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Abstract

We study a symmetric diffusion X onRd in divergence form in a stationary and ergodic
environment, with measurable unbounded and degenerate coefficients. We prove a
quenched local central limit theorem for X, under some moment conditions on the
environment; the key tool is a local parabolic Harnack inequality obtained with Moser
iteration technique.
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1 Description of the main result

We model the stationary and ergodic random environment by a probability space
(Ω,G, µ), on which we define a measure-preserving group of transformations τx : Ω→ Ω,
x ∈ Rd. One can think about τxω as a translation of the environment ω ∈ Ω in direction
x ∈ Rd. The function (x, ω)→ τxω is assumed to be B(Rd)⊗ G-measurable, being B(Rd)

the usual Borel σ-algebra on Rd, and ergodic, namely if τxA = A for all x ∈ Rd, then
µ(A) ∈ {0, 1}. Given the random environment (Ω,G, µ, {τx}x∈Rd) we can construct a
stationary and ergodic random field simply by taking a random variable f : Ω→ R and
defining fω(x) := f(τxω), x ∈ Rd.

We are given a G-measurable function a : Ω → Rd×d with values in the set of
symmetric matrices such that

(a.1) there exist G-measurable non-negative functions λ,Λ : Ω→ R such that for µ-almost
all ω ∈ Ω and all ξ ∈ Rd

λ(ω)|ξ|2 ≤ 〈a(ω)ξ, ξ〉 ≤ Λ(ω)|ξ|2,

(a.2) there exist p, q ∈ [1,∞] satisfying 1/p+ 1/q < 2/d such that

Eµ[Λp] <∞, Eµ[λ−q] <∞.
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Local CLT for diffusions in degenerate environment

Our diffusion process is formally associated with the following generator in diver-
gence form

Lωu(x) =
1

Λω(x)
∇ · (aω(x)∇u(x)). (1.1)

Since aω(x) is modeling a random field, it is not natural to assume its differentiability in
x ∈ Rd. Therefore, the operator defined in (1.1) does not make sense and the standard
techniques from the stochastic differential equations theory or Itô calculus are not
helpful either in the construction of the diffusion process or in performing the relevant
computations.

We will exploit Dirichlet forms theory to construct the diffusion process formally
associated with (1.1). Instead of the operator Lω we consider the bilinear form obtained
by Lω formally integrating by parts,

Eω(u, v) =
∑
i,j

∫
Rd
aωij(x)∂iu(x)∂ju(x)dx (1.2)

for a proper class of functions u, v ∈ FΛ,ω ⊂ L2(Rd,Λωdx), more precisely FΛ,ω is the
completion of C∞0 (Rd) in L2(Rd,Λωdx) with respect to Eω + (·, ·)Λ. It is a classical result
of Fukushima [18, Theorem 7.2.2] that it is possible to associate a diffusion process
(Xω,Pωx ) to (1.2) as soon as (λω)−1 and Λω are locally integrable. As a drawback, the
process cannot in general start from every x ∈ Rd but only from almost all, and the set
of exceptional points may depend on the realization of the environment.

In [9] we show that under (a.1), (a.2) and if λω(·)−1,Λω(·) ∈ L∞loc(Rd) for µ-almost all
ω ∈ Ω, then a quenched invariance principle holds for Xω, namely the scaled process
Xε,ω
· := εXω

·/ε2 converges in distribution under Pω0 to a Brownian motion with a non-trivial
deterministic covariance structure as ε→ 0. In that work local boundness was assumed
in order to get some regularity for the density of the process Xω and avoid technicalities
due to exceptional sets arising from Dirichlet forms theory.

In this paper we show that if a quenched invariance principle holds, then under (a.1)

and (a.2), the density of Xε,ω converges uniformly on compacts to the gaussian density.
Hence, to state the theorem we need the following assumption.

(a.3) Assume that there exists a positive definite symmetric d-dimensional matrix Σ such
that for µ-almost all ω ∈ Ω we have that for almost all o ∈ Rd, all balls B ⊂ Rd and
all compact intervals I ⊂ (0,∞)

lim
ε→0

Pωo (εXω
t/ε2 ∈ B) =

1√
(2πt)d det Σ

∫
B

exp
(
−x · Σ

−1x

2t

)
dx

uniformly in t ∈ I.

Remark 1.1. If λω(·)−1,Λω(·) ∈ L∞loc(Rd) for µ-almost all ω ∈ Ω, then assumption (a.3) is
satisfied for all o ∈ Rd, µ-almost surely as a consequence of [9, Theorem 1.1].

Set

kΣ
t (x) :=

1√
(2πt)d det Σ

exp
(
−x · Σ

−1x

2t

)
.

Theorem 1.2. Let d ≥ 2. Assume (a.1), (a.2) and (a.3). Let pωt (·, ·) be the density with
respect to Λω(x)dx of the semigroup Pωt associated to (Eω,FΛ,ω) on L2(Rd,Λωdx). Let
r > 0 and I ⊂ (0,∞) be compact. Then, for µ-almost all ω ∈ Ω we have that for almost all
o ∈ Rd

lim
ε→0

sup
|x−o|≤r

sup
t∈I

∣∣∣ε−dpωt/ε2(o, x/ε)− Eµ[Λ]−1kΣ
t (x)

∣∣∣ = 0. (1.3)

If we further assume that λω(·)−1,Λω(·) ∈ L∞loc(Rd) for µ-almost all ω ∈ Ω, then (1.3) is
satisfied for all o ∈ Rd.
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Local CLT for diffusions in degenerate environment

The method. The proof of Theorem 1.2 relies on a priori bounds for solutions to the
“formal” parabolic equation

∂tu(t, x)− 1

Λω(x)
∇ · (aω(x)∇u(t, x)) = 0, t ∈ (0,∞), x ∈ Rd. (1.4)

It is well known that when x 7→ aω(x) and x 7→ Λω(x) are bounded and bounded away
from zero, uniformly in ω ∈ Ω, then a parabolic Harnack’s inequality holds for solutions
to (1.4), this is a celebrated result due to Moser [24]. He showed that there is a positive
constant CPH , which depends only on the uniform bounds on a and Λ, such that for any
positive weak solution of (1.4) in (t, t+ r2)×B(x, r) we have

sup
(s,z)∈Q−

u(s, z) ≤ CPH inf
(s,z)∈Q+

u(s, z),

where Q− = (t+ 1/4r2, t+ 1/2r2)×B(x, r/2) and Q+ = (t+ 3/4r2, t+ r2)×B(x, r/2). The
parabolic Harnack inequality plays a prominent role in the theory of partial differential
equations, in particular to prove Hölder continuity for solutions to parabolic equations,
as it was observed by Nash [26] and De Giorgi [12], or to prove Gaussian bounds for the
fundamental solution pωt (x, y) of (1.4) as done by Aronson [4]. It is remarkable that such
results do not depend either on the regularity of a or of Λ.

In this paper we exploit the robustness of Moser’s method to derive a parabolic
Harnack inequality also in the case of degenerate and possibly unbounded coefficients.
Many authors successfully applied this technique to obtain a priori bounds. In the field
of diffusion in random environments we mention [15, 16], for discrete space models for
which we refer to [2, 3].

Moser’s method is based on two steps. One wants first to get a Sobolev inequality to
control some Lρ-norm in terms of the Dirichlet form and then control the Dirichlet form
of any caloric function by a lower moment. In the uniform elliptic case this is rather
standard and it is possible to control the L2d/(d−2)-norm by the L2-norm. In our case the
coefficients are neither bounded from above nor from below and we need to work with a
weighted Sobolev inequality, which was already established in [9] by means of Hölder’s
inequality. Doing so we are able to control, locally on balls, the Lρ-norm by means of
the L2p/(p−1)-norm, with ρ = 2qd/(q(d− 2) + d). In order to start the iteration we need
ρ > 2p/(p− 1) which is equivalent to 1/p+ 1/q < 2/d. As a result we are able to bound
the L∞-norm of a caloric function u by its Lα-norm for some finite α > 0, on a slightly
larger ball. Since the same holds for u−1, what is left to do is to link the Lα-norm of u
and the Lα-norm of u−1. In the uniformly elliptic case this is achieved by means of the
exponential integrability of BMO functions, hence with John-Nirenberg inequality. In the
present work we exploit an abstract lemma due to Bombieri and Giusti [8] (see Lemma
C.1 below) for which application, in addition to the maximum inequality for u, we will
need to establish weighted Poincaré inequalities.

The integrability assumption with exponents satisfying 1/p+1/q < 2/d firstly appeared
in [14] to extend De Giorgi and Nash’s results to degenerate elliptic equations, however
the authors focus on weights belonging to the Muckenhaupt’s class. A similar condition
was also recently exploited in [29] to obtain a Gaussian upper bound for solutions to
degenerate parabolic equations, the same type of conclusion holds also in the discrete
setting, for which we refer to [1].

Following the proof of Moser, with some extra care due to the different exponents,
we get a local parabolic Harnack inequality for solutions to (1.4) in our setting. In the
uniformly elliptic and bounded case the constant in front of the Harnack inequality
depends only on the uniform bounds on a and Λ. Under our assumptions we cannot
expect that to be true for general weights, and the constant will possibly depend on the
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Local CLT for diffusions in degenerate environment

center and the radius of the ball. In particular, we don’t have any control of the constant
for small balls, so that a genuine Hölder’s continuity result like the one of Nash is not
given. Luckily, in the diffusive limit, the ergodic theorem helps to control constants and
to prove Theorem 1.2.

Remark 1.3. Let us consider θ : Ω→ (0,+∞) and θω(x) := θ(τxω) such that θω and 1/θω

are in L1
loc(R

d) almost surely. One can then consider the Dirichlet form (Eω,Fθ,ω) on
L2(Rd, θωdx) where Eω is given by (1.2) and Fθ,ω is the closure of C∞0 (Rd) in L2(Rd, θωdx)

with respect to Eω + (·, ·)θ. This corresponds to the formal generator

Lωu(x) =
1

θω(x)
∇ · (aω(x)∇u(x)). (1.5)

One can show along the same lines of the proof for θ = Λ that if

Eµ[θr] <∞, Eµ[λ−q] <∞, Eµ[Λpθ1−p] <∞,

where p, q, r ∈ (1,∞] are such that

1

q
+

1

r
+
r − 1

r
· 1

p
<

2

d
,

then the parabolic Harnack inequality still works, in particular a quenched local central
limit theorem can still be derived in this situation for the density with respect to θω(x)dx

of the semigroup P θ,ωt associated to (Eω,Fθ,ω) on L2(Rd, θωdx) (see Appendix A for more
details).

Observe that in the case θ = Λ we recover the familiar condition 1/r + 1/q < 2/d and
for θ ≡ 1, since r =∞, the condition reads again 1/p+1/q < 2/d. This is an improvement
of the condition previously given for the variable speed conductance model in [2], the
idea for the proof was given to us by Martin Slowik.

Remark 1.4. One particular example which arises from the general form (1.5) is the
one with θ ≡ eV

ω(x) and aω(x) = eV
ω(x)Id, being Id the d-dimensional identity matrix.

The generator corresponding to this choice reads

Lωu(x) = e−V
ω(x)∇ · (eV

ω(x)∇u(x)).

In [5], the authors proved an “individual” invariance principle in the case that V is a
deterministic periodic function and eV , e−V are integrable on the d-dimensional torus.
This corresponds to (a.2) with p = q = 1, the problem of showing invariance principle for
general random environment under this condition remains open.

Remark 1.5. The condition 1/p + 1/q < 2/d is morally optimal to state Theorem 1.2.
Indeed in the discrete space setting it was shown that if 1/p+ 1/q > 2/d, then there is
an ergodic environment for which the quenched local central limit theorem does not
hold [2, see Theorem 5.4]. One could possibly construct a counterexample also in the
continuous by exploiting the same ideas given in [2].

