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Abstract

This paper introduces a matrix analog of the Bessel processes, taking values in the
closed set E of real square matrices with nonnegative determinant. They are related
to the well-known Wishart processes in a simple way: the latter are obtained from the
former via the map x 7→ x>x. The main focus is on existence and uniqueness via the
theory of Dirichlet forms. This leads us to develop new results of potential theoretic
nature concerning the space of real square matrices. Specifically, the function w(x) =
| detx|α is a weight function in the Muckenhoupt Ap class for −1 < α ≤ 0 (p = 1) and
−1 < α < p− 1 (p > 1). The set of matrices of co-rank at least two has zero capacity
with respect to the measure m(dx) = |detx|αdx if α > −1, and if α ≥ 1 this even
holds for the set of all singular matrices. As a consequence we obtain density results
for Sobolev spaces over (the interior of) E with Neumann boundary conditions. The
highly non-convex, non-Lipschitz structure of the state space is dealt with using a
combination of geometric and algebraic methods.
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1 Introduction and preliminaries

The Wishart processes, taking values in the cone Sd+ of positive semidefinite d ×
dmatrices, constitute a class of matrix-valued Markov processes generalizing the squared
Bessel (BESQ) processes. They were first introduced by Bru [5, 6], and have subsequently
been studied further and extended in various directions by a number of authors, for
example [11, 19, 10, 8]. They have also found use in applied contexts, for instance in
finance [17, 9].

The existence of a well-behaved matrix analog of the BESQ processes raises the
question of whether the same is true for the Bessel (BES) processes. Since the Wishart
process is Sd+-valued, a natural candidate is its positive semidefinite square root. This
was considered in [18], where the resulting Markov process is described via the dynamics
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Matrix-valued Bessel processes

of its eigenvectors and eigenvalues. However, as was pointed out already by Bru [6], it
appears difficult to obtain the dynamics of the process itself, or to succinctly describe its
generator.

The aim of the present paper is to show that a more well-behaved class of processes
is obtained by passing to the larger state space

E = {x ∈Md : detx ≥ 0},

where Md is the Euclidean space of all d× d real matrices, endowed with the usual inner
product x • y = Tr(x>y) and norm ‖x‖ =

√
x • x. The matrix-valued Bessel process with

parameter δ > 0 and matrix dimension d, abbreviated BESM(δ, d), will be an E-valued
Markov process whose generator is given by

Lf =
1

2
∆f +

δ − 1

2
x−> • ∇f, (1.1)

where x−> = (x−1)>, ∇ is the d× d matrix with elements ∂xij (so that for f ∈ C1(Md),
∇f is its gradient), and ∆ = ∇ •∇ =

∑
i,j ∂

2
xijxij is the Laplacian. To make x−1 globally

defined, we set to zero for singular x (this choice is arbitrary and inconsequential.)
Notice that for d = 1, L is the generator of the BES(δ) process.

Existence of the BESM(δ, d) process is proved via the theory of Dirichlet forms,
which is able to nicely handle the singular drift term of L. The crucial fact is that L
is a symmetric operator with respect the measure m(dx) = |detx|δ−1dx, which is a
consequence of an integration by parts formula (Theorem 2.2). The Dirichlet form is
then given by the simple expression

E(f, g) =

∫
E

∇f • ∇g m(dx).

Uniqueness is a much more delicate issue. Relying on density results for certain
Sobolev spaces with Neumann boundary condition (Theorem 4.1), we establish Markov
uniqueness in the sense of Eberle [13]. Obtaining these density results is a nontrivial
matter. In particular, we are led to prove several results, interesting in their own right,
about the measure m and its interaction with the state space. Specifically, we show
that the matrices of co-rank at least two form a set of zero capacity with respect to m,
and that if δ ≥ 2, the set of all singular matrices has zero capacity (Theorem 5.1).
Moreover, we prove that |detx|α is locally Lebesgue integrable on Md precisely when
α > −1 (Theorem 2.1), and that it is a weight function in the Muckenhoupt Ap class
when α ∈ (−1, 0] and p = 1, and when α ∈ (−1, p − 1) and p > 1 (Theorem 6.1). This
exactly parallels the well-known situation for the weight function tα on R.

The proofs of these results require some effort. The difficulties mainly arise due to the
highly non-convex, non-Lipschitz structure of the state space E. In fact, the interior Eo

does not even lie on one side of its boundary ∂E, as can be seen by considering the lines
through the origin, {tx : t ∈ R}, x ∈Md \ {0}: If d is even, each line lies either entirely
inside E, or entirely outside Eo. These issues are resolved via a combination of geometric
methods (relying on the stratification of E into smooth manifolds Mk consisting of rank k
matrices) and algebraic methods (mainly the QR-decomposition and estimates of the
determinant function near Mk.) One would expect similar techniques to be useful for the
analysis of Markov processes on more general stratified spaces; some of the groundwork
for this is laid in [12], and the case of so-called polynomial preserving diffusions is
treated in [15].

Let us say something about why the BESM processes are natural analogs of the
BES processes, other than the resemblance of their generators. The main reason is
that the process X>X, where X is BESM(δ, d), is a Wishart process with parameter
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Matrix-valued Bessel processes

α = d− 1 + δ, denoted WIS(α, d), see Theorem 3.5. As a consequence, ‖X‖ is BES(dα),
and detX is a time-changed BES(δ) process. Moreover, just as in the scalar case, X
is the weak solution of a stochastic differential equation for δ > 1, while it is not even
a semimartingale for 0 < δ < 1. A general discussion of BES and BESQ processes is
available in [31, Chapter XI]. For a specialized treatment of the case 0 < δ < 1, see [4, 2].

A second motivation, which was the original “clue” that led us to consider the
generator L, is as follows. Let X be an Md-valued Brownian motion starting from I

(the identity matrix), and let τ0 be the first time detXt hits zero. Then detXt∧τ0 is a
martingale, and we may use it to change the probability measure. An application of
Girsanov’s theorem, using the identity ∇ ln det(x) = x−>, shows that under the new
measure, the process

Wt = Xt −X0 −
∫ t

0

X−>s ds, t ≥ 0,

is Md-valued Brownian motion. Thus X becomes a Markov process whose generator is
L with δ = 3, and its determinant is positive by construction. This is fully analogous to
the well-known construction via Doob’s h-transform of the BES(3) process as Brownian
motion “conditioned to stay positive”.

In addition to the notation already introduced above, the following conventions will
be in force throughout the paper.

• As usual, the symbols C(U); Cc(U); Ck(U) denote the spaces of continuous; con-
tinuous and compactly supported; k-times continuously differentiable functions
on a subset U ⊂ Md equipped with the relative topology. Writing C(U ;V ), etc.,
means that the functions take values in the topological space V . Note that U may
be closed in Md, e.g. if U = E. In this case, the compact sets need not be bounded
away from ∂U .

• We set Mk = {x ∈Md : rankx = k}, k = 0, . . . , d. Then Mk is a smooth manifold of
dimension d2 − (d − k)2, see [21], and we have ∂E = ∪k≤d−1Mk. For any v ∈Md

we say that v is tangent to ∂E at x ∈Mk ⊂ ∂E if v lies in the tangent space of Mk

at x. We refer to [26] for background on differential geometry.

• O(d) is the orthogonal group over Rd, and T (d) is the group of upper-triangular
d× d real matrices with strictly positive diagonal entries. The set of nonsingular
matrices (i.e., the general linear group) is homeomorphic to O(d)×T (d) via the QR-
decomposition. The following change of variable formula, which is a consequence
of the uniqueness of Haar measure, follows directly from [14, Proposition 5.3.2]
and monotone convergence.

Lemma 1.1. Let f : Md → R be nonnegative and measurable. Then∫
Md

f(x)|detx|−ddx =

∫
O(d)×T (d)

f(QR)µ(dQ)

d∏
i=1

R−iii dR,

where µ is proportional to normalized Haar measure on O(d), and dR =
∏
i≤j dRij .

• For x ∈Md, we let adjx denote the adjugate matrix of x (i.e., the transpose of the
matrix of cofactors). It satisfies the identities x adjx = (detx)I and ∇ det(x) = adjx,
so that in particular x−> = ∇ det(x)/ detx for nonsingular x. We also have adjx = 0

if and only if rankx ≤ d− 2.

The rest of this paper is organized as follows. The BESM process and semigroup
are defined, and proved to exist, in Section 2. Some fundamental properties, including

EJP 20 (2015), paper 60.
Page 3/29

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3785
http://ejp.ejpecp.org/


Matrix-valued Bessel processes

the relation to the Wishart process, are discussed in Section 3. Markov uniqueness is
proved in Section 4. The crucial Theorems 5.1 and 6.1 are proved in Sections 5 and 6,
respectively. The integration by parts formula (Theorem 2.2) is proved in Appendix A,
while Appendix B and C contain, respectively, some auxiliary results on Sobolev spaces
and differential geometry.

2 Definition and existence

The definition of the BESM process is based on the differential operator L in (1.1)
acting on functions in D, where

D =
{
f ∈ C2

c (E) : x−> • ∇f is bounded
}
.

