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Christian-Albrechts-Universität Kiel

We consider the supercritical bisexual Galton–Watson process (BGWP)
with promiscuous mating, that is, a branching process which behaves like
an ordinary supercritical Galton–Watson process (GWP) as long as at least
one male is born in each generation. For a certain example, it was pointed
out by Daley, Hull and Taylor [J. Appl. Probab. 23 (1986) 585–600] that the
extinction probability of such a BGWP apparently behaves like a constant
times the respective probability of its asexual counterpart (where males do
not matter) if the number of ancestors grows to ∞. In an earlier paper,
we provided general upper and lower bounds for the ratio between both
extinction probabilities and also numerical results that seemed to confirm the
convergence of that ratio. However, theoretical considerations rather led us to
the conjecture that this does not generally hold. The present article turns this
conjecture into a rigorous result. The key step in our analysis is to identify
the extinction probability ratio as a certain functional of a subcritical ordinary
GWP and to prove its continuity as a function of the number of ancestors in a
suitable topology associated with the entrance Martin boundary of that GWP.

1. Introduction and main results. The bisexual Galton–Watson process with
promiscuous mating (Zn)n≥0, shortly called promiscuous BGWP, is defined as
follows: consider a two-sex population process (ZF

n,Z
M
n )n≥0 whose nth generation

consists of ZF
n females and ZM

n males. Females within one generation reproduce
according to an ordinary two-type Galton–Watson process (GWP) with product
reproduction law pF ⊗ pM as long as at least one male is alive. Plainly,
pF = (pF

j )j≥0 and pM = (pM
j )j≥0 describe the number of female, respectively,

male offspring. We are therefore given

Zn
def= ZF

n1(0,∞)(Z
M
n )

mating units in the nth generation, the pertinent mating function being ζ(x, ·) =
x1(0,∞). The formal definition of (ZF

n,Z
M
n )n≥0 thus takes the form

(ZF
n+1,Z

M
n+1)=

Zn∑
j=1

(ξn,j , ηn,j ),(1.1)
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126 G. ALSMEYER AND U. RÖSLER

with i.i.d. random vectors (ξn,j , ηn,j ), n ≥ 0, j ≥ 1, with common distribution
pF⊗ pM.

Bisexual GWP’s with various mating functions were introduced by Daley [6]
and further investigated in [5] and [7–9]. The present article is a continuation
of [1] where we compared in some detail the extinctive behavior of a promiscuous
BGWP (Zn)n≥0 with that of its asexual counterpart, henceforth denoted by
(Fn)n≥0. Let Pj be such that Pj(Z0 = F0 = j) = 1 for each j ≥ 1 and define
the extinction probability function

q(j) def= Pj(Zn = 0 for some n≥ 0), j ∈N0,

pertaining to (Zn)n≥0. Plainly, the reproduction law of the ordinary GWP (Fn)n≥0
is pF, its extinction probability function qj for some q ∈ [0,1]. We are interested in
the supercritical case when q(j) < 1 for all j ≥ 1, a standing assumption hereafter.
For the promiscuous BGWP this is easily seen to be equivalent to pM

0 < 1 and
µ

def= ∑
j≥1 jp

F
j > 1. Hence (Fn)n≥0 is also supercritical and its extinction

probability q less than 1. A numerical study by Daley, Hull and Taylor [7] showed
for the case where pF and pM are Poisson with mean 1.2 that the extinction
probability ratio

r(k) def= q(k)
qk

, k ∈N,

apparently converges very rapidly to approximately 1.33. On the other hand,
they had no theoretical justification for this phenomenon and our analysis in [1]
indeed showed that this can neither be given shortly nor by easy arguments. Let

P̂k = Pk(·|Fn→ 0) with expectation operator Êk and put κ def= pM
0 . By exploiting

a functional equation for r(k), namely,

r(k)=
(
κ

q

)k
+ (1− κk)Êkr(F1)(1.2)

for each k ≥ 0, we were led in [1] to lower and upper bounds for r(k), depending
on the model parameters. Numerical studies for various sets of parameters further
confirmed the observation of Daley, Hull and Taylor that r(k) rapidly stabilizes
for increasing k if κ < q . However, based on arguments beyond the scope of that
article, we conjectured that r(k) may actually not always converge but oscillate
very slowly, a “near-constancy” phenomenon also encountered for the so-called
Harris function of certain supercritical ordinary GWP’s; see, for example, [4]. The
main result of this article, Theorem 2.1, shows that this conjecture is correct. The
proof is based on potential theory for subcritical GWP’s which is therefore shortly
reviewed from [3] in Section 3.

