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APPROXIMATION OF AMERICAN PUT PRICES
BY EUROPEAN PRICES VIA AN EMBEDDING METHOD

BY B. JOURDAIN AND C. MARTINI

ENPC-CERMICS and INRIA

In mathematical finance, the price of the so-called “American Put option”
is given by the value function of the optimal-stopping problem with the option
payoff ψ : x → (K − x)+ as a reward function. Even in the Black–Scholes
model, no closed-formula is known and numerous numerical approximation
methods have been specifically designed for this problem.

In this paper, as an application of the theoretical result of B. Jourdain and
C. Martini [Ann. Inst. Henri Poincaré Anal. Nonlinear 18 (2001) 1–17], we
explore a new approximation scheme: we look for payoffs as close as possible
to ψ , the American price of which is given by the European price of another
claim. We exhibit a family of payoffs ϕ̂h indexed by a measure h, which are
continuous, match with (K−x)+ outside of the range ]K∗,K[ (where K∗ is
the perpetual Put strike), are analytic inside with the right derivative (−1) at
both ends. Moreover a numerical procedure to select the best h in some sense
yields nice results.

1. Introduction. Consider the classical Black–Scholes model

dXxt = ρXxt dt + σXxt dBt, Xx0 = x > 0, ρ ∈ R,(1.1)

where B is a standard Brownian motion, ρ the instantaneous interest rate and σ
the volatility of X and denote by

Af (x)= σ 2x2

2
f ′′(x)+ ρxf ′(x)− ρf (x)

the Black–Scholes infinitesimal generator. Given a continuous function ψ : R
∗+ →

R+ satisfying some growth assumptions, the price of the so-called American
option with payoff ψ , time to maturity t > 0 and spot x is given by the expression

vam
ψ (t, x)= sup

τ∈T (0,t)
E[e−ρτψ(Xxτ )](1.2)

where τ runs across the set of stopping times of the Brownian filtration such
that τ ≤ t almost surely. For x > 0, the function t → vam

ψ (t, x) is nondecreasing.
Moreover, it is greater than ψ(x) and typically the space ]0,∞[×R

∗+ splits into
two regions, the so-called Exercise region where by definition vam

ψ = ψ and its
complement the Continuation region where vam

ψ > ψ .
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In this paper, we are interested in the price vam
Put(t, x) of the American Put option

given by ψ(x) = (K − x)+, where K is some positive constant (the strike of the
option). In case ρ ≤ 0, it is obvious by a convexity argument that the optimal
stopping time is τ = t and vam

Put(t, x) is equal to the price of the European Put
option. From now on, we suppose that ρ > 0. Even if there is no closed-form
expression for vam

Put(t, x), its limit as t → +∞, the price of the so-called perpetual
Put option, can be computed explicitly as

vam
Put(∞, x)= (K −K∗)

(
x

K∗
)−α

1{x≥K∗} + (K − x)1{x<K∗},

α = 2ρ

σ 2
and K∗ = αK

1 + α .
(1.3)

K∗ is called the perpetual strike. Moreover there is a continuous nonincreasing
function t̃ : ]0,+∞[→ [0,+∞] with t̃ (x) = +∞ if x ≤ K∗ and t̃ (x) = 0 if
x ≥ K , such that the Exercise region of the American Put option is given by
{(t, x) : 0< t ≤ t̃ (x)}. In the (t, x) plane the situation is sketched in Figure 1. The
reader may consult [8] for a nice exposition of the properties of he free boundary t̃ ,
where it is also shown to solve a one-dimensional integral equation.

The purpose of the paper is to construct an approximation of vam
Put(t, x)

thanks to the following embedding result obtained in a previous work [5]: let
ϕ: R

∗+ → R+ be a continuous function such that supx>0 ϕ(x)/(x + xα) < +∞
and vϕ(t, x) = E[e−ρtϕ(Xxt )] denote the price of the European option with
payoff ϕ. If the function x → ϕ̂(x)= inft≥0 vϕ(t, x) is continuous and if there is a
continuous function t̂: ]0,+∞[→ [0,+∞] such that ∀x > 0, ϕ̂(x)= vϕ( t̂(x), x)

FIG. 1.
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[convention: vϕ(∞, x) = lim inft→+∞ vϕ(t, x)], then the price of the American
option with payoff ϕ̂ is embedded in the function vϕ(t, x) in the following
sense:

∀(t, x) ∈ [0,+∞[×]0,+∞[, vam
ϕ̂ (t, x)= vϕ

(
t ∨ t̂ (x), x).

As an easy consequence, the set {(t, x) : 0< t ≤ t̂ (x)} is included in the Exercise
region of the American option.

The main drawback of the above result is that we do not know, at the
moment, how to design a function ϕ such that ϕ̂ matches a given target payoff
of interest. Even in the special Put case, despite many attempts, we could not
find any European payoff ϕ with associated American payoff ϕ̂(x) = (K − x)+.
Nevertheless we rely on the above theoretical result to design closed-form prices
for a large class of payoffs very close to the Put payoff. This is done in three steps.

First, in Section 2 we design a family of European payoffs which verify very
crude necessary conditions for ϕ̂(x)= (K − x)+ to have any chance to hold. This
is the main step, it relies on the parameterization of ϕ by a measure h related
to Aϕ. Then we focus on the Continuation region. Among our family we find
necessary and sufficient conditions which grant that the equation inft≥0 vϕ(t, x)=
vϕ( t̂(x), x) defines a curve which displays the same qualitative features as the free
boundary of the American Put (Section 3).

Unfortunately, it is easy to see that for any function among our family ϕ̂(x) =
(K − K∗)(x/K∗)−α1{x≥K∗} below K∗, which is not satisfactory. The third step
is to prove that the price of the American option with modified payoff (K −
x)+1{x≤K∗} + ϕ̂(x)1{x>K∗}, denoted by ϕ̂h to emphasize the dependence on the
parameter h, and matching (K − x)+ both for x ≥ K and for x ≤ K∗ is still
embedded in vϕ(t, x): vam

ϕ̂h
(t, x)= (K−x)+1{x≤K∗}+vϕ(t∨ t̂ (x), x)1{x>K∗}. This

is done in Section 4.
Since we show that ϕ̂h cannot be equal to the Put payoff everywhere [indeed

ϕ̂ ′′
h(K

∗+) > 0], we believe that at this stage there is little to get from further
calculations. The last stage is to select among our family the point h∗ so that,
in some sense, ϕ̂h∗ is the closest payoff to (K − x)+. We choose the criterion

sup
x

∣∣ϕ̂h(x)− (K − x)+∣∣.
This is done in a numerical manner which is explained in detail in the previous
section (Section 5): choosing ϕ in a particular low-dimensional subclass, we
compute a discretized version of ϕ̂ and then minimize the above criterion. The
numerical results seem very good.