As we will see momentarily, (L,D) is a symmetric operator on L2(E,m), where the
measure m is given by

m(dx) = |detx|δ−1dx.

(Occasionally m will be viewed as a measure on Md, or on subsets other than E.) The
inner product on L2(E,m) is denoted by 〈·, ·〉. Specifically, we write

〈f, g〉 =

∫
E

f(x)g(x)m(dx) and 〈F,G〉 =

∫
E

F (x) •G(x)m(dx),

where f, g ∈ L2(E,m) and F,G ∈ L2(E,m;Md). The overlapping notation should not
cause any confusion.

The following result shows that m is a Radon measure on Md, and hence on E, when
δ > 0. It implies in particular that we have D ⊂ L2(E,m).

Theorem 2.1. Let α ∈ R and define w(x) = |detx|α. The function w is locally integrable
on Md if and only if α > −1.

Proof. Let A ⊂Md be relatively compact. Since ∂E is a nullset, we may assume that
A ∩ ∂E = ∅. Then there is a rectangle K ⊂ T (d), say K = ×i≤jIij , of bounded open
intervals Iij such that Iii ⊂ (0,∞) and Iij ⊂ R (i < j), and such that A ⊂ O(d) ·K. Hence,
the change-of-variable formula in Lemma 1.1 yields

∫
A

|detx|αdx ≤ µ(O(d))

(∏
i<j

∫
Iij

dRij

)(∫
K

|detR|α+d
d∏
i=1

R−iii dRii

)

= µ(O(d))

(∏
i<j

∫
Iij

dRij

)( d∏
i=1

∫
Iii

Rα+d−i
ii dRii

)
,

where µ is proportional to normalized Haar measure on O(d). The right side is finite,
provided α > −1. If on the other hand α ≤ −1, take Iij = (0, 1) for all i ≤ j, and set
A = O(d) ·K. Then A is relatively compact, but

∫
A
w(x)dx =∞.

Consider the differential operator ∇∗ given by

∇∗G = −(∇+ (δ − 1)x−>) •G, G ∈ C1(E;Md).

This notation is justified by the following integration by parts formula, which shows that
∇∗ acts as an adjoint of ∇. Together with the observation that L = − 1

2∇
∗∇, this will

imply that L is indeed a symmetric operator on L2(E,m).
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Theorem 2.2 (Integration by parts formula). Suppose δ > 0, and consider f ∈ C1
c (E) and

G ∈ C1(E;Md). If δ ≤ 1, assume that G(x) is tangent to ∂E at x for all x ∈ ∂E. If δ < 1,
assume in addition that G(x) • x−> is locally bounded. Then

〈∇f,G〉 = 〈f,∇∗G〉. (2.1)

Proof. See Appendix A.

Remark 2.3. It is not hard to show that local boundedness of G(x) • x−> implies that
G(x) is tangent to ∂E at x for all x ∈ ∂E. Hence for g ∈ D, G = ∇g will always satisfy
the assumptions of Theorem 2.2.

The fact that L is symmetric is apparent from the equalities

〈f,−Lg〉 =
1

2
〈f,∇∗∇g〉 =

1

2
〈∇f,∇g〉, (2.2)

valid for any f ∈ C1
c (E) and any g ∈ D. If δ > 1 we may take any g ∈ C2

c (E). The BESM
process is now defined as follows.

Definition 2.4 (BESM semigroup). A symmetric sub-Markovian strongly continuous
contraction semigroup (Tt : t ≥ 0) on L2(E,m) is called a BESM(δ, d) semigroup if its
generator extends (L,D).

An E-valued Markov process X is said to be m-symmetric if its transition function
pt(x, dy) is m-symmetric. In this case the operators f 7→

∫
E
f(y)pt(·, dy), where f is

bounded and in L2(E,m), can be extended to all of L2(E,m), see [16, page 30]. This
extension is called the L2(E,m) semigroup of X.

Definition 2.5 (BESM process). AnE-valuedm-symmetric Markov process whose L2(E,m)

semigroup is a BESM(δ, d) semigroup is called a BESM(δ, d) process.

While uniqueness of the BESM semigroup and process is a delicate matter, existence
is straightforward via the theory of Dirichlet forms. In view of (2.2) it is natural to
consider the symmetric bilinear form

E(f, g) =
1

2
〈∇f,∇g〉, f, g ∈ C1

c (E).

This form is closable on L2(E,m), as can be deduced from Theorem 2.2 as follows.
Pick a sequence (fn) in C1

c (E) converging to zero in L2(E,m), such that limn,k E(fn −
fk, fn − fk) = 0. We must show limn E(fn, fn) = 0. Since (∇fn) is a Cauchy sequence
in L2(E,m;Md), it has a strong limit F . For any G ∈ C∞c (E;Md) vanishing on a
neighborhood of ∂E, Theorem 2.2 yields

〈F,G〉 = lim
n
〈∇fn, G〉 = lim

n
〈fn,∇∗G〉 = 0.

It follows that F = 0 m-a.e., establishing closability. We define

(E , D(E)) = closure of (E , C1
c (E)).

An application of [16, Theorem 3.1.2] then shows (after routine verification of the
conditions of that theorem) that (E , D(E)) is a regular, strongly local Dirichlet form.
Furthermore, (2.2) implies that the generator associated with E coincides with L when
acting on functions in D (or in C2

c (E) when δ > 1.) With some abuse of notation, we
therefore let

(L, D(L)) = generator of (E , D(E)),

noting that the domain D(L) contains D, and even contains C2
c (E) if δ > 1. In particular,

the semigroup (Tt : t > 0) on L2(E,m) associated with E and L is a BESM(δ, d) semigroup.
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A corresponding BESM(δ, d) process is then obtained as the m-symmetric Hunt
process X on E associated with the Dirichlet form (E , D(E)), see [16, Theorems 7.2.1
and 7.2.2]. The strongly local property of E implies that this process has continuous
paths. However, it is not guaranteed a priori that X is conservative; we now prove that
it is, thereby obtaining existence of the BESM(δ, d) process. In the following, let Px be
the law of X starting from x ∈ E.

Proposition 2.6. The Dirichlet form E is conservative, i.e. the semigroup (Tt : t > 0)

satisfies Tt1 = 1 for all t > 0. Consequently, X can be chosen so that

Px(Xt ∈ E for all t ≥ 0) = 1 for all x ∈ E.

Proof. By [16, Theorem 1.6.6], E is conservative if there is a sequence (fn) ⊂ D(E) such
that 0 ≤ fn ≤ 1 and limn fn = 1 m-a.e., and such that

lim
n
E(fn, g) = 0 holds for any g ∈ D(E) ∩ L1(E,m).

To construct such a sequence, pick φ ∈ C2(R) satisfying φ(t) = 1 for t ≤ 0, φ(t) = 0

for t ≥ 1, and with φ′, φ′′ uniformly bounded. For n ≥ 1 define fn(x) = φ(‖x‖ − n).
Differentiating twice yields

∇fn(x) = φ′(‖x‖ − n)
x

‖x‖
,

∆fn(x) = φ′′(‖x‖ − n) + φ′(‖x‖ − n)
d2 − 1

‖x‖
.

Since ∇fn and ∆fn both vanish outside the set En = {x ∈ E : n ≤ ‖x‖ < n + 1}, we
obtain fn ∈ D ⊂ D(L) as well as

|E(fn, g)| =
∣∣∣∣∫
En

Lfn(x)g(x)m(dx)

∣∣∣∣ ≤ sup
x∈En

|Lfn(x)|
∫
En

|g(x)|m(dx),

where Hölder’s inequality was applied. For n ≥ 1, the supremum is bounded by a
constant c > 0 that is independent of n. Hence∑

n≥1

|E(fn, g)| ≤ c
∑
n≥0

∫
En

|g(x)|m(dx) = c‖g‖L1(E,m) <∞.

We deduce that limn |E(fn, g)| = 0, showing that E is conservative. The statement about
X now follows from [16, Exercise 4.5.1].

3 Some properties and the relation to Wishart processes

Throughout this section X denotes a BESM(δ, d) process with δ > 0, and Px denotes
its law when started from x ∈ E. Our goal is to study some of its basic properties,
in particular the relation to Wishart processes. Much of the analysis relies on the
following standard result, which states that X solves the martingale problem for L. It
can be deduced, for example, from [16, Corollary 5.4.1 and Theorem 5.1.3]. Here and
throughout this section, a property holds for quasi-every (q.e.) x ∈ E if it holds outside a
set of zero capacity; see [16, page 68].

Lemma 3.1. Pick any f ∈ D(L) such that Lf is locally m-integrable on E. For q.e. x ∈ E
we have

∫ t
0
|Lf(Xs)|ds <∞ for all t ≥ 0, Px-a.s., and the process

f(Xt)− f(x)−
∫ t

0

Lf(Xs)ds, t ≥ 0, (3.1)

is a square integrable martingale under Px.