Iterating (1.2) leads to the fundamental identity (see (3.12) in [1])

r(k)=
(
κ

q

)k
+ Êk

(
τ∑

j=1

(
κ

q

)Fj j−1∏
i=0

(1− κFi )

)
,(1.3)
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where τ denotes the extinction time of (Fn)n≥0. Note that, under P̂k , (Fn)n≥0
forms an ordinary subcritical GWP with k ancestors, reproduction mean µ̂ =
f ′(q), offspring distribution p̂F = (qj−1pF

j )j≥0 and offspring generating function

f̂ (s)= q−1f (sq), where f is the generating function of pF; see [3], page 37. Note
that

P̂1(F1 > 1)=∑
j≥2

qj−1pF
j > 0(1.4)

and that q < 1 clearly implies the (X logX)-condition for (Fn)n≥0 under the P̂k ,
that is,

ÊkF1 logF1 <∞.(1.5)

Our main concern hereafter will be the case 0 < κ < q where the near-
constancy phenomenon turns up, but we will also provide a result for the case
κ = q (Theorem 2.2). If κ > q , we already gave a satisfactory answer in [1],
Corollary 3.2, which states that κ−kq(k) converges to 1 at an exponential rate.

2. Main results. A look at identity (1.3) shows that its further investigation
no longer requires dealing with the original model of a promiscuous BGWP
from which it came out. We may rather adopt the viewpoint of dealing with a
certain functional in two arguments, κ and q , of an ordinary subcritical GWP. We
will therefore simplify our previous notation and use the one for Galton–Watson
branching processes in [3] to which we will frequently refer. So from now on
let (Zn)n≥0 be a subcritical GWP with offspring distribution (pj )j≥0, offspring
generating function f (s) =∑

j≥0 pj s
j , reproduction mean µ = f ′(1) < 1 and

extinction time τ . Notice that now f (q) �= q . For each k ≥ 1, Pk shall denote the
probability measure under which Z0 = k. If k = 1, we also write P instead of P1.
We further assume [see also (1.4) and (1.5)]

p1 > 0, p0 + p1 < 1(2.1)

and the (X logX)-condition

EZ1 logZ1 <∞.(2.2)

These conditions will in fact be needed in the course of our subsequent
analysis. The first condition together with p0 > 0 ensures that all states i ≥ 1
are communicating for (Zn)n≥0 and, as a consequence, that all quasi-invariant
measures (see Section 3) have positive mass at each i ≥ 1.

The function r(k)= r(κ, q, k) now clearly takes the form

r(k)=
(
κ

q

)k
+Ek

(
τ∑

j=1

(
κ

q

)Zj j−1∏
i=0

(1− κZi )

)
(2.3)
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for k ∈N and 0 < κ ≤ q < 1. Since r(k) is also a functional of (Zτ−n)0≤n≤τ under
Pk , its asymptotic behavior, as k→∞, should be linked to the limit behavior of
(Zτ−n)0≤n≤τ underPk . Unfortunately, there is not just one limiting distribution but
infinitely many, essentially the Martin entrance boundary of (Zn)n≥0. This comes
out from potential theoretic considerations for subcritical GWP’s as described, for
example, in [3]. A short review of the most important facts from there will be
given in the following section. Here we confine ourselves to a sketchy description
in order to formulate our results.

Let Qk be the distribution of the time reversal (Zτ−n)0≤n≤τ under Pk . Any
probability measure Q in the closure of {Qk, k ≥ 1} with respect to weak
convergence defines a Markov chain (Wn)n≥0 on N0 with transition matrix
(qij )i,j≥0, say, and corresponds uniquely to a quasi-invariant measure η = (ηi)i≥1
for (Zn)n≥0 (see Section 3) via the relation

qij =




0, if i = j = 0,

ηjp
j
0 , if i = 0, j ≥ 1,

ηipij /ηj , if i, j ≥ 1,

(2.4)

where η is normalized such that
∑

j≥1 ηjp
j
0 = 1. In our setting, we are interested

in sequences kn, n≥ 1, approaching ∞ in such a way that r(kn) converges, as
n→∞. It suffices to consider sequences kn, n≥ 1, such that Qkn converges
weakly to some probability measure Q. We may identify Q with a quasi-invariant
measure η via (2.4). As shown in [2], these are exactly the extremal elements in
the convex set of all quasi-invariant measures (normalized as above), for which the
circle forms a natural parametrization. We thus identify the closure of {Qk, k ≥ 1}
with the set N

def= N ∪ (−1,0]. The Martin topology on N, rendering weak
continuity of x �→ Qx , is isomorphic to the topology generated by the metric ρ

defined in Section 3. Taking these facts for granted, assertion (2.5) of Theorem 2.1
below should no longer be too surprising.

