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Abstract

Starting from a central limit theorem for geometric random walks we give an ele-
mentary construction of couplings between Brownian motions on Riemannian manifolds.
This approach shows that cut locus phenomena are indeed inessential for Kendall’s and
Cranston’s stochastic proof of gradient estimates for harmonic functions on Riemannian
manifolds with lower curvature bounds. Moreover, since the method is based on an asymp-
totic quadruple inequality and a central limit theorem only it may be extended to certain
non smooth spaces which we illustrate by the example of Riemannian polyhedra. Here
we also recover the classical heat kernel gradient estimate which is well known from the
smooth setting.
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1. Introduction. The Riemannian coupling by reflection technique by Kendall [Ken86]
was used by Cranston [Cra91] to give an elegant stochastic proof of L>°-gradient estimates
for harmonic functions on Riemannian manifolds with lower Ricci curvature bounds. The
stronger pointwise bounds due to Yau [Yau75] are usually proved by analytic arguments
based on the fundamental Bochner-Lichnerowicz formula which is difficult to transfer to
non smooth (cf. [CH98]) or even non Riemannian situations. Therefore one may turn to
the more flexible stochastic methods for the analysis of second order differential operators
on non smooth or metric measure spaces (X,d, m) in terms of their associated Markov
processes. This general agenda constitutes the background motivation for the present
attempt to simplify Cranston’s stochastic proof of gradient estimates whose beautiful geo-
metric content is hidden behind a sophisticated and, as it turns out, dispensable technical
superstructure.

The basic idea behind the coupling by reflection method on Riemannian manifolds (M, g)
is to construct a stochastic process = on the product M x M such that

i) each factor Z; = m1(2) and E9 = m2(E) is a Brownian motion on (M, g)

ii) the compound process d(Z) of Z with the intrinsic distance function d on M is
dominated by a real semi-martingale £ whose hitting time at zero Tn(§) can be
estimated from above.

The standard construction of = put forth in [Ken86] uses SDE theory on M x M and
hence requires a certain degree of smoothness on the coefficients. Unfortunately these
coeflicients typically become singular on the diagonal and, more severely, on the cut locus
Cut(M) C M x M. Even if cut locus phenomena in geometric stochastic analysis have
been addressed occasionally (cf. [CKM93, Wan94, MS96]) they remain a delicate issue
especially for Kendall’s coupling method.

We overcome these difficulties by introducing a more intrinsic construction of the cou-
pling process on M x M which yields the essential coupling probability estimate irrespective
if the manifold (M, g) is Cartan-Hadamard or not. Moreover, a brief analysis of the proofs
reveals that except an asymptotic quadruple inequality for geodesics in (M, g) and a central
limit property for random walks no further regularity of (M, g) seen as a metric measure
space (X,d,m) is required. Hence, the method may be applied in more general situations
as we indicate by the example of certain Riemannian polyhedra. Finally we point out that
the simpler coupling by parallel transport method works well also in the polyhedron case
from which we deduce gradient estimates for the corresponding heat semigroup.

Acknowledgments: To Karl-Theodor Sturm for suggesting the problem.
2. Preliminaries. 2.1. Riemannian Central Limit Theorem [Jor75]. Let (M,g)
be a smooth Riemannian manifold of dimension n and fix for every x € M an isometry

d,:R"” = T, M such that the resulting function
O(): M — OM),®(x):R* S T,M VreM

is measurable. Let (£)ren be a sequence of R™-valued and independent random variables
defined on some probability space (€2, O, P) whose distribution equals the normalized
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uniform distribution on S™"!. A geodesic random walk (E;")ken with step size € > 0
and starting point x € M is given inductively by

=6T __
g =T

Skt = expzos (€Paceit),

where exp is the exponential map of (M, g). Then one may consider the sequence of

subordinated process é”,g (t) == EZ E{)Ez for k£ € Ny, where 73 is a Poisson jump process

on N with parameter k. For k fixed Ef(t) is a (time homogeneous) Markov process with
transition function

P € A157(s) = y) = e S ey )

7!
i>0
=: (PF1a)(y)

with pe(2, A) = fgn1 g, a(exp, (€0))df and p* = pro -+ o p. The generator of =k, or

equivalently of the semigroup (P} )i>0, is therefore given by

1 k—oo
Arflx) =k exp,(—=0)df — f(x))) — Af(x 1
kf (@) (Sgilf( P (\/E )df — f(x))) f(z) (1)

where Af(x) = 1/2nAf(x) with the Laplace-Beltrami operator A f(x) = trace(Hess f)(x)
on (M, g), see [Blu84, vR02]. Using (1) and Kurtz’ semigroup approximation theorem it
is easy to show that

Ij’tk—>Pt for k — o0

A:PM A

t/2n
on (M,g) after a linear time change ¢t — t/2n. Thus weak convergence for the family
=F to a (time changed) Brownian motion =% starting in z is obtained from standard
arguments showing that the sequence of distributions Z* is tight on the Skorokhod path

space Dg_ (M).

in the strong operator sense where P, = ¢! is the heat semigroup PM = ¢!
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2.2. Coupled Random Walks. Instead of using the SDE approach to the construction of
a coupling of two Brownian motions on (M, g) we follow the lines of the Markov chain
approximation scheme for solutions to martingale problems for degenerate diffusion opera-
tors in the sense of [SV79] where the approximating processes are coupled geodesic random
walks on M x M.

Let D(M) = {(x,x) |z € M} be the diagonal in M x M. Then for all z, y € M x
M\ D(M) choose some minimal geodesic 7z, : [0,1] — M connecting = and y and fix a
function

D(.,.): M x M\ D(M) — O(M) x O(M)
1 (z,y) =m0 B(z,y) : R S T, M
Dy(z,y) =m0 B(z,y) : R™ = T, M

with the additional property that

S L) B S vy 2 C) BT ’
Qi (z,y)er = ||’Yzy(0)||’¢2( yy)er 17y (0) ] fr#y )

where e; is the ¢-th unit vector in R”. On the diagonal D(M) we set
O(z, 1) := (¢(x), ¢(x)) € O (M) X Ox(M) ()
where ¢ : M — O(M) is some choice of bases as in the previous paragraph.

In the existence and regularity statement for a possible choice of ® below the set
Cut(M) C M x M is defined as the collection of all pairs of points (x,y) which can be
joined by at least two distinct minimal geodesics, hence Cut(M) itself is symmetric and
measurable.

Lemma 1. There is some choice of a minimal geodesic 7y, (parameterized on [0,1]) for
each (x,y) € M x M such that the resulting map v : M x M — C*([0,1], M), (2,y) — Vay
is measurable, symmetric, i.e. Ygu(t) = Yyo(1 —t) for all t € [0,1], and continuous
on M x M\ (D(M) U Cut(M)). Furthermore, for any measurable frame map ¢ : M —
T(O(M)) it is possible to find a measurable function ® : M x M — O(M)xO(M) satisfying
the conditions (x) and (+p) above and which is continuous on M x M\ (D(M)U Cut(M)).