EJP 20 (2015), paper 60.
Page 6/29

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3785
http://ejp.ejpecp.org/


Matrix-valued Bessel processes

Remark 3.2. The exceptional set for which the conclusion of the lemma fails depends
on the function f in general. We conjecture that X is in fact strongly Feller. In this
case the quantifier “for q.e. x ∈ E” can be replaced with “for every x ∈ E” in the above
lemma, as well as in all subsequent results.

Proposition 3.3. Suppose δ > 1. For q.e. x ∈ E we have

(i)
∫ t

0
‖X−>s ‖ds <∞ for all t ≥ 0, Px-a.s.,

(ii) the process W defined via

Xt = X0 +Wt +
δ − 1

2

∫ t

0

X−>s ds, t ≥ 0, (3.2)

is Md-valued Brownian motion under Px.

Proof. We saw in Section 2 that C2
c (E) ⊂ D(L) if δ > 1, and Theorem 2.1 implies that

1/ det(x) is locally m-integrable in this case. Let C be a countable subset of C2
c (E).

Lemma 3.1 then implies that there is an exceptional set N ⊂ E such that for all x ∈ E \N
we have (i), and (3.1) defines a Px martingale for all f ∈ C. Choosing C suitably, standard
arguments (see for instance [32, Theorem V.20.1]) show that X solves the stochastic
differential equation associated with L—that is, (ii) holds.

Corollary 3.4. For δ > 1, X is a semimartingale under Px for q.e. x ∈ E.

We now describe the properties of the transformed processes X>X, ‖X‖, detX. The
main observation is the following. Define the map

Φ : Md → Sd+, x 7→ x>x,

and consider the operator

LWISg(z) = Tr(2z∇2 + α∇)g(z), z ∈ Sd+, g ∈ C∞c (Sd+).

This is the generator of the WIS(α, d) process, see [6]. The Wishart process exists and
is nondegenerate (in the sense of not being absorbed when it hits the boundary ∂Sd+)
precisely when

α > d− 1. (3.3)

Now, for any g ∈ C∞c (Sd+) and any x ∈ E, one readily verifies the identities

∇(g ◦ Φ)(x) = 2x∇g(x>x),
1

2
∆(g ◦ Φ)(x) = Tr(2x>x∇2 + d∇)g(x>x). (3.4)

Consequently we have

g ◦ Φ ∈ D(L) and L(g ◦ Φ) = (LWISg) ◦ Φ, (3.5)

where the latter function lies in C∞c (E) and in particular is locally m-integrable. An
application of Lemma 3.1 then shows that Φ(X) = X>X solves the martingale problem
for (LWIS, C∞c (Sd+)), with α = d − 1 + δ, and hence is a Wishart process. This proves
part (i) of the following theorem.

Theorem 3.5. The following statements hold.

(i) For q.e. x ∈ E, the law of X>X under Px is that of a WIS(α, d) process starting
from x>x, where α = d− 1 + δ.
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(ii) Let dz denote Lebesgue measure on Sd+. For α ∈ R, define a measure m̂ on Sd+ by

m̂(dz) = (det z)(α−d−1)/2dz. (3.6)

Then m̂ is a Radon measure if and only if α > d− 1.

(iii) Let α = d − 1 + δ and define m̂ by (3.6). Define a symmetric bilinear form on
C∞c (Sd+) by

EWIS(g, h) =
1

2

∫
Sd+

4 Tr (∇g(z) z∇h(z)) m̂(dz).

This form is closable in L2(Sd+, m̂). Its closure is a regular, strongly local, conserva-
tive Dirichlet form, whose generator coincides with LWIS on C∞c (Sd+). In particular,
(LWIS, C∞c (Sd+)) is a symmetric operator on L2(Sd+, m̂).

Proof. Part (i) was proved above. For part (ii), it follows from [30, Theorem 2.1.14]
that m̂ = cΦ∗m for some constant c > 0, where Φ∗m is the pushforward of m under Φ.
Moreover, due to the bounds ‖x>x‖ ≤ ‖x‖2 ≤

√
d‖x>x‖, we have that K ⊂ E is bounded

if and only if Φ(K) ⊂ Sd+ is bounded. The result now follows from Theorem 2.1. It remains
to prove part (iii), and we start by expressing EWIS in terms of E . For g, h ∈ C∞c (Sd+) we
have

E(g ◦ Φ, h ◦ Φ) =
1

2

∫
E

∇(g ◦ Φ)(x) • ∇(h ◦ Φ)(x)m(dx)

=
1

2

∫
E

4 Tr
(
∇g(x>x)x>x∇h(x>x)

)
m(dx)

=
1

2

∫
Sd+

4 Tr (∇g(z) z∇h(z)) Φ∗m(dz)

= c−1EWIS(g, h),

where we used the definition of E , the first identity in (3.4), the change of variable
theorem, and finally the expression for m̂. This together with the equality

‖g‖2L2(Sd+,m̂) = c‖g ◦ Φ‖2L2(E,m)

lets us deduce closability, regularity and strong locality from the corresponding proper-
ties of E . Conservativeness is proved as in Proposition 2.6 by observing that the functions
fn appearing there are of the form fn = gn ◦ Φ.

To complete the proof we must relate EWIS to the operator LWIS. Using (2.2) and (3.5)
we get, for g, h ∈ C∞c (Sd+),

E(g ◦ Φ, h ◦ Φ) = −
∫
E

g ◦ Φ(x)L(h ◦ Φ)(x)m(dx)

= −
∫
E

g ◦ Φ(x) (LWISh) ◦ Φ(x)m(dx)

= −
∫
Sd+

g(z)LWISh(z) Φ∗m(dz).

Combining this with the previous expression, we arrive at

EWIS(g, h) = −
∫
Sd+

g(z)LWISh(z) m̂(dz),

which implies that LWIS coincides with the generator of EWIS on C∞c (Sd+).
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Matrix-valued Bessel processes

Remark 3.6. It is interesting to note that the restriction δ > 0 corresponds exactly to
the (well-known) condition (3.3) for the existence of non-degenerate Wishart process, see
[6, Theorem 2]. Theorem 3.5 connects this to the Radon property of the symmetrizing
measure m̂.

Remark 3.7. The transition density q(t, u, z) of the WIS(α, d) process is given in [11]. In
terms of the measure m̂ it becomes

q(t, u, z)dz =
1

(2t)αd/2Γd(α/2)
exp

(
− 1

2t
Tr(u+ z)

)
0F1

(α
2

;
zu

4t2

)
m̂(dz),

where Γd is the multivariate Gamma function, and 0F1 is a hypergeometric function with
matrix argument; see [11] for the precise definitions. Note that the density with respect
to m̂ is symmetric, as it should be.

Corollary 3.8. Let X be a BESM(δ, d) process as above. The following statements hold
for q.e. x ∈ E.

(i) ‖X‖ is a BES(dα) process under Px, where α = d− 1 + δ.

(ii) detX is a time-changed BES(δ) process under Px. More specifically, define

At =

∫ t

0

‖ adjXs‖2ds, ξu = detXC(u),

where C(u) = inf{t ≥ 0 : At > u} is the right-continuous inverse of A. Then A is
strictly increasing, and ξ is a BES(δ) process stopped at A∞.

Proof. Part (i) is immediate from the well-known fact that the trace of a WIS(α, d) process
is a BESQ(dα) process, see e.g. [6]. We now prove part (ii). Define Z = X>X, which is a
WIS(α, d) process with α = d− 1 + δ by Theorem 3.5. With q(t, u, z) as in Remark 3.7, we
have ∫ ∞

0

Px(rankXt ≤ d− 2)dt =

∫ ∞
0

Px(rankZt ≤ d− 2)dt

=

∫ ∞
0

∫
{u∈Sd : ranku≤d−2}

q(t, x>x, z)dz dt = 0.

Thus {t : adjXt = 0} is a nullset, whence A is strictly increasing. Next, detZ satisfies

detZt = detZ0 + 2

∫ t

0

√
detZs

√
Tr(adjZs)dβs + δ

∫ t

0

Tr(adjZs)ds

for some standard Brownian motion β; see [6, Section 4]. Hence after a time change
(see [31, Proposition V.1.4]) and using that AC(u) = u ∧A∞, we obtain

detZC(u) = detZ0 + 2

∫ u∧A∞

0

√
detZC(v)dβ̃v + δ(u ∧A∞),

where we defined

β̃u =

∫ u∧A∞

0

√
Tr(adjZC(v))dβC(v) =

∫ C(u)

0

√
Tr(adjZs)dβs,

which is Brownian motion stopped at A∞. It follows that detZC(·) satisfies the stochastic
differential equation for the BESQ(δ) process, stopped at A∞. Since detXt =

√
detZt

the result follows.

Corollary 3.9. For 0 < δ < 1, X fails to be a semimartingale under Px for q.e. x ∈ E.
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Proof. If X were a semimartingale, then so would detX, as well as the process ξ in
Corollary 3.8. However, the BES(δ) process, 0 < δ < 1, fails to be a semimartingale on
any interval larger than [0, τ), where τ is the first time it hits zero. It thus suffices to
show that detXt = 0 for some finite t. Indeed, setting u = At then yields ξu = detXt = 0

and u < A∞, due to the strict increase of A. Thus ξ hits zero before it is stopped, and
fails to be a semimartingale. This contradiction shows that X could not have been a
semimartingale. The fact that detXt = 0 for some finite t follows from the corresponding
well-known fact for the Wishart process.