THEOREM 2.1. Assume (2.1), (2.2) and 0 < κ < q . Then, for all x ∈ (−1,0],

lim
k
ρ→x

r(k)= r(x) def= E

(∑
n≥0

(
κ

q

)Wn(x)∏
i>n

(1− κWi(x)) |W0(x)= 0

)
,(2.5)

where (Wn(x))n≥0 is a Markov chain on N0 with distribution Qx . Moreover, for
each q ∈ (0,1), there exist infinitely many κ ∈ (0, q) such that r is not a constant.

THEOREM 2.2. Assume (2.1), (2.2) and κ = q and put ak
def= Ekτ . Then

lim
k→∞

q(k)
akqk

= 1.(2.6)
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3. Quasi-invariant measures and time reversal. We begin with a review of
some basic facts from potential theory for subcritical GWP’s as described in [3],
Chapter 2. The notation is kept from there as far as possible. So let (Zn)n≥0 be an
ordinary subcritical GWP with reproduction distribution (pj )j≥0 and reproduction
mean µ =∑

j≥0 jpj < 1. Let f be the generating function of (pj )j≥0, that is,
f (s)=∑

j≥0pj s
j , and let fn be its n-fold iterate.

Denote by pij the transition probabilities of (Zn)n≥0. A σ -finite measure
η= (ηj )j≥1 on N is called quasi-invariant or quasi-stationary for (Zn)n≥0 if

ηj =
∑
i≥1

ηipij

for all j ∈ N. Notice that we exclude the absorbing state 0 in the summation. The
generating function U(s)=∑

j≥1 ηj s
j of any such η is analytic for |s|< 1 and, if

normalized so that U(p0)= 1, satisfies the functional relation

1+U(s)=U
(
f (s)

)
.

Conversely, this relation characterizes quasi-invariant measures ([3], Theorem 2.2).
Since all states i ≥ 1 communicate and ηj =∑

i≥1 ηip
(n)
ij for all n ≥ 1, we infer

ηi > 0 for all i ≥ 1, as already mentioned in Section 2.
To describe all quasi-invariant measures for (Zn)n≥0, let ([3], Section 2.2,

equation (3))

U(s, t)
def= ∑

n∈Z

(
exp

(
Q(s)µn−t )− exp

(
Q(0)µn−t)), |s|< 1, t ∈ (−1,0].

Here

Q(s)
def= lim

n→∞µ−n
(
fn(s)− 1

)
, s ∈ [0,1].

Note that Q(f (s)) = µQ(s) ([3], equation (10), page 40) and Q(s) =Q(0)(1−
B(s)) ([3], equation (30), page 47), where B is the generating function

B(s)
def=∑

j≥1

bj s
j , bj = lim

n→∞P (Zn = j |Zn > 0).

The following result is shown in [2].

THEOREM 3.1. If EZ1 logZ1 < ∞, then the space of quasi-invariant
measures (up to positive scalars) is isomorphic to the set of probability measures
on the circle. The bijection η↔ ν can be stated as

Uη =
∫
(−1,0]

U(·, t)ν(dt),(3.1)

where Uη is the generating function of η.
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Recall that N=N∪ (−1,0]. Define the map ϕ: N→C by

ϕ(x)
def=



x

1+ x
e2πi logµ x, if x ∈N,

e2πix, if x ∈ (−1,0]
and then the metric ρ on N by

ρ(x, y) = |ϕ(x)− ϕ(y)|.
Notice that under this metric the closure of N is (−1,0] and that (−1,0] is
endowed with the spherical topology. The latter is not true for the metric given
in [3], page 69. An integer sequence (kn)n≥1 converges in the ρ-metric iff
(K(kn, ·))n≥1 converges pointwise on N0, where

K(i, j)
def= G(i, j)∑

k≥1 G(i, k)pk
0

is the Martin kernel and

G(i, j)
def=∑

n≥0

p
(n)
ij

is the Green kernel. Every such sequence (kn)n≥0 with a ρ-limit t ∈ (−1,0]
will be called a Martin sequence hereafter, and we write kn

ρ→ t [equivalent is
ϕ(kn)→ ϕ(t)]. The closure of {K(·, j), j ∈N} is isomorphic to (N, ρ). For such
a Martin sequence we further have

lim
n→∞K(kn, j)= lim

n→∞G(kn, j) = ηj (t),

where η(t) = (ηj (t))j≥1 is the quasi-invariant measure with generating function
U(·, t), t ∈ (−1,0] as defined above. For the first equality it should be noticed that∑

l≥1

G(kn, l)p
l
0 =

∑
m≥1

(
f kn
m (p0)− f kn

m (0)
)

= ∑
m≥1

(
f
kn
m+1(0)− f kn

m (0)
)= 1− f kn(0),

which converges to 1 as n→∞. Note also that η(t) is continuous in t ; see [3],
page 69.