Proof. Suppose first that we found a measurable symmetric function v : M x M —
C1([0,1], M) as above and let ¢; € T'(O(M)), i = 1,2 be two arbitrary continuous frame
maps on M. For (z,y) € M x M \ D(M) we construct a new orthonormal frame on
T, M&T,M by (z,y) = {Pny/ H'YacyH 711}%7 YT, ’Yyac/ H’Yyac“ ,77/157 ..., 95} out of the frame
{d]l (.’E),

¥a(y)} via Schmidt’s orthogonalization procedure applied to the vectors ;(ex), k =
1,...,n in the orthogonal complements of 7, and ¥y, in T, M and TyM respectively.
Since the maps d,,_, and d;,,_, : C'([0,1], M) — TM are continuous and the construc-
tion of the basis ® in T, M & T, M depends continuously on the data {1, 2}, ¥4, and
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Yye it is clear that the map ® inherits the regularity properties of the function 7 on
M x M\ D(M). Since D(M) is closed in M x M and hence measurable any extension of
® by a measurable (¢(.),¢(.)) as above on D(M) yields a measurable map on the whole
M x M. This proves the second part of the lemma.

Thus it remains to find a map v as desired. In order to deal with the symmetry
condition we first introduce a continuous complete ordering > on M (which can be obtained
as an induced ordering from an embedding of M into a high dimensional Euclidean space
R! and some complete ordering on R!) and restrict the discussion to the closed subset
D_(M) = {(z,y) |z >y} C M x M endowed with its Borel o-algebra which is the trace of
B(M x M) on D_(M). We define a measurable set-valued map I' : D_ (M) — 2" (10:11.0)
as follows: for each € > 0 choose some e-net P¢ = {pf|i € N} in D_(M) and choose some
minimal geodesic vpe b for each pair of points p;, p; € P*. Arrange the set of pairs (ps, pj)
into a common sequence {(p§, ,p5, ) |k € N} and let v : D_(M) — C'([0,1], M) be the
map defined inductively by

V(s y) = Yo v, for (2,y) € Bae(pi,, pj,)
k
pe - for (,y) € Bae(p5, .05, ) \ | Bae(®5, 15,)

Jk+1
=0

€

Y (x’y) = fYPEk_H
It is clear from the definition that the functions ¢ are measurable and, moreover, using the
geodesic equation in (M, g) together with the Arzela-Ascoli-theorem it is easy to see that
for each (z,y) € D_(M) the set of curves {75, }e>o are relatively compact in C*([0,1], M).
Trivially any limit point of {'y;y}e>o for € tending to zero will be a minimal geodesic from
x to y. Let us choose a priori some sequence €, — 0 for k& — oo then we define the set
valued function T : D_(M) — 20 (01M) for (z.4) € D_(M) as the collection of all
possible limit points of T (xz,y), i.e. T': M x M —C C*([0,1], M) with

o) = {1

3 subsequence € and gy € I (z,9) :
Yokl = Yay in CH([0,1], M) for k' — oo

The fact that we can find a measurable ’selector’, i.e. a measurable map v : D_(M) —
C1([0,1], M) with y(z,y) € I'(z,y) follows from a measurable selection theorem as for-
mulated in the subsequent lemma. Furthermore, the uniqueness of 7,, and compactness
arguments imply that any such selector obtained from the map I" above must be contin-
uous on D_ (M) N (Cut(M) U (D(M)). Tt is also clear that ~,, is the constant curve in
x for all x € M and hence we may extend our chosen 7 from D_(M) continuously onto
the whole M x M by putting vy, (t) := vy (1 —t) if (z,y) € D_(M). This proves the first
assertion of the lemma and the proof is completed. O

Lemma 2. Let (X,8) be a measurable and (Y,d) be a complete separable metric space
endowed with its Borel o-algebra B(Y). Let furthermore f, : X — Y be a sequence of
measurable functions which are pointwise relatively compact, i.e. for all x in X the set
{fr(2)}ren is relatively compact in' Y. Let the set valued map F : X — 2V be defined by
pointwise collecting all possible limit points of the sequence fr. Then there is a measurable
function f: X =Y with f(x) € F(z) for all x € X.
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Proof. Since the set F(x) is obviously closed for any z in X it remains to check the
measurability of F, i.e. we need to show that F~1(0) := {z|F(z) N O # ()} is measurable
in X for any O C Y open. Since any open O C Y can be exhausted by countably many
set of the type Bs(y) with § > 0, y € Y we may replace O by Bs(y) in the condition
above. But using the pointwise compactness of the sequence fr and a diagonal sequence
argument it is easy to show that

Pt (m> = m limsup f, * (Bs/(y)) -

§'>5 k—o00

Choosing some sequence &) \, § we see that in fact F~* (Bg(y)> is measurable. Hence we

may apply the measurable selection theorem of Kuratowksi and Ryll-Nardzewski to the
function F' which yields the claim. O

We now take two independent sequences (£x)ken and (nx)ren of R™-valued i.i.d. ran-
dom variables with normalized uniform distribution on S"~! and define a coupled geodesic

@) _ (z6@0) gol)

random walk =}’ Bk By ) with step size e and starting point (x,y) in M x M

inductively by
=Y = (2,y)
and if 2% € M x M\ D(M):

=" = (o0, spomy (@1 T)en)

exp i o) @25 )] @
if 20 ¢ D(M):

i = (exp,, zomy feo(m () gksl,

eXpm(EZ“'y))[ed)(Wl(EZ(w’y)))nk-&-l]) (3)

where 7;, i = 1,2 are the projections of M x M on the first and second factor respectively.

We have two canonical possibilities to extend EZ’(W’) to a process with continuous time

parameter ¢t € R, namely

i) by geodesic interpolation é:’(x’y),

ii) by Poisson subordination é;%;’ ).
In particular, choosing € = 1/ Vk and A = k in ii) for k¥ € N one obtains a sequence of
Markov processes Ef (=9) — Ei}f E{)E’(I’y) on M x M with transition function

P(EHEY (1) € A x B|EHEY)(s) = (u,v))

(s t—s)k)t
_ )kz%ﬂl/ﬁ((uyv%AxB)
i>0
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where the kernel y. : M? x B(M?) — R is given by

J[ I'A (expu (eééu,v)e))llB (expu (eq)%u,v)e))de
SplCRe
if (u,v) € D(M)*
te((u,v), A x B) =
f 14 (exp,(€8))dd-  f 15 (exp, (e0))do
sr—tcT,M sp—tcT, M
else.

= ko (z,y)

The generator of the semigroup (P )i>0 induced by =F(@) is

Ly = k(py 5 — 1d).

3. Coupling Central Limit Theorem. The following lemma is a partial but for our
aim sufficient characterization of any limit of the sequence of operators (Ly)ren-

Lemma 3. Let F': M x M — R be a smooth function. Then
LiF(u,v) — L.F(u,v) Y(u,v) € M x M, locally uniformly on D(M)°
for k — oo, where the operator L, = LM-® is defined by
L(fog)=Af g+ f©Ag+1pun-(V/,Vg)e (4)

with A =1/2n AM and the bilinear form (., ) (s : TeM x TyM — R

1 _
(v, V><I>(z,y) = E@)l 1(x7y)Ua o, 1(33’ y)V)rn

whenever F: M x M — R is of the form F = f ® g for smooth f, g : M — R. Moreover,
inthe case F=f®1 or F=1®gqg one finds Lyf®1 —> Af®1 and Lyl ® g — 1 ® Ag
locally uniformly on M x M for k tending to infinity.