Remark 3.10. In view of Corollaries 3.4 and 3.9 one wonders whether X is a semi-
martingale for δ = 1. Just as in the scalar case it turns out that it is—in fact, X is
reflected Brownian motion. We do not discuss this further here.

We close this section with a pathwise construction of the BESM process as the
strong solution to the stochastic differential equation (3.2). This construction only works
for δ ≥ 2 and if the process starts from the interior of E. Whether strong solutions exist
for all δ > 1 is an open question also in the case of Wishart processes.

Proposition 3.11. Suppose δ ≥ 2, and let W be standard Md-valued Brownian motion
defined on some probability space. The stochastic differential equation

dXt = dWt +
δ − 1

2
X−>s ds, X0 = x, (3.7)

has a unique Eo-valued strong solution for every x ∈ Eo.

Proof. The proof uses the so-called McKean’s argument; see [27, Section 4.1] for a
thorough treatment in a related setting. We only sketch the proof here. Since x 7→ x−>

is locally Lipschitz on Eo, a strong solution X exists for t < ζ, where ζ = limn→∞ inf{t ≥
0 : detXt < n−1 or ‖Xt‖ > n}. We claim that ζ =∞. To see this, set Z = X>X and note
that we have

Zt =

∫ t

0

XsdWs +

∫ t

0

dW>s X
>
s + (d− 1 + δ)I t, t < ζ,

where we used the equality dWtdWt = d I dt. Defining W̃t =
∫ t

0
(X>s Xs)

−1/2XsdWs, t < ζ,
we have

Zt =

∫ t

0

√
ZsdW̃s +

∫ t

0

dW̃>s
√
Zs + (d− 1 + δ)It, t < ζ,

and after verifying that W̃ is again Md-valued Brownian motion on [0, ζ), it follows that
Z is a WIS(d− 1 + δ, d) process on [0, ζ) (this calculation is of course closely related to
the one leading up to (3.5).) Since δ ≥ 2, well-known properties of the Wishart process
(c.f. [6], or Corollary 3.8(ii) above) imply that detXt =

√
detZt stays strictly positive, and

that ‖Xt‖2 = TrZt is nonexplosive. Hence ζ =∞ as claimed, and the result follows.

4 Uniqueness

The goal of this section is to establish uniqueness of the BESM semigroup. Specifically,
we will prove that (L,D) is Markov unique. This means that there is at most one (and
hence exactly one) symmetric sub-Markovian strongly continuous contraction semigroup
on L2(E,m) whose generator extends (L,D), see [13, Definition 1.1.2]. Since the Hunt
process corresponding to such a semigroup is unique up to equivalence, this form of
uniqueness will hold for any realization of the BESM process as a Hunt process. In
particular, uniqueness in law is guaranteed. (Two symmetric Hunt processes are called
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equivalent if their transition functions coincide outside a properly exceptional set, see
Section 4.1 in [16].)

Note that m(∂E) = 0. Therefore L2(E,m) and L2(Eo,m) can be identified, implying
that it is enough to prove Markov uniqueness of (L,D) as an operator on the latter
space. To do this we will apply a general result by Eberle [13, Corollary 3.2] that relies
on studying the relationship between various weighted Sobolev spaces, which we now
introduce. To simplify notation we henceforth write

Ω = Eo = {x ∈Md : detx > 0}.

Observe that 1/(detx)δ−1 is locally integrable on Ω. Hence by [25, Theorem 1.5], L2(Ω,m)

is continuously imbedded in L1
loc(Ω). In particular, every f ∈ L2(Ω,m) has a gradient Df

in the sense of distributions, and one can define the weak Sobolev space

W 1,2(Ω,m) =
{
f ∈ L2(Ω,m) : Df ∈ L2(Ω,m;Md)

}
.

Equipped with the norm

‖f‖W 1,2(Ω,m) =

(∫
Ω

|f(x)|2m(dx) +

∫
Ω

‖Df(x)‖2m(dx)

)1/2

,

W 1,2(Ω,m) becomes a Hilbert space [25, Theorem 1.11]. Appendix B reviews some basic
properties of W 1,2(Ω,m) that will be needed in the sequel. We also consider the following
strong Sobolev spaces (here the word completion is always meant with respect to the
norm ‖ · ‖W 1,2(Ω,m)):

H1,2(Ω,m) = completion of C1(Ω)

H1,2
Neu(Ω,m) = completion of D

H1,2
0 (Ω,m) = completion of C1

c (Ω).

These are all Hilbert spaces by construction, and we automatically have

H1,2
0 (Ω,m) ⊂ H1,2

Neu(Ω,m) ⊂ H1,2(Ω,m) ⊂W 1,2(Ω,m). (4.1)

The main result of this section shows that for any δ > 0, the last two inclusions are
equalities; and if δ ≥ 2, all three inclusions are equalities. This will lead to Markov
uniqueness of the BESM semigroup.

Theorem 4.1. The following statements hold.

(i) If 0 < δ < 2, then H1,2
Neu(Ω,m) = W 1,2(Ω,m).

(ii) If δ ≥ 2, then H1,2
0 (Ω,m) = W 1,2(Ω,m).

Before giving the proof of Theorem 4.1, we note that Markov uniqueness now follows
directly from the basic criterion for Markov uniqueness given in [13, Corollary 3.2],
which only relies on the equality W 1,2(Ω,m) = H1,2

Neu(Ω,m).

Corollary 4.2. For any δ > 0, (L,D) is Markov unique.

Next, since every f ∈ C1
c (E) satisfies f |Ω ∈ C1(Ω), we have D(E) ⊂ H1,2(Ω,m).

Furthermore, since D ⊂ C1
c (E) holds we have H1,2

Neu(Ω,m) ⊂ D(E), and we deduce the
following corollary of Theorem 4.1:

Corollary 4.3. For any δ > 0, D(E) = W 1,2(Ω,m).
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Remark 4.4. An application of Theorem 6.1 with α = δ − 1 shows that |detx|δ−1 is
an A2-weight if 0 < δ < 2. In particular, [24, Theorem 2.5] then implies that the last
inclusion in (4.1) is in fact an equality.

The proof of Theorem 4.1 relies crucially on Theorems 5.1 and 6.1. It also uses
what we refer to as tube segments, discussed in Appendix C, as well as some basic
properties of the space W 1,2(Ω,m), reviewed in Appendix B. Most of the difficulties arise
for 0 < δ < 2. In fact, the case δ ≥ 2 only requires (the second part of) the following
lemma, which uses Theorem 5.1 but not Theorem 6.1. Henceforth, for any subset Γ ⊂Md

we define

WΓ =

{
h ∈W 1,2(Ω,m) :

h is bounded with compact support,
h = 0 on U ∩ Ω for some open U ⊂Md with Γ ⊂ U

}
.

Lemma 4.5. (i) Let δ > 0 and define Γ =
⋃
k≤d−2Mk. Then WΓ is dense in W 1,2(Ω,m).

(ii) Let δ ≥ 2 and define Γ =
⋃
k≤d−1Mk = ∂E. Then WΓ is dense in W 1,2(Ω,m).

Proof. Since the elements f ∈W 1,2(Ω,m) that are bounded with bounded support are
dense (see Lemma B.1(iv)), it suffices to approximate such f by elements h ∈ WΓ. By
scaling we may assume |f | ≤ 1. Let ε > 0 be arbitrary, and let C > 0 be the constant
given by Lemma B.2. By Theorem 5.1 there is a neighborhood U of Γ and an element
g ∈ W 1,2(Md,m) such that g ≥ 1 on U and ‖g‖2W 1,2(Ω,m) ≤ ε/C. By truncating (using
Lemma B.1(ii)) we may assume |g| ≤ 1. Define h = (1− g)f . Lemma B.2 then yields

‖f − h‖2W 1,2(Ω,m) = ‖fg‖2W 1,2(Ω,m) ≤ C
ε

C
+ ε = 2ε.

This proves the lemma.

Proof of Theorem 4.1(ii). In view of (4.1) it is clear that it suffices to prove W 1,2(Ω,m) ⊂
H1,2

0 (Ω,m), so we pick f ∈W 1,2(Ω,m). By Lemma 4.5, f can be approximated by some
bounded h ∈ W 1,2(Ω,m) whose support is bounded and bounded away from ∂E. By
mollification (see Lemma B.1(i)), h can in turn be approximated by some g ∈ C1

c (Ω).
Since H1,2

0 (Ω,m) is the completion of the set of such functions, we obtain f ∈ H1,2
0 (Ω,m),

as desired.