A summary of the paper is the following.
In Section 2 we present a deterministic model obtained by looking at a fixed realiza-

tion of the environment. We derive Sobolev, Poincaré and Nash inequalities for such a
model.

In Section 3 we prove a priori estimates, on-diagonal bounds and Hölder continuity
type estimates for caloric functions. The main result of this section is a local parabolic
Harnack inequality.

In Section 4 we prove a local Central Limit Theorem for the deterministic model
which we apply to derive Theorem 1.2.
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Local CLT for diffusions in degenerate environment

2 Deterministic model and local inequalities

Since we want to prove a quenched result we will develop a collection of inequalities
for a deterministic model, we will be fixing a particular environment ω ∈ Ω. With a slight
abuse of notation we will note with a(x), λ(x) and Λ(x) the deterministic versions of
a(τxω), λ(τxω) and Λ(τxω).

We are given a symmetric matrix a : Rd → Rd×d such that

(b.1) there exist λ,Λ : Rd → R non-negative functions such that for almost all x ∈ Rd
and ξ ∈ Rd

λ(x)|ξ|2 ≤ 〈a(x)ξ, ξ〉 ≤ Λ(x)|ξ|2,

(b.2) there exist p, q ∈ [1,∞] satisfying 1/p+ 1/q < 2/d such that

lim sup
r→∞

1

|B(0, r)|

∫
B(0,r)

Λp + λ−q dx <∞.

Assumption (b.2) plays the role of ergodicity in the random environment model.
We are interested in finding a priori estimates for solutions to the formal parabolic

equation

∂tu(t, x)− 1

Λ(x)
∇ · (a(x)∇u(t, x)) = 0, (2.1)

for t ∈ (0,∞) and x ∈ Rd.
Clearly, in the way it is stated (2.1) is not well defined because we only assume a(·)

to be measurable. In order to make sense of (2.1) we shall exploit the Dirichlet form
framework, see [18] for an exhaustive treatment of the subject.

2.1 Caloric functions

For this section we follow closely [6]. Let θ : Rd → R be a non-negative function such
that θ−1, θ are locally integrable on Rd. Consider the symmetric form E on L2(Rd, θdx)

with domain C∞0 (Rd) defined by

E(u, v) :=
∑
i,j

∫
Rd
aij(x)∂iu(x)∂jv(x) dx. (2.2)

Then, (E , C∞0 (Rd)) is closable in L2(Rd, θdx) thanks to [27, see Chapter II, example 3b],
since λ−1,Λ ∈ L1

loc(R
d) by (b.2). We shall denote by (E ,Fθ) its closure; it is clear that Fθ

is the completion of C∞0 (Rd) in L2(Rd, θdx) with respect to E1 := E + (·, ·)θ. Observe that
(E ,Fθ) is a strongly local regular Dirichlet form, having C∞0 (Rd) as a core. In the case
that θ ≡ 1 we will simply write F . Given an open subset G of Rd we will denote by FθG
the completion of C∞0 (G) in L2(G, θdx) with respect to E1.

Definition 2.1 (Caloric functions). Let I ⊂ R and G ⊂ Rd be an open set. We say that a
function u : I → Fθ is a subcaloric (supercaloric) function in I ×G if t 7→ (u(t, ·), φ)θ is
differentiable in t ∈ I for any φ ∈ L2(G, θdx) and

d

dt
(u, φ)θ + E(u, φ) ≤ 0, (≥) (2.3)

for all non-negative φ ∈ FθG. We say that a function u : I → Fθ is a caloric function in
I ×G if it is both sub- and supercaloric.

It is clear from the definition that if a function is subcaloric on I × G, then it is
subcaloric on I ′ ×G′ whenever I ′ ⊂ I and G′ ⊂ G.
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Moreover, observe that if PGt is the semigroup associated to (E ,Fθ) on L2(G, θdx)

and f ∈ L2(G, θdx), for a given open set G ⊂ Rd, then the function u(t, ·) = PGt f(·) is
caloric on (0,∞)×G. To complete the picture we state the following maximum principle
which appeared in [20]. For a real number x denote by x+ = x ∨ 0.

Lemma 2.2. Fix T ∈ (0,∞], a set G ⊂ Rd and let u : (0, T ) → FθG be a subcaloric
function in (0, T ) × G which satisfies the boundary condition u+(t, ·) ∈ FθG, ∀t ∈ (0, T )

and u+(t, ·)→ 0 in L2(G, θdx) as t→ 0. Then u ≤ 0 on (0, T )×G.

As a corollary of this lemma we have a super mean value inequality for subcaloric
functions.

Corollary 2.3. Fix T ∈ (0,∞], an open set G ⊂ Rd and f ∈ L2(G, θdx) non-negative. Let
u : (0, T )→ FθG be a non-negative subcaloric function on (0, T )×G such that u(t, ·)→ f

in L2(G, θdx) as t→ 0. Then for any t ∈ (0, T )

u(t, ·) ≥ PGt f, in G.

In particular for 0 < s < t < T

u(t, ·) ≥ PGt−su(s, ·), in G.

2.2 Sobolev inequalities

In this section we will state local inequalities on the flat space L2(Rd, dx) and on
the weighted space L2(Rd,Λdx). We are interested in Sobolev, Poincaré and Nash type
inequalities. The first and the second provide an effective tool for deriving local bounds
of solutions to elliptic and parabolic degenerate partial differential equations, while the
latter will be used to prove the existence of a kernel for the semigroup Pt associated to
(E ,FΛ) on L2(Rd,Λdx).

We shall see that the constants appearing in the inequalities are strongly dependent
on averages of λ and Λ and in particular on the ball on which we focus our analysis.

It will be clear in Proposition 2.4 below that the case d = 2 and q =∞ is special since
the classical Sobolev inequality cannot be applied. Nevertheless it is always possible to
find q′ <∞ such that λ and Λ satisfy (b.1), (b.2) with q′ replacing q. Therefore, for the
rest of this article the case d = 2 and q =∞ will be excluded.

Notation. Let B ⊂ Rd be a bounded set. For a function u : B → R, s ≥ 1 and a weight
θ : B → R we note

‖u‖s,θ :=

(∫
Rd
|u(x)|sθ(x)dx

) 1
s

, ‖u‖s,B :=

(
1

|B|

∫
B

|u(x)|s dx
) 1
s

.

and

‖u‖s,B,θ :=

(
1

|B|

∫
B

|u(x)|s θ(x)dx

) 1
s

.

In the sequel we shall use the symbol . to say that the inequality ≤ holds up to a
multiplicative constant depending only on p, q and the dimension d ≥ 2.

In the next proposition it is enough to assume Λ ∈ L1
loc(R

d) and λ−1 ∈ Lqloc(Rd).
Proposition 2.4 (Local Sobolev inequality). Fix a ball B ⊂ Rd. Then for all u ∈ FB

‖u‖2ρ,B . CBS |B|
2
d
E(u, u)

|B|
, (2.4)

where CBS := ‖λ−1‖q,B, and

ρ(q, d) :=
2qd

q(d− 2) + d
, (2.5)
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is the Sobolev conjugate of 2q/(q + 1).

Proof. We start proving (2.4) for u ∈ C∞0 (B). Since ρ as defined in (2.5) is the Sobolev
conjugate of 2q/(q + 1), by the classical Sobolev’s inequality [28, Theorem 1.5.2]

‖u‖ρ . ‖∇u‖2q/(q+1),

where it is clear that we are integrating over B. By Hölder’s inequality and (b.1) we can
estimate the right hand side as follows

‖∇u‖22q/(q+1) =
(∫

B

|∇u|
2q
q+1λ

q
q+1λ−

q
q+1 dx

) q+1
q ≤ ‖1Bλ−1‖q E(u, u),

which leads to (2.4) for u ∈ C∞0 (B), after averaging over the ball B. By approximation,
the inequality is easily extended to u ∈ FB.

Proposition 2.5 (Local weighted Sobolev inequality). Fix a ball B ⊂ Rd. Then for all
u ∈ FΛ

B

‖u‖2ρ/p∗,B,Λ . CB,ΛS |B| 2d E(u, u)

|B|
, (2.6)

being CB,ΛS := ‖λ−1‖q,B‖Λ‖2p
∗/ρ

p,B and p∗ = p/(p− 1).

Proof. The proof readily follows from Hölder’s inequality

‖u‖2ρ/p∗,B,Λ ≤ ‖u‖
2
ρ,B‖Λ‖

2p∗/ρ
p,B

and the previous proposition.

Remark 2.6. From these two Sobolev’s inequalities it follows that the domains FB and
FΛ
B coincide for all balls B ⊂ Rd. Indeed, from (2.4) and (2.6), since ρ, ρ/p∗ > 2, (FB , E)

and (FΛ
B , E) are two Hilbert spaces; therefore FB ,FΛ

B coincide with their extended
Dirichlet space, which by [17, page 324], is the same, hence FB = FΛ

B .

Inequalities with cutoffs. Since assumptions (b.1) and (b.2) only assure local integra-
bility of λ−1 and Λ, we will need to work with functions that are locally in F or FΛ and
with cutoff functions. We say that u ∈ Fθloc, if for all balls B ⊂ Rd there exists uB ∈ Fθ
such that u ≡ uB almost surely on B. It clearly follows from the previous remark that
FΛ
loc = Floc whenever the condition (b.2) is satisfied.

Let B ⊂ Rd be a ball, a cutoff on B is a function η ∈ C∞0 (B), such that 0 ≤ η ≤ 1. For
u, v ∈ Floc we define the bilinear form

Eη(u, v) =
∑
i,j

∫
Rd
aij(x)∂iu(x)∂jv(x)η2(x) dx. (2.7)

Proposition 2.7 (Local Sobolev inequality with cutoff). Fix a ball B ⊂ Rd and a cutoff
function η ∈ C∞0 (B) as above. Then for all u ∈ FΛ

loc

‖ηu‖2ρ,B . CBS |B|
2
d

[Eη(u, u)

|B|
+ ‖∇η‖2∞‖u‖22,B,Λ

]
(2.8)

and

‖ηu‖2ρ/p∗,B,Λ . CB,ΛS |B| 2d
[Eη(u, u)

|B|
+ ‖∇η‖2∞‖u‖22,B,Λ

]
. (2.9)
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Proof. We prove only (2.8), (2.9) being analogous. Take u ∈ Floc, by Lemma B.1 in the
appendix, ηu ∈ FB, therefore we can apply (2.4) and get

‖ηu‖2ρ,B . CBS |B|
2−d
d E(ηu, ηu).

To get (2.8) we compute ∇(ηu) = u∇η + η∇u and we easily estimate

E(ηu, ηu) =

∫
Rd
〈a∇(ηu),∇(ηu)〉dx

≤ 2

∫
Rd
〈a∇u,∇u〉η2dx+ 2

∫
Rd
〈a∇η,∇η〉|u|2dx

≤ 2Eη(u, u) + 2‖∇η‖2∞‖1Bu‖22,Λ.

Concatenating the two inequalities and averaging over B we get the result.

2.3 Nash inequalities

Local Nash inequalities follow as an easy corollary of the Sobolev inequalities (2.4)
and (2.6).

Proposition 2.8 (Nash inequality). Let B ⊂ Rd be a ball. Then for all u ∈ FB we have

‖u‖2+ 2
µ

2,B . CBS |B|
2−d
d E(u, u)‖u‖

2
µ

1,B , (2.10)

where µ :=( 2
d −

1
q )−1 > 0, and

‖u‖2+ 2
γ

2,Λ,B . CB,ΛS |B|
2−d
d E(u, u)‖u‖

2
γ

1,Λ,B , (2.11)

where γ := p−1
p ( 2

d −
1
p −

1
q )−1 > 0.