2. A first set of tentative payoffs ϕ. Let us now look for a class of initial
payoffs ϕ for which there is some hope that ϕ̂(x)= (K − x)+ holds, at least for x
between K∗ and K .
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Notice first that the European price of ϕ should match the American Put
price in the Continuation region. In particular it should increase from 0 to
(K−K∗)(x/K∗)−α as t goes from 0 to ∞ for x ≥K . This gives at once ϕ(x)= 0
for x ≥ K . Another condition is that the European price of ϕ decreases to ϕ̂(x),
for x between K∗ and K , as t goes from 0 to t̂ (x) (the tentative free boundary).
This should also hold for x below K∗ with t̂ (x)= ∞. Note that these conditions
are necessary only if we restrict ourselves to the simple case of a single curve
where inft≥0 vϕ(t, x) is attained which splits the (t, x) plane in two regions where
respectively ∂tvϕ ≤ 0 and ∂tvϕ ≥ 0. Thanks to the Black–Scholes PDE this gives
that Aϕ(x) (defined in any reasonable sense) should be non-positive between 0
and K . Now a natural way to proceed is to parameterize ϕ by Aϕ, or, in other
words, to solve the ODE

Aϕ =m.
The solutions of Aϕ = 0 are the functions x→ ax + bx−α for 2 reals (a, b). By a
straightforward integration this gives

ϕ(x)= ax + bx−α − 2

σ 2
x−α

∫ x

0
yα

∫ ∞
y

m(dr)

r2
(2.1)

or yet by Fubini’s theorem, since m should be supported in ]0,K] to ensure ϕ = 0
aboveK ,

ϕ(x)= ax + bx−α − 2

σ 2(α + 1)
x−α

∫ K

0
(r ∧ x)α+1m(dr)

r2 ,(2.2)

as soon as the measure m satisfies
∫ K

0 rα−1|m|(dr) <∞.
Now by the Lebesgue theorem, it is easy to see that a = limx→∞ (ϕ(x)/x)

which gives for us a = 0. Then ϕ(x)= 0 for x ≥K gives the condition

b= 2

σ 2(α + 1)

∫ K

0
rα−1m(dr).(2.3)

Observe next that since limx→∞ (ϕ(x)/x) = a = 0 and by Lebesgue’s theo-
rem limx→0+ (ϕ(x)/x−α) = b, according to Section A.2 in the Appendix,
limt→∞ vϕ(t, x)= ax + bx−α = bx−α . This gives the value of b: b= (K −K∗)/
K∗−α .

We have not yet used the fact thatm should be nonpositive on ]0,K[. Obviously
for (2.3) to hold, since b is positive, m should be of the form:

m(dr)= cδK(dr)− 1]0,K[(r)
σ 2(α + 1)K∗

2
h(dr),

where h is a positive measure on ]0,K[ [we wrote the indicator function for
clarity’s sake; also the factor (σ 2(α + 1)K∗)/2 before h will lead to easier
calculations later on] and c a strictly positive number.
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By the way, c is related to the left derivative of ϕ at K ; accordingly to (2.1)

(
ϕ(x)xα

)′ = − 2

σ 2
xα

∫ K

x

m(dr)

r2
,

whence by ϕ(K)= 0,

c= −σ 2ϕ′(K−)K2

2
.

As soon as ϕ has a few regularity properties on the left of K , since t̂ (x) goes to 0
as x goes to K from below, ϕ̂ ′(x) should go to ϕ′(K−). But ϕ̂ ′(x) should be −1,
so we get the value of c: c= σ 2K2/2.

The last point to check is that this is compatible with (2.3). This rewrites now:

K∗
∫ K

0
rα−1h(dr)= K2

(α+ 1)
Kα−1 − (K −K∗)K∗α =K∗ Kα −K∗α

α
.

In particular this is a positive quantity.
So far we have reached the following:

LEMMA 1. Let ϕ(x) be a continuous payoff satisfying Aϕ =m where m is a
measure on ]0,+∞[ such that

∫ +∞
0 rα−1|m|(dr) <+∞.

Then the four conditions

(i) ϕ(x)= 0 for x ≥K ,
(ii) for every x ≥K , vϕ(t, x)→ (K −K∗)(x/K∗)−α as t → ∞,

(iii) in a weak sense Aϕ ≤ 0 below K ,
(iv) ϕ′(K−)= −1,

hold if and only if, m(dr)= 1
2σ

2K2δK(dr)− 1
2σ

2(α + 1)K∗ h(dr), where h is a

positive measure on ]0,K[ such that
∫K

0 rα−1h(dr)= (Kα −K∗α)/α and

ϕ(x)= (K −K∗)
(
x

K∗
)−α

− x−α (K ∧ x)α+1

α+ 1
(2.4)

+K∗
∫ K

0
x−α (r ∧ x)α+1

r2
h(dr).

An additional calculation (cf. Section A.1 in the Appendix) gives also:

LEMMA 2. The function ϕ in (2.4) is nonnegative.

2.1. Computing the corresponding price. From now on we suppose that ϕ is
given by (2.4). Let

er(x)= x−α(r ∧ x)α+1 = rα+1x−α1{x>r} + x1{x≤r}.
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Then, after (2.4), since the function x �→ x−α is invariant, also using K/K∗ =
1 + 1/α:

vϕ(t, x)

K∗ = (x/K∗)−α

α
− 1

αK
veK (t, x)+

∫ K

0
ver (t, x)

h(dr)

r2
,

where

ver (t, x)= e−ρtE
[
er

(
x exp

((
ρ − σ 2

2

)
t + σBt

))]
,

which gives, after straightforward calculations (cf. Section A.3 in the Appendix).

LEMMA 3. One has

ver (t, x)= rα+1x−αN
(
−

(
ln(r/x)+ ((α + 1)/2)σ 2t√

σ 2t

))

+ xN
(

ln(r/x)− ((α + 1)/2)σ 2t√
σ 2t

)
,

where N(z) = ∫ z
−∞ e−y

2/2/
√

2π dy denotes the cumulative distribution function
of the Normal law.

Setting a = ln(K∗), b = ln(K), y = ln(x), u = ln(r), also λ = 1/(σ 2t) and
denoting the image of the measure h(dr) by the function r → ln(r) by dh(eu), we
thus get

e−avϕ(λ, y)= eα(a−y)

α
− eα(b−y)

α
N

(
−(b− y)√λ−

(
α + 1

2

)
1√
λ

)

− e(y−b)

α
N

(
(b− y)√λ−

(
α + 1

2

)
1√
λ

)

+ e−αy
∫ b

−∞
eαu
dh(eu)

eu
N

(
−(u− y)√λ−

(
α+ 1

2

)
1√
λ

)

+ ey
∫ b

−∞
e−u dh(e

u)

eu
N

(
(u− y)√λ−

(
α + 1

2

)
1√
λ

)
.

In terms of the measure h̃(du)= αe(α−1)(u−b)/2(dh(eu)/eu, we get:

LEMMA 4. Let a = ln(K∗), b = ln(K), y = ln(x), u = ln(r), λ = 1/(σ 2t),
also

h̃(du)= αe(α−1)(u−b)/2 dh(eu)
eu

.
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Then one has

αe−avϕ(λ, y)

= eα(a−y) − eα(b−y)N
(
−(b− y)√λ−

(
α+ 1

2

)
1√
λ

)

− e(y−b)N
(
(b− y)√λ−

(
α+ 1

2

)
1√
λ

)

+ e(α−1)(b−y)/2
∫ b

−∞
e(α+1)(u−y)/2h̃(du)N

(
−(u− y)√λ−

(
α + 1

2

)
1√
λ

)

+ e(α−1)(b−y)/2
∫ b

−∞
e−(α+1)(u−y)/2h̃(du)N

(
(u− y)√λ−

(
α+ 1

2

)
1√
λ

)
.

3. Tentative ϕ’s with reasonable theta-zero curve. As we are interested in
t̂ (x) such that inft≥0 vϕ(t, x) = vϕ( t̂(x), x), we are going to study the so-called
theta-zero points solution of ∂tvϕ(t, x)= 0. More precisely we look for conditions
on the measure h which ensure that

t̂ (x) is continuous, t̂ −1(0)= [K,+∞[, t̂ −1(+∞)=]0,K∗].(3.1)

3.1. The theta-zero curve. Since the price of the European option with payoff
ϕ satisfies the Black–Scholes partial differential equation ∂tvϕ(t, x) = Avϕ(t, x)
for t, x > 0, in order to find the theta-zero points, we compute Avϕ(t, x).