Proof. Suppose first that (u,v) € D(M)° and let U be some neighborhood with (u,v) €
U C D(M)°. Now for any (u',v") € U the Taylor expansion of F' = f ® g about (u/,v’)
and the definition of the exponential map yield
1 1
expy (=Pt on0))g(exp, (—=®2, ,0)) = f(u')g(v'

1 1
+ ﬁf(%/)(Vg(v/), O o) 0) 1,001 + ﬁg(v’)Wf(U'% Dl oy 0) 1, 11

1
+ E(Vf(u’), Dy O, ar - (Vg(0'), BTy 0) 1, 0
1
—+ ﬁf(ul) HGSS gu’ ((b%u/ﬂ//)a’ @%u/7v/)0)
1 1
+ %g(v/) Hess fu/((I):(Lu/’v/)g, q)%u’,v’)g) + Ou/’v,(E)
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where o(.) is a ”little 0” Landau function. In fact, o, . () can be replaced by some
uniform oy () due to the smoothness of the data (M g) and the function F. Inserting
this into the deﬁmtlon of Ly gives

Li(F)(',v") = Af(u')g(v') + f(u) Ag(v')

1 . (5)
+n<<1>1 (W, )V f('), @57 (u', ") Vg(v'))rn + Ju(

)

| =

with dy (1) — 0 for k — oo because

fAVFW), @y O, md0 = f (Vg(v'), @3, 1 0)1, ard0 = 0

Snfl Sn— 1
1
_Snj(:l Hess fu ((p(u/ /)0 @(u/ 1)/)0)d0 = %Af('ll/)
1
§Si1 Hess g, ( w00 <I>(u n0) = %Ag(v’)
.:F <vf(u/)7q)%u’,'u’)0> <v-g( ) (u/ ’)9>T M
Snfl

= (@ ()T, B3 ) T

Now if (u,v) € D(M) by definition of Ly the coupling term (Vf,Vg)s does not appear
and thus the claim is proved. O

The operator L. has two irregular properties, one being its degeneracy, i.e. the second
order part acts only in n of the 2n directions, and the other one being the discontinuity
of the coefficients on D(M) U Cut(M). Both features together cause problems for the
definition of a semigroup e*’c via the Hille-Yosida theorem. Therefore we confine ourselves
to the construction of a solution = to the martingale problem for L. in a restricted sense
by showing compactness of the laws of the sequence (Z. k(= y)) % on the space Dy, (M x M)
of cadlag paths equipped with the Skorokhod topology.

Theorem 1 (Coupling Central Limit Theorem). The sequence of the laws of (”k (@, y))

is tight on Dy, (M x M) and any weak limit of a converging subsequence (Z. Sl (m’y)) risa

solution to the martingale problem for L. in the following restricted sense: let

(Q®, P, (E22@) 20) = (Dg, (M x M), w-lim(EX ), P, () 40)

T,y
Y k' — o0

denote the canonical process on M x M induced from a limit measure w- hmk/ﬁoo("k (@, y)) P
on Dy, (M x M) and the natural coordinate projections ms : Dp, (M x M) — M x M,
then for all F € C§°(M x M\ (D(M)UCut(M))), F=f®1 or F =1® g with smooth
fy9: M — R the process

t
F(ngyy)) - F(;(;, y) — /LCF(ng’y))dS
0

418
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is a Pro, martingale with initial value 0. In particular, under Pp5 both marginal processes
(Bl i= m)s>0 and (B2 := 72)s>0 are Brownian motions on (M, g) starting in x and y

respectively.

Any probability measure on Dg, (M x M) with the properties above is called a solu-
tion to the (restricted) coupling martingale problem. We do not claim uniqueness nor a
Markov property. Note that we circumvented the problem of the cut locus by the choice
of admissible test functions F'.

Proof of theorem 1. The proof is more or less standard. Concerning the tightness part we
may engage the arguments of chapter 8 in [Dur96], for instance, with small modifications
where we use the following tightness criterion for probability measures on the Sorokhod

path space Dr, (X) with (X, d) = (M xM,d) and d((z1,y1), (z2,¥2)) = \/d2(93171’2) + d%(y1, y2)
(cf. thm. 15.5 in [Bil68] and thm. VI.1.5 in [JS87]).

Lemma 4 (Tightness criterion on Dy, (X)). Let (X,d) be a complete and separable
metric space and let (Q, P, (E4)i>0)1en be a sequence of cadlag processes on X. Then the
following condition is sufficient for tightness of (E').(P,) on Dg, (X): For all N € N, and
1, € > 0 there are xg € X, lp € N and M, § > 0 such that

i) Py(d(zo,Zh) > M) < e foralll >l
i) Py(w(E,8,N)>n) <e forall>Ily
with w(El7 67 N)(w) *= SUPo<s, t<N, [s—t]|<6 d(E‘.ls(w)a Ef‘,(w))

We omit the details which can be found in [vR02] and turn to the martingale problem for

L. Since Lj generates the process (ék(xy)) this is also true for its realization (Dg, (M x

M), (E.k’(x’y))*P, (ms)s>0) on the path space and which is in this case equivalent to

t
F(m) — F(z,y) — / LpF(my)ds is a (EF"Y)), P-Martingale (6)
0

for all F € Dom(Ly) D C3(M x M). If F € C¢(M x M \ (D(M) U Cut(M))) by
lemma 3 ||LyF — L.F||,, — 0 for £ — oo and thus by a general continuity argument (cf.
lemma 5.5.1. in [EK86]) we may pass to the limit in the statement above provided &’ is
a subsequence such that w- limkzﬂoo(ék/’(z’y))*P exists. Finally, the assertion concerning
the marginal processes follows either from [Jgr75] or from putting F = 1® f and F = f®1
in (6) respectively, in which case one may pass to the limit for &’ tending to infinity without

further restriction on the support of f. O

For the derivation of the coupling estimate it is easier to work with the continuous

interpolated processes (ék(xy)) 1 as approximation of a suitable limit =Y Therefore we

need the following

—_

Corollary 1. The sequence of processes Eh(@9) g tight. For any subsequence k' the

sequence of measures (é.k/’(x’y))*P on Dy, (M x M) is weakly convergent if and only if
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(é.k/’(m’y))*P is, in which case the limits coincide. In particular the family ((ék(zy))*P)k
is weakly precompact and any weak accumulation point is a solution of the (restricted)

coupling martingale problem, which is supported by Cr, (M x M).