Proof. We prove only (2.10) being the other completely analogous. By Hölder’s inequality

‖u‖2,B ≤ ‖u‖θρ,B‖u‖1−θ1,B

with θ ∈ (0, 1) and
1

2
= (1− θ) +

θ

ρ
.

Now it suffices to solve for θ, use (2.4) to estimate ‖u‖ρ,B and the result is obtained.

Note that the condition 1/p + 1/q < 2/d is important to have and γ positive while
to ensure µ > 0 it is enough q > d/2. Moreover, γ ≥ d/2, with the equality holding if
p = q =∞. It is well known [11, Section 2.4], [28, Theorem 4.1.1] that Nash inequality
(2.11) for the Dirichlet form (E ,FΛ

B) implies the ultracontractivity of the semigroup PBt
associated to E on L2(B,Λdx), in particular there exists a density pBt (x, y) with respect
to Λ(x)dx which satisfies

sup
x,y∈B

pBt (x, y) . t−γ
[
CB,ΛS |B|

2
d−

1
γ

]γ
,

where it is once more worthy to notice that 2/d− 1/γ ≥ 0, with the equality holding for
the non-degenerate situation.

Furthermore, we have just seen that the semigroup Pt associated to E on L2(Rd,Λdx)

is locally ultracontractive, being PBt ultracontractive for all balls B ⊂ Rd. It follows by
Theorem 2.12 of [21] that Pt admits a symmetric transition kernel pt(x, y) on (0,∞)×
Rd ×Rd with respect to Λ(x)dx.

There is an increasing interest in deriving Nash inequalities for degenerate operators,
mostly because they allow to obtain bounds on the transition probability densities. We
mention the recent work [25] where the authors are able to state anchored versions of
the Nash inequality, which they use to control the L2-norm of a function by Dirichlet
forms that are not uniformly elliptic.
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2.4 Poincaré inequalities

Let B ⊂ Rd be a ball. Given a weight θ : B → [0,∞], we denote by

(u)θB :=

∫
B

u θdx
/∫

B

θdx,

if θ ≡ 1 we simply write (u)B instead of (u)θB. Moreover, for u ∈ Floc we denote

EB(u, u) :=

∫
B

a∇u · ∇u dx.

Proposition 2.9 (Poincaré inequalities). Let B ⊂ Rd be a ball. If u ∈ Floc, then

‖u− (u)B‖22,B . CBP |B|
2−d
d EB(u, u), (2.12)

being CBP := ‖λ−1‖d/2,B, and

‖u− (u)Λ
B‖22,B,Λ . CB,ΛP |B|

2−d
d EB(u, u), (2.13)

being CB,ΛP := ‖Λ‖p̄,B‖λ−1‖q̄,B with p̄, q̄ ∈ [1,∞] such that 1/p̄+ 1/q̄ = 2/d.

Proof. For (2.12) use Hölder’s inequality for the standard Sobolev inequality [28, The-
orem 1.5.2]. We now prove (2.13) for u ∈ C∞(B), the final result can be obtained by
approximation. As first remark, notice that

‖u− (u)Λ
B‖22,B,Λ = inf

a∈R
‖u− a‖22,B,Λ

≤ ‖Λ‖p̄,B inf
a∈R
‖u− a‖22p̄∗,B ≤ ‖Λ‖p̄,B‖u− (u)B‖22p̄∗,B .

We have by Theorem 1.5.2 in [28].

‖u− (u)B‖22p̄∗,B . |B| 2d ‖∇u‖2β,B ≤ ‖λ−1‖q̄,B |B|
2−d
d EB(u, u).

where β is such that 2p̄∗d/(d+ 2p̄∗) = β = 2q̄/(q̄+ 1), which is true whenever 1/p̄+ 1/q̄ =

2/d. Concatenating the two inequalities leads to the result.

In order to get mean value inequalities for the logarithm of caloric functions and,
given that, the parabolic Harnack inequality, we will need a Poincaré inequality with
a radial cutoff. The cutoff function η : Rd → [0,∞) supported in a ball B = B(x0, r), is
a radial function, η(x) := Φ(|x − x0|/r) where Φ is some non-increasing, non-negative
càdlàg function non identically zero on (r/2, r].

Proposition 2.10 (Poincaré inequalities with radial cutoff). Let B ⊂ Rd be a ball of radius
r > 0 and center x0 and let η be a radial cutoff as above. If u ∈ Floc, then

‖u− (u)η
2

B ‖2,B,η2 .MBCBP |B|
2−d
d Eη(u, u) (2.14)

where MB = Φ(0)/Φ(1/2), and

‖u− (u)Λη2

B ‖2,B,Λη2 .MB,ΛCB,ΛP |B|
2−d
d Eη(u, u), (2.15)

where MB,Λ :=MB‖Λ‖1,B/‖Λ‖1,B/2.

Proof. We give the proof only for (2.15), since (2.14) follows by a similar argument. We
apply Theorem 1 in [13]. Accordingly we define a functional F (u, s) : L2(Rd,Λdx) ×
(r/2, r]→ [0,∞] by

F (u, s) ≡ CBs,ΛP |Bs|
2
d

∫
Bs

a∇u · ∇udx.
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for u ∈ FΛ, and F (u, s) = ∞ otherwise, where Bs is the ball of center x0 and radius
s ∈ (r/2, r].

Such functional satisfies F (u + a, s) = F (u, s) for all a ∈ R and u ∈ L2(Rd,Λdx),
moreover

‖u− (u)Bs‖22,Bs,Λ . |Bs|−1F (u, s)

for every s ∈ (r/2, r] and u ∈ FΛ by the Poincaré inequality (2.13). It follows from [13,
Theorem 1] that there exists M > 0, explicitly given by (‖Λ‖1,BΦ(0))/(‖Λ‖1,B/2Φ(1/2)),
such that for all u ∈ FΛ

‖u− (u)Λη2

B ‖2,B,Λη2 .M |B|−1

∫ r

r/2

F (u, s)ν(ds)

.MCB,ΛP |B|
2−d
d

∫ r

r/2

∫
B

a∇u · ∇u1Bsdx γ(ds)

= MCB,ΛP |B|
2−d
d

∫
B

η2a∇u · ∇udx.

Here γ(ds) is a non-zero positive σ-finite Borel measure on (r/2, r] such that

η2(x) =

∫ r

r/2

1Bs(x) ν(ds)

as in [13]. Of course such an inequality is local and we can extend it for u ∈ Floc.

2.5 Remark on the constants

In the previous sections we introduced several constants. We recall them here:

• CB,ΛS := ‖λ−1‖q,B‖Λ‖2p
∗/ρ

p,B ,

• CB,ΛP := ‖λ−1‖q̄,B‖Λ‖p̄,B where p̄ ≤ p and q̄ ≤ q are such that 1/p̄+ 1/q̄ = 2/d,

• MB,Λ := ‖Λ‖1,B/‖Λ‖1,B/2.

The following lemmas show that it is possible to bound the aforementioned constants
for very large balls B.

Lemma 2.11. Under (b.2), for all x ∈ Rd

lim sup
r→∞

1

|B(x, r)|

∫
B(x,r)

Λp + λ−q dz <∞,

and the limit does not depend on x.

Proof. Observe that for r > |x|, B(0, r − |x|) ⊂ B(x, r) ⊂ B(0, r + |x|), therefore the
following inequality holds

(
r − |x|
r

)d
1

|B(0, r − |x|)|

∫
B(0,r−|x|)

Λp + λ−q dz

≤ 1

|B(x, r)|

∫
B(x,r)

Λp + λ−q dz

≤
(
r + |x|
r

)d
1

|B(0, r + |x|)|

∫
B(0,r+|x|)

Λp + λ−q dz,

and taking the limit r → +∞ both sides gives the result.
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Lemma 2.12. Assume (b.2). Then, there exist finite positive constants C∗,ΛS , C∗,ΛP and
M∗,Λ, independent of x ∈ Rd such that

lim sup
r→∞

C
B(x,r),Λ
S = C∗,ΛS , lim sup

r→∞
C
B(x,r),Λ
P = C∗,ΛP ,

sup
x∈Rd

lim sup
r→∞

MB(x,r),Λ = M∗,Λ.

In particular, for all δ > 0 and x ∈ Rd there exists s(x, δ) ≥ 1 such that for all r > s(x, δ)

C
B(x,r),Λ
S < C∗,ΛS (1 + δ), C

B(x,r),Λ
P < C∗,ΛP (1 + δ), MB(x,r),Λ < M∗,Λ(1 + δ).

Proof. The existence of a finite limit for CB(x,r),Λ
S and C

B(x,r),Λ
P as r → ∞ is a direct

consequence of (b.2). In the case of MB(x,r),Λ one must be slightly more careful since
‖Λ‖1,B/2 appears in the denominator. It suffices to observe that

lim sup
r→∞

MB(x,r),Λ ≤ lim sup
r→∞

‖Λ‖1,B(x,r)

‖Λ‖1,B(x,r/2)
≤ lim sup

r→∞
‖Λ‖1,B(x,r)‖Λ−1‖1,B(x,r/2) <∞.

The independence of the limits from x ∈ Rd can be obtained as in Lemma 2.11. The
second statement is an immediate consequence of the first part.

3 Estimates for caloric functions

3.1 Mean value inequalities for subcaloric functions

To avoid the same type of technical problems which we faced in [9, Section 2.3], we
shall assume that our positive subcaloric functions u are locally bounded. It turns out
that any positive subcaloric function is locally bounded; this can be proved repeating the
argument below with some additional technicalities similar to what we did in the proof
of [9, Proposition 2.4].

Proposition 3.1. Consider I = (t1, t2) ⊂ R and a ball B ⊂ Rd. Let u be a locally
bounded positive subcaloric function in Q = I × B. Take cutoffs η ∈ C∞0 (B), 0 ≤ η ≤ 1

and ζ ∈ C∞(R), ζ ≡ 0 on (−∞, t1], 0 ≤ ζ ≤ 1. Set ν = 2− 2p∗/ρ. Then for all α ≥ 1

‖ζη2u2α‖νν,I×B,Λ . CB,ΛS

|B| 2d
|I|1−ν

[
α(‖ζ ′‖∞ + ‖∇η‖2∞)

]ν
‖u2α‖ν1,I×B,Λ. (3.1)

Proof. Since ut > 0 is locally bounded, the power function F : R → R defined by
F (x) = |x|2α with α ≥ 1 satisfies the assumptions of Lemma B.3. Thus, for η ∈ C∞0 (B) as
above we have

d

dt
(u2α
t , η2)Λ + 2α E(ut, u

2α−1
t η2) ≤ 0, t ∈ I. (3.2)

We can estimate

E(ut, u
2α−1
t η2) = 2

∫
Rd
ηu2α−1

t 〈a∇ut,∇η〉 dx+ (2α− 1)

∫
Rd
η2u2α−2

t 〈a∇ut,∇ut〉 dx

≥ 2α− 1

α2
Eη(uαt , u

α
t )− 2‖∇η‖∞

α
Eη(uαt , u

α
t )1/2‖1Bu2α

t ‖
1/2
1,Λ,

by Young’s inequality 2ab ≤ (εa2 + b2/ε) with a = Eη(uαt , u
α
t )1/2, b = ‖∇η‖∞‖1Bu2α

t ‖
1/2
1,Λ

and ε = 1/2α, we get, using that α ≥ 1,

E(ut, u
2α−1
t η2) ≥ (1/2α)Eη(uαt , u

α
t )− 2‖∇η‖2∞‖1Bu2α

t ‖1,Λ.
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Going back to (3.2) we deduce

d

dt
‖(uαt η)2‖1,Λ + Eη(uαt , u

α
t ) ≤ 4α‖∇η‖2∞‖1Bu2α

t ‖1,Λ.