One main advantage of our parameterization of ϕ by Aϕ =m is the simplicity
of the following computations. Indeed by the semi-group property Avϕ(t, x) =
vAϕ(t, x). Since vAϕ solves the Black–Scholes partial differential equation

∀t, x > 0, ∂tvAϕ(t, x)= AvAϕ(t, x), vAϕ(0, · )=m,
by the Feynman–Kacs representation formula

∀t, x > 0, vAϕ(t, x)= e−ρt
∫ K

0
pXt (x, r)m(dr)

where pXt (x, r) is the transition density of the Black–Scholes process. If nα2(z)=
e−z2/(2α2)/

√
2πα2 denotes the Gaussian density, an easy calculation yields

pXt (x, r)= x
r
nσ 2t (ln(r/x)− (ρ − σ 2/2)t).

As a conclusion:

LEMMA 5. We have

Avϕ(t, x)= e−ρt
∫ K

0
nσ 2t

(
ln

(
r

x

)
−

(
ρ − σ 2

2

)
t

)
m(dr)

r
.
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We recall that m(dr) = σ 2K2

2 δK(dr) − σ 2(α+1)K∗
2 h(dr). Changing notation by

setting

y = ln(x), u= ln(r), λ= 1

σ 2t
, a = ln(K∗), b= ln(K),

we obtain that

∂tvϕ(t, x)= Avϕ(t, x)=C(λ,y)F (λ, y),
where C(λ,y)= σ 2

√
λe−(1+α)2/8λe(α−1)(b−y)/2eb/(2

√
2π) > 0 for λ > 0 and

F(λ, y)= e−(λ/2)(b−y)2 −
∫ b

−∞
e−(λ/2)(u−y)2 h̃(du).(3.2)

Thus we are interested in the solutions of

F(λ, y)= 0.(3.3)

From now on, we suppose that

∀x <K, h(]x,K[) > 0 and
∫ K

0
ln2(r)r(α−3)/2h(dr) <+∞.(3.4)

LEMMA 6. The function F is C1 on [0,+∞)× R. Moreover, for y ∈ R, the
function λ ≥ 0 → F(λ, y) vanishes at most twice. Finally, ∀y ≥ b (resp. y < b),
F (λ, y) is positive (resp. negative) for λ big enough.

PROOF. The integrability assumption in (3.4) is equivalent to the convergence
of

∫ b
−∞ u2h̃(du). By Lebesgue theorem, we easily deduce that F is C1.

Equation (3.3) gives

−λ
2
(b− y)2 = ln

(∫ b

−∞
e−(λ/2)(u−y)2 h̃(du)

)
.

Hence for fixed y ∈ R, the solutions are given by the intersection of a straight
line and the Log-Laplace transform of a positive measure which is strictly convex
under (3.4). We conclude that λ ≥ 0 → F(λ, y) vanishes at most twice. The last
assertion is a consequence of the first part of (3.4). �

Let us now derive necessary conditions on h for (3.1) to hold.
If (3.1) holds then t → vϕ(t ∨ t̂ (x), x) is nondecreasing. As a consequence,

when x ∈]K∗,K[, ∂tvϕ(t, x) ≥ 0 for t ≥ t̂ (x), that is, when y ∈]a, b[,
F(λ, y) ≥ 0 for λ positive and small. For x ≤ K∗, t̂ (x) = +∞, that is,
inft≥0 vϕ(t, x) = lim inft→+∞ vϕ(t, x). Since λ ≥ 0 → F(λ, y) vanishes at most
twice, so does t > 0 → ∂tvϕ(t, x). Hence when x ≤ K∗, ∂tvϕ(t, x) < 0 for t big
enough, that is, when y ≤ a, F(λ, y) < 0 for λ positive and small.
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Since F is continuous, to get the previous sign conditions, we need F(0, a)= 0,
that is, h̃ is a probability measure∫ b

−∞
h̃(du)= 1.(3.5)

As F(0, y) is independent of y, the sign conditions then imply respectively
∂λF (0, y) ≥ 0 for y ∈]a, b[ and ∂λF (0, y) ≤ 0 for y ≤ a. Since F is C1,
∂λF (a,0)= 0, that is, ∫ b

−∞
(u− a)2h̃(du)= (b− a)2.(3.6)

The necessary conditions (3.5) and (3.6) will turn out to be sufficient for (3.1) to
hold:

PROPOSITION 7. If ∀y < b, h̃(]y, b[) > 0 and (3.5) and (3.6) hold, then

∀y ∈]a, b[, ∃!λ∗(y) > 0 such that F
(
λ∗(y), y

) = 0,

F (λ, y) > 0 for λ ∈]0, λ∗(y)[,
F (λ, y) < 0 for λ > λ∗(y),(3.7)

∀y ≥ b, ∀λ > 0, F (λ, y) > 0,(3.8)

∀y ≤ a, ∀λ > 0, F (λ, y) < 0.(3.9)

PROOF. By (3.5), ∀y ∈ R, F (0, y) = 0. It is easy then to deduce (3.8)
from (3.2).

Next, ∀y ∈ R, writing (u − y)2 = (u − a)2 + (a − y)2 − 2(y − a)(u − a),
developing (b− y)2 in a similar way and using (3.5) and (3.6) we get

∂λF (0, y)= 1
2

∫ b

−∞
(u− y)2h̃(du)− 1

2(b− y)2 = (y − a)
∫ b

−∞
(b− u)h̃(du).

Hence ∂λF (0, y) is positive (resp. negative) for y > a (resp. y < a), which
implies that F(λ, y) is positive (resp. negative) for λ positive and small when
y > a (resp. y < a). By Lemma 6, when y < b, F(λ, y) is negative for λ big
enough. Moreover, as λ→ F(λ, y) vanishes at λ = 0, this function vanishes at
most for one λ(y) > 0 and then ∂λF (λ(y), y) �= 0. By the intermediate value
property, we deduce (3.7) and (3.9) for y < a. As F(0, a)= ∂λF (0, a)= 0,
the function F(λ, a) does not vanish for λ > 0 and (3.9) also holds for
y = a. �

Setting λ∗(y)= 0 for y ≤ a and λ∗(y)= +∞ for y ≥ b, then ∀y ∈ R, ϕ̂(ey)=
vϕ(λ

∗(y), y). It is enough to check that ϕ̂ is continuous and that λ∗ is continuous
and nondecreasing to conclude that (3.1) holds. Let us now turn to a detailed study
of λ∗ and ϕ̂.
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3.2. Behavior of λ∗(y) for y ∈]a, b[.
PROPOSITION 8. Under the assumptions of Proposition 7, the function λ∗ is

analytic and increasing from ]a, b[ to R
∗+ and satisfies

lim
y→a+ λ

∗(y)= 0, lim
y→b− λ

∗(y)= ∞.
More precisely,

λ∗(y)(b− y)2 →y→b− ∞.(3.10)

If we suppose moreover that dh̃ is absolutely continuous in a neighborhood of b,
that is, for some b∗ ∈ ]a, b[ h̃(du)= h̃(u)du on ]b∗, b[ and that limu→b− h̃(u)=
h̃(b−) > 0 exists, then

lim
y→b−

ln(b− y)
λ∗(y)(b− y)2 = −1

2
.(3.11)

Finally, the following equivalent holds for λ∗(y) as y→ a+:

λ∗(y)∼y→a+
8(y − a) ∫ b−∞(b− u)h̃(du)∫ b

−∞(u− a)4h̃(du)− (b− a)4 .(3.12)

In case
∫ b
−∞(u − a)4h̃(du) = +∞ (⇔ ∫ K

0 ln4(r)r(α−3)/2m(dr) = +∞), (3.12)
means that λ∗(y)= o(y − a).
Before coming to the proof of the proposition let us notice that (3.11) is equivalent
to the equivalent of Barles, Burdeau, Romano and Samson [1] and Lamberton [7].