Proof. By construction of (ék(ry)) and (ék(“’)) we have éf’(x’y) = é’z(f(yg for all t >
k’T S
0, keN,ie.
=k,(x, =k, (x,
(= ( y)) = (2 ( I/))o@k

with the random time transformation Og(s,w) = %Tk(s,w). Moreover, every process

(ék(my)) has continuous paths, so that

supp (V,g lim(éf“'aw))*P) C Cg, (M x M)

for every possible weak limit of a converging subsequence (é.k,’(x’y))*P and since the se-
quence O, converges to Idg, weakly, the continuity argument in section 17. of [Bil68] can
be applied, giving

w-lm(EY @), P = w-lim(EY V), p (7)

k' — o0 k’—o0

for that specific subsequence, i.e. we have shown that for any subsequence k' — oo
(EF) 5 0) = (EFC) =),

To prove the other implication note first that the trivial estimate

- ~ 1
d(Ef’(z’y),Ef’_(x’y)) < \/; P-a.s.

implies the almost sure continuity of the coordinate process 7. w.r.t. any weak limit of

(é.k’(z’y))*P. We may also write

(ENEY o0, = (1Y) 0 04 (0))

where ©(s,w) = inf{t > 0t > O(s,w)} is the (right continuous) generalized upper
inverse of Oy which converges to Idg, weakly, too. Since H@k(gk) — IdR+Hoo < % and
(ék(zy)) is a continuous process, it is easy to see that (ék(zy)) is tight on Cr, (M x M) if

and only if (ék(ry)) 0 ©4(Oy) is tight on Dg, (M x M) and thus we may argue as before.

Finally, the compactness itself comes from theorem 1 as well as as the characterization
of any limit as a solution to the (restricted) coupling martingale problem via equation

(7). O

3.1. Coupling Probability and Gradient Estimates for Harmonic Functions. The curva-
ture condition on the Riemannian manifold (M, g) enters our probabilistic proof of gradient
estimates through the following lemma, in which we confine ourselves to the only nontrivial
case of strictly negative lower (sectional) curvature bounds.
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Lemma 5. Let (M™,g) be a smooth Riemannian manifold with sec M > —r < 0 and let
z,y € M, x #y, be joined by a unit speed geodesic ¥ = 7yyy. Then for any &, n € S C
T.M

d(exp, (t€), exp, (t) ,n)) < d(z,y) + t(n — &4(0)) 1, m + 04 (£*)

%*%((lﬁ? It Pen(d(e, ) — 200, €50, a0)

(®)

with ¢, (t) = cosh(y/kt), s(t) = sinh(V/kt), where [/ denotes parallel translation on

(M, g) along v and £+, n* denote the normal (w.r.t. ¥(0)) part of & and n respectively.

In particular, if ¢+ = n* and g” = _n”

d(exp, (t€), exp, (t/,n) < d(z,y)
— 2t(&,5(0)) 7, mr + 2VEIE P + 0, (7).

Note that in the statement above the emphasis lies on the fact that the estimates (8)
and (9) remain true also in Cut(M).

9)

Proof. The proof can be found in any textbook on Riemannian geometry as long as y is
not conjugate to x along v and is based on the second variation formula for the arc length
functional. In the case that y is conjugate to x along « one may show (8) by subpartitioning
v =1 % Y2 % -+ % 7y into geodesic segments {~;} without conjugate points. By triangle
inequality the individual estimates (8;) along {;} can be reassembled to yield (8) along
Yzy- The proof also shows that the error term oy(tQ) in (8) may be replaced by a uniform
error estimate o(t?) as long as x # y range over a compact K C M x M \ D(M). For the
remaining few details the reader is referred to [vR02]. O

In order to apply the previous lemma to the the sequence (é?’(z’y))l we require in
addition to condition (x) on page 11 that ®(.,.) satisfies

Dy (u,v) 0 @7 (u,v) = /., on (T, M) v (%)

Yuv

for all (u,v) € M x M\ D(M) where 7, corresponds to some (w.r.t. u, v € M x M\ D(M)
symmetric) choice of connecting unit speed geodesics. A function ®(.,.) satisfying (x) and
(x%) realizes the coupling by reflection method (cf. [Ken86, Cra91]) in our present context.
In order to see that we actually may find at least one such map ®(.,.) which is also mea-
surable we may proceed similarly as in the proof of lemma 1: from a given measurable
and symmetric choice v, : M x M — C([0,1], M) and a continuous frame ¢ € T'(O(M))
we obtain ®4(x,y) by an appropriate rotation of ¥(z) such that ®1(x,y)er = Yuy/ Y2yl
Dy (x,y) is then obtained from P (z,y) by parallel transport and reflection w.r.t. the di-
rection of 7,,. Since these operations depend continuously (w.r.t. to the C''-norm) on
the curve 7.y, ®(.,.) inherits its measurability and continuity properties from the map
v M x M — C([0,1], M).

For § > 0 let us introduce the functional Tp 5 : Cr, (M x M) — R

Tps(w) =inf{s > 0| d(w},w?) < §}
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with w! = m;(ws), i = 1,2 being the projections of the path w onto the factors. Then the
coupling time Tp = Tp o is the first hitting time of the diagonal D(M) C M x M.
Theorem 2 (Coupling Probability Estimate [Ken86]). Let ® be chosen as above
and Sec(M) > —k < 0. Then for arbitrary x,y € M and any weak limit P, =
w-1 hm( &l (@) P on Cr, (M x M) the following estimate holds true:

P (Tp = 00) < ~

z,y

kd(z,y).

Proof. For x = y there is obviously nothing to prove. So let (z,y) ¢ D(M) and assume
first that M is compact. For § > 0 let Tll:)’5 10— RU{oo}

Th 5(w) = inf{t > 0] d(EL@Y (W) < 8} = Tp 5 0 (22 (w)

be the first hitting time of the set Ds = {(z,y) € M x M|d(z,y) < 6} for the process
(éi,(m,y))szo’ where (2,0, P) is the initial probability space on which the random i.i.d.
sequences (§)ien (and (1;);en) are defined. By the choice of ® for (u,v) € D(M)¢, § €
Sn~1 c R™ and

(uf,v%) = (exp, (e910), exp, (eP20))

we obtain from lemma 5

d(uf,v) < d(u,v) — 2eX + Vre2x + o(€?)

where A = pr,6 is the projection of # onto the first coordinate axis and x = HGJ-H;H is
the squared length of the orthogonal part of . This estimate inserted into the inductive
definition of ( ’y))tzo yields in the case :b/t]/ () ¢ D(M)e
1, (x, ,—‘1 \/_ x, ,—‘1 \/_ x, lt I_ltJ
AEED) = aE VW) < a@HHE) - 2( ) Mg
lt—Utj)z (lt—thJ>2
+VEK +o
\/> ( \/Z XUHJ”I \/z
with the random variables A\; = pr;& and x; = HE#H;”, from which one deduces by

iteration

)1 J It — |it] 1
< d(z,y) \[ Z/\z-‘rl < Vi ) Altj+1+ \/_ ZXH—l

2
+\/_( \/thj> X|it)+1 + Lt]o (lt _\/lu J)
L1t]
= d(w,y) ~ 25, + VAT D xiss + ) =571 (10)
1=0
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at least on the set {Tll)’(S > t}, with
k

1
Si = WS“, Sy = S\_tJ + (t* LtJ)S\_tJ-‘rl’ Sk = ZAi
i=0

and
pe(l) — 0 for | — oco.
Define furthermore the stopping times
T!:Q - RU{c0}, Ti=inf{t>0]rl <d}
then the inequality above implies {T}, ; > m} C {T} > m} for all I, m € N and hence

Pra((T) > m}) = Pro({Thy >m)) = [ ECY).(P)d) ()