The time reversal (Wn(t))n≥0, say, of (Zn)n≥0 with respect to any quasi-
invariant measure η(t) is a Markov chain with n-step transition matrix Qn(t) =
(q

(n)
ij (t))i,j≥0, n≥ 1, where

q
(n)
ij (t)

def=




0, if i = j = 0,

ηj (t)Pj (τ = n), if i = 0, j ≥ 1,

ηj (t)p
(n)
j i

ηi (t)
, if i, j ≥ 1.

(3.2)
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The associated Green function is denoted H(i, j, t) =∑
n≥0 q

(n)
ij (t) and satisfies

H(0,0, t) = 1, H(0, j, t) = ηj (t) for j ≥ 1 and H(i, j, t) = ηj (t)G(j, i)/ηi(t),
otherwise.

LEMMA 3.2. For any i1, . . . , im ∈ N and m ∈ N, the function fi1,...,im :
N∪ (−1,0]→ [0,1],

fi1,...,im(t)
def=
{
Pt(Zτ−m = im, . . . , Zτ−1 = i1, Zτ = 0), if t ∈N,

P
(
W1(t)= i1, . . . ,Wm(t)= im |W0(t)= 0

)
, if t ∈ (−1,0],

is continuous in the ρ-metric.

PROOF. Let first N � kn ρ→ t ∈ (−1,0] be a Martin sequence. Then, as
n→∞,

fi1,...,im(kn) = Pkn(Zτ−m = im, . . . , Zτ−1 = i1, Zτ = 0)

= ∑
l≥0

Pkn(Zl = im)pimim−1 · · ·pi10

= G(kn, im)
1

ηim(t)
qim−1im(t) · · ·q0i1(t)

→ qim−1im(t) · · ·q0i1(t)= fi1,...,im(t).

For a sequence (−1,0] � tn
ρ→ t ∈ (−1,0], the assertion follows from the

continuity of the ηj (t) in t . �

Notice that Lemma 3.2 states, in particular, that, for every Martin sequence

kn
ρ→ t ,

lim
n→∞Pkn(Zτ−m = im, . . . , Zτ−1 = i1, Zτ = 0)

= P
(
W1(t)= i1, . . . ,Wm(t)= im |W0(t)= 0

)
for all i1, . . . , im ∈ N and m ∈ N which explains the meaning of (Wn(t))n≥0 as a
time reversal of (Zn)n≥0.

4. Proof of Theorem 2.1. Let R: N×[0,1)×[0,1)→[0,∞] be the function
defined by

R(x,u, v)=




Ex

(
τ∑

n=0

uZn

n−1∏
i=0

(1− vZi )

)
, if x ∈N,

E

(∑
n≥0

uWn(x)
∏
i>n

(1− vWi(x)) |W0(x)= 0

)
, if x ∈ (−1,0].

We will prove the following important fact in this section.
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PROPOSITION 4.1. The function R is finite and continuous in the product
topology induced by (N, ρ)⊗ ([0,1)2, Euclidean).

The proof of this result is provided through a series of lemmas. Fix N ∈N and
define

RN(x,u, v)=




Ex

(
τ∑

n=τ−N
uZn

n−1∏
i=τ−N

(1− vZi )

)
, if x ∈N,

E

(
N∑
n=0

uWn(x)
N∏

i=n+1

(1− vWi(x)) |W0(x)= 0

)
, if x ∈ (−1,0].

Our program is to show first that RN is continuous for each N (Lemma 4.2)
and then in several steps that R − RN converges to 0 uniformly on compact sets
(Lemmas 4.3–4.5). This clearly implies the asserted continuity of R.

LEMMA 4.2. For each N ∈ N, the function RN is continuous in the product
topology induced by (N, ρ)⊗ ([0,1)2,Euclidean).

PROOF. Fix N ∈ N, take a sequence (xn, un, vn) convergent to (x,u, v) and
write

|RN(xn,un, vn)−RN(x,u, v)|
≤ |RN(xn,un, vn)−RN(xn,u, v)| + |RN(xn,u, v)−RN(x,u, v)|.

The second expression on the right-hand side tends to 0 by an application of
Lemma 3.1 because RN(·, u, v) is the expectation of a bounded function w.r.t.
the weakly convergent discrete probability distributions Px((Zτ−N, . . . ,Zτ ) ∈ ·).
As for the first, it is easy to show uniform convergence in xn. Indeed, if |u′ −u|< ε

and |v − v′|< ε, then

|RN(x,u
′, v′)−RN(x,u, v)| ≤ Ex

(
τ∑

n=τ−N
(u+ ε)Zn

n−1∏
i=τ−N

(
1− (v − ε)Zi

)

− (u− ε)Zn

n−1∏
i=τ−N

(
1− (v + ε)Zi

))

= Ex3ε,u,v(Zτ−N , . . . ,Zτ ),
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where 3ε,u,v is a bounded function defined in the obvious manner. Notice that
3ε,u,v ↓ 0 as ε ↓ 0. Hence, by another appeal to Lemma 3.1 and the monotone
convergence theorem,

lim
n→∞|RN(xn,un, vn)−RN(xn,u, v)|

≤ lim
ε↓0

lim
n→∞Exn3ε,u,v(Zτ−N, . . . ,Zτ )

= lim
ε↓0

E
(
3ε,u,v

(
WN(x), . . . ,W0(x)

) ∣∣W0(x)= 0
)= 0.