For 0 < δ < 2 the boundary no longer has zero capacity, which makes this case more
delicate. The following lemma uses a powerful extension theorem due to Chua [7] for
weighted Sobolev spaces with Muckenhoupt weights. In particular, therefore, we will
rely on the Muckenhoupt A2 property of |detx|δ−1 for 0 < δ < 2, which is asserted
by Theorem 6.1. Chua’s theorem requires the domain to be a so-called (ε, δ)-domain.
Unfortunately, it does not appear straightforward to show that Ω itself is of this type.
Instead we employ a partition of unity argument with an open cover consisting of tube
segments; see Appendix C. The intersection of Ω with a tube segment around some
x ∈Md−1 is an (ε, δ)-domain (indeed, a Lipschitz domain), and Chua’s theorem becomes
applicable.

Lemma 4.6. Let 0 < δ < 2 and define Γ =
⋃
k≤d−2Mk. For any f ∈ WΓ there exists

g ∈W 1,2(Md,m) satisfying g = 0 on a neighborhood of Γ and g = f on Ω.

Proof. For each x ∈ Md−1, let Ux be a tube segment around x, see Definition C.1 and
Proposition C.2 in Appendix C. Then Ux ∩ Ω is diffeomorphic to A× (−1, 1) ⊂ Rd−1 ×R,
where A is an open ball in Rd−1. Hence Ux ∩ Ω is a Lipschitz domain, and thus an (ε, δ)-
domain, see [23, p. 73]. Moreover, f ∈W 1,2(Ux∩Ω,m). Since |detx|δ−1 is a Muckenhoupt
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A2 weight by Theorem 6.1, the extension theorem of Chua [7, Theorem 1.1] yields an
element

fx ∈W 1,2(Md,m) with fx = f on Ux ∩ Ω.

Now, since f ∈ WΓ, there is a compact set K ⊂ Md, bounded away from Γ, with
f = 0 on Ω \K. By compactness we can choose finitely many of the Ux, say U1, . . . , Un
(and corresponding f1, . . . , fn), as well some open U0 ⊂ Md with U0 ⊂ Ω, such that
K ⊂

⋃n
i=0 Ui. Defining f0 = ψf , where ψ is a smooth cutoff function with ψ = 1 on U0

and ψ = 0 outside some V0 b Ω with U0 b V0, we have f0 ∈ W 1,2(Md,m) with f0 = f

on U0. We then let {ψ0, . . . , ψn} be a smooth partition of unity subordinate to U0, . . . , Un,
and define

g =

n∑
i=0

ψifi ∈W 1,2(Md,m).

Since x ∈ Ui holds whenever ψi(x) 6= 0, and since fi = f on Ui∩Ω, we get g =
∑n
i=0 ψif =

f on Ω, as desired.

Using Lemma 4.6, one can replace mollification of elements in W 1,2(Ω,m) by mollifi-
cation of elements in W 1,2(Md,m). The latter is straightforward, while the former is not.
The upshot is the following result.

Lemma 4.7. Let 0 < δ < 2 and define Γ =
⋃
k≤d−2Mk. Then C∞c (E \ Γ) is dense in

W 1,2(Ω,m).

Proof. By Lemma 4.5 it suffices to approximate elements f ∈ WΓ. By Lemma 4.6 we
then have f = g|Ω for some g ∈W 1,2(Md,m) with g = 0 near Γ. By mollification, see [24,
Lemma 1.5], we obtain h ∈ C∞(Md) that approximates g in W 1,2(Md,m)-norm. Choosing
the support of the mollifier sufficiently small, we still have h = 0 on a neighborhood of Γ.
Then h|Ω ∈ C∞c (E \ Γ) approximates f .

Proof of Theorem 4.1(i). In view of (4.1) and the definition of H1,2
Neu(Ω,m), we need to

prove that D is dense in W 1,2(Ω,m). By Lemma 4.7 it suffices to approximate elements
f ∈ C∞c (E \ Γ), where Γ =

⋃
k≤d−2Mk. An approximating function h ∈ D can be

constructed explicitly, relying on the fact that f = 0 on a neighborhood of Γ. We now
give the details.

For ε > 0, let φε ∈ C2(R+) satisfy the following properties:

(i) φε(t) = 0 for t ≥ ε,

(ii) |φε(t)| ≤ ε and |φ′ε(t)| ≤ 3 for all t > 0.

(iii) 1−φ′ε(t)
t and φε(t)

t are bounded in t (where the bound may depend on ε),

Such φε exists: first set φ1(t) = tψ(t) where ψ is some smooth cutoff function, and then
φε(t) = εφ1(t/ε). Now, let K denote the support of f and define

g =
∇f • ∇ det

‖∇ det ‖2
1K , G = ∇f − g∇det .

Note that ∇det(x) = adjx> 6= 0 for all x ∈ K ⊂Md \ Γ, so that g is well-defined and in
C2
c (E). Moreover, we have G • ∇ det = 0. Consider the function

hε = f − g φε ◦ det . (4.2)
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We claim that hε ∈ D and hε → f in W 1,2(Ω,m) as ε ↓ 0. To prove this we first obtain, via
a calculation using the chain and product rules, the following two expressions for ∇hε:

∇hε = ∇f − (φ′ε ◦ det) g∇det−(φε ◦ det)∇g (4.3)

= (1− φ′ε ◦ det)∇f + (φ′ε ◦ det)G− (φε ◦ det)∇g. (4.4)

Equations (4.2) and (4.3) and properties (i) and (ii) of φε yield the pointwise inequalities

|f − hε| ≤ ε|g|

and

‖∇f −∇hε‖ ≤
(

3|g| ‖∇det ‖+ ‖∇g‖
)
1[0,ε] ◦ det .

Together with the fact that m({x ∈ K : 0 ≤ det ≤ ε}) tends to zero as ε ↓ 0, this yields
hε ∈ D and hε → f in W 1,2(Ω,m). It remains to check hε ∈ D. Clearly hε ∈ C2

c (Ω).
Moreover, (4.4) together with the orthogonality G • ∇ det = 0, as well as the fact that
x−> = ∇ det(x)/det(x), yield

x−> • ∇hε =
1− φ′ε ◦ det

φε ◦ det
∇ det •∇f − φε ◦ det

det
∇ det •∇g.

Property (iii) of φε implies that the right side is bounded, as required. This completes
the proof.

Remark 4.8. Using results in [12], the space D can be shown to be dense in C2
c (E) with

respect to the norm ‖ · ‖W 1,2(Ω,m). An alternative approach to proving Theorem 4.1(i)
would therefore be to show directly that C2

c (E) is dense in W 1,2(Ω,m), for example by
showing that Ω is an (ε, δ)-domain and then apply Chua’s extension theorem. Proving
the (ε, δ) property does not appear to be straightforward—one obstruction is that Ω does
not lie on one side of its boundary, as discussed in the Introduction.

5 Low-rank matrices have zero capacity

This section is devoted to proving that the sets Mk consisting of rank k matrices
have zero capacity for all sufficiently small k. This is a key ingredient in the proof
of Theorem 4.1, and also interesting in its own right. We use the following notion of
capacity. For any subset A ⊂Md, define

Cap(A) = inf
f

∫
Md

(
|f(x)|2 + ‖Df(x)‖2

)
m(dx),

where the infimum is taken over all f ∈W 1,2(Md,m) with f ≥ 1 on an open neighborhood
of A. The main result is the following.

Theorem 5.1. Let δ > 0. For k ∈ {0, . . . , d− 2}, we have Cap(Mk) = 0. If δ ≥ 2, the same
thing holds also for k = d− 1.

Remark 5.2. The above definition of capacity differs from the (1,m)-Sobolev capacity
in [20, Definition 2.35], where W 1,2(Md,m) is replaced by H1,2(Md,m). It also differs
from the 1-capacity in [16, Eqs. (2.1.1)–(2.1.3)], where W 1,2(Md,m) is replaced by D(E).
However, Theorem 4.1 and its corollaries imply that any A ⊂ E with Cap(A) = 0 also has
zero capacity in all the above senses.

The core of the proof of Theorem 5.1 is an application of the following lemma, which
bounds the growth of the determinant function near a point x ∈Mk.
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Lemma 5.3. Let k ≤ d− 1. There is a locally Lipschitz function ck : Mk → R+ such that

|det(x+ v)| ≤ ck(x)‖v‖d−k, x ∈Mk, v ∈Md, ‖v‖ ≤ 1.

Proof. By [3, Corollary 5],

|det(x+ v)− det(x)| ≤
d∑
i=1

pd−i(σ1(x), . . . , σd(x))‖v‖i,

where σ(x) = (σ1(x), . . . , σd(x)) is the vector of singular values of x, and pi is the i:th
elementary symmetric polynomial in d variables. Now, pd−i(σ1(x), . . . , σd(x)) consists of
a sum of terms, each of which is the product of d− i distinct elements of σ(x). However,
since rankx = k, only k of those elements are nonzero. Therefore the product must
contain at least one zero factor whenever d− i > k, implying that pd−i(σ1(x), . . . , σd(x)) =

0 for these i. Since in addition ‖v‖ ≤ 1 and detx = 0, we get

|det(x+ v)| ≤ ‖v‖d−k
d∑

i=d−k

pd−i(σ1(x), . . . , σd(x)).