{TD,B >m}

where the second integral is taken on a subset of the path space Q' = C(Ry, M x M)

with respect to the image measure of P under (él(ly)) By assumption we have PpS, =
w- lim(é? ’(z’y))*P and the lower semi-continuity of the function Tp s w.r.t. to the topol-

l’"—o00
ogy of locally uniform convergence on the path space implies that the set {Tp s > m} C
C(Ry, M x M) is open. Thus from (11) it follows that

P, (Tos >mp) = [ (E).(P)(dw)

{Tp,s;>m}

< liminf / (é?'*"”’y))*(P)(dw)gl};ninfpp,g({Tg’>m})

{Tp,s>m}
=P{T5(r*°) > m}).
The last equality is a consequence of Donsker’s invariance principle applied to the sequence

of processes (r!);en: since each ()\;); and (;); are independent sequences of i.i.d. random
variables on {Q, P, A} with

E(\) =0, E(\?) = %’ E(y) = "1

n

one finds that (r!); converges weakly to the process r> with

2 n—1

such that in particular Ppo({T5(r>°) = m}) = 0 and we can pass to the limit for [ — oo
in the last term on the right hand side of (11). Letting m tend to infinity leads to

Ppe, - ({Tp,s = 00}) < Ppo({Ts5(r™) = oo}),
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where § > 0 was chosen arbitrarily from which we finally may conclude
Ppe or({Tp = o0}) < Ppo({To(r™) = oo}) (13)

with T being the first hitting time of the origin for the semi-martingale r°>°. Using
a Girsanov transformation of (2,0, P) the probability on the right hand side can be
computed precisely to be

Ppo({To(r™) = co}) = 1 — ¢~ 2Vr(r=Dd(y) <

kd(z,y),

which is the claim in the compact case. For noncompact M we choose some open precom-

pact A C M such that (z,y) in K. We may stop the processes (=" ’(l’y)) when they leave
A and repeat the previous arguments for the the stopping time T4 p s = Tp s A Tac with
Tye =inf{s > 0w, € A°} which gives instead of (11)

Ppo({TLA Tae > n}) > / (EHEY)  (P)(dw)

{Tp,sANTac>n}

From this we obtain (13) if we successively let tend | — o0, A — M x M, § — 0 and
n — 0o. |

Also in the case of lower Ricci curvature bounds the same type of arguments should
yield the extension of theorem 2. However, the difficulties arise from the fact that lower
Ricci bounds lead to a uniform upper estimate of the expectation of x; in (10) only. Since
these random variables are also only asymptotically mutually independent one has to find
and apply an appropriate central limit theorem to the expression Z 0 Xi+1 in order to
obtain the pathwise(!) upper bound for the distance process by the semlmartlngale (12).

For different (local or global) versions of the following result as well as for extensions
to harmonic maps the reader is referred in particular to the works by W. Kendall, M.
Cranston or more recently by F.Y. Wang.

Corollary 2 (Gradient estimate [Cra91l]). If u is a harmonic, nonnegative and uni-
formly bounded function on M, then

VA(n — 1)

jufw) = u(y)| < Jullo 5

Proof. From elliptic regularity theory we now that « € C°(M). Let x # y be given. Since
Ay =0wefind L.(u®1) = L.(1Qu) = 0 and from theorem 1 it follows that both processes
((u® 1)(ms))s and ((1 ® u)(ms))s are nonnegative continuous bounded martingales with
respect to the probability measure Py, where 7. = (m1, 7). is the projection process on
the path space Cg, (M x M). For any s > 0 we obtain by means of the optional stopping
theorem

d(z,y). (14)

u(@) —u(y) = (u®1)(mo) — (1 u)(mo)
= Epg, [(u®@ 1) (menry,) — (1@ u)(msnzy)]

424



which equals, since (u® 1)(77,) = (1 ® u) (71, ) on {Tp < oo}

= Epg [((u® 1) (manrp) — (18 w)(anty))ocrn)]

and finally, with sup, , [u(x) — u(y)| < [|lu]|,, following from u > 0

< ullo Prg, {Tp = s})
Passing to the limit for s — oo proves the claim by theorem 2. n

3.2. Coupling by Parallel Transport and Heat Kernel Gradient Estimate. Instead of the
coupling by reflection one may also consider coupling by parallel transport when conditions
() and (**) on ® are replaced by

Dy (u,v) 0 ®7 (u,v) =/, on TyMVu,v € M x M. (xxp)

Yuv

Due to (8) this leads to the estimate
d(r},7?) < e Did(z,y)  PX — as.

for any limiting measure Pp on Cg, (M x M). Since any such Prs, is a coupling for
(M, g)-Brownian motions starting in  and y this implies a gradient estimate for the heat
semigroup P; = 2! on (M, g) of the form

VP f|(z) < e" VPV f|(2)

for all f € C}(M) and x € M, cf. [Wan97] as well as for applications.

4. Extension to Riemannian Polyhedra. Let X be an n-dimensional topological
manifold equipped with a complete metric d. We call (X,d) an n-dimensional Rieman-
nian polyhedron with lower curvature bound « € R if (X, d) is isometric to locally finite
polyhedron | J; P; of convex closed patches P; C M (i € I) of n-dimensional Riemannian
manifolds with uniform lower sectional curvature bound x, where

i) the boundary 9P; = Uj Sij C M; of each patch P; C M; is the union of totally
geodesic hypersurfaces S;; in M;

ii) each S;; C X is contained in the intersection of at most two P, C X and S;; C M;
where Si; C M}, are isometric whenever two adjacent patches P; C X and P, C X
have a common face S;; ~ Sy, C (X, d)

iii) the sum of the dihedral angles for each face of codimension 2 is less or equal 2.

Ezamples. The boundary 0K of a convex Euclidean polyhedron K C R (with nonempty
interior K) is a (n-1)-dimensional Riemannian polyhedron with lower curvature bound 0
in our sense. A simple example for the case k < 0 in two dimensions is the surface of
revolution obtained from a concave function f : [a,b] — R, f € Ct[a,b]NC?([a,c)U(c,b])
with ¢ € (a,b) and

—k?  on [a,c)

f'(c)=0and f"/f = { —k3  on (c,b].

425



4.1. Constructions. The 2m-condition iii) above assures that (X,d) is an Alexandrov
space with Curv(X) > & (cf. [BBIO1]), and we can use the result in [Pet98] that a geodesic
segment connecting two arbitrary metrically regular points does not hit a metrically sin-
gular point, i.e. a point whose tangent cone is not the full Euclidean space. Moreover,
from condition ii) it follows in particular that metrically singular points can occur only
inside the (n—2)-skeleton X"~2 of X. Thus there is a natural parallel translation along
any geodesic segment 7, whenever x and y are regular and which is obtained piecewisely
from the parallel translation on the Riemannian patches P; and from the natural gluing
of the tangent half-spaces for points z € X" !\ X"~2 lying on the intersection of two
adjacent (n—1)-faces S;; ~ Sk C X. Similarly we can define the exponential map exp,
for every regular point z € X, i.e. for given £ € T,, X we obtain a unique ’quasi-geodesic’
curve Ry 5t — exp,(t§) (and which can be represented as a union of geodesic segments
on the patches P;). With these constructions at our disposal we can verify a non-smooth
version of the asymptotic quadrangle estimate of lemma 5:

Theorem 3. Let (X,d) be a n-dimensional Riemannian polyhedron with lower curvature
bound —k < 0 and let z,y € X \ X" 2 be connected by some segment Yoy Then for
Ee T, X, ||&|| =1 the estimate (9) holds, where the error term o(t?) can be chosen uniform
if x # y range over a compact subset of X \ X" 2.