LEMMA 9. Let λ∗(y)→ ∞ as y→ b−. Then (3.11) holds if and only if

lim
y→b−

λ∗(y)(b− y)2
ln(λ∗(y))

= 1.(3.13)

PROOF. If (3.13) holds, then ln(λ∗) + 2 ln(b − y) − ln(ln(λ∗)) → 0. By
dividing by λ∗(b − y)2, which is far from zero since it goes to infinity by (3.13),
we get

ln(λ∗)
λ∗(b− y)2 + 2

ln(b− y)
λ∗(b− y)2 − ln(ln(λ∗))

λ∗(b− y)2 → 0

which gives (3.11) since ln(ln(λ∗))/ln(λ∗)→ 0.
Conversely we get from (3.11) ln(− ln(b−y))− ln(λ∗)+2 ln(b−y)→ − ln(2),

whence if (3.11) holds,

ln(− ln(b− y))
λ∗(b− y)2 − ln(λ∗)

λ∗(b− y)2 − 2
ln(b− y)
λ∗(b− y)2 → 0,

then (3.13) since ln(− ln(b− y))/ln(b− y)→ 0. �
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Let us now prove Proposition 8.

PROOF. We first compute the first order derivatives of F :

∂yF (λ, y)= λ
(
(b− y) exp

(
−λ

2
(b− y)2

)

−
∫ b

−∞
(u− y) exp

(
−λ

2
(u− y)2

)
h̃(du)

)
,

∂λF (λ, y)= −1

2
(b− y)2 exp

(
−λ

2
(b− y)2

)

+ 1

2

∫ b

−∞
(u− y)2 exp

(
−λ

2
(u− y)2

)
h̃(du).

Let y ∈]a, b[. Applying Jensen’s inequality to the strictly convex function z ln(z)
and the moment equality F(λ∗(y), y) = 0, we get ∂λF (λ∗(y), y) < 0. Moreover,
using F(λ∗(y), y)= 0, we get

∂yF
(
λ∗(y), y

) = λ∗(y)
∫ b

−∞
(b− u) exp

(
−λ

∗(y)
2

(u− y)2
)
h̃(du) > 0.

Now the price vϕ(t, x) of the European option is analytic on R
∗+ × R

∗+, therefore
∂tvϕ(λ, y) is analytic on R

∗+ × R. Since for y ∈]a, b[, λ∗(y) is the unique λ > 0
solution of ∂tvϕ(λ, y)= 0 and

∂λ
(
∂tvϕ

(
λ∗(y), y

)) = C(
λ∗(y), y

)
∂λF

(
λ∗(y), y

)
< 0,

∂y
(
∂tvϕ

(
λ∗(y), y

))
> 0

by the implicit functions theorem for analytic functions λ∗ is analytic with a
positive derivative on ]a, b[.

We deduce that λ∗(y) has a limit when y → a+. Since F is continuous,
F(limy→a+ λ∗(y), a)= 0. Now the unique λ≥ 0 such that F(λ, a)= 0 is 0. Hence
limy→a+ λ∗(y)= 0. By a similar reasoning, we check that limy→b− λ∗(y)= +∞.

To make precise the speed of convergence, we recall that λ∗(y) is given by

exp
(
−λ

∗(y)
2
(b− y)2

)
=

∫ b

−∞
exp

(
−λ

∗(y)
2
(u− y)2

)
h̃(du).(3.14)

As y→ b−, λ∗(y)→ +∞ and ∀u < b, e−(λ∗(y)/2)(u−y)2 → 0. Hence by Lebesgue
theorem the right-hand side of (3.14) goes to 0 and λ∗(y)(b− y)2 → +∞.

Let us now turn to (3.11). By Lebesgue’s theorem,

exp
(
λ∗(y)

2
(b− y)2

)∫ 2y−b
−∞

exp
(
−λ

∗(y)
2
(u− y)2

)
h̃(du)

=
∫ 2y−b
−∞

exp
(
−λ

∗(y)
2

(b− u)(2y − b− u)
)
h̃(du)→y→b− 0.
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We now suppose that h̃(du) has a density h̃ on ]b∗, b[ and that limu→b− h̃(u) =
h̃(b−) > 0. Setting u= y + β(b− y), we get from the above remark

1 ∼ y→b−
∫ b

2y−b
exp

(
−λ

∗(y)
2

(
(u− y)2 − (b− y)2))

h̃(du)

= (b− y)
∫ 1

−1
exp

(
−λ

∗(y)
2

(b− y)2(β2 − 1)
)
h̃
(
y + β(b− y))dβ

∼ (b− y)h̃(b−)
∫ 1

−1
exp

(
−λ

∗(y)
2
(b− y)2(β2 − 1)

)
dβ.

Therefore, by the Laplace method,

(
1

b− y
)2/(λ∗(y)(b−y)2)

∼
(
h̃(b−)

∫ 1

−1
exp

(
−λ

∗(y)
2

(b− y)2(β2 − 1)
)
dβ

)2/(λ∗(y)(b−y)2)

→ sup
β∈ ]−1,1[

e−(β2−1) = e,

which gives (3.11).
To make precise the behavior of λ∗(y) as y→ a+, we make Taylor’s expansions

in (3.14)

1 − λ∗(y)
2
(b− y)2 + λ∗(y)2

8
(b− y)4 + o(λ∗(y)2

)

=
∫ b

−∞

(
1 − λ∗(y)

2
(u− y)2

+ λ∗(y)2

4
(u− y)4

∫ 1

0
(1 − θ) exp

(
−θλ

∗(y)
2

(u− y)2
)
dθ

)
h̃(du),

which simplifies after (3.5) and (3.6), writing (b − y)2 = (b − a)2 + (y − a)2 +
2(b− a)(a− y), developing (u− y)2 and also (b− y)4 in a similar way, to

λ∗(y)(y − a)
∫ b

−∞
(b− u)h̃(du)+ λ∗(y)2(b− a)4

8
+ o(λ∗(y)2

)

= λ∗(y)2
∫ 1

0

1 − θ
4

(∫ b

−∞
(u− y)4 exp

(
−θλ

∗(y)
2

(u− y)2
)
h̃(du)

)
dθ.

In case
∫ b
−∞(u− a)4h̃(du) <+∞, the right-hand side is equivalent to

λ∗(y)2
∫ b

−∞
(u− a)4h̃(du)/8.



208 B. JOURDAIN AND C. MARTINI

Since h̃ is not a Dirac mass, by Jensen’s inequality,∫ b

−∞
(u− a)4h̃ (du) >

(∫ b

−∞
(u− a)2h̃(du)

)2

= (b− a)4

according to (3.6), and we deduce (3.12).
This assertion still holds in case

∫ b
−∞(u− a)4h̃(du)= +∞: indeed, by Fatou’s

lemma,∫ 1

0

1 − θ
4

(∫ b

−∞
(u− y)4 exp

(
−θλ

∗(y)
2

(u− y)2
)
h̃(du)

)
dθ → +∞. �

3.3. The price along the theta-zero curve. The interesting price is obtained by
setting λ= λ∗(y):

PROPOSITION 10. Under the assumptions of Proposition 7, the payoff ϕ̂ is
given for x between K∗ and K (y between a and b) by

αe−aϕ̂(ey)= eα(a−y) − eα(b−y)N
(

− (b− y)√λ−
(
α + 1

2

)
1√
λ

)

− e(y−b)N
(
(b− y)√λ−

(
α+ 1

2

)
1√
λ

)

+ e(α−1)(b−y)/2
∫ b

−∞
e(α+1)(u−y)/2h̃(du)

×N
(
−(u− y)√λ−

(
α + 1

2

)
1√
λ

)

+ e(α−1)(b−y)/2
∫ b

−∞
e−(α+1)(u−y)/2h̃(du)

×N
(
(u− y)√λ−

(
α + 1

2

)
1√
λ

)

where λ= λ∗(y) > 0 is given by F(λ∗(y), y)= 0.