The local Lipschitz property follows from the smoothness of pd−i and the fact that the
singular value map is Lipschitz continuous, see [22, Theorem 7.4.51].

In proving Theorem 5.1, the case δ = 2, k = d − 1, turns out to require separate
treatment using the following lemma.

Lemma 5.4. For each ε < 1 there is a Lipschitz function φε : R+ → R such that
0 ≤ φε ≤ 1, φε = 0 on [ε,∞), φε = 1 on a neighborhood of zero, and

lim
ε↓0

∫
R+

|φ′ε(t)|2 t dt = 0. (5.1)

Proof. Define functions gε and hε on R+ by

gε(t) =

(
1−

(
t

ε

)ε)
+

and hε(t) =


(t/ε)ε t ∈ [0, ε1+1/ε)

2ε− ε−1/εt t ∈ [ε1+1/ε, 2ε1+1/ε)

0 t ∈ [2ε1+1/ε,∞)

We claim that the function φε = gε + hε has the stated properties. It is not hard to check
that 0 ≤ φε ≤ 1 and that φε equals zero on [ε,∞) and one on [0, ε1+1/ε). The Lipschitz
property then follows easily. It remains to verify (5.1). First, note that∫

R+

|g′ε(t)|2 t dt = ε2−2ε

∫ ε

0

t2ε−1dt =
ε

2
→ 0 (ε ↓ 0).

Moreover, since |h′ε| = |g′ε| on [0, ε1+1/ε), and since∫ 2ε1+1/ε

ε1+1/ε

|h′ε(t)|2 t dt = ε−2/ε (2ε1+1/ε)2 − (ε1+1/ε)2

2
=

3

2
ε2 → 0 (ε ↓ 0),

it follows that limε↓0
∫
R+
|h′ε(t)|2 t dt = 0. We now deduce (5.1).

We are now ready to prove Theorem 5.1. The proof uses the tube segments discussed
in Appendix C.
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Proof of Theorem 5.1. Suppose for any fixed x ∈ Mk we can find a bounded neighbor-
hood U of x in Md and bounded functions gε ∈W 1,2(U,m) such that each gε equals one
on a neighborhood of Mk ∩ U , and limε↓0 ‖gε‖W 1,2(U,m) = 0 holds. We then take an open
set V ⊂ Md with V ⊂ U , and a smooth cutoff function φ ∈ C∞c (Md) with φ = 1 on V

and φ = 0 on Md \ U . The function fε = φgε then lies in W 1,2(Md,m), is equal to one
on a neighborhood of Mk ∩ V , and satisfies limε↓0 ‖fε‖W 1,2(Md,m) = 0 by Lemma B.3. It
follows that Cap(Mk ∩ V ) = 0. Since Mk can be covered by countably many such sets
Mk ∩ V , we deduce Cap(Mk) = 0, as desired.

We thus focus on finding functions gε as above. To this end, set M = Mk, n1 =

d2 − (d − k)2, n2 = (d − k)2, pick x ∈ M , and let U be a tube segment around x, see
Definition C.1 and Proposition C.2 in Appendix C. Let

Φ : A×B1 → U

be the corresponding diffeomorphism, where A ⊂ Rn1 is an open ball, and B1 ⊂ Rn2

is the open unit ball. Let π : Rn1 ×Rn2 → {0} ×Rn2 be the projection onto the last n2

coordinates. Let φ ∈ C∞(R+) be a cutoff function valued in [0, 1], equal to one on [0, 1/2],
equal to zero on [1,∞), and with |φ′(t)| ≤ 3 for all t ∈ R+. For each 0 < ε < 1, define a
map

gε : U → R, gε = φ(ε−1‖π ◦ Φ−1‖).

We then have gε ∈ C∞(U) and gε = 1 on Φ(A × Bε/2), a neighborhood of M ∩ U . It
remains to prove gε ∈W 1,2(U,m) and limε↓0 ‖gε‖W 1,2(U,m) = 0. A computation based on
the chain rule gives the gradient of gε,

∇gε = ∇(Φ−1)∇π ◦ Φ−1 1

ε
φ′(ε−1‖π ◦ Φ−1‖) π

‖π‖
◦ Φ−1,

where ∇(Φ−1) denotes the transpose of the Jacobian matrix of Φ−1, and similarly for ∇π.
Hence

‖∇gε‖ ≤
3

ε
‖∇(Φ−1)‖op ‖∇π‖op ≤

3C

ε
, (5.2)

where C = supx∈U ‖∇(Φ−1)(x)‖op is finite by property (iv) of Definition C.1, and where
we used that the projection π is 1-Lipschitz. Write

Uε = Φ(A×Bε).

We then have gε = 0 on U \ Uε, which yields

‖gε‖2W 1,2(U,m) =

∫
U

(
|gε(x)|2 + ‖∇gε(x)‖2

)
m(dx) ≤

(
1 +

9C2

ε2

)
m(Uε).

Thus, it remains to show that limε↓0 ε
−2m(Uε) = 0 holds. A change of variables yields

m(Uε) =

∫
Uε

|detx|δ−1dx =

∫
A×Bε

|det Φ(y, v)|δ−1J(y, v)dy ⊗ dv,

where J = det∇Φ is the Jacobian determinant. Since Φ has bounded derivative, there is
a constant κ such that Φ is κ-Lipschitz and J ≤ κ holds. Together with Lemma 5.3 (and
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the fact that Φ(y, 0) ∈M ), we get

m(Uε) ≤ κ
∫
A×Bε

|det (Φ(y, 0) + Φ(y, v)− Φ(y, 0))|δ−1
dy ⊗ dv

≤ κ
∫
A×Bε

ck ◦ Φ(y, 0) ‖Φ(y, v)− Φ(y, 0)‖(d−k)(δ−1)
dy ⊗ dv

≤ κ2

∫
A×Bε

ck ◦ Φ−1(y, 0)‖v‖(d−k)(δ−1)dy ⊗ dv

= κ2

∫
A

ck ◦ Φ−1(y, 0)dy

∫
Bε

‖v‖(d−k)(δ−1)dv, (5.3)

where ck(·) is as in Lemma 5.3. The integral over A is finite due to the boundedness of
Φ−1 on A× {0} and the Lipschitz continuity of ck on U , so we get

m(Uε) ≤ C
∫
Bε

‖v‖(d−k)(δ−1)dv = ε−(d−k)(1−δ)+n2C

∫
B1

‖v‖−(d−k)(1−δ)dv

for some constant C > 0 that does not depend on ε. Since the integral is over n2-
dimensional space, the right side is finite provided

(d− k)(1− δ) < n2 − 2 (5.4)

holds. But n2 = (d− k)2, so (5.4) is equivalent to (d− k)(d− k − 1 + δ) > 2, which holds
for all k ≤ d− 2 since δ > 0. We conclude that there is a constant C ′ > 0, independent of
ε, such that

1

ε2
m(Uε) ≤ C ′ε−(d−k)(1−δ)+n2−2.

Since, as we just saw, (5.4) holds, this quantity tends to zero as ε tends to zero. This
finishes the proof of the case δ > 0, k ∈ {0, . . . , d− 2}.

If δ > 2, then (5.4) holds also for k = d− 1, which takes care of this case as well. The
only case that remains to consider is δ = 2, k = d−1. This is done by a slight modification
of the above argument. First, gε is now given by

gε = φε(|π ◦ Φ−1|),

where φε is the function from Lemma 5.4. (Note that n2 = (d− k)2 = 1, so that π ◦Φ−1(x)

is a real number; hence the absolute value bars.) Since φε is Lipschitz it is almost
everywhere differentiable by Rademacher’s theorem. Hence ∇gε is well-defined up to a
nullset. Next, instead of (5.2) we need a more precise estimate. Specifically, we have the
inequality

‖∇gε‖ ≤ C
∣∣φ′ε(|π ◦ Φ−1|)

∣∣ ,
where as before C = supx∈U ‖∇(Φ−1)(x)‖op is finite. In particular this gives gε ∈
W 1,2(U,m). By the same calculations as those leading up to (5.3) we then obtain, using
Lemma 5.3,∫

U

‖∇gε(x)‖2m(dx) ≤ C2

∫
U

∣∣φ′ε(|π ◦ Φ−1(x)|)
∣∣2 |detx| dx

= C2

∫
A×B1

|φ′ε(|v|)|
2 |det Φ(y, v)|J(y, v) dy ⊗ dv

≤ κ2C2

∫
A

cd−1 ◦ Φ(y, 0)dy

∫ ε

−ε
|φ′ε(|v|)|

2 |v|dv.

By the property (5.1) of φε given in Lemma 5.4, the right side tends to zero as ε ↓ 0. This
concludes the proof.
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6 The Muckenhoupt Ap property

Weight functions satisfying the so-called Muckenhoupt Ap condition play an important
role in potential theory, where they arise as precisely those weight functions for which
the Hardy-Littlewood maximal operator is bounded on the corresponding weighted
Lp space, 1 < p <∞, see [29]. This and related results have far-reaching consequences,
some of which are discussed in [33, 34, 24]. In this section we prove that the weight
function w(x) = |detx|α lies in the Muckenhoupt Ap class for certain combinations of p
and α. Our result generalizes the case d = 1, for which the result is known, in a striking
way. We let |A| =

∫
A
dx denote the Lebesgue measure of a measurable subset A ⊂Md.