Proof. Let us prove (9) for fixed z,y € X\ X" 2 and ¢ € T, X first, i.e. without addressing
the problem of uniformity. Suppose furthermore that for some P; we have v,, C F;, i.e.
~zy 1s entirely contained in the (closed) patch P;, then we distinguish three cases:

i) If vy C P; then due to lemma 5 there is nothing left to prove.

i) € P, and y € P; N P; for some j. Since y is assumed to be regular the first order
part of estimate (9) is obviously true and we may focus on the second order part
which corresponds to orthogonal variations of the geodesic v, i.e. we may assume
that ¢ = &+ in (9). If Vay is orthogonal to the hypersurface 0F; N OF; at y or x
and y are both in P; N P; then again there is nothing to prove since in this case
we have to consider geodesic variations which take place completely on one of the
patches P; C M; or P; C M; and we can apply lemma 5 on M; or M; respectively.
Consequently we only have to treat the case that ., is neither parallel nor orthogonal

to OP; N OP;, ie. 0< (%7 v)r,m; < 1 where v denotes the outward unit

normal vector of OPF;.

Let n = //%yg be the parallel translate of a unit vector £ € T, M; normal to gy .
Then ( = n — Mﬂi?’%%y(d(%y)) € TyM; NTy,M; is the unique vector in
the intersection of the {¥.,(d(x,y)), n}-plane and the tangent hyperplane to 9P; in
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y which is determined by its w.r.t. 4., orthogonal projection 1. For its length we
obtain ||¢|| = sin™! a where « is the angle enclosed by 4, and 7 at y. Since dP; C M;
and OP; C Mj are totally geodesic the point z = exp, (t¢) also lies on 9P; N OP; and
the triangle inequality yields

dx (exp,(t&),exp, (t/ ., £))

(15)
< d, (exp, (), ) + dar, (2, exp, (tn))

where dy, dys;, and dps, denote the distance functions on X, M; and M; respectively.
Now the estimate (8) of lemma 5 applied to £ and ¢ in M; yields

COS

dar; (exp, (), exp, (1)) < dar, (w,y) — + VEE? + oy (%)

sin «v

N . . o 3 . 1 . .

since trivially (},() = 2% and by construction (~ =n =/ & As for the distance
d; (2, exp, (tn)) remember that by the smoothness assumption the curvature of M;
is locally uniformly bounded and from the Toponogov triangle comparison and the

cosine formula on the model spaces Mg, we may infer with 3 = <7, ar,(¢,n)

COoOs &

dar, (2, exp, (tn) = t3/[C]> + 1 — [¢[cos B+ o(t?) =t +o(t?)

sin v
because all vectors 7., 77 and ¢ lie on a common hyperplane and as 1 L § we have
o = /2 — (3. Inserting the the last two inequalities into (15) yields (9).

ili) x € P,N P, and y € P, N P;. We may argue similarly as in ii) by subdividing the
quadruple into two geodesic triangles on M; and Mj, and a remaining quadruple on
M;. - Alternatively, if z € v,y N H # () then one may subdivide Yoy = Yoz * Y2y and
argue as in ii). If 7,y N P = 0, then again we have to deal with variations of ~y,, on
a single Riemannian patch Py only, where P} depends on the direction &1,.

The discussion above proves (9) when 74, C P; for some P;. In the general case when 7,
is not contained in a single patch we subdivide vy = 7;, *7;, *- - -*7;,, into pieces v;, C P,

lying entirely on one of the patches which we consider separately: let {z1,...,Zmn} =72y N
X"~! be the set of (transversal) intersections of 7., and X"~! and for each k =1,...,m,
t > 0 let zf = exp,, (tzx) where the direction z* (depending on the initial direction

€ € T, X) is chosen as in ii). As before the triangle inequality yields the simple upper bound
d(xe,ys) < d(we, 20)+d(2}, 22) 4 -+d(2" 1, 2) +d(27", ;) for the distance between z; =
exp, (&) and y; = exp,(t/., n). On each patch P;, we may apply the previous discussion
i) - iii) in order to derive asymptotic estimates for d(z¢, 2}), d(z},22), ..., d(z" ', 2/) and
d(zI",y:), where it is important to note that for sufficiently small ¢ the variations n¥ of the
pieces of 7;, which we construct on each patch P;, also lie entirely on P;,. (This follows
from the fact that the segment v, lies at a strictly positive distance away from X"~2 which
comprises the set of points where more than just two patches intersect.) Hence we obtain
an upper bound for the distance d(z,y;) in the global quadruple by a sum of distances
d(xe, 2}), d(z}, 22), d(z" 1, 2™) and d(2}™, ;) in geodesic quadrangles and triangles which
are each entirely contained in a single patch. Analogously to the final step in ii) summing
up the corresponding asymptotic upper estimates we recover (9) for the global quadruple
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due to the special choice of the directions {z¥|k € 1,...,m}. Finally, the uniformity
assertion is obtained in a similar way by combining the arguments of lemma 5 on each
patch P; with the observation that for a given compact set K C X \ X" =2 the collection
of all segments {v,,| (z,y) € K x K} also lies at a strictly positive distance away from
X"2, which may be inferred from a simple compactness consideration. This implies that
there is some tg > 0 such that for all ¢ < tg and z,y € K all variations ., ; constructed
in the previous paragraph determine a well-defined sequence of geodesic triangles and
quadrangles located on the individual patches as above. Hence, by the smoothness of the
patches (and the fact that only finitely many patches are involved for z, y € K x K) we
may conclude as in lemma 5 that the estimate (9) is in fact locally uniform in the sense
stated above. O

As a second preparation for the probabilistic approach to a gradient estimate on (X, d)
we need to state precisely what we understand by a Brownian motion in the present
situation.

Definition 1. The (’Dirichlet-’)Laplacian AX on (X, d) is defined as the generator of the
Dirichlet form (£, D(E)) which is obtained as the L*(X,dm = Y, dm; , )-closure of the

classical energy form E(f, f) = >, fP‘ |Vf|2 dm; on the set of Lipschitz functions on (X, d)
with compact support. A continuous Hunt process whose transition semigroup coincides

with the semigroup associated to (€, D(E)) on L?(X,dm) is called a Brownian motion on
(X,d).

Equivalently we could define (£, D(€)) by the sum of the Dirichlet integrals on the
patches P; as above with the domain D(€) equal to the set of piecewise H:2(P;)-functions
f € L?(X,dm) with £(f, f) < co and whose traces fis. along the joint (n—1)-dimensional
faces S = P; N P; of each pair of adjacent patches coincide.