We now take a smooth cutoff in time ζ : R→ [0, 1], ζ ≡ 0 on (−∞, t1], where I = (t1, t2).
We multiply the inequality above by ζ and integrate in time. This yields

ζ(t)‖(uαt η)2‖1,Λ +

∫ t

t1

ζ(s)Eη(uαs , u
α
s ) ds ≤ 4α

[
‖ζ ′‖∞ + ‖∇η‖2∞

] ∫ t

t1

‖1Bu2α
s ‖1,Λ ds,

after averaging in space and taking the supremum for t ∈ I, we obtain

sup
t∈I

ζ(t)‖(ηuαt )2‖1,B,Λ +

∫
I

ζ(s)
Eη(uαs , u

α
s )

|B|
ds . α

[
‖ζ ′‖∞+‖∇η‖2∞

] ∫
I

‖u2α
s ‖1,B,Λ ds. (3.3)

The idea is to use (3.3) together with (2.9) to get (3.1). Observe that ν = 2− 2p∗/ρ is
greater than one, since ρ > 2p∗ by 1/p+ 1/q < 2/d. Using Hölder’s inequality and some
easy manipulation

‖(ηuαs )2‖νν,B,Λ ≤ ‖ηuαs ‖2ρ/p∗,B,Λ‖(ηu
α
s )2‖ν−1

1,B,Λ. (3.4)

We can now integrate this inequality against ζ(s)ν over I and obtain

1

|I|

∫
I

ζ(s)ν‖η2u2α
s ‖νν,B,Λ ds ≤

(
sup
s∈I

ζ(s)‖(ηuαs )2‖1,B,Λ
)ν−1 1

|I|

∫
I

ζ(s)‖ηuαs ‖2ρ/p∗,B,Λ ds.

In view of the Sobolev inequality (2.9) we deduce that

‖ηuαs ‖2ρ/p∗,B,Λ . CB,ΛS |B| 2d
[Eη(uαs , u

α
s )

|B|
+ ‖∇η‖2∞‖u2α

s ‖1,B,Λ
]
.

By (3.3) we can bound each of the two factors. We end up with the following iterative
step

‖ζη2u2α‖νν,I×B,Λ . CB,ΛS

|B| 2d
|I|1−ν

[
α(‖ζ ′‖∞ + ‖∇η‖2∞)

]ν
‖u2α‖ν1,I×B,Λ,

which is what we wanted to prove.

The main idea is to use Moser’s iteration technique on a sequence of parabolic balls;
Proposition 3.1 with a suitable choice of the cutoffs η, ζ and of the parameter α is the
iteration step. Fix a parameter τ > 0, let x ∈ Rd, r > 0 and δ ∈ (0, 1). Then, we define
the parabolic balls

Q(τ, x, s, r) = Q = (s− τr2, s)×B(x, r),

Qδ = (s− δτr2, s)×B(x, δr).

Clearly Qδ ⊂ Q for all δ ∈ (0, 1).

Theorem 3.2. Fix τ > 0 and let 1/2 ≤ σ′ < σ ≤ 1. Assume that 1/p + 1/q < 2/d and
let ut be a positive subcaloric function on Q = Q(τ, x, s, r). Then there exists a positive
constant C1 := C1(d, p, q) such that

sup
Qσ′

u ≤ C1(CB,ΛS )
1

2ν−2 τ
1
2

[
1 + τ−1

(σ − σ′)2

] ν
2ν−2

‖u‖2,Qσ,Λ, (3.5)

where ν = 2− 2p∗/ρ.
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Proof. We want to apply (3.1) with a suitable sequence of cutoffs ηk and ζk. Set

σk = σ′ + 2−k(σ − σ′), δk = 2−k−1(σ − σ′)

then σk−σk+1 = δk. Consider a cutoff in space ηk : Rd → [0, 1], such that supp ηk ⊂ B(σkr)

and ηk ≡ 1 on B(σk+1r), moreover assume that ‖∇ηk‖∞ ≤ 2/(rδk). Take also a cutoff
in time ζk : R→ [0, 1], ζk ≡ 1 on Iσk+1

= (s− σk+1τr
2, s), ζk ≡ 0 on (−∞, s− σkτr2) and

‖ζ ′k‖∞ ≤ 2/(r2τδk). Let αk = νk with ν = 2 − 2p∗/ρ as above. Then, an application of
(3.1) and using the fact that αk+1 = ναk yields

‖u‖2αk+1,Qσk+1
,Λ ≤

{
c(d)CB,ΛS τν−1

[αk(1 + τ−1)22k

(σ − σ′)2

]ν} 1
2αk+1

‖u‖2αk,Qσk ,Λ.

where we used the fact that σk/σk+1 < 2, and that σk ∈ [1/2, 1]. This is the starting point
for Moser’s iteration. Iterating the inequality from k = 0 up to i we derive at the price of
a constant C1 > 0 which depends on p, q and d

‖u‖2αi,Qσi ,Λ ≤ C1(CB,ΛS )
1

2ν−2 τ
1
2

[
1 + τ−1

(σ − σ′)2

] ν
2ν−2

‖u‖2,Qσ,Λ. (3.6)

where we exploited the fact that
∑∞
k=0 1/αk = ν/(ν − 1) and that

∑∞
k=0 k/αk < ∞.

Increasing C1 if needed, from (3.6) we easily derive

‖u‖2αi,Qσ′ ,Λ ≤ C1(CB,ΛS )
1

2ν−2 τ
1
2

[
1 + τ−1

(σ − σ′)2

] ν
2ν−2

‖u‖2,Qσ,Λ.

Taking the limit as i→∞ gives the result

sup
Qσ′

u ≤ C1(CB,ΛS )
1

2ν−2 τ
1
2

[
1 + τ−1

(σ − σ′)2

] ν
2ν−2

‖u‖2,Qσ,Λ.

Corollary 3.3. Fix τ > 0 and let 1/2 ≤ σ′ < σ ≤ 1. Assume that 1/p + 1/q < 2/d and
let u be a subcaloric function in Q = Q(τ, x, s, r). Then, there exists a positive constant
C2 := C2(q, p, d), which depends only on p, q and d, such that for all α > 0

sup
Qσ′

u . C22
2
α2

ν
ν−1 (CB,ΛS )

1
αν−α τ

1
α

[
1 + τ−1

(σ − σ′)2

] ν
αν−α

‖u‖α,Qσ,Λ. (3.7)

Proof. To prove (3.7) one can follow the same approach in [28, Theorem 2.2.3] with the
only difference that we will consider parabolic balls Qσ instead of balls. Observe that for
α > 2 this is just an application of Jensen’s inequality.

We remark that (3.7) is not good for an application of Bombieri-Giusti’s lemma (see
Lemma C.1 below) since 2

2
α

ν
ν−1 is exploding as α approaches zero. To get rid of this

problem, in the next section we derive bounds for supercaloric functions.
Theorem 3.2 can be applied to obtain a global on-diagonal heat kernel upper bound,

as it is done in the next proposition following in spirit the proof of Zhikov in [29].

Proposition 3.4. Let f ∈ L2(Rd,Λdx), and assume that (b.1) and (b.2) are satisfied, then
there exists a constant C3 = C3(q, p, d, C∗,ΛS ) > 0 such that for all x ∈ Rd and t > 0 the
following inequality holds

Ptf(x) ≤ C3t
−γ(s(0, 1) + |x|+

√
t)γ−d/2

∫
Rd

(s(0, 1) + |y|+
√
t)γ−d/2|f(y)|Λ(y)dy.

where γ was defined in (2.11) and s(x, δ) was defined in Lemma 2.12.
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Proof. We want to apply Theorem 3.2. Fix τ ∈ (0, 2], x = 0, r > 0, s = τr2, σ = 1 and
σ′ = 1/2. It follows that

Q1 = (0, τr2)×B(0, r), Q1/2 = τr2(1/2, 1)×B(0, r/2).

We choose r := s(0, 1) + 2|z|+
√
t where s(0, 1) was defined in Lemma 2.12. In this way

C
B(0,r),Λ
S ≤ 2C∗,ΛS and we can read inequality (3.5) for u(s, z) := PΛ

s f(z) as follows

sup
Q1/2

Psf(z) ≤ c(C∗,ΛS )γ/2
τ−γ/2

rd/2
‖f‖2,Λ,

with c = c(p, q, d) changing throughout the proof. By definition of r we can find τ ∈ (0, 2]

such that 3/4τr2 = t and in particular such that (t, z) ∈ Q1/2. This gives

Ptf(z) ≤ ct−γ/2(s(0, 1) + |z|+
√
t)γ−d/2‖f‖2,Λ,

for all z ∈ Rd and t > 0, where now c = c(p, q, d, C∗,ΛS ) depends on C∗,ΛS as well. Set
bt(z) = (s(0, 1) + |z|+

√
t)γ−d/2. It follows that

‖b−1
t Ptf‖∞ ≤ ct−γ/2‖f‖2,Λ,

from which ‖b−1
t Pt‖2→∞ ≤ ct−γ/2. By duality we get ‖Ptb−1

t ‖1→2 ≤ ct−γ/2. Hence

‖Ptf‖2,Λ ≤ ct−γ/2‖btf‖1,Λ.

Now it is left to use the semigroup property and classical techniques [11, Chapter 2] to
finally get the bound.

It is now standard to get global on-diagonal estimates for the kernel pt(x, y) of the
semigroup Pt associated to (E ,FΛ) on L2(Rd,Λdx). Namely we obtain that for almost all
x, y ∈ Rd and for all t > 0

pt(x, y) ≤ C3t
−γ(s(0, 1) + |x|+

√
t)γ−d/2(s(0, 1) + |y|+

√
t)γ−d/2. (3.8)

3.2 Mean value inequalities for supercaloric functions

Theorem 3.5. Fix τ > 0 and let 1/2 ≤ σ′ < σ ≤ 1. Assume that 1/p+ 1/q < 2/d and let
ut be a positive supercaloric function of on Q = Q(τ, x, s, r). Then there exists a positive
constant C4 := C4(p, q, d) which depends only on the dimension and on p, q such that for
all α ∈ (0,∞)

sup
Qσ′

u−α ≤ C4(CB,ΛS )
1

ν−1 τ

[
1 + τ−1

(σ − σ′)2

] ν
ν−1

‖u−1‖αα,Qσ,Λ. (3.9)

where ν = 2− 2p∗/ρ.

Proof. We can always assume that u > ε by considering the supercaloric function u+ ε

and then sending ε to zero at the end of the argument. Applying Lemma B.3 with the
function F (x) := −|x|−β and β > 0 we get

− d

dt
‖η2u−βt ‖1,Λ + β E(u−β−1

t η2, ut) ≥ 0

which after some manipulation gives

− d

dt
‖η2u−βt ‖1,Λ − 4

β + 1

β
Eη2(u

−β/2
t , u

−β/2
t )− 4

∫
Rd
a∇η · ∇(u

−β/2
t )ηu

−β/2
t dx ≥ 0
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by means of Young’s inequality 4ab ≤ 3a2+2b2/3 and using the simple fact that (β+1)/β >

1, we get, after averaging

d

dt
‖η2u−βt ‖1,B,Λ +

Eη2(u
−β/2
t , u

−β/2
t )

|B|
. ‖∇η‖2∞‖u

−β
t ‖1,B,Λ

We now integrate against a time cutoff ζ : R→ [0, 1] to obtain something similar to (3.3).
The same approach as in Proposition 3.1 applies and we get

‖ζη2u−β‖νν,I×B,Λ . CB,ΛS

|B| 2d
|I|1−ν

[
‖ζ ′‖∞ + ‖∇η‖2∞

]ν
‖u−β‖ν1,I×B,Λ.