3.4. Computation of ϕ̂ ′ for K∗ < x <K . By derivation of ϕ̂(ey) with respect
to y (see Section A.4 in the Appendix), we obtain:

LEMMA 11. For y ∈]a, b[,

e−aϕ̂′(ey)= −e−yeα(a−y)+ e−yeα(b−y)N
(
−(b− y)√λ−

(
α+ 1

2

)
1√
λ

)

− e−b

α
N

(
(b− y)√λ−

(
α+ 1

2

)
1√
λ

)

− e−(α+1)ye(α−1)b/2(3.15)
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×
∫ b

−∞
e(α+1)u/2h̃(du)N

(
−(u− y)√λ−

(
α+ 1

2

)
1√
λ

)

+ e(α−1)b/2

α

∫ b

−∞
e−(α+1)u/2h̃(du)N

(
(u− y)√λ−

(
α+ 1

2

)
1√
λ

)

where λ= λ∗(y) > 0 is given by F(λ∗(y), y)= 0.

3.5. Behavior of ϕ̂ as x→K∗+.

PROPOSITION 12. Under the assumptions of Proposition 7,

lim
x→K∗+ ϕ̂(x)=K −K∗.

Moreover, limx→K∗+ ϕ̂′(x)= −1 and

lim
x→K∗+

ϕ̂′(x)+ 1

x −K∗ = α + 1

K∗ > 0,

that is, the behavior of ϕ̂(x) when x→K∗+ is similar to the one of the perpetual
Put price and ϕ̂ cannot be equal to K − x on [K∗,K].

PROOF. We recall that limy→a+ λ∗(y) = 0. Hence, in the expression of
e−aϕ̂(ey) given by Proposition 10, when y → a+, the first term has a limit
equal to 1/α and the second and third terms go to 0. The fourth and the fifth
terms also vanish according to Lebesgue theorem and the following upper bounds:
∀u≤ b, ∀y ≥ a,

e(α+1)(u−y)/2N
(
−(u− y)√λ−

(
α + 1

2

)
1√
λ

)

≤ e−(α+1)2/(8λ)1{u−y≤−(α+1)/(4λ)}

+ e(α+1)(b−a)/2N
(
−α + 1

4
√
λ

)
1{u−y≥−(α+1)/(4λ)}

≤ e−(α+1)2/(8λ) + e(α+1)(b−a)/2N
(
−α + 1

4
√
λ

)
,

e−(α+1)(u−y)/2N
(
(u− y)√λ−

(
α + 1

2

)
1√
λ

)

≤ e−(α+1)(α+1−2
√
λ)/(4λ)1{(u−y)√λ−(α+1)/(2

√
λ)≥−1}

+ 1√
2π
e−(α+1)(u−y)/2
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× exp
(
−1

2

(
(u− y)√λ−

(
α+ 1

2

)
1√
λ

)2)
1{(u−y)√λ−(α+1)/(2

√
λ)≤−1}

≤ e−(α+1)(α+1−2
√
λ)/(4λ) + e−(α+1)2/(8λ).

Hence limx→K∗+ ϕ̂(x)= ea/α =K∗/α =K −K∗.
Denoting by Ti(y), 1 ≤ i ≤ 5 the terms of the right-hand side of (3.16), we have

T1(a) = −e−a and T ′
1(a) = (α + 1)e−a . We conclude the proof by checking that

∀2 ≤ i ≤ 5, ∀n ∈ N, limy→a+ Ti(y)/(y−a)n = 0 thanks to (3.12) and the previous
upper bounds. �

3.6. Behavior of ϕ̂ as x→K−.

PROPOSITION 13. If the assumptions of Proposition 7 are satisfied and∫ K

0
rα−1h(dr)= Kα −K∗α

α
,

which is equivalent to∫ b

−∞
e(α+1)u/2h̃(du)= e(1−α)b

2(eαb − eαa) ,
where

h̃(du)= αe(α−1)(u−b)/2 dh(eu)
eu

,

then

lim
x→K− ϕ̂(x)= 0 and lim

x→K− ϕ̂
′(x)= −1.

PROOF. Since limy→b−
√
λ(b − y) = +∞, taking the limit y → b− in the

expression of e−aϕ̂(ey) given by Proposition 10,

lim
y→b− e

−aϕ̂(ey)= eα(a−b)

α
+ 0 − 1

α
+ 1

α

∫ b

−∞
e(α+1)(u−b)/2h̃(du)+ 0

= (
eα(a−b)− 1 + e−αb(eαb − eαa))/α = 0.

Taking the limit in (3.16), we obtain

lim
y→b− e

−aϕ̂ ′(ey)

= −eα(a−b)e−b + 0 − e−b

α
− e−(α+1)be(α−1)b/2

∫ b

−∞
e(α+1)u/2h̃(du)+ 0

= −eα(a−b)e−b − e−b

α
− e−(α+1)b(eαb − eαa)= −e−b

(
1 + 1

α

)
= −e−a. �
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REMARK 14. In case dh̃ is absolutely continuous in a neighborhood of b with
a density h̃ such that limu→b− h̃(u)= h̃(b−) > 0 exists, it is possible to prove that
the second order derivative of ϕ̂ at K− depends on h̃(b−):

lim
x→K−

ϕ̂′(x)+ 1

x −K = e−b lim
y→b−

ϕ̂′(ey)+ 1

y − b = α − h̃(b−)
K

.

Under the assumptions of the proposition, we have ϕ′(K−)= −1 = ϕ̂′(K−). If,
moreover, the above assumption on dh̃ is satisfied, we can check that ϕ′′(K−) =
(α − h̃(b−))/K = ϕ̂′′(K−). The equality of the first and second derivatives of ϕ
and ϕ̂ at K− is not surprising since for y ∈]a, b[, ϕ̂(ey) = vϕ(1/(σ 2λ∗(y)), ey)
and 1/(σ 2λ∗(y))= o((b− y)2) as y→ b−.

4. The main result. We are now ready to summarize all the properties of
t̂ (x) = 1/(σ 2λ∗(ln(x)) and ϕ̂ and to apply the embedding result of [5]. First we
state a theorem which is a direct application of [5], then a modification well suited
to the Put case.

Note that (3.5) and (3.6) rewrites into the two last conditions on h in the
following theorem.

THEOREM 15. Assume that

ϕ(x)= (K −K∗)
(
x

K∗
)−α

− x−α (K ∧ x)α+1

α+ 1
+K∗

∫ K

0
x−α (r ∧ x)α+1

r2
h(dr),

where h is a positive measure on ]0,K[ such that ∀x <K, h(]x,K[) > 0 and∫ K

0
rα−1h(dr)= (Kα −K∗α)/α,

∫ K

0
r(α−3)/2h(dr)=K(α−1)/2/α,

∫ K

0
ln2(r/K∗)r(α−3)/2h(dr)=K(α−1)/2 ln2(K/K∗)/α,

then ϕ̂(x) = inft≥0 vϕ(t, x) is continuous equal to 0 for x ≥ K , equal to (K −
K∗)(x/K∗)−α if x ≤ K∗, satisfies ϕ̂ ′(K∗+) = ϕ̂ ′(K−) = −1 and ϕ̂ ′′(K∗+) =
(α + 1)/K∗. Moreover ϕ̂(x)= vϕ( t̂(x), x) where t̂ is continuous, nonincreasing,
analytic on ]K∗,K[, equal to 0 for x ≥ K and to +∞ for x ≤ K∗. The price of
the American option with payoff ϕ̂ is vam

ϕ̂ (t, x)= vϕ(t ∨ t̂ (x), x).
Here now is the main result:

THEOREM 16. Under the assumptions of the previous theorem, the payoff
ϕ̂h(x)= (K − x)+1{x≤K∗} + ϕ̂(x)1{x>K∗} is continuous and its American price is
given by

(K − x)+1{x≤K∗} + vϕ(t ∨ t̂ (x), x)1{x>K∗}.
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PROOF. It is easily seen that ϕ̂h(x)= (K−x)+ ≤ (K−K∗)(x/K∗)−α = ϕ̂(x)
for x ≤K∗, therefore the American price vam

ϕ̂h
(t, x) is smaller than vam

ϕ̂ (t, x). Now
in the region x > K∗, the American price of ϕ̂h is greater than vϕ(t ∨ t̂ (x), x):
indeed the latter may be written as E[e−ρτ ϕ̂h(Xxτ )] where τ is the entrance time
in the region {t ≤ t̂ (x)} [convention: τ = 0 if t ≤ t̂ (x)] and ϕ̂h(Xxτ ) = ϕ̂(Xxτ ).
Therefore vam

ϕ̂h
(t, x) = vϕ(t ∨ t̂ (x), x) for x > K∗ and also x ≥K∗ by continuity.