For the construction of the coupling process on X x X for two Brownian Motions on
(X,d) we would like to proceed as in the smooth case by using a coupling map ®(.,.)
with ®(z,y) : R® x R” — K, X x K,X where K, denotes the tangent cone of X over
x (c.f. [BBIO1]). Here further singularities of ®(.,.) may be caused by the existence of
non-Euclidean tangent cones K, when x € X" 2. However, choosing beforehand a map
TU()on X x X" 2UX" 2 x X U{(z,2) |z € X} with U(z,y) : R" x R" — K, X x K,X
(not necessarily isometric) and depending measurably on (x,y) we can find a globally
defined measurable coupling map ®(.,.) extending ¥(.) and satisfying (x) and (x*) on
X x X\ (X x X"2U X" 2 x X) which can be proved by slightly modifying the argu-
ments of lemma 1. Hence we have everything we need to define a sequence of coupled
(quasi-)geodesic random walks on X x X from which we obtain as before the sequences
(éf%(w,y))k (é{cy(ﬂcvy))

and k by scaling.

4.2. Coupling CLT on Polyhedra.
Proposition 1. For any (z,y) € X x X the sequences (é.k’(w’y))k and ( K are
tight on Dr (X x X) and Co(Ry, X x X) respectively. For any subsequence k' the se-

quence of measures (é.k,’(x’y))*P on Dr (X x X) is weakly convergent if and only if

ék(z’y))
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(é.k/’(m’y))*P is, in which case the limits coincide. For x,y € X \ X" 2 under any
weak limit Pp, = w- limklﬂoo(é.k ’(m’y))*P the time changed marginal processes (w,t) —
71 (want) and (w,t) — mo(wan.t) are Brownian motions on (X,d) starting in x and y

respectively.

Proof. The tightness assertion and the coincidence of the limits of any jointly converging

subsequences (ék ’(x’y))k/ and (ék ’(Ly))k/ is proved precisely in the same manner as in
the smooth case. Let us denote for short p := pr, = w- lim;cfﬂoo(é{C ’(z’y))*P the weak

limit of some converging subsequence. Then it remains to identify the marginals p® = IT¢ st
of y under the projection map II' : Cg, (X X X) — Cr, (X), w. — w' as the measures
induced from the Dirichlet form (£7,D(E7)) := (5=&, D(€)) and starting points = and y
respectively. For p > 0 let C, be some Lipschitz p—neighbourhood of the set X™? and
let (£7,D(£])) be Dirichlet form which is obtained by taking the L?(X,dm)-closure of
the energy form E£7 restricted to the set of Lipschitz functions with compact support in
X \ C,. Furthermore let T? = inf{t > 0lw; € C,} be the hitting time of the marginals for
the set C,,. We claim that the Tpi—stopped marginal processes under any weak limit P
are associated with (€7, D(E])) starting in z and y respectively. For this denote by A”
the collection of all f € [, C™ (P)) NLip(X) N C.(X \ C,) satisfying the gluing condition
for the normal derivatives on adjacent (n — 1)-dimensional faces

> %f:OOnaPmanm@. (+)
oP,NOP;£D 7

\Y)

Since for the generator Ly of ER@Y) e have that

Li(f @ 1)(u,v) = Apf(u) and Ly(1 ® g)(u,v) = Agg(v)

with A acting as a mean value type operator according to formula (1) for f € A” it is
easy to show (see also proof of lemma 6) that

t
1

flwp) = f(wh) — o /Afff(ws)ds is a y—martingale (16)
0

where Ag( is the restriction of the formal Laplace-Beltrami-operator AX = Y. Aﬁ;‘_ onto

the set A”. Trivially in the formula above we may replace t by t A TZ.

Let us assume first that X is compact and, by abuse of notation, let us denote by Aff
also the generator of (£,, D(€,)), whose domain equals

D(A)) = {fGLQ(X\Cp) AXfeL*(X\C,), f=00ndC, }

f satisfies (+)

Then by using the existence and smoothness of the heat kernel (pf(’p (-,.))1>0 associated
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to Af we see that for f € D(Af) and € >0

folw) = P 5 () = / P50 () f(g)m(dy) € A°

X\C,
and for e — 0

fe— F € XX\ C))
Ai(fe :pe*A;(f - A;)ffa

where in the last line we used the fact that on D(AX) the heat semigroup (P;*) commutes
with Ai( . This implies that (%Af,flp ) is a core for the generator A;( of the Dirichlet
form (€7, D(£7)) and hence by (16), abstractly speaking, we may say that the measures
pl = (I o Y1)« induced from the projection IT* and the stopping maps Eri 0 Cr, (X x
X) = Cr (X xX), w — W AT (¢ = 1, 2) are solutions to the martingale problem for
(ﬁAf ,0z) and (ﬁAf ,0y) respectively. Since these martingale problems are well-posed
the measures jj, must coincide with those generated by the Dirichlet form (£7, D(£7)) and
given starting points x and y.

In order to show that I’y is induced from (€7, D(E7)) we want to pass to the limit for
p — 0 in the last statement. It is easy to see that weak convergence (X,).p — p will
follow from lim,_.q ,u{TZ <t} =0 for all ¢ > 0. Moreover, obviously

Ty <t} = pdT, <t} (17)

for € < p, where p! is defined as above and T), is the first hitting time functional of C, on
the path space Cg, (X). Remember that 4! is induced from the Dirichlet form (€7, D(E7)).
Using the fact that the set X" =2 is polar for (£, D(£)) it follows that for any subsequence
¢’ — 0 the Dirichlet forms (€7, D(E7)) converges to (€7, D(E7)) in the sense of Mosco (cf.
[Mos94]), which implies the L2(X, dm)—strong convergence of the semigroups Pf to the
semigroup P; generated by (€7, D(E7)). Hence, by standard compactness arguments and
the fact that {7, <t} C Cr, (X) is closed we may pass to the limit for € — 0 on the right
hand side of (17) which yields

i{T, <t} <v{T, <t}

where v is the measure associated to the form (£7,D(E7)) and starting point = or y
respectively. Using once more that X"~2 is polar for (£, D(£)) we find that indeed

limsup p{T}, <t} < lin}) v{T, <t}=0 Vt>0. (18)
p—0 P
By the continuity of the maps IT* : Cg, (X x X) — Cg_ (X) the measures y, = Hi(ET;'*M)
also converge to pu® = IT:u for p — 0, and since the corresponding sequence of generating
Dirichlet forms (€7, D(E])) converges in the sense of Mosco to (€7, D(E7)) the limiting
measures g’ (i = 1, 2) must be the unique measures on Cg, (X) generated by (7, D(E7))
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and the starting point  and y respectively.

In the case that X is non compact we have to localize the previous arguments: Fix
some point 0 € X and let Br(0) C X be the open metric ball around 0. Then, by the
same reasoning as before we establish (16) for all functions f € A% :={f €, C=((P;n
Br(0))\ C,) NLip((X N Br(0)) \ C,) | f satisfies (+)}. By the same arguments as above
this implies

(Ep,R)*,U' =Vp,R = (Ep,R)*Va
where v is the probability measure on the path space Cr, (X) induced from the Dirchlet
form (£7,D(€7)) and X, r is the endomorphism on Cg, (X) obtained from stopping a
path when it leaves (X N Bg(0)) \ C,. analogous Dirichlet form on X N Bg(0)) \ C,).
Using the polarity of X™~2 we may pass to the limit for p — 0 first, which gives

(XRr)sp =vR = (ER)«v. (19)

In a final step we would like to pass to the limit for R — oco. From the lower curvature
bound on X it follows that

Rlim V{TBR(O) < t} =0 Vt>0,

and which can be transferred to the analogous statement for v by the same argument as
in (18). Hence we may send R — oo on both sides of (19) which concludes the proof of
the proposition. O

Lemma 6. Let u € L*(X,dm) N D(E) weakly harmonic on (X,d), i.e. E(u,&) =0 for
all § € D(E), and let Py, = 1,u—limk./éoc(é{C ’(I’y))*P be a weak limit of a subsequence
(é.k/’(m’y))*P where z, y € X \ X"~ 2. Then under P2 the processes t — u(w}) = (u ®

k%
D(w;) and t — u(w?) = (1 ® u)(w;) are martingales with respect to to the canonical

filtration (F, = o{m’|s <t,i=1,2});>0 on Cr, (X x X).