Moser’s iteration technique with βk = νkα and α > 0 and the same argument of Theorem
3.2 will finally give

sup
Qσ′

u−α ≤ C4(CB,ΛS )
1

ν−1 τ

[
1 + τ−1

(σ − σ′)2

] ν
ν−1

‖u−1‖αα,Qσ,Λ.

We introduce the following parabolic ball. Given x ∈ Rd, r, τ > 0 and s ∈ R, δ ∈ (0, 1),
we note

Q′δ = Q′δ(τ, x, s, r) = (s− τr2, s− (1− δ)τr2)×B(x, δr).

Theorem 3.6. Fix τ > 0 and let 1/2 ≤ σ′ < σ ≤ 1. Assume that 1/p+ 1/q < 2/d and let u
be a positive supercaloric function on Q = Q(τ, x, s, r). Fix 0 < α0 < ν. Then there exists
a positive constant C5 := C5(q, p, d, α0) which depends only on the dimension, on p, q and
on α0 such that for all 0 < α < α0ν

−1 we have

‖u‖α0,Q′σ′ ,Λ
≤

{
C5τ(1 + τ−1)

ν
ν−1

[
1 ∨ CB,ΛS

(σ − σ′)2

] ν
ν−1

}(1+ν)(1/α−1/α0)

‖u‖α,Q′σ,Λ (3.10)

where ν = 2− 2p∗/ρ.

Proof. Assume u is supercaloric on Q = I ×B. Applying Lemma B.3 with the function
F (x) := |x|β with β ∈ (0, 1) we get

d

dt
‖η2uβt ‖1,Λ + β E(uβ−1

t η2, ut) ≥ 0

which after some manipulation gives

d

dt
‖η2uβt ‖1,Λ + 4

β − 1

β
Eη(u

β/2
t , u

β/2
t ) + 4

∫
Rd
a∇η · ∇(u

β/2
t )ηu

β/2
t dx ≥ 0

Note that (β − 1) is negative. If we take 0 < β < α0ν
−1 then we have

1− β
β

> 1− β > 1− α0/ν =: ε,

this yields after Young’s inequality

− d

dt
‖η2uβt ‖1,Λ + ε Eη(u

β/2
t , u

β/2
t ) ≤ A‖∇η‖2∞‖1Bu

β
t ‖1,Λ,

where A is a constant possibly depending on q, p, α0 and d which will be changing
throughout the proof. Here we introduce a difference, the time cutoff ζ : R→ [0, 1], ζ ≡ 0
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on (t2,∞], where I = (t1, t2), is zero at the top of the time interval and not at the bottom.
This gives after integrating,

ζ(t)‖η2uβt ‖1,Λ +

∫ t2

t

ζ(s)Eη(uβ/2s , uβ/2s ) ds ≤ A
[
‖ζ ′‖∞ + ‖∇η‖2∞

] ∫ t2

t

‖1Buβs ‖1,Λ ds

which has the same flavor as (3.3). Starting from this inequality, and repeating the
argument we used for subcaloric functions, we end up with

‖ζη2uβ‖νν,I×B,Λ ≤ AC
B,Λ
S

|B| 2d
|I|1−ν

[
‖ζ ′‖∞ + ‖∇η‖2∞

]ν
‖uβ‖ν1,I×B,Λ. (3.11)

The idea is now to iterate inequality (3.11) with an appropriate choice of exponents
parabolic balls and cutoffs. We follow closely the iteration argument in Theorem 2.2.5 of
[28].

Exponents: we define the exponents αi := α0ν
−i and βj = αiν

j−1 for j = 1, . . . , i.
Observe that 0 < βj < α0ν

−1 and thus we are in a setting where (3.11) is applicable.
Parabolic balls: we define the parabolic balls. We fix σ0 = σ, σj−σj+1 = 2−j−1(σ−σ′),

and set for j = 1, . . . , i

Iσj = (s− τr2, s− (1− σj)τr2), Q′σj = Iσj ×B(σjr).

Cutoffs: for j = 1, . . . , i we define the cutoffs ηj : Rd → [0, 1], such that supp ηj ⊂ B(σjr),
ηj ≡ 1 on B(σj+1r) and ‖∇ηj‖∞ ≤ 2/(rδj), and the cutoffs ζj : R→ [0, 1], ζj ≡ 1 on Iσj+1

,
ζj ≡ 0 on (s− (1− σj)τr2,∞) and ‖ζ ′j‖∞ ≤ 2/(r2τδj).

We are ready to apply (3.11) for j = 1, . . . , i and the choices above.

‖uαiν
j

‖1,Q′σj ,Λ ≤ AC
B,Λ
S τν−1

[ (1 + τ−1)22j

(σ − σ′)2

]ν
‖uαiν

j−1

‖ν1,Q′σj−1
,Λ,

which after an iteration from j = 1 to j = i gives

‖u‖α0

α0,Q′σi
,Λ ≤ 22

∑i−1
j=0(i−k)νj

{
ACB,ΛS τν−1

[ 1 + τ−1

(σ − σ′)2

]ν}∑i−1
j=0 ν

j

‖uαi‖ν
i

1,Q′σ,Λ
.

Now observe that

i−1∑
j=0

(i− j)νj ≤ C(ν)(α0/αi − 1),

i−1∑
j=0

νj =
νi − 1

ν − 1
=
α0/αi − 1

ν − 1

where C(ν) > 0 is a constant which depends on ν but not on i. This yields the following
inequality

‖u‖α0,Q′σ′ ,Λ
≤

{
Aτ(1 + τ−1)

ν
ν−1

[
1 ∨ CB,ΛS

(σ − σ′)2

] ν
ν−1

}1/αi−1/α0

‖u‖αi,Q′σ,Λ

where the constant A depends only on α0, q, p and the dimension d ≥ 2. Replacing
A by A ∨ 1, we can assume it greater than one. Finally we extend the inequality for
α ∈ (0, α0ν

−1). Let i ≥ 2 be an integer such that αi ≤ α < αi−1, then 1/αi − 1/α0 ≤
(1 + ν)(1/α− 1/α0) and by means of Jensen’s inequality we obtain

‖u‖α0,Q′σ′ ,Λ
≤

{
Aτ(1 + τ−1)

ν
ν−1

[
1 ∨ CB,ΛS

(σ − σ′)2

] ν
ν−1

}(1+ν)(1/α−1/α0)

‖u‖α,Q′σ,Λ,

which is what we wanted to prove.
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3.3 Mean value inequalities for the logarithm

In this section we get mean value inequalities for log ut where ut is a positive su-
percaloric function on Q = (s−τr2, s)×B(x, r), with τ > 0 fixed. We denote by mΛ := Λdx

and by γΛ := dt⊗mΛ.

Theorem 3.7. Fix τ > 0 and κ ∈ (0, 1), δ ∈ [1/2, 1). For any s ∈ R and r > 0 and
any positive supercaloric function u on Q = (s− τr2, s)×B(x, r), there exist a positive
constant C6 := C6(q, p, d, δ) and a constant k := k(u, κ) > 0 such that

γΛ{(t, z) ∈ K+ | log ut < −`− k} ≤ C6m
Λ(B)

[
MB,Λ|B| 2d (CB,ΛP ∨ τ2)

]
`−1, (3.12)

and

γΛ{(t, z) ∈ K− | log ut > `− k} ≤ C6m
Λ(B)

[
MB,Λ|B| 2d (CB,ΛP ∨ τ2)

]
`−1, (3.13)

where K+ = (s− κτr2, s)×B(x, δr) and K− = (s− τr2, s− κτr2)×B(x, δr).

Proof. We follow closely the strategy adopted in [28, Theorem 5.4.1]. We can always
assume ut ≥ ε and then send ε to zero in our estimates, since ut + ε is still a supercaloric
function. We denote as usual B := B(x, r). By Lemma B.3,

d

dt
(η2,− log ut)Λ ≤ E(u−1

t η2, ut) = −Eη(log ut, log ut) + 2

∫
〈a∇η,∇ut〉ηu−1

t dx (3.14)

≤ −Eη(log ut, log ut) + 2Eη(log ut, log ut)
1/2‖∇η‖∞‖1B‖1/21,Λ

≤ −1

2
Eη(log ut, log ut) + 2mΛ(B)‖∇η‖2∞,

where in the last inequality we exploited Young’s inequality 2ab ≤ (1/2a2 + 2b2). The
cutoff function η must be in the form introduced in (2.15). Namely, we take

η(z) :=(1− |x− z|/r)+

where x, r are the center and the radius of the ball B. We note

wt(z) :=− log ut(z), Wt :=(wt)
Λη2

B ,

then (2.15) reads

|B|
‖η2Λ‖1

‖wt −Wt‖22,B,Λη2 .MB,ΛCB,ΛP |B| 2d E(wt, wt)

2‖η2Λ‖1
,

rewriting (3.14) we get

∂tWt +
|B|
‖η2Λ‖1

(
MB,ΛCB,ΛP |B| 2d

)−1

‖wt −Wt‖22,B,Λη2 . ‖∇η‖2∞
mΛ(B)

‖η2Λ‖1
.

By the fact that (1− δ)2mΛ(B(x, δr)) ≤ ‖η2Λ‖1 ≤ mΛ(B) and ‖∇η‖2∞ . |B|− 2
d , it follows

∂tWt +
(
mΛ(B)MB,ΛCB,ΛP |B| 2d

)−1
∫
δB

|wt −Wt|2 Λdx ≤ cMB,Λ|B|− 2
d (3.15)

for some constant c > 0 depending only on the dimension and δ. Observe that we fixed
δ ∈ [1/2, 1) to stay away from the boundary. What we have above resembles closely what
is given in [28, Theorem 5.4.1], except for the dependence of the constant on B. Let us
introduce the following auxiliary functions

w̄t :=wt − cMB,Λ|B|− 2
d (t− s′), W̄t :=Wt − cMB,Λ|B|− 2

d (t− s′),
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where s′ = s− κτr2. We can now rewrite (3.15) as

∂tW̄t +
(
mΛ(B)MB,ΛCB,ΛP |B| 2d

)−1
∫
δB

|w̄t − W̄t|2 Λdx ≤ 0. (3.16)

Now set k(u, κ) := W̄s′ and define the two sets

D+
t (`) :={z ∈ B(x, δr) | w̄(t, z) > k + `},

D−t (`) :={z ∈ B(x, δr) | w̄(t, z) < k − `}.

Since ∂tW̄t ≤ 0 we have that, for t > s′, w̄t− W̄t > `+ k(u)− W̄t ≥ ` on D+
t (`). Using this

in (3.16) we obtain

∂tW̄t +
(
mΛ(B)MB,ΛCB,ΛP |B| 2d

)−1

|`+ k − W̄t|2mΛ(D+
t (`)) ≤ 0. (3.17)

or equivalently

−
(
mΛ(B)MB,ΛCB,ΛP |B| 2d

)
∂t|`+ k − W̄t|−1 ≥ mΛ(D+

t (`)). (3.18)

Integrating from s′ to s yields, for γΛ = dt⊗mΛ,

γΛ{(t, z) ∈ K+ | w̄(t, z) > k + `} ≤ mΛ(B)
(
MB,ΛCB,ΛP |B| 2d

)
`−1.

Recall that − log ut = w̄t + cMB,Λ|B|− 2
d (t− s′), therefore

γΛ{(t, z) ∈ K+ | log ut + cMB,Λ|B|− 2
d (t− s′) < −k − `} ≤ mΛ(B)

(
MB,ΛCB,ΛP |B| 2d

)
`−1.