To show uniform compact convergence of RN to R, as N→∞, we first observe
that, for k ∈N,

|R(k,u, v)−RN(k,u, v)|

≤Ek

(
τ−N−1∑
n=0

uZn

n−1∏
i=0

(1− vZi )

)

+Ek

(
τ∑

n=τ−N
uZn

n−1∏
i=τ−N

(1− vZi )

(
1−

τ−N−1∏
i=0

(1− vZi )

))

(4.1)

≤Ek

(
τ−N−1∑
n=0

uZn

)
+NEk

(
1−

τ−N−1∏
i=0

(1− vZi )

)

≤NEk

(
τ−N−1∑
n=0

(uZn + vZn)

)

≤ 2NEk

(
τ−N−1∑
n=0

(u∨ v)Zn

)
,

where

1−
n∏

i=0

(1− ci)≤
n∑

i=0

ci(4.2)

for c0, . . . , cn ∈ [0,1], has been used for the penultimate inequality. In view of the
subsequent estimations, we note that (4.2) remains true if n=∞. For x ∈ (−1,0],
we further have
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|R(x,u, v)−RN(x,u, v)|
≤ ∑

n>N

E

(
uWn(x)

∏
i>n

(1− vWi(x)) |W0(x)= 0
)

+
N∑
n=0

E

(
uWn(x)

N∏
i=n+1

(1− vWi(x))

(
1− ∏

j>N

(1− vWj (x))

)
|W0(x)= 0

)
(4.3)

≤ ∑
n>N

E(uWn(x) |W0(x)= 0)+NE

(
1− ∏

j>N

(1− vWj(x)) |W0(x)= 0
)

≤ 2N
∑
n>N

E
(
(u∨ v)Wn(x) |W0(x)= 0

)
.

Since the latter inequality is easier to handle we first show the following result.

LEMMA 4.3. For all y,w < 1,

lim
N→∞ sup

x≤y; u,v≤w
|R(x,u, v)−RN(x,u, v)| = 0.

PROOF. Recalling from (3.2) the definition of q(n)0i , we obtain

N
∑
n>N

E
(
(u∨ v)Wn(x) |W0(x)= 0

)

≤N
∑
n>N

E
(
wWn(x) |W0(x)= 0

)

=N
∑
n>N

∑
i≥1

wiq
(n)
0i

=N
∑
n>N

∑
i≥1

wiηi(x)Pi(τ = n)

=N
∑
i≥1

wiηi(x)Pi(τ > N)

=N
∑
i≥1

wiηi(x)Pi(ZN > 0)

=N
∑
i≥1

wiηi(x)
(
1− f i

N(0)
)

=N
(
U(w,x)−U

(
wfN(0), x

))
≤ C(w,y)Nw

(
1− fN(0)

)
,
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where C(w,y)
def= maxx≤y;u≤w DuU(u, x) < ∞ as one can easily check. The

assertion now follows because N(1 − fN(0))→ 0 as N →∞; see [3], Sec-
tion 1.11. �

To further exploit (4.1) for our purposes, we have to consider the functions

gN(k,u)
def= Ek

(
τ−N−1∑
n=0

uZn

)
,

h(k,u)
def= ∑

n≥0

Eku
Zn1{Zn>0} =

∑
n≥0

(
f k
n (u)− f k

n (0)
)
,

k,N ∈N, u ∈ [0,1), which are related as follows. Let (Z′n)n≥0 be an independent
copy of (Zn)n≥0 with Z0 =Z′0 under each Pi .

gN(k,u)= Ek

(∑
n≥0

uZn1{τ>n+N}
)
=∑

n≥0

Eku
Zn1{Zn+N>0}

=∑
n≥0

Eku
ZnPZn(Z

′
N > 0)=∑

n≥0

Eku
Zn
(
1− f

Zn

N (0)
)

(4.4)

=∑
n≥0

(
f k
n (u)− f k

n

(
ufN(0)

))= h(k,u)− h
(
k,ufN(0)

)
.

LEMMA 4.4. The function h satisfies

sup
k∈N

h(k,u) ≤ m(u)(4.5)

for each u < 1, where m(u)
def= inf{n≥ 1 :fn(0)≥ u}. Furthermore,

sup
k≥1;u,v≤w

|h(k,u)− h(k, v)| < m(w+ ε)

(
2
(

w

w+ ε

)N
+ |u− v|

w
N

)
(4.6)

for all ε > 0, 0 <w < 1− ε and N ∈N.