Proof. Due to elliptic regularity theory one finds v € C°(X) N C°°(X""1) and that u
satisfies the gluing condition (+). Hence we find that Ap(u) — 0 locally uniformly on
X \ X2, where Ay is approximate Laplacian operator (1). We would like to use this
property when we pass to the limit for ¥’ — oco. It remains to justify this limit. Let
us call for short v = P = w- limk'_wo(é.k ’(x’y))*P for a suitable subsequence k&’ and
ok = (é.k’(m’y))*P . For p > 0 we may find some open neighbourhood C,, C X of X"2
satisfying

i) B,/s(X"2)CC, CC,CB,(X"?)

ii) OC, intersects X" ! transversally and

iii) 0C, N X \ X"~ is smooth.
Let T} = inf{t > Olw} € C,} for i = 1,2 the hitting time for the marginals of C, and let

Di ={we Cr, (X xX) |sz' is not continuous in w},
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then v(D;) = 0 for ¢ = 1,2. This is seen as follows: since the hitting time of a closed set
C C X is lower semi-continuous on Cg, (X) for each w € D; we necessarily have T},(w) < 0o
and it exists a sequence w® — w’ € Cg, (X) such that T (w’)+6 < liminf T}(w*) for some
§ > 0. Note that by condition ii) on C, the set X" ~*NAJC, has (Hausdorff-)dimension < n—
2 and hence is polar for Brownian motion on (X, d) and that by proposition 1 under v the
(time changed) marginal processes are Brownian motions on X. Thus 7} (w) < oo implies
(v-almost surely) w%g(w) € 9C,N X\ X"~ '. But then T%(w') + € < liminf, T}(w*) implies
the existence of some €y > 0 such that wﬁf;wHa ¢ C, for all € < ¢. Using the strong

Markov property of the marginal processes under v and the regularity of 0C, N X \ X n—l
we finally deduce that the set of such paths has indeed vanishing v-measure. On account of

?* = v and the v-almost sure continuity of functional Y, Dr (X xX)— Dg, (X xX),
(Bpw)(t) = wiaT: (w)AT2(w) We find (by thm. 5.1. of [Bil68]) that (¥,), K =y, = (X,), v

for k' — oo. Set T, = T) AT7, then the Markov property of £R@Y) and the optional
sampling theorem yield that for all t > s; > ...s1 > 0 and v, g1,...g; € Cp(X x X)

<v(wt) — ’U(WO) - /Zkv(ws)dsa g1 (w51) - gl (wsl,)>
0

AT,
— <v(wt/\Tp) —v(wp) — / zkv(ws)ds,gl(wsﬂfp) .. 'gl(wsl/\T,,)>
0 Dk
S],/\Tp
= <U(ws,ATp) —v(wg) — Apv(ws)ds, g1 (Woon7,) - - .gl(wsl/@p)>
0 ok

= <v(ws,) —v(wo) - /Akv(ws)dsvgl(wsl)~~gz(wsl)> ; (20)
0

Dk
VP

where Ay, is the generator of 5@ 1 we put v = u ® 1 for u as above and use the fact
that

Ap(u®1) = (Agu) ® 1 — 0 uniformly on X \ B,(X"?)
we see that for each ¢ > s; the sequence of functionals T} : Dg, ((X \ B,(X"72)) x (X \
B,(X"%)) — R defined by

TFw) = (u@1)(we) — (u® 1) (wo)

t

— /Zk(u ® 1)(ws)dsgr (ws,) - - - gi(ws,)
0

converges uniformly on compacts K C Dg, (X \ B,/2(X"7?)) x (X \ B,/2(X""?)) to the
functional

Ty(w) = (u(w;) = u(wp))g1(ws,) - - g1 (ws,)-
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defined on Dg, (X x X) D Dg, (X \ B,/2(X"2)) x (X \ B,,2(X"2)). Hence, due to

o= v, we may pass to the limit in (20) for k" — oo giving

((ulw}) — u(@d))gr(@s) - 0w,

(21)
= ((ulws,) = u(w))g1(wsy) - g1 (ws))),,, -
Moreover, by definition of v, (21) is equivalent to
((ulwlyz,) = u@d)g1 @y, n7,) - 0w 07,)) )
v 22

= (@, 7,) = w91y, 57,) - 91 @4 07,)) -

Finally, using again that under v the marginal processes are time changed Brownian mo-
: -2 ; T 1 2

tions on X and X"~ is polar we deduce 7', > TBP(X“_Q) A TBP(X”_Q) — oo for p — 0
v-almost surely, such that taking the limit for p — 0 in (22) yields

((u(wi) = u(wy))g1(wsy) - gi(ws))),,
= ((u(ws,) = u(wp))g1(ws,) - - qi(ws,)),,

which amounts to the statement that the process t — u(w}) is a ((F;),v)-martingale. [

Proposition 2. Let (X,d) be an n-dimensional Riemannian polyhedron with with lower
curvature bound —r < 0, and for arbitrary x,y € X \ X" 2 let the measure P, =
w- lim(é%/’(x’y))*P on Cr, (X x X) be a weak limit of some suitably chosen subsequence k'.
' —o00

Then the coupling probability estimate holds true as in the smooth case, i.e.

n —

5 1\/Ed(ac,y).

Proof. Using proposition 3 we may proceed as in the proof of theorem 2 if we restrict of
the discussion onto the set of paths stopped at time 7', for p > 0. In analogy to the proof
of lemma 6 the final step is to send p — 0 which yields the claim. O

Collecting the results we may conclude that Cranston’s gradient estimate holds also in
the case of Riemannian polyhedra.

Theorem 4. Let (X, d) be an n-dimensional Riemannian polyhedron with lower curvature
bound —r < 0 then any nonnegative bounded function u € D(E) which is weakly harmonic
on (X,d) satisfies the gradient estimate (14).

Proof. This follows from lemma 6 with optional sampling, using proposition 2 and the
continuity of weakly harmonic functions. O

Just as in the smooth situation we can easily transfer the arguments to the coupling
by parallel transport method (#xp) which yields a corresponding gradient estimate for the
heat semigroup on (X, d).
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Theorem 5. Let (X,d) be an n-dimensional Riemannian polyhedron with lower curva-
ture bound —k < 0 and let (P)i>0 be the heat semigroup associated to the Dirchlet form
(E,D(E)) then

Lip(P, f) < """ Y'Lip(f) V f € Lip(X,d).
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