Finally,

γΛ{(t, z) ∈ K+ | log ut < −k(u)− `}

≤ γΛ{(t, z) ∈ K+ | log ut + cMB,Λ|B|− 2
d (t− s′) < −k − `/2}

+ γΛ{(t, z) ∈ K+ | cMB,Λ|B|− 2
d (t− s′) > `/2}

. mΛ(B)
(
MB,ΛCB,ΛP |B| 2d

)
`−1 +mΛ(B)

(
τ2MB,Λ|B| 2d

)
`−1

. mΛ(B)
[
MB,Λ|B| 2d (CB,ΛP ∨ τ2)

]
`−1.

where in the second but last step we used Markov’s inequality and the fact that κ < 1.
Working with D−t (`) and K− and using similar arguments proves the second inequality.

3.4 Parabolic Harnack’s inequality

We have all the tools to apply Lemma C.1 effectively to a positive function u which is
caloric in the parabolic ball Q(τ, s, x, r) = (s− τr2, s)×B(x, r). This will finally give us
the parabolic Harnack inequality. Fix δ ∈ (0, 1) and τ > 0. For x ∈ Rd, s ∈ R and r > 0

denote

Q− = (s− (3 + δ)τr2/4, s− (3− δ)τr2/4)× δB, (3.19)

Q′− = (s− τr2, s− (3− δ)τr2/4)× δB,
Q+ = (s− (1 + δ)τr2/4, s)× δB.
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Theorem 3.8. Fix τ > 0, δ ∈ [1/2, 1) and α0 ∈ (0, ν). Let u be any positive caloric
function on Q = (s− τr2, s)×B(x, r). Then

‖u‖α0,Q′−,Λ
≤ C7 inf

Q+

u (3.20)

where the constant C7 depends increasingly on CB,ΛS , CB,ΛP ,MB,Λ, and on τ, p, q, α0, d, δ.

Proof. For the proof we follow [28, Theorem 5.4.2]. Take k := k(u, κ) corresponding to
κ = 1/2 in Theorem 3.7. Set v = eku and

U = (s− τr2, s− 1/2τr2)×B(x, r), Uσ = (s− τr2, s− (3− σ)τr2/4)×B(x, σr).

By Theorem 3.6 it follows that

‖v‖α0,Uσ′ ,Λ ≤

{
C5τ(1 + τ−1)

ν
ν−1

[
1 ∨ CB,ΛS

(σ − σ′)2

] ν
ν−1

}(1+ν)(1/α−1/α0)

‖v‖α,Uσ,Λ

for all 1/2 ≤ σ′ < σ ≤ 1 and all α ∈ (0, α0ν
−1), in particular notice that α0ν

−1 > α0/2 and
that α0/2 < ν/2 < 1 since ν ∈ (1, 2). By Theorem 3.7 we have that

γΛ{(t, z) ∈ U | log v > `} ≤ C6 γ
Λ(U)τ−1

[
MB,Λ(CB,ΛP ∨ τ2)

]
`−1.

Bombieri-Giusti’s Lemma C.1 is applicable and we obtain

‖eκu‖α0,Q′−,Λ
. CBBG (3.21)

where CBBG depends increasingly on CB,ΛS , CB,ΛP ,MB,Λ, and on τ, p, q, α0, d.
On the other hand, we can now fix

V = (s− 1/2τr2, s)×B(x, r), Vσ = (s− (1 + σ)τr2/4, s)×B(x, σr)

and apply Theorem 3.5 to v = e−ku−1 where k is the same constant as above, this
produces

sup
Vσ′

v ≤

{
C4(CB,ΛS )

1
ν−1 τ

[
1 + τ−1

(σ − σ′)2

] ν
ν−1
}1/α

‖v‖α,Vσ,Λ,

for all α > 0 and 1/2 ≤ σ′ < σ ≤ 1. Since by Theorem 3.7 we have

γΛ{(t, z) ∈ V | log v > `} ≤ C6 γ
Λ(V )τ−1

[
MB,Λ(CB,ΛP ∨ τ2)

]
`−1,

then Bombieri-Giusti’s lemma is applicable and yields

sup
Q+

e−κu−1 . CBBG (3.22)

for some CBBG which we can assume to be the same as before taking the maximum of the
two. Putting (3.21) and (3.22) together gives the result.

Theorem 3.9 (Parabolic Harnack inequality). Fix τ > 0 and δ ∈ [1/2, 1). Let u be any
positive caloric function in Q = (s− τr2, s)×B(x, r). Then we have

sup
Q−

u ≤ CB,ΛH inf
Q+

u, (3.23)

where the constant CB,ΛH depends increasingly on CB,ΛS , CB,ΛP ,MB,Λ, and on τ, p, q, d, δ.
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Proof. It follows from the previous theorem for positive supercaloric functions and
Corollary 3.3.

We have to remark that the constant appearing in (3.23) is strongly dependent on
the ball B we are considering, in particular depends on its center and its radius. In the
next proposition we use assumption (b.2) to get rid of this dependence for balls which
are large enough as it was discussed in Section 2.5.

Remark 3.10. By Lemma 2.12, there exist constants C∗,ΛH <∞ and rH(x) ∈ [1,∞) such

that for all r ≥ rH(x) we have CB(x,r),Λ
H ≤ C∗,ΛH .

Theorem 3.11 (Hölder continuity). Let x ∈ Rd, and rH(x) ≥ 1 as above. Let r > rH(x)

and
√
t ≥ r. Define t0 := t + 1 and r0 :=

√
t0. If u is a positive caloric function on

(0, t0)×B(x, r0), then for all z, y ∈ B(x, r) we have

u(t, z)− u(t, y) ≤ c
(
r√
t

)θ
sup

[3t0/4,t0]×B(x,
√
t0/2)

u, (3.24)

where θ, c are constants which depend only on C∗,ΛH .

Proof. Set rk := 2−kr0 and let

Qk :=(t0 − r2
k, t0)×B(x, rk),

Q−k and Q+
k be accordingly defined as in (3.19) with δ = 1/2 and τ = 1,

Q−k :=(t0 − 7/8r2
k, t0 − 5/8r2

k)×B(x, 1/2rk), Q+
k :=(t0 − 1/4r2

k, t0)×B(x, 1/2rk).

Notice that Qk+1 ⊂ Qk and actually Qk+1 = Q+
k . We set

vk =
u− infQk u

supQk u− infQk u
.

Clearly vk is a caloric on Qk, in particular 0 ≤ vk ≤ 1 and

osc(vk, Qk) := sup
Qk

vk − inf
Qk

vk = 1.

This implies that, replacing vk by 1− vk if necessary, supQ−k
vk ≥ 1/2. Now, for all k such

that rk ≥ rH(x) we can apply the parabolic Harnack inequality with common constant
C∗,ΛH and get

1

2
≤ sup

Q−k

vk ≤ C∗,ΛH inf
Q+
k

vk.

Since by construction Q+
k = Qk+1, we deduce that

osc(u,Qk+1) =
supQk+1

u− infQk+1
u

osc(u,Qk)
osc(u,Qk)

=

(
supQk+1

u− infQk u

osc(u,Qk)
− inf
Qk+1

vk

)
osc(u,Qk),

which yields osc(u,Qk+1) ≤ (1− δ) osc(u,Qk) with δ−1 = 2C∗,ΛH . We can now iterate the
inequality up to k0 such that rk0 ≥ r > rk0+1 and obtain

osc(u,Qk0) ≤ (1− δ)k0−1 osc(u,Q+
0 ).

Finally since B(x, r) ⊂ B(x, rk0), t ∈ (t0 − r2
k0
, t0) and −k0 ≤ log2(r/

√
t) the claim is

proved.
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Starting from (3.24) and knowing that pt(z, ·) is caloric on the whole Rd for almost all
z ∈ Rd we get the following corollary.

Corollary 3.12. Let x ∈ Rd and rH(x) ≥ 1 as above. Let r > rH(x) and
√
t ≥ r. Then we

have that for almost all o ∈ Rd

sup
z,y∈B(x,r)

|pt(o, z)− pt(o, y)| ≤ c
(
r√
t

)θ
t−d/2, (3.25)

where θ, c are positive constants which depends only on C∗,ΛH .

Proof. We have just to bound the right hand side of (3.24). Define t0 = t + 1 as in the
previous theorem. By the Harnack’s inequality applied to the caloric function pt(o, ·) we
have

sup
[3t0/4,t0]×B(x,

√
t0/2)

ps(o, u) ≤ C∗,ΛH inf
[3/2t0,7/4t0]×B(x,

√
t0/2)

ps(o, u)

≤ C∗,ΛH

[
|B(x,

√
t0/2)|‖Λ‖1,B(x,

√
t0/2)

]−1
∫
B(x,

√
t0/2)

pt̄(o, u)Λ(u) du

where t̄ ∈ [3/2t0, 7/4t0].
Clearly

∫
B(x,

√
t0/2)

pt̄(o, u)Λ(u) du ≤ 1. Therefore, for
√
t0 > r > rH(x), we can bound

‖Λ‖1,B(x,
√
t0/2) by a constant which does not depend on x or t0, hence we finally get the

desired estimate.

We want to stress that Corollary (3.12) is not a true Hölder’s continuity result, since
we cannot bound the oscillations for arbitrarily small balls, and indeed it is not even
possible to prove continuity of the density with this technique.

We are interested in finding Hölder’s continuity bounds for pt/ε2(o, ·/ε) for almost
all x ∈ Rd, for small ε . In order to do that we need the following assumption, which
accounts for a control of moving averages.

(b.3) there exist p, q ∈ [1,∞] satisfying 1/p+ 1/q < 2/d such that

sup
x∈Rd

lim sup
ε→0

1

|B(x/ε, 1/ε)|

∫
B(x/ε,1/ε)

Λp + λ−q dx <∞.

It is clear that assumption (b.3) implies ((b.2)); Indeed the latter can be obtained by
the former choosing x = 0.

Lemma 3.13. Let F : Rd → [0,+∞) and let δ, r0 > 0. Assume that

sup
x∈Rd

lim sup
ε→0

1

|B(x/ε, 1/ε)|

∫
B(x/ε,1/ε)

F dz =: K <∞. (3.26)

Then, there exists a constant ε1(x,R0, δ) > 0 such that for all x ∈ Rd and all ε < ε1(x, r0, δ)

sup
r≥r0

1

|B(x/ε, r/ε)|

∫
B(x/ε,r/ε)

F dz < K(1 + δ).

Proof. Fix x ∈ Rd. First we observe that it is enough to prove the statement for r0 = 1

and x 6= 0, being the case r0 6= 1 completely analogous and the case x = 0 immediate.
Let 0 < δ0 < |x|. We split the supremum into two parts

sup
r≥1

1

|B(x/ε, r/ε)|

∫
B(x/ε,r/ε)

F dz

= sup
1≤r≤|x|/δ0

1

|B(x/ε, r/ε)|

∫
B(x/ε,r/ε)

F dz ∨ sup
r≥|x|/δ0

1

|B(x/ε, /ε)|

∫
B(x/ε,r/ε)

F dz.

EJP 20 (2015), paper 112.
Page 21/30

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4190
http://ejp.ejpecp.org/


Local CLT for diffusions in degenerate environment

First we deal with the second part.

sup
r≥|x|/δ0

1

|B(x/ε, r/ε)|

∫
B(x/ε,R/ε)

F dz

≤ sup
r≥|x|/δ0

(
1 +
|x|
r

)d
1

|B(0, (r + |x|)/ε)|

∫
B(0,(r+|x|)/ε)

F dz.

Recall that by (3.26), for all r > 0 there exists ε2(x, r, δ0) > 0 such that for all
ε < ε2(x, r, δ0)

1

|B(x/ε, r/ε)|

∫
B(x/ε,r/ε)

F dz < K(1 + δ0). (3.27)

In particular, recalling that r ≥ |x|/δ0 > 1, for all ε < ε2(0, 1, δ0)

sup
r≥|x|/δ0

1

|B(x/ε, r/ε)|

∫
B(x/ε,r/ε)

F dz ≤ K(1 + δ0)d+1.