In particular the line x =K∗ is contained in the Exercise region.
Take now a point (t, x) with x <K∗. By the optimal stopping representation of

the American price, one has

vam
ϕ̂h
(t, x)= sup

τ<τ∗
E[e−ρτ ϕ̂h(Xxτ )]

where τ runs across the set of stopping times of the Brownian filtration less than
the crossing time τ ∗ of the boundary {(0, x), x < K∗} ∪ {(t,K∗), t ≥ 0}. In this
area ϕ̂h is equal to the Put payoff, therefore this quantity is less than the American
price of the Put. But by definition of K∗ we lie in the Exercise region of the
American Put, so vam

ϕ̂h
(t, x)≤ (K − x)+ and on another hand (K − x)+ = ϕ̂h(x)≤

vam
ϕ̂h
(t, x). �

REMARK 17. The same result holds for any continuous payoff obtained by
replacing ϕ̂(x) under K∗ by a continuous function ψ(x) smaller than (K −
K∗)(x/K∗)−α with ψ(K∗) = (K − K∗) and such that the region {x ≤ K∗} lies
in the Exercise region of the modified payoff. For instance in case k ≤ K∗ it is
easy to check by comparison with the Put option that the region {x ≤ K∗} is
included in the Exercise region of the American Put-Spread option with payoff
(K − x)+ − (k − x)+ = (K − k) ∧ (K − x)+. Hence the price of the American
option with modified payoff ϕ̂k(x)= (K − k)∧ (K − x)+1{x≤K∗} + ϕ̂(x)1{x>K∗}
is

(K − k)∧ (K − x)+1{x≤K∗} + vϕ(t ∨ t̂ (x), x)1{x>K∗}.

It is natural to wonder whether the payoff ϕ̂h is nonincreasing like the Put payoff.
The answer is positive at least for values of α of practical interest since:

LEMMA 18. There is a constant α0 < 1/2, such that when α ≥ α0, under the
assumptions of Theorem 15, both ϕ̂ and ϕ̂h are nonincreasing.

The proof of this lemma is postponed to Section A.5 in the Appendix.

5. Discretization. In this section we solve a discretized version of the
program:

inf
h∈H sup

x

∣∣ϕ̂h(x)− (K − x)+∣∣
where H is a low-dimensional subspace of the set of measures h which verify the
moment conditions of the theorems.
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5.1. Normalization. For practical purposes, it would be interesting to get a
measure h∗ which depend on as few parameters as possible. It will certainly
depend on α, but we can design an approximation which will work for every value
of K in the following way: we normalize the situation so that K∗ = 1 (any other

value would work!), therefore K = k def= 1 + 1/α.
This does not matter in the following sense: to emphasize the dependence on

the strike K , we denote by vam
Put(t, x,K) the American Put price for the maturity

t and the underlying value x. If we manage to design an approximation such that,
for a given value of t :

sup
x

∣∣vam
Put(t, x, k)− Approx(t, x, k)

∣∣< ε
then since obviously vam

Put(t, x, k) = (K/k)vam
Put(t, (k/K)x, k), the approximation

by (K/k)Approx(t, k/K,x, k) will satisfy

sup
x

∣∣∣∣vam
Put(t, x,K)−

K

k
Approx

(
t,
k

K
x, k

)∣∣∣∣< Kk ε.
In other words, the error we face in term of a percentage of the strike K is given
by ε/k.

From now on we work thus with:

K∗ = 1, k
def= K = 1 + 1

α
, (K − k)K∗−α =K −K∗ = 1

α

and with the variables y = ln(x) and λ= 1/(σ 2t).

5.2. Choice of a special class of h̃. We further restrict ourselves to a particular
class of measures h̃ which lead to easy implementation. Whatever the measure
h̃ at hand there is a priori two steps to obtain vam

ϕ̂h
(λ, y) for given values of

y ∈]a = 0, b = ln(k)[ and λ > 0: first compute the value of the theta-zero curve,
that is, find λ∗(y) ∈]0,+∞[ solving F(λ∗(y), y) = 0 then compute the price
vϕ(λ∧ λ∗(y), y)= vam

ϕ̂h
(λ, y). In general both steps require numerical procedures,

a dichotomy to find the zero of the time derivative (there is exactly one for
every y ∈]a, b[ after the above calculations), next a numerical (one-dimensional)
integration (with respect to h̃) to get the price. In case y ≥ b, only the second step
is required since λ∗(y)= +∞ and in case y ≤ 0, vam

ϕ̂h
= (k − ey).

We choose to work with a low-dimensional family of combination of point
measures. This allows the direct computation of the price at the second step.

Notice that the condition h̃(]y, b[) > 0 for y < b is not satisfied yet: so we add
a uniform measure ε1]0,b[ du, for which it is easily seen that the corresponding
contribution to the price may be computed explicitly. We have implemented the
case of 3-points measures, which gives already astonishing results. Our family
may be parametrized in the following way:

h̃(du)= ε1]0,b[ du+ β δlog(r1)(du)+ γ δlog(r2)(du)

+ (1 − εb− β − γ )δlog(r3)(du)
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with ε > 0, εb < 1, β > 0, γ > 0 and β + γ < 1 − εb.
By convention we choose log(r1) < log(r2) < log(r3).
Remember that the support of h̃ should lie below b, so we further set

log(r3)=µb,
and also

log(r1)= x1µb, log(r2)= x2µb.

Therefore the parameter (ε,µ, x1, x2) should live in: 0 < ε < b, µ ≤ 1, x1 ≤
x2 ≤ 1.

For a given value of (ε,µ, x1, x2) we compute the values of β and γ which fit
the two remaining moment conditions:∫ b

−∞
u2h̃(du)= b2,

∫ b

−∞
e(α+1)u/2 h̃(du)= eαb − 1

e(α−1)b/2
.

This translates as the 2×2 linear system

(1 − x2
1)β + (1 − x2

2)γ = εb
(

1

3µ2 − 1
)

+ 1 − 1

µ2 ,

(1 − e(α+1)(x1−1)µb/2)β + (1 − e(α+1)(x2−1)µb/2)γ

= ε
(

2e−(α+1)µb/2

(α + 1)
(e(α+1)b/2 − 1)− b

)
+ 1 − e(α+1) (1−µ)b/2(1 − e−αb),

which gives closed formula for β and γ. In case one of the conditions β > 0, γ > 0
and β + γ < 1 − εb is not satisfied the point (ε,µ, x1, x2) is rejected, otherwise
we sample the range ]0, b[ with n points, say yi = i

n
b with 0< i < n and for every

yi we proceed as follows.

5.3. Calculation of λ∗(y). We find λ∗(yi) by a dichotomy algorithm making
use of the closed formula for F(λ, y). This is obviously very fast, although a little
care is required when yi is near 0 or b to deal with possibly very high or small
values of λ∗(yi).