Theorem 6.1 (Muckenhoupt property). Let α ∈ R and define w(x) = |detx|α.

(i) If −1 < α ≤ 0, then w lies in the Muckenhoupt A1 class. That is, there is a constant
C > 0 depending only on d and α, such that

1

|B|

∫
B

w(x)dx ≤ C inf
x∈B

w(x) (6.1)

for every ball B ⊂Md.

(ii) If −1 < α < p− 1, p > 1, then w lies in the Muckenhoupt Ap class. That is, there is
a constant C > 0 depending only on d, α and p, such that(

1

|B|

∫
B

w(x)dx

)(
1

|B|

∫
B

w(x)−1/(p−1)dx

)p−1

≤ C

for every ball B ⊂Md.

Once part (i) has been proved, part (ii) follows directly from [33, Proposition IX.4.3].
It thus suffices to prove part (i), which will occupy the rest of this section. We first
introduce some notation. Let Dd

+ denote the set of diagonal matrices with nonnegative
and ordered diagonal elements,

Dd
+ = {Diag(σ) : σ ∈ Rd, σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0}.

The open ball centered at x ∈Md with radius r > 0 is denoted by B(x, r). Its intersection
with the nonsingular matrices is denoted by B∗(x, r). That is,

B(x, r) = {y ∈Md : ‖x− y‖ < r}, B∗(x, r) = {y ∈ B(x, r) : det y 6= 0}.

The proof of the Muckenhoupt property is somewhat involved (but nonetheless mostly
elementary), due to the relatively complicated geometric structure of the set ∂E, which
is where the weight function becomes singular. The main idea is to change variables
using the QR-decomposition and integrate over the product space O(d)× T (d) instead
of Md. Unfortunately, balls in Md do not always map to balls (or comparable shapes) in
O(d)× T (d), and this is where the main complications arise. The resolution to this issue
resides in Lemma 6.3 below, which relies on a detailed analysis of the mapping taking x
to its QR-decomposition.

We start with a lemma that establishes an inequality similar to (6.1), where the
balls B are replaced by sets of the form U ·K = {QR : Q ∈ U,R ∈ K}, with U ⊂ O(d)

measurable and K ⊂ T (d) a cube.

Lemma 6.2. Let −1 < α ≤ 0. Then there is a constant C1 > 0, depending only on d and
α, such that the inequality∫

U ·K
w(x)dx ≤ C1|U ·K| inf

x∈U ·K
w(x)

holds for any measurable subset U ⊂ O(d) and any cube K ⊂ T (d).
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Proof. Pick a cube K = {R ∈ T (d) : Rij ∈ Iij , i ≤ j}, where the Iij are bounded intervals,
and let U ⊂ O(d) be measurable. By Lemma 1.1 we have∫

U ·K
w(x)dx = µ(U)

∫
K

d∏
i=1

Rd−i+αii dR = µ(U)
∏
i<j

|Iij |
d∏
i=1

∫
Iii

td−i+αdt,

and similarly |U ·K| = µ(U)
∏
i<j |Iij |

∏d
i=1

∫
Iii
td−idt. We also have

inf
x∈U ·K

w(x) = inf
R∈K

d∏
i=1

Rαii =

d∏
i=1

inf
t∈Iii

tα.

Hence the result follows from the following Claim:
Let α ∈ (−1, 0] and β ≥ 0. Then there is a constant Cα,β such that for every bounded

interval I ⊂ (0,∞), we have ∫
I

tα+βdt ≤ Cα,β
∫
I

tβdt inf
t∈I

tα.

To prove the Claim it suffices to consider I = (a, b) with 0 ≤ a < b. We obtain:∫
I

tα+βdt =
1

α+ β + 1

(
bβ+1 −

(a
b

)α
aβ+1

)
bα

≤ 1

α+ β + 1

(
bβ+1 − aβ+1

)
bα

=
β + 1

α+ β + 1

∫
I

tβdt inf
t∈I

tα,

as required.

Consider now balls B(Σ, r), where the diagonal elements of Σ ∈ Dd
+ are either

“large” (comparable to the radius r) or zero. The following result reduces the proof
that (6.1) holds for balls of this form to an application of Lemma 6.2. In the statement of
condition (6.2) below, we use the convention that σ0 =∞ and that i runs over {0, . . . , d}.
Lemma 6.3. Suppose Σ ∈ Dd

+ and r > 0 satisfy the following property, where σ ∈ Rd is
the vector of diagonal elements of Σ:

There is an index n ∈ {0, 1, . . . , d} such that
σi > 18dr for all i ≤ n, and σi = 0 for all i > n.

(6.2)

Then there is a measurable subset U ⊂ O(d) and a cube K ⊂ T (d) such that

B∗(Σ, r) ⊂ U ·K ⊂ B∗(Σ, C2r),

where C2 is a positive constant that only depends on d.

Proof. The problem of finding the advertised constant C2 can be reduced to proving the
following Claim, where e1, . . . , ed denote the canonical unit vectors in Rd:

There is a constant C3, depending only on d, such that the following holds: For any
x ∈ B∗(Σ, r), let x = QR be its QR-decomposition, and let q1, . . . , qd be the columns of
Q. Then the inequalities ‖R− Σ‖ < C3r and |qi − ei| < rσ−1

i C3 hold for all i ∈ {1, . . . , n},
where n is the index from condition (6.2).

Let us show how the statement of the lemma follows from this claim. Define K to be
the cube in T (d) centered at Σ with side 2C3r, i.e.

K = {R ∈ T (d) : max
i,j
|Rij − Σij | < C3r},
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and let U ⊂ O(d) be given by

U =

{
Q = (q1, . . . , qd) ∈ O(d) : |qi − ei| <

r

σi
C3, i = 1, . . . , n

}
.

The Claim then directly implies B∗(Σ, r) ⊂ U · K. We thus need to show that it also
implies U ·K ⊂ B∗(Σ, C2r) for some constant C2 > 0 that only depends on d. To this end,
observe that for any x = QR ∈ U ·K we have, by the triangle inequality, the rotation
invariance of ‖ · ‖, and the definition of K,

‖x− Σ‖ ≤ ‖Q(R− Σ)‖+ ‖(Q− I)Σ‖
= ‖R− Σ‖+ ‖(Q− I)Σ‖

<
√
d(d+ 1)/2C3r + ‖(Q− I)Σ‖.

Furthermore, since σi = 0 for i > n, we have ‖(Q− I)Σ‖2 = σ2
1 |q1 − e1|2 + . . . σ2

n|qn − en|2.
We then deduce from the Claim that ‖(Q− I)Σ‖ <

√
nC3r, and consequently

‖x− Σ‖ < C2r, where C2 =
(√

d(d+ 1)/2 +
√
d
)
C3.

We are thus left with proving the Claim. Since it is vacuously true for n = 0, we
can assume n ≥ 1. The proof relies on a rather careful analysis of the Gram-Schmidt
orthogonalization procedure for obtaining the QR-decomposition of a generic matrix
x ∈ B∗(Σ, r), so we briefly recall this procedure. To improve readability, we temporarily
(for this proof only) adopt the notation 〈y, z〉 = y>z for y, z ∈ Rd. Fix x ∈ B∗(Σ, r) and let
x1, . . . , xd be the columns of x. To obtain the QR-decomposition of x, one defines

u1 = x1, q1 =
u1

|u1|
,

and, if q1, . . . , qj−1 have been defined,

uj = xj −
j−1∑
i=1

〈qi, xj〉qi, qj =
uj
|uj |

. (6.3)

The vectors q1, . . . , qd obtained in this way are the columns of Q, and R is given by
Rij = 〈qi, xj〉, i ≤ j.

We now proceed with the proof of the Claim. Recall that e1, . . . , ed are the canonical
unit vectors in Rd. Since x ∈ B∗(Σ, r), we have xi = σiei + hi, where hi is a vector in Rd

with |hi| < r. Also let a = 5 + 18d denote the constant appearing in condition (6.2).
Fix j ∈ {1, . . . , n}, and suppose we have proved the following:

For all i ≤ j − 1 and all k > i, |Rik| < 3r. (6.4)

Then (6.3) and the inequalities |xj | ≥ σj − |hj | ≥ σj − r imply

|uj | ≥ σj − r −
j−1∑
i=1

|Rij | ≥ σj − r(1 + 3(j − 1)). (6.5)

Moreover, for k > j we use (6.3), (6.4), and the fact that |〈xj , xk〉| < σjr+ σkr+ r2 to get

|〈uj , xk〉| ≤ |〈xj , xk〉|+
j−1∑
i=1

|Rij | |Rik| < σjr + σkr + r2(1 + 9(j − 1)).
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Together with (6.5) this yields

|Rjk| =
|〈uj , xk〉|
|uj |

≤ rσj + σk + r(1 + 9(j − 1))

σj − r(1 + 3(j − 1))

= r
1 + σk/σj + (r/σj)(1 + 9(j − 1))

1− (r/σj)(1 + 3(j − 1))

< r
2 + a−1(1 + 9(j − 1))

1− a−1(1 + 3(j − 1))
,

where in the last step we used that σk ≤ σj (since k > j) and σj > ar (since j ≤ n). Since
a = 18d, the right side is at most 3r, as one readily verifies. We deduce that (6.4) holds
with j replaced by j + 1, and since it is vacuously true for j = 1 it follows by induction
that it holds for all j ∈ {1, . . . , n+ 1}.