PROOF. By using 0 ≤∑
n≥0(1 − f k

n (u)) <∞ for all k ∈ N and u < 1, we
obtain, with m=m(u),

h(k,u)=∑
n≥0

(
f k
n (u)− 1

)−∑
n≥m

(
f k
n−m

(
fm(0)

)− 1
)− m−1∑

n=0

(
f k
n (0)− 1

)

=∑
n≥0

(
f k
n (u)− f k

n

(
fm(0)

))+ m−1∑
n=0

(
1− f k

n (0)
)≤m

because the first sum in the previous line is negative.
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To prove (4.6), we note first that
h(k,u)=∑

n≥0

Eku
Zn1{Zn>0}

=∑
i≥1

ui
∑
n≥0

Pk(Zn = i)=∑
i≥1

uiG(k, i).

Define hN(k,u)
def= ∑N

i=1 u
iG(k, i) and choose an arbitrary ε > 0, w.l.o.g.< 1−w.

Then, for all k ∈N and u≤w,

h(k,u)− hN(k,u)=
∑
i>N

uiG(k, i)≤
(

u

w+ ε

)N ∑
i>N

(w+ ε)iG(k, i)

(4.7)

=
(

u

w+ ε

)N
h(k,w+ ε)≤

(
w

w+ ε

)N
m(w+ ε),

where (4.5) has been used for the final inequality. Moreover, for all u, v ≤ w and
N ≥ 1,

|hN(k,u)− hN(k, v)| = |u− v|
N∑
i=1

(
ui − vi

u− v

)
G(k, i)

= |u− v|
N∑
i=1

i−1∑
j=0

ujvi−1−j
G(k, i)(4.8)

≤ |u− v|
w

N∑
i=1

iwi−1
G(k, i)≤ |u− v|

w
Nm(w),

the last inequality again by (4.5). By combining (4.7) and (4.8) with a simple
application of the triangle inequality, we finally obtain (4.6). �

Going back to (4.1), we are now ready to prove the following result.

LEMMA 4.5. For all w < 1,

lim
N→∞ sup

k≥1;u,v≤w
|R(k,u, v)−RN(k,u, v)| = 0.

PROOF. Indeed, we infer, with the help of (4.1), (4.4) and the previous lemma,
that

lim sup
N→∞

sup
k≥1;u,v≤w

|R(k,u, v)−RN(k,u, v)|

≤ 2 lim sup
N→∞

N sup
k≥1;u,v≤w

∣∣h(k,u∨ v)− h
(
k, (u∨ v)fN(0)

)∣∣

≤ 2m(w+ ε) lim sup
N→∞

(
2N

(
w

w+ ε

)N
+ (u∨ v)(1− fN(0))

w
N2

)
= 0,

recalling that 1− fN(0) converges to 0 exponentially fast; see [3], Section 1.11.
�
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PROOF OF PROPOSITION 4.1. A combination of Lemmas 4.3 and 4.5 clearly
yields uniform compact convergence of the RN to R. Since the RN are further
continuous by Lemma 4.2, we conclude the continuity of R as claimed. �

In view of the main assertion of Theorem 2.1, namely, the nonconstancy of the
extinction probability ratio r(x) for suitable pairs (κ, q), two further lemmas are
needed.

LEMMA 4.6. The function η1(t), t ∈ (−1,0], is not a constant.

PROOF. Note first that

η1(t) = DsU(s, t)|s=0 =Q′(0)
∑
n∈Z

µn−t exp
(
Q(0)µn−t ).

Since our assumptions in Section 2 guarantee η1 to be everywhere positive, we
particularly have Q′(0) > 0. We make the change of variables x = µ−t , that is,
t =− logµ x. Defining

:(x,y)
def= ∑

n∈Z

(exyµ
n − eyµ

n

), y < 0 < x,

we obviously have

Dx:(x, y)=∑
n∈Z

yµnexyµ
n

and therefore

η1(− logµ x)=
Q′(0)
Q(0)

xDx:
(
x,Q(0)

)
.