The first part is a bit more delicate. For all ε > 0 define Ψε : [1,∞)→ [0,∞) by

Ψε(r) :=
1

|B(x/ε, r/ε)|

∫
B(x/ε,r/ε)

F dz.

Let 1 ≤ r− < r+ ≤ r̄ := |x|/δ0 and r ∈ [r−, r+], then we have

Ψε(r)−Ψε(r+) ≤ dr̄2d−1 · 1

|B(x/ε, r̄/ε)|

∫
B(x/ε,r̄/ε)

Fdz · (r+ − r−)

and for all x ∈ Rd we can find ε2(x, r̄, δ0) > 0 such that for all ε < ε2(x, r̄, δ0)

Ψε(r)−Ψε(r+) ≤ dK(1 + δ0)r̄2d−1(r+ − r−).

Now, take a partition 1 = r0, ..., rm =: r̄ of [1, r̄] in such a way that

|ri − ri−1| ≤ δ0/(dr̄2d−1(1 + δ0))

for all i = 1, ...,m. Define ε3(x, δ0) := ε2(x, r̄, δ0) ∧mini=1,...,m ε2(x, ri, δ0) > 0. Then for all
x ∈ Rd and all ε ≤ ε3(x, δ0), we have that for all r ∈ [1, r̄]

1

|B(x/ε, r/ε)|

∫
B(x/ε,r/ε)

F dz = Ψε(r)

= Ψε(ri(r)) + (Ψε(r)−Ψε(ri(r))) ≤ K(1 + δ0) +Kδ0 = K(1 + 2δ0), (3.28)

where i(r) is such that 0 ≤ ri(r) − r ≤ δ0/(dr̄
2d−1(1 + δ0)). Putting together (3.27) and

(3.28), and defining ε1(x, δ0) := ε2(0, 1, δ0) ∧ ε3(x, δ0), we can deduce that for all x ∈ Rd
and all ε < ε1(x, δ0)

sup
r≥1

1

|B(x/ε, r/ε)|

∫
B(x/ε,r/ε)

F dz ≤ K(1 + 2δ0) ∧K(1 + δ0)d+1.

Finally, the statement follows by an appropriate choice of δ0 small enough and taking
into account the dependence on r0 > 0 for the case r0 6= 1.

Remark 3.14. Assumption (b.3) and Lemma 3.13 allow to control CB,ΛS , CB,ΛP , MB,Λ

uniformly on balls B = B(x/ε, r/ε) when ε is small enough. In particular, for all x ∈ Rd
and r0 > 0 we can find εH(x, r0) > 0 and a finite constant C∗,ΛH independent of x, r0 such
that for all ε < εH(x, r0) and r ≥ r0

C
B(x/ε,r/ε),Λ
H ≤ C∗,ΛH .
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Lemma 3.15. Fix r > 0,
√
t ≥ r and x ∈ Rd. Then for all ε < εH(x, r) we have that for

almost all o ∈ Rd

sup
z,y∈B(x,r)

ε−d|pt/ε2(o, z/ε)− pt/ε2(o, y/ε)| ≤ c
(
r√
t

)θ
t−d/2 (3.29)

where θ, c are positive constants which depend only on C∗,ΛH .

Proof. The proof is the same as in Theorem 3.11 since given a caloric function u(t, x),
u(t/ε2, x/ε) is also caloric with respect to the Dirichlet form with coefficients given by
a(x/ε). Assumption (b.3) is used to have uniform constants for moving averages.

From the estimate (3.29) we can prove the following key lemma.

Lemma 3.16. Let I ⊂ (0,∞) be a compact interval. Then, for almost all o ∈ Rd and all
r > 0

lim
r0→0

lim sup
ε→0

sup
x,y∈B(o,r)
|x−y|<r0

sup
t∈I

ε−d|pt/ε2(o, x/ε)− pt/ε2(o, y/ε)| = 0

Proof. Let us denote by t1 := inf I. Fix δ > 0 and set

r0 :=

√
t1
2
∧
(
t
d/2
1 δ

2c

)1/θ√
t1.

Since B(o, r) is compact we can cover it by a finite set of balls {B(x, r0/2)}x∈X of radius
r0/2 and centers x ∈ X ⊂ B(o, r). Set ε̄ := minx∈X εH(x, r0), then an application of (3.29)
gives for all ε < ε̄

sup
x∈X

sup
|x−y|<r0

sup
t∈I

ε−d|pt/ε2(o, x/ε)− pt/ε2(o, y/ε)| ≤ c
(
r0√
t1

)θ
t
−d/2
1 ≤ δ

2
.

Next we can use this bound to conclude, namely take z ∈ B(o, r), and x ∈ X such that
|z − x| < r0/2, then

sup
|z−y|≤r0/2

sup
t∈I

ε−d|pt/ε2(o, z/ε)− pt/ε2(o, y/ε)|

≤ sup
t∈I

ε−d|pt/ε2(o, x/ε)− pt/ε2(o, z/ε)|

+ sup
|y−x|≤r0

sup
t∈I

ε−d|pt/ε2(o, x/ε)− pt/ε2(o, y/ε)| ≤ δ

and this ends the proof since we show that the bound is uniform in z ∈ B(o, r).

4 Local Central Limit Theorem

We finally give the main application of the computations we have developed in the
preceding sections. The approach we exploit is the one in [7, 10], in particular [10,
Assumption (4)] must be compared with our inequality (3.24).

We denote by kΣ
t (x), x ∈ Rd the gaussian kernel with covariance matrix Σ, namely

kΣ
t (x) :=

1√
(2πt)d det Σ

exp
(
−x · Σ

−1x

2t

)
.

We need here two further assumptions
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(b.4) for almost all x ∈ Rd and all r > 0

lim
ε→0

1

|B(x/ε, r/ε)|

∫
B(x/ε,r/ε)

Λ dx =: aΛ <∞.

(b.5) there exists a positive define symmetric matrix Σ such that for almost all o ∈ Rd,
for any compact interval I ⊂ (0,∞), almost all x ∈ Rd and r > 0

lim
ε→0

1

εd

∫
B(x,r)

pt/ε2(o, y/ε) Λ(y/ε)dy →
∫
B(x,r)

kΣ
t (y) dy,

uniformly in t ∈ I.

Theorem 4.1. Fix a compact interval I ⊂ (0,∞) and r > 0. Assume (b.1)–(b.5), then for
almost all o ∈ Rd and for all r > 0

lim
ε→0

sup
x∈B(o,r)

sup
t∈I
|ε−dpt/ε2(o, x/ε)− a−1

Λ kΣ
t (x)| = 0.

Proof. The proof presented here is a slight variation of the one in [7, 10], the only
difference is that we work on Rd rather than on graphs. For x ∈ B(o, r) and r0 > 0 we
denote

J(t, ε) :=
1

εd

∫
B(x,r0)

pt/ε2(o, y/ε) Λ(y/ε)dy −
∫
B(x,r0)

kΣ
t (y) dy,

where kΣ
t is the gaussian kernel with covariance matrix Σ. Now, we can split J(t, ε) =

J1(t, ε) + J2(t, ε) + J3(t, ε) + J4(t, ε) where

J1(t, ε) :=

∫
1
εB(x,r0)

(
pt/ε2(o, y)− pt/ε2(o, x/ε)

)
Λ(y)dy,

J2(t, ε) :=

∫
1
εB(x,r0)

Λ(y)dy
(
pt/ε2(o, x/ε)− εda−1

Λ kΣ
t (x)

)
,

J3(t, ε) := kΣ
t (x)

(
εda−1

Λ

∫
1
εB(x,r0)

Λ(y)dy − |B(x, r0)|
)
,

J4(t, ε) :=

∫
B(x,r0)

(kΣ
t (x)− kΣ

t (y))dy.

Fix δ > 0. By the continuity of kΣ
t we can choose r0 ∈ (0, 1) small enough such that

sup
x,y∈B(0,r+1)
|x−y|≤r0

sup
t∈I
|kΣ
t (y)− kΣ

t (x)| ≤ δ, (4.1)

from which we can easily obtain the bound supt∈I |J4(t, ε)| ≤ δ|B(x, r0)|. Taking r0 smaller
if needed, thanks to Lemma 3.16, we can find ε̄ > 0 such that for all ε < ε̄

sup
x,y∈B(o,r+1)
|x−y|≤r0

sup
t∈I

ε−d|pt/ε2(o, y/ε)− pt/ε2(o, x/ε)| ≤ δ, (4.2)

which immediately implies that supt∈I |J1(t, ε)| ≤ δ|B(x, r0)|. Furthermore, by assumption
(b.4) taking ε̄ smaller if needed we get supt∈I |J3(t, ε)| ≤ δ|B(x, r0)| for all ε ≤ ε̄. Finally,
assumption (b.5) readily gives supt∈I |J(t, ε)| ≤ δ|B(x, r0)| for ε small enough.

These estimates can then be used to control |J2(t, ε)| for ε ≤ ε̄ uniformly in t ∈ I.
Namely, one gets

sup
t∈I
|ε−dpt/ε2(o, x/ε)− a−1

Λ kΣ
t (x)| ≤ 4δ

(
εd

|B(x, r0)|

∫
1
εB(x,r0)

Λ(y)dy

)−1
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and we can take ε̄ even smaller to obtain, using assumption (b.4),(
εd

|B(x, r0)|

∫
1
εB(x,r0)

Λ(y)dy

)−1

≤ (δ + aΛ).

This implies that for almost all x ∈ Rd

lim
ε→0

sup
t∈I
|ε−dpt/ε2(o, x/ε)− a−1

Λ kΣ
t (x)| = 0.

Consider now r > 0, δ > 0 and let r0 ∈ (0, 1) be chosen as before. Since B(o, r) is compact
there exists a finite covering {B(z, r0)}z∈X of B(o, r) with X ⊂ B(o, r). Since X is finite,
there exists ε̄ > 0 such that for all ε ≤ ε̄

sup
z∈X

sup
t∈I
|ε−dpt/ε2(o, z/ε)− a−1

Λ kΣ
t (z)| ≤ δ.

Next, for a general x ∈ B(o, r), there exists some z ∈ X such that x ∈ B(z, r0). Thus, we
can write

sup
t∈I
|ε−dpt/ε2(o, x/ε)− a−1

Λ kΣ
t (x)| ≤ sup

t∈I
ε−d|pt/ε2(o, x/ε)− pt/ε2(o, z/ε)|

+ sup
t∈I
|ε−dpt/ε2(o, z/ε)− a−1

Λ kΣ
t (z)|

+ a−1
Λ sup

t∈I
|kΣ
t (x)− kΣ

t (z)|.

Since x, z ∈ B(o, r + 1) and |x− z| ≤ r0, inequality (4.1) implies that the last addendum
is bounded by δ, the second addendum is also bounded uniformly by δ since z ∈ X . We
can bound the first term uniformly by δ by means of (4.2). This ends the proof.

4.1 Application to Diffusions in Random Environment

In this section we finally apply Theorem 4.1 to obtain Theorem 1.2.

Proof of Theorem 1.2. It is enough to show that assumptions (b.1)-(b.5) are satisfied for
µ-almost all realizations of the environment, then Theorem 4.1 gives the result.

By construction (a.1) implies (b.1) for µ-almost all ω ∈ Ω. Assumption (a.2) together
with the ergodic theorem [22, Theorem 11.18] gives easily (b.2)-(b.4) µ-almost surely,
in particular the constant aΛ equals Eµ[Λ]. Finally (b.5) for µ-almost all ω ∈ Ω can be
deduced directly from (a.3).