We now use this result to bound |Rjj − σj | for j ∈ {1, . . . , n}. To this end, write

|Rjj − σj | =
1

|uj |

∣∣∣∣∣|xj |2 −
j−1∑
i=1

〈qi, xj〉2 − σj |uj |

∣∣∣∣∣ ≤
∣∣|xj |2 − σj |uj |∣∣+ 9(j − 1)r2

|uj |
,

using that 〈qi, xj〉2 = |Rij |2 < 9r2 due to (6.4). Moreover, we have∣∣|xj |2 − σj |uj |∣∣ =
∣∣σ2
j − σj |uj |+ |hj |2 + 2σj〈ej , hj〉

∣∣ ≤ σj |σj − |uj ||+ r2 + 2σjr,

and by the reverse triangle inequality,

|σj − |uj || ≤ |σjej − uj | ≤ r + 3(j − 1)r. (6.6)

Assembling the pieces and using the bound (6.5) gives

|Rjj − σj | ≤
σjr(1 + 3(j − 1)) + r2 + 2σjr + 9(j − 1)r2

σj − r(1 + 3(j − 1))
.

Dividing the numerator and denominator by σj and using that σj > ar, we finally arrive
at

|Rjj − σj | ≤ r
1 + 3(j − 1) + a−1 + 2 + a−19(j − 1)

1− a−1(1 + 3(j − 1))

= r
3 + 3(j − 1) + a−1(1 + 9(j − 1))

1− a−1(1 + 3(j − 1))

< r
3 + 18d

5
.

The only elements of R that remain to analyze are Rij for i ≤ j and j > n. But xj = hj for
these j, so |Rij | = |〈qi, xj〉| ≤ |hj | < r. We are now able to estimate ‖R− Σ‖ as follows:

‖R− Σ‖ ≤
∑
j

|Rjj − σj |+
∑
i<j

|Rij |

≤ r
(

3 + 18d

5
× d+ 3× n(n− 1)

2
+ d(d− n)

)
.

A bound solely in terms of d is then easily obtained. For instance, we may take

‖R− Σ‖ ≤ rd
(

3 + 18d

5
+ 3× (d− 1)

2
+ d

)
. (6.7)
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Let us now focus on bounding |qj − ej |, j ∈ {1, . . . , n}. The calculations are similar to
the ones used to bound |Rjj − σj | above, but slightly simpler. We have

|qj − ej | =
1

|uj |

∣∣∣∣∣xj −
j−1∑
i=1

〈qi, xj〉qi − |uj |ej

∣∣∣∣∣
≤ 1

|uj |

(∣∣σj − |uj |∣∣+ r + 3(j − 1)r
)

≤ 2

|uj |

(
r + 3(j − 1)r

)
,

using (6.6) in the last step. Using again (6.5) together with σj > ar,

|qj − ej | ≤
r

σj
× 2 + 6(j − 1)

1− a−1(1 + 3(j − 1))
<

r

σj
× 11d.

The Claim, and hence the lemma, is now proved, if for C3 we take the maximum of 11d

and the constant in (6.7).

Next, Lemma 6.5 below implies that the proof of (6.1) for any ball whose center lies
in Dd

+ reduces to an application of Lemma 6.3. It uses the following simple observation.

Lemma 6.4. Let a > 0 and k ∈ {0, 1, 2, . . .}. We have

1 + a+ a(1 + a) + · · ·+ a(1 + a)k = (1 + a)k+1.

Proof. The result clearly holds for k = 0. If it holds for k − 1, we get

1 + a+ a(1 + a) + · · ·+ a(1 + a)k = (1 + a)(1 + a+ · · ·+ a(1 + a)k−1) = (1 + a)k+1,

showing that it holds for k as well.

Lemma 6.5. Pick any Σ = Diag(σ) ∈ Dd
+ and r > 0. There is a matrix Σ′ = Diag(σ′) ∈

Dd
+ and a real number r′ > 0 that satisfy the condition (6.2) (with σ replaced by σ′, and

r by r′), such that

B(Σ, r) ⊂ B(Σ′, r′) and r′ ≤ (1 + 18d)dr.

Proof. Let a > 0 be a constant to be determined later. Suppose for some index i ∈
{1, . . . , d}, we have σi > a(1 + a)d−ir. Let n be the largest such index, and define

σ′ = (σ1, . . . , σn, 0, . . . , 0), r′ = r(1 + a)d−n.

Then, since σi ≤ a(1 + a)d−ir for all i > n,

|σ − σ′| ≤ σn+1 + · · ·+ σd

≤ r
(
a(1 + a)d−n−1 + · · ·+ a(1 + a) + a

)
= r(1 + a)d−n − r
= r′ − r.

The triangle inequality yields B(Σ, r) ⊂ B(Σ′, r′), where Σ′ = Diag(σ′). Setting a = 18d,
we see that Σ′, r′ satisfy condition (6.2).

It remains to consider the case where σi ≤ a(1 + a)d−ir for all i ∈ {1, . . . , d}. In this
case any x ∈ B(Σ, r) satisfies

‖x‖ ≤ r + ‖Σ‖ ≤ r + r
(
a(1 + a)d−1 + · · ·+ a(1 + a) + a

)
= r(1 + a)d,

so that B(Σ, r) ⊂ B(0, r(1 + a)d). With r′ = r(1 + a)d and n = 0, condition (6.2) is again
satisfied for a = 18d. This finishes the proof.
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Proof of Theorem 6.1(i). The proof of (6.1) is now straightforward. Indeed, pick any
ball B = B(x, r), and let x = UΣV > be a singular value decomposition of x. Then
B(x, r) = U ·B(Σ, r) · V >, and together with the invariance of Lebesgue measure under
orthogonal transformations and the fact that det y = det(U>yV ) for any y ∈ Md, this
leads to the equalities ∫

B(x,r)

w(x)dx =

∫
B(Σ,r)

w(x)dx,

|B(x, r)| = |B(Σ, r)|,

inf
x∈B(x,r)

w(x) = inf
x∈B(Σ,r)

w(x).

Consequently (and using that ∂E is a nullset), it suffices to prove (6.1) for B replaced by
B∗ = B∗(Σ, r) with Σ ∈ Dd

+. We then have the following chain of inequalities, where we
set B′∗ = B∗(Σ

′, r′) with Σ′ and r′ from Lemma 6.5, and where U , K, and C2 are obtained
by applying Lemma 6.3 to Σ′, r′.∫

B∗

w(x)dx ≤
∫
U ·K

w(x)dx (B∗ ⊂ B′∗ ⊂ U ·K)

≤ C1|U ·K| inf
x∈U ·K

w(x) (Lemma 6.2)

≤ C1|U ·K| inf
x∈B∗

w(x) (B∗ ⊂ U ·K)

≤ C1|B∗(Σ′, C2r
′)| inf

x∈B∗
w(x) (U ·K ⊂ B∗(Σ′, C2r

′))

= C1C
d2

2 (1 + 18d)d
3

|B∗| inf
x∈B∗

w(x). (r′ ≤ (1 + 18d)dr)

This proves that (6.1) holds with C = C1C
d2

2 (1 + 18d)d
3

.

A Proof of the integration by parts formula

In this section we give a proof of the integration by parts formula, Theorem 2.2,
which we now restate for the reader’s convenience:

Suppose δ > 0, and consider f ∈ C1
c (E) and G ∈ C1(E;Md). If δ ≤ 1, assume that

G(x) is tangent to ∂E at x for all x ∈ ∂E. If δ < 1, assume in addition that G(x) • x−> is
locally bounded. Then

〈∇f,G〉 = 〈f,∇∗G〉.

Throughout the proof, let K be the (compact) support of f . For ε ≥ 0, define

Uε = {x ∈Md : detx > ε} and ν(x) = − ∇ det(x)

‖∇ det(x)‖
, x ∈ U0.

For ε > 0, Uε has smooth boundary with outward unit normal ν(x) at x ∈ ∂Uε. For
any smooth function h : U0 → R such that the integrals are well-defined, the standard
integration by parts formula yields, for each ε > 0,∫

Uε

∇f(x) •G(x)h(x)dx =

∫
∂Uε

f(x)h(x)G(x) • ν(x)dσε(x)

−
∫
Uε

f(x)∇ • (Gh)(x)dx, (A.1)
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where σε denotes the surface area measure on ∂Uε.
Case