Now suppose η1 is constant and infer

Dx:
(
x,Q(0)

)= c

x

for all x ∈ [1,1/µ) and some constant c < 0. The equality extends to all x > 0
because both sides are evidently analytic functions on the half plane of complex
numbers with positive real part. Integration together with :(1, ·)≡ 0 then implies

:
(
x,Q(0)

)= ∫ x

1
Dz:

(
z,Q(0)

)
dz= c logx(4.9)

for all x > 0.
Next, the functional equation

:(x,y)=:

(
xy

z
, z

)
+:

(
z

y
, y

)
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for all y, z < 0 < x together with (4.9) leads to

:(x,y)=:

(
xy

Q(0)
,Q(0)

)
+:

(
Q(0)

y
, y

)
= c log

(
xy

Q(0)

)
+:

(
Q(0)

y
, y

)

for all y < 0 < x.
For x = 1, we get

:

(
Q(0)

y
, y

)
= c log

(
Q(0)

y

)

and thereby

:(x,y) = c logx

for all y < 0 < x. Rewriting this result for U(s, t), we find that

U(s, t)=:

(
Q(s)

Q(0)
,µ−tQ(0)

)
= c log

(
Q(s)

Q(0)

)
,

which is impossible because the U(·, t) are pairwise distinct by Theorem 3.1. �

LEMMA 4.7. Given any q ∈ (0,1), the function R(·, u/q,u) is not constant
for all sufficiently small u ∈ (0, q).

PROOF. The function R(x,u/q,u) is analytic in u and R(·,0,0)≡ 1. Writing

R(x,u/q,u)= E

(∏
i≥1

(1− uWi(x)) |W0(x)= 0
)

+ u

q
E

(∑
n≥1

(
u

q

)Wn(x)−1 ∏
i>n

(1− uWi(x)) |W0(x)= 0

)

and noting that Wn(x)≥ 1 for all x ∈ (−1,0] and n≥ 1, it is easily verified that

DuR(x,u/q,u)
∣∣
u=0 =

1− q

q
η1(x).

Since η1(x) is not constant in x, the same holds true for DuR(x,u/q,u)

at u = 0. Consequently, picking two distinct values x1, x2 ∈ (−1,0] with
DuR(x1, u/q,u)|u=0 �=DuR(x2, u/q,u)|u=0, we must also have R(x1, u/q,u) �=
R(x2, u/q,u) for all sufficiently small u ∈ (0, q) [using R(x1,0,0)= R(x2,0,0)
and the continuity of DuR(x,u/q,u) in u]. This proves the lemma. �

PROOF OF THEOREM 2.1. Suppose 0 < κ < q . Since r(k) = (κ/q)k +
R(k, κ/q, κ) for k ∈ N [see (2.3)] and r(x) = R(x, κ/q, κ) for x ∈ (−1,0],
assertion (2.5) follows directly from Proposition 4.1. Moreover, we infer from the
previous lemma that r is not a constant for infinitely many, in fact all sufficiently
small κ ∈ (0, q). We have thus proved the theorem. �
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5. Proof of Theorem 2.2. We begin with an auxiliary lemma which gives an
asymptotic estimate of the expected extinction time ak =Ekτ as k→∞.

LEMMA 5.1. Let (Zn)n≥0 be a subcritical GWP with reproduction mean
µ> 0 and EZ1 logZ1 <∞. Then

lim
k→∞

ak

log1/µ k
= 1.

PROOF. Recall from [3], Section 1.11, that fn(0) = 1 − cnµ
n with positive

constants cn ∈ [0,1] converging to some c > 0. It is the positivity of c where the
(X logX)-condition enters. Since Pk(τ > n)= Pk(Zn > 0)= 1− f k

n (0), we infer

ak

log1/µ k
= 1

log1/µ k

∑
n≥0

Pk(τ > n)

= 1

log1/µ k

∑
n≥0

(
1− f k

n (0)
)

= 1

log1/µ k

∑
n≥0

(
1− (1− cnµ

n)k
)
.

Fix any ε ∈ (0,1), put n∗ = n∗(ε, k)
def= (1 − ε) log1/µ k, n∗ = n∗(ε, k) def= (1 +

ε) log1/µ k and split up the sum into three parts, S1(k), S2(k) and S3(k), ranging
from 0 to n∗ − 1, from n∗ to n∗ − 1 and from n∗ to ∞, respectively. Note that
µn∗ = k−(1−ε) and µn∗ = k−(1+ε). The three sums will be considered separately.

Choose m such that infn≥m cn ≥ c/2. Then we have, for S1(k),(
1− ε− m

log1/µ k

)(
1− (1− cµm/2)k

)

≤ 1

log1/µ k

n∗−1∑
n=m

(
1− (1− cµn/2)k

)≤ S1(k)

≤ 1

log1/µ k

n∗−1∑
n=0

(
1− (1−µn)k

)≤ (1− ε)
(
1− (1−µn∗)k

)

= (1− ε)
(
1− (1− k−(1−ε))k

)≤ (1− ε)
(
1− exp(−2kε)

)
,

where the last inequality holds for sufficiently large k using log(1− x)≥−2x for
all positive x sufficiently close to 0. Consequently,

lim
k→∞S1(k) = 1− ε.
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For S2(k) we just note that 0 ≤ S2(k) ≤ 2ε. Finally, we obtain for S3(k), if k is
sufficiently large,

0 ≤ S3(k) ≤ 1

log1/µ k

∑
n≥0

(
1− (1−µn∗+n)k

)

= 1

log1/µ k

∑
n≥0

(
1− (1− k−(1+ε)µn)k

)

≤ 1

log1/µ k

∑
n≥0

(
1− exp(−2k−εµn)

)

≤ 2

kε log1/µ k

∑
n≥0

µn,

where 1− e−x ≤ x for all x has been used for the final inequality. Hence,

lim
k→∞S3(k)= 0.