The second part of the statement follows readily since, if we assume λω(·)−1,Λω(·) ∈
L∞loc(R

d) for µ-almost all ω ∈ Ω, then the density pωt (x, y) is a continuous function of x
and y by classical results in PDE theory [19]. Thus, Theorem 4.1 holds for all o ∈ Rd,
µ-almost surely.

A On the moment condition for the time-changed model

Let us take θ : Ω→ (0,+∞) and θω(x) := θ(τxω) such that θω and 1/θω are in L1
loc(R

d)

almost surely. One can then consider the Dirichlet form (Eω,Fθ,ω) on L2(Rd, θωdx) where
Eω is given by (1.2) and Fθ,ω is the closure of C∞0 (Rd) in L2(Rd, θωdx) with respect to
Eω + (·, ·)θ. This corresponds to the formal generator

Lωu(x) =
1

θω(x)
∇ · (aω(x)∇u(x)).

What are the conditions on θ, λ and Λ in order to obtain a quenched local central limit
theorem for the diffusion associated to (Eω,Fθ,ω)? It turns out that if

Eµ[θr] <∞, Eµ[λ−q] <∞, Eµ[Λpθ1−p] <∞,
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where p, q, r ∈ (1,∞] are such that

1

q
+

1

r
+
r − 1

r
· 1

p
<

2

d
, (A.1)

then we can still derive a parabolic Harnack inequality of the type (3.23) and thus obtain
a quenched local central limit theorem also in this situation. Let us motivate this claim.

In the same spirit of sections 2 and 3 let us fix the environment ω ∈ Ω and, abusing
notation, consider θ(x), λ(x), Λ(x) and a(x) in place of θω(x), λω(x), Λω(x) and aω(x). We
look for a priori estimates for solutions to the formal parabolic equation

∂tu(t, x)− 1

θ(x)
∇ · (a(x)∇u(t, x)) = 0.

Following the strategy of Section 3 it is clear that the iterative step (3.1) in Proposition
3.1 is central to obtain the parabolic Harnack inequality. One could ask whether the
argument given in such a proposition still works for the case θ = Λ. By redoing the very
same computations of Proposition 3.1 with the same notation, we get in place of (3.3)

sup
t∈I

ζ(t)‖(ηuαt )2‖1,B,θ+
∫
I

ζ(s)
Eη(uαs , u

α
s )

|B|
ds

.α
[
‖ζ ′‖∞ + ‖∇η‖2∞

] ∫
I

‖u2α
s ‖1,B,θ ∨ ‖u2α

s ‖1,B,Λ ds. (A.2)

On the right hand side we will need the weight θ, this is easily achieved with Hölder
inequality

‖u2α
s ‖1,B,Λ ≤ ‖u2α

s ‖p∗,B,θ‖Λθ1/(p−1)‖p,B , ‖u2α
s ‖1,B,θ ≤ ‖u2α

s ‖p∗,B,θ,

provided that Λθ1/(p−1) ∈ Lploc(Rd), which explains the condition Eµ[Λpθ1−p] <∞. Notice
that whenever θ ≥ Λ the condition Eµ[Λpθ1−p] <∞ is satisfied for all p, so that in (A.1)
it is possible to take p =∞.

At this point of the argument, we realized that (3.4) does not give an optimal moment
condition, and one should better play with space-time norms. With this in mind let us
introduce some notation following [23].

For any non-empty, compact interval I ⊂ R and any B ⊂ Rd finite, we introduce
for arbitrary α, β ∈ [1,∞) the Banach space, Lα,β(I × B), of measurable functions
u : I ×B → R with norm

‖u‖α,β,I×B,θ :=

(
1

|I|

∫
I

(
1

|B|

∫
B

|u(t, x)|α θ(x)dx

)β/α
dt

)1/β

and

‖u‖α,∞,I×B,θ := max
t∈I

(
1

|B|

∫
B

|u(t, x)|α θ(x)dx

)1/α

.

The lemma which follows takes the role of (3.4) in Proposition 3.1.

Lemma A.1. Let v : I × B → R. Then, for any γ1 ≥ % ≥ 1 and γ2 ≥ 1 such that
%/γ1 + (%− 1)/γ2 = % it holds that

‖v‖γ1,γ2,I×B,θ ≤ ‖v‖1,∞,I×B,θ + ‖v‖%,1,I×B,θ.

Proof. This is [23, Lemma 1].
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We apply Lemma A.1 to v = ζη2u2α with γ1 = κp∗, γ2 = κ and % = ρ/2r∗. This yields

‖ζη2u2α‖κp∗,κ,I×B,θ ≤ ‖ζη2u2α‖1,∞,I×B,θ + ‖ζη2u2α‖ρ/2r∗,1,I×B,θ. (A.3)

for κ = 2 − 1/p − 2r∗/ρ. The choice of % is done to apply Sobolev inequality (2.8) and
obtain

‖ζη2u2α‖ρ/2r∗,1,I×B,θ =
1

|I|

∫
I

‖ζη2u2α
s ‖ρ/2r∗,B,θds

.‖θ‖2r
∗/ρ

r,B CB,ΛS

|B| 2d
|I|

∫
I

Eη(uαs , u
α
s )

|B|
+ ‖∇η‖2∞‖u2α

s ‖1,B,Λ ds.

Notice that Eµ[θr] <∞ is needed to control ‖θ‖r,B for large balls.
Using (A.2) and (A.3) it is now possible to deduce the following iterative step

‖ζη2u2α‖κp∗,κ,I×B,θ

. α‖1 + Λθ1/(p−1)‖p,B
(
|I|+ ‖θ‖2r

∗/ρ
r,B CB,ΛS |B| 2d

)[
‖ζ ′‖∞ + ‖∇η‖2∞

]
‖u2α‖p∗,1,I×B,θ.

To be able to perform Moser iteration as in Theorem 3.2, we will need κ = 2−1/p−2r∗/ρ >

1, which is equivalent to
1

r
+

1

q
+
r − 1

r
· 1

p
<

2

d
.

B Dirichlet Forms

Let X be a locally compact metric separable space, and m a positive Radon measure
on X such that supp[X] = m. Consider the Hilbert space L2(X,m) with scalar product
〈·, ·〉. We call a symmetric form, a non-negative definite bilinear form E defined on a
dense subset D(E) ⊂ L2(X,m). Given a symmetric form (E ,D(E)) on L2(X,m), the form
Eβ := E +β〈·, ·〉 defines a new symmetric form on L2(X,m) for each β > 0. Note that D(E)

is a pre-Hilbert space with inner product Eβ . If D(E) is complete with respect to Eβ , then
E is said to be closed.

A closed symmetric form (E ,D(E)) on L2(X,m) is called a Dirichlet form if it is
Markovian, namely if for any given u ∈ D(E), then v = (0 ∨ u) ∧ 1 belongs to D(E) and
E(v, v) ≤ E(u, u).

We say that the Dirichlet form (E ,D(E)) on L2(X,m) is regular if there is a subset H
of D(E)∩C0(X) dense in D(E) with respect to E1 and dense in C0(X) with respect to the
uniform norm. H is called a core for D(E).

We say that the Dirichlet form (E ,D(E)) is local if for all u, v ∈ D(E) with disjoint
compact support E(u, v) = 0. E is said strongly local if u, v ∈ D(E) with compact support
and v constant on a neighborhood of suppu implies E(u, v) = 0.

Lemma B.1. Let B ⊂ Rd and consider a cutoff η ∈ C∞0 (B). Then, u ∈ Floc ∪ FΛ
loc implies

ηu ∈ FB.

Proof. Take u ∈ FΛ
loc, then there exists ū ∈ FΛ such that u = ū on 2B. Let {fn}N ⊂

C∞0 (Rd) be such that fn → ū with respect to E + 〈·, ·〉Λ. Clearly ηfn ∈ FΛ
B and ηfn →

ηū = ηu in L2(B,Λdx). Moreover

E(ηfn − ηfm) ≤ 2E(fn − fm) + ‖∇η‖2∞
∫
B

|fn − fm|2Λdx.

Hence ηfn is Cauchy in L2(B,Λdx) with respect to E + 〈·, ·〉Λ, which implies that ηu ∈
FΛ
B = FB. If u ∈ Floc the proof is similar and one has only to observe that {fn}n∈N is

Cauchy in W 2q/(q+1)(B), which by Sobolev’s embedding theorem implies that {fn}n∈N is
Cauchy in L2(B,Λdx).
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Lemma B.2. Let ψ : R → R be a globally Lipschitz function with constant L and with
ψ(0) = 0. If u ∈ F (Floc), then ψ(u) ∈ F (Floc).

Proof. Let B ⊂ Rd be a ball, and ũ ∈ F such that u = ũ on B. Then, it is easy to verify
that the function ψ(ũ)/L is a normal contraction of ũ, since

|ψ(ũ(x))− ψ(ũ(y))| ≤ L|ũ(x)− ũ(y)|, |ψ(ũ(x))| ≤ L|ũ(x)|.

Hence ψ(ũ) ∈ F as can be seen in [18, Chapter 1]. In particular ψ(ũ) = ψ(u) on B, which
ends the proof.

Lemma B.3. Let F : R → R be a twice differentiable function with bounded second
derivative and positive first derivative. Assume that F ′(0) = 0. Then for any caloric
(subcaloric, supercaloric) function u we have

d

dt
(F (ut), φ)Λ + E(ut, F

′(ut)φ) = 0, (≤, ≥)

for all φ ∈ C∞0 (Rd), φ > 0 and t > 0.

Proof. Observe that F ′′ bounded and F ′(0) = 0 implies that F ′(ut) ∈ FΛ by Lemma B.2.

d

dt
(F (ut), φ)Λ = lim

h↓0

1

h
(F (ut+h)− F (ut), φ)Λ

= lim
h↓0

1

h
(F ′(ut)(ut+h − ut), φ)Λ +

1

h
(R(ut+h − ut), φ)Λ,

where |R(x)| ≤ ‖F ′′‖∞|x|2. The first summand converges to E(ut, F
′(ut)φ) since ut solves

(2.3). It remains to show that the second summand goes to zero. It is enough to see that

1

h
|(R(ut+h − ut), φ)Λ| ≤ h‖φ‖∞‖F ′′‖∞‖(ut+h − ut)h−1‖22,Λ → 0

as h→ 0. For subcaloric and supercaloric functions the proof follows the same lines.

C Bombieri-Giusti’s Lemma

In order to obtain an Harnack inequality for positive weak solutions to an elliptic or
parabolic equation we will make use of the following lemma due to Bombieri and Giusti,
whose proof can be found in [28] or in the original paper [8].

Consider a collection of measurable subsets Uσ, 0 < σ ≤ 1, of a fixed measure
space (X ,M) endowed with a measure γ, such that Uσ′ ⊂ Uσ whenever σ′ < σ. In our
application, Uσ will be B(x, σr) for some fixed ball B(x, r) ⊂ Rd.
Lemma C.1 (Bombieri-Giusti [8]). Fix δ ∈ (0, 1). Let κ and K1,K2 be positive constants
and 0 < α0 ≤ ∞. Let u be a positive measurable function on U :=U1 which satisfies(∫

Uσ′

|u|α0 dγ

) 1
α0

≤
(
K1(σ − σ′)−κγ(U)−1

) 1
α−

1
α0

(∫
Uσ

|u|α dγ
) 1
α

(C.1)

for all σ, σ′ and α such that 0 < δ ≤ σ′ < σ ≤ 1 and 0 < α ≤ min{1, α0/2}. Assume further
that u satisfies

γ(log u > `) ≤ K2 γ(U)`−1 (C.2)

for all ` > 0. Then (∫
Uδ

|u|α0 dγ

) 1
α0

≤ CBG γ(U)
1
α0 ,

where CBG depends only on K1,K2, δ, κ and a lower bound on α0.
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