=0,(1 ).
and by taking logs in Theorem 1, we have also
log M(2) N 1
loglogt "~ 2(1-H)

Thus, an application of the continuous mapping theorem gives
log II, = 0,

which concludes the proof. O
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