5.4. Computation of the price. This is also very fast since no numerical
integration is required. We make use of the standard approximation of the normal
cumulative distribution which relies on the classical series expansion.

5.5. Selection of the optimal point. Then for a given value of (ε,µ, x1, x2)

we compute the error quantity

err(ε,µ, x1, x2)= sup
i

∣∣ϕ̂(eyi )− (k − eyi )+∣∣,
and next, after a clever or systematic scan of the domain, we pick the point which
minimizes this criteria, with a value err∗ = err(ε∗,µ∗, x∗

1 , x
∗
2 ). The corresponding

American payoff is denoted by ϕ̂ ∗.
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5.6. Archiving the results. The optimal point will depend on α. In practice we
maintain an archive with 100 values of α equally sampled between 0.5 and 50.0
(for an annual interest rate of 5%, α = 0.4 is σ = 50%, α = 25.6 is σ = 6.25%).
The computation of the archive is done once for all, the practical usage for
the ambient value of α consists in picking up the closest value of the table or
performing a linear interpolation since the optimal point, for our choice of the
domain at least, depends “continuously” on α. Therefore the computation time is
that of the dichotomy (typically ten iterations or so) and of the price, which is very
fast.

5.7. Numerical results. We choose YAAAP (Yet Another Approximation for
the American Put) for our methods’s name.

The first graph (Figure 2) plots err∗ as a function of α, expressed in percentage
of the strike K .

The fact that this plot is decreasing corresponds to the fact that the size of the
range ]K∗,K[ increases as α decreases, whereas our family of approximating
payoffs does not get richer as α decreases. It seems that at least for values of α
not too small, this error is relevant in practice.

Figures 3 and 4 give the difference D(x) = ϕ̂∗(x) − (k − x)+ for α = 1, in
percentage of the strike k = 2 and next of the premium at maturity [i.e., (k− x)+]:

The price error will be much smaller since err∗ is the maximal error over
the underlying and since it will be smoothed by the probability law of the spot
value at the time the free boundary is reached and reduced by the corresponding
discounting factor. More precisely, if τopt and τ∗ denote respectively the entrance
times in the Exercise regions of the American Put option and of the American

FIG. 2.
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FIG. 3.

option with payoff ϕ̂∗, then

vam
Put(t, x)= E

[
e−ρτopt(k −Xxτopt

)+
]

and vam
ϕ̂∗ (t, x)= E

[
e−ρτ∗ ϕ̂∗(Xxτ∗)

]
and as τopt and τ∗ are optimal stopping times, we easily check that

vam
ϕ̂∗ (t, x)− E

[
e−ρτ∗D(Xxτ∗)

] ≤ vam
Put(t, x)≤ vam

ϕ̂∗ (t, x)+ E
[
e−ρτopt

(−D(Xxτopt
)
)]
.

The larger the maturity, the more effective the smoothing of the error.

FIG. 4.
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FIG. 5.

5.8. Comparison with other methods. Figures 5 and 6 show the comparison
with a heavy finite-difference method (PSOR algorithm; cf. [2]) with a large
number of steps (500), so that the yielded price may be considered as the right
one, for two different values of the maturity.

Even if the scale is quite large, this shows that our approximation is good.
Netherthless, we should compare it with the most accurate methods available
at the moment. To our knowledge, these are the LUBA method of Broadie and
Detemple [3], which is a nonconvergent method (like ours), and the method

FIG. 6.
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proposed by Ju [6] who computes the best exponential piece-wise approximation
of the free boundary for a given time step. The method proposed in [8] also seems
very fast and accurate. The advantage of the methods of [6] and [8] is to provide
also an approximation of the delta. Moreover these are convergent methods.

Both Ju and Broadie and Detemple report an accuracy comparable to that of a
Cox–Ross–Rubinstein (CRR) algorithm at 800 steps, which we could check. But
we were not able to reproduce the execution times given in [3] and [6]. Our method
gives the accuracy of a CRR algorithm at 100 steps, 10 times faster. Notice that
we use an optimized binomial tree where the values of the payoff at the nodes are
evaluated once for all at the beginning and store in an array. This is 2.5 times faster
than a standard one. The type of tree used in [3] and [6] is not detailed.

6. Conclusion. In this paper, we apply the theoretical result in [5] to the
pricing of the American Put in the Black–Scholes model. We get a closed-formula
for a family of payoffs which are very close to the Put payoff. The numerical
results are nice, even if the Ju and LUBA approximation methods perform better.
Nevertheless we believe that the interest of our method lies in the new kind of
procedure which is developed: the YAAAP prices and deltas are the exact Black–
Scholes American prices and deltas of a contingent claim the payoff of which
matches the Put payoff below K∗ and above K , is analytic within the range
]K∗,K[, has the right first derivative −1 at K∗+ andK−, and lastly which deviates
at most of err∗ from the Put payoff within ]K∗,K[. In particular, unlike numerous
other approximation methods (like LUBA) there is a exact hedge ratio associated to
our price, which can be computed through the same type of almost-closed formula.
Therefore a safe way of making use of our approximation method is to trade the
corresponding sub- and super-strategies with the YAAAP deltas and the selling
price YAAAP price + err∗, buying price price − err∗, which leaving aside discrete-
time hedging and model errors considerations will always yield a nonnegative
Profit and Loss. Remember that err∗ is less than 0.15% of the strike as soon as
2ρ/σ 2 is greater than 2.

We believe that the approach of this paper can be extended to deal with
continuous dividends and can be applied to numerous other option payoffs (like
Put-Spread, Call-Spread, . . . ). Also discretization schemes alternative to the one
given in section 5 may be developed.

APPENDIX

A.1. Proof of Lemma 2. Indeed, by (2.1),

ϕ(x)= bx−α − 2

σ 2(α+ 1)
x−α

∫ K

0
(r ∧ x)α+1m(dr)

r2
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where by (2.3) b= 2
σ 2(α+1)

∫K
0 rα−1m(dr). Therefore

ϕ(x)= 2

σ 2(α + 1)
x−α

∫ K

0

[
rα−1 − (r ∧ x)α+1

r2

]
m(dr).

Now

m= σ 2K2

2
δK(dr)− 1]0,K[(r)

σ 2(α + 1)K∗

2
h,

whence

ϕ(x)= x−α

(α + 1)
[Kα+1 − (K ∧ x)α+1] − x−αK∗

∫ K

0

[
rα−1 − (r ∧ x)α+1

r2

]
h(dr).

For x < K ,

xαϕ(x)

Kα+1 − (K ∧ x)α+1 = 1

(α+ 1)
−K∗

∫ K

0

rα+1 − (r ∧ x)α+1

Kα+1 − (K ∧ x)α+1

h(dr)

r2 .

Now (rα+1 − (r ∧ x)α+1)/(Kα+1 − (K ∧ x)α+1) ≤ (rα+1)/(Kα+1), plugging∫ K
0 rα−1h(dr)= (Kα −K∗α)/α, we get

xαϕ(x)

Kα+1 − (K ∧ x)α+1 ≥ 1

(α + 1)

(
α

α + 1

)α
> 0

and ϕ is nonnegative.

A.2. Behavior of the European price as the maturity goes to +∞. We
prove here the following:

PROPOSITION 19. Let ϕ: R
∗+ → R a measurable function such that

sup
x>0

|ϕ|(x)/(x + xα) <+∞.

If a = limx→∞ ϕ(x)/x and b= limx→0+ ϕ(x)/x−α exist and are finite, then

lim
t→∞vϕ(t, x)= ax + bx−α.