Putting the results together, the assertion of the lemma easily follows because
ε ∈ (0,1) was arbitrary. �

PROOF OF THEOREM 2.2. We first note that

q(k)
akq

k
= r(k)

ak
= 1

ak

(
1+Ek

(
τ∑

j=1

j−1∏
i=0

(1− qZi )

))

because κ = q . We thus have to show

lim
k→∞

1

ak
Ek

(
τ∑

j=1

(
1−

j−1∏
i=0

(1− qZi )

))
= 0.

Fix an arbitrary ε ∈ (0,1), put N(k)
def= �εak� and split up the sum under the

expectation into the sum from 1 to τ − N(k) − 1 [of course, equal to 0 if
τ −N(k)≤ 0] and the sum from τ −N(k) to τ . As for the latter, we immediately
have

0≤ lim sup
k→∞

1

ak
Ek

(
τ∑

j=τ−N(k)

(
1−

j−1∏
i=0

(1− qZi )

))
≤ lim

k→∞
N(k)+ 1

ak
= ε.

Turning to the first sum, we use once more the inequality 1 − ∏n
i=0(1 − xi) ≤∑n

i=0 xi for numbers x1, . . . , xn ∈ [0,1] and obtain [with (Z′n)n≥0 as in (4.4)]

1

ak
Ek

(
τ−N(k)−1∑

j=1

(
1−

j−1∏
i=0

(1− qZi )

))

≤ 1

ak
Ek

(
τ−N(k)−1∑

j=1

j−1∑
i=0

qZi

)
≤ 1

ak
Ek

(∑
j≥1

j−1∑
i=0

qZi1{Zj+N(k)>0}
)
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= 1

ak

∑
i≥0

∑
j>i

Ek

(
qZiPZi

(Z′j−i+N(k) > 0)
)

= 1

ak

∑
i≥0

∑
j>N(k)

Ek

(
qZi

(
1− f

Zi

j (0)
))

= 1

ak

∑
i≥0

∑
j>N(k)

(
f k
i (q)− f k

i

(
qfj (0)

))
.

Now a first-order Taylor expansion of f k
i (qfj (0)) about q together with the

monotonicity of fi and f ′i gives, for some zij between qfj (0) and q ,

f k
i

(
qfj (0)

)= f k
i (q)− kqf k−1

i (zij )f
′
i (zij )

(
1− fj (0)

)
≥ f k

i (q)− kqf k−1
i (q)f ′i (1)

(
1− fj (0)

)
.

Hence, the above estimation can be continued as

≤ kq

ak

(∑
i≥0

f k−1
i (0)f ′i (1)

)( ∑
j>N(k)

(
1− fj (0)

))
(5.1)

≤ kq

ak

(∑
i≥0

f k−1
i (q)µi

)( ∑
j>N(k)

2cµj

)
.

Now the second sum in (5.1) is clearly bounded by a constant times µε log1/µ k =
k−ε for all k [since N(k)= �εak�  ε log1/µ k by Lemma 5.1], while the first can
be bounded by a constant times k−(1−ε) for sufficiently large k. To see the latter,
split up the first sum as( �(1−ε) log1/µ k�∑

i=0

+ ∑
i>�(1−ε) log1/µ k�

)
f k−1
i (q)µi.

Observe that ∑
i>�(1−ε) log1/µ k�

f k−1
i (q)µi ≤ µ(1−ε) log1/µ k

1−µ
= k−(1−ε)

1−µ
.

Since, for all i0 ≤ i ≤ (1− ε) log1/µ k, i0 sufficiently large (independent of k), all
k sufficiently large and some Q(q) ∈ (−1,0) (see [3], Section 1.11),

f k−1
i (q)≤ (1+Q(q)µi/2

)k−1

≤ (1+Q(q)µ(1−ε) log1/µ k/2
)k−1 ≤ exp

(
(k − 1)εQ(q)/2

)
,

we further have
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�(1−ε) log1/µ k�∑
i=0

f k−1
i (q)µi ≤ i0f

k−1
i0

(q)+ (1− ε) log1/µ k exp
(
(k − 1)εQ(q)/2

)

for all k sufficiently large.
Putting the pieces together, we finally conclude in (5.1) that

kq

ak

(∑
i≥0

f k−1
i (q)µi

)( ∑
j>N(k)

2cµj

)
≤ const

ak
,

which converges to 0 as k→∞. �
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