PROOF. Indeed

vϕ(t, x)= e−ρtE[
ϕ(Xxt )

]
= e−ρtE

[
ϕ(Xxt )

Xxt + (Xxt )−α
(
Xxt + (Xxt )−α

)]

= xE
[

ϕ(Xxt )

Xxt + (Xxt )−α
e−ρtX1

t

]
+ x−α

E

[
ϕ(Xxt )

Xxt + (Xxt )−α
e−ρt (X1

t )
−α

]
.
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Since e−ρtX1
t = eσBt−(σ 2/2)t , by Girsanov’s theorem the first term is equal to

xEP̃
[

ϕ(Y xt )

Y xt + (Y xt )−α
]

where Y xt = xeρt+σ(Bt−σ t)+σ 2t−(σ 2/2)t = xeρt+σB̃t+(σ 2/2)t and B̃ is a P̃ Brownian

motion. In particular, P̃ a.s., eρt+σB̃t+(σ 2/2)t → ∞ as t → ∞. Therefore, by
Lebesgue’s theorem,

lim
t→∞ E

P̃

[
ϕ(Y xt )

Y xt + (Y xt )−α
]

= lim
y→∞

ϕ(y)

y
.

In the same way e−ρt (X1
t )

−α = e−ασBt−(α2σ 2/2)t is a martingale and the second
term is equal to

x−α
E
P̃

[
ϕ((Zxt )

−1/α)

Zxt + (Zxt )−1/α

]
where Zxt = x−αeρt+ασB̃t+(α2σ 2/2)t .

Therefore it goes to

x−α lim
y→∞

ϕ(y−1/α)

y + y−1/α = x−α lim
y→0

ϕ(y)

y−α . �

A.3. Proof of Lemma 3. One has

eρtver (t, x)= rα+1x−αe−α(ρ−σ 2/2)t
E

[
exp(−ασBt)1{ασBt>αl(x)}

]
+ xe(ρ−σ 2/2)t

E
[
exp(σBt )1{σBt<l(x)}

]
where

l(x)= ln
(
r

x

)
−

(
ρ − σ 2

2

)
t.

Since ασ 2/2 = ρ and αρ = (ασ )2/2,

ver (t, x)= rα+1x−αe((ασ)2/2)t E
[
exp(−ασBt)1{ασBt>αl(x)}

]
+ xe−(σ 2/2)t

E
[
exp(σBt)1{σBt<l(x)}

]
.

Now,

e−(γ 2/2)t
E

[
exp(−γBt)1{γBt>β}

] = e−(γ 2/2)t
∫ ∞
β
e−ze−z2/(2γ 2t) dz√

2πγ 2t

=
∫ ∞
β
e−(z+γ 2t)2/(2γ 2t) dz√

2πγ 2t

=N
(
−

(
β + γ 2t√
γ 2t

))
.
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In the same way

e−(γ 2/2)t
E

[
exp(γBt)1{γBt<β}

] =N
(
β − γ 2t√
γ 2t

)
,

whence

ver (t, x)= rα+1x−αN
(
−

(
ασ l(x)+ (ασ )2t√

(ασ )2t

))
+ xN

(
σ l(x)− σ 2t√

σ 2t

)
,

where l(x)= ln(r/x)− (ρ − σ 2/2)t = ln(r/x)− ((α− 1)/2)(σ 2t) so that

ver (t, x)= rα+1x−αN
(
−

(
α ln(r/x)− α((α− 1)/2)(σ 2t)+ α2(σ 2t)√

α2(σ 2t)

))

+ xN
(

ln(r/x)− ((α− 1)/2)(σ 2t)− (σ 2t)√
σ 2t

)

= rα+1x−αN
(
−

(
ln(r/x)+ ((α+ 1)/2)σ 2t√

σ 2t

))

+ xN
(

ln(r/x)− ((α+ 1)/2)σ 2t√
σ 2t

)
.

A.4. Computation of ϕ̂ ′ for K∗ < x < K . For y ∈]a, b[, ϕ̂(ey)=
Pϕ(λ∗(y), y) is given in Proposition 10. Since

∂λvϕ
(
λ∗(y), y

) = − 1

(σλ∗(y))2
∂tvϕ

(
λ∗(y), y

) = 0,

derivation with respect to y yields

e−aϕ̂ ′(ey)

= −e−yeα(a−y)+ e−yeα(b−y)N
(
−(b− y)√λ−

(
α+ 1

2

)
1√
λ

)

− e−yeα(b−y)

α

√
λN ′

(
−(b− y)√λ−

(
α + 1

2

)
1√
λ

)

− e−b

α
N

(
(b− y)√λ−

(
α+ 1

2

)
1√
λ

)

+ e−b

α

√
λN ′

(
(b− y)√λ−

(
α+ 1

2

)
1√
λ

)

− e−(α+1)ye(α−1)b/2

×
∫ b

−∞
e(α+1)u/2h̃(du)N

(
−(u− y)√λ−

(
α + 1

2

)
1√
λ

)
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+ e−(α+1)y

α
e(α−1)b/2

×
∫ b

−∞
e(α+1)u/2h̃(du)

√
λN ′

(
−(u− y)√λ−

(
α + 1

2

)
1√
λ

)

+ e(α−1)b/2

α

∫ b

−∞
e−(α+1)u/2h̃(du)N

(
(u− y)√λ−

(
α + 1

2

)
1√
λ

)

− e(α−1)b/2

α

∫ b

−∞
e−(α+1)u/2h̃(du)

√
λN ′

(
(u− y)√λ−

(
α + 1

2

)
1√
λ

)
,

where, for simplicity of notation, λ stands for λ∗(y).
Since

√
2πN ′

(
−(z− y)√λ−

(
α + 1

2

)
1√
λ

)

= e(α+1)(y−z)/2 exp
(
−1

2

(
α + 1

2
√
λ

)2)
exp

(
−λ

2
(z− y)2

)
,

using the definition of λ∗(y), we obtain that the sum of the third and the seventh
terms of the r.h.s. is nil. Similarly the sum of the fifth and the ninth terms is nil.

A.5. Proof of Lemma 18. If ϕ is nonincreasing then ∀t ≥ 0, x → vϕ(t, x) is
nonincreasing. Since ϕ̂(x)= inft≥0 vϕ(t, x), the same property holds for ϕ̂ and for
the modified payoff ϕ̂h.

Therefore, we are going to study the monotony of ϕ. Let x <K . We recall that

(
xαϕ(x)

)′ = − 2

σ 2
xα

∫ K

x

m(dr)

r2
= −xα + xααK

∫ K

x

h(dr)

r2
.

As

ϕ(x)= (K −K∗)
(
K∗

x

)α
− x

α + 1
+K∗

(
x

∫ K

x

h(dr)

r2 + x−α
∫ x

0
rα−1h(dr)

)
,

and 1/(α+ 1)= (K −K∗)/K , we deduce that

xαϕ′(x)= (K −K∗)
(
xαα

∫ K

x

h(dr)

r2 − xα

K
− αK

∗α

x

)
− αK

∗

x

∫ x

0
rα−1h(dr).

We upper-bound
∫ K
x
h(dr)

r2 thanks to the second moment assumption on h:∫ K

x

h(dr)

r2 ≤ x−(α+1)/2
∫ K

0
r(α−3)/2h(dr)= x−(α+1)/2K(α−1)/2

α
.

Combining this inequality with xα/K + αK∗α/x ≥ 2x(α−1)/2
√
αK∗α/K we

obtain

xαϕ′(x)≤ (K −K∗)x(α−1)/2K(α−1)/2(1 − 2
√
α(K∗/K)α

)
.
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Hence ϕ is nonincreasing as soon as 4α(α/(α+ 1))α ≥ 1. It is easy to check
that the function α ∈]0,+∞[→ f (α) = 4α(α/(α+ 1))α is increasing. Since
f (1/2) = √

4/3 > 1 and limα→0 f (α) = 0, the equation f (α) = 1 has a unique
solution α0. Moreover α0 ≤ 1/2 and ∀α ≥ α0, ϕ is nonincreasing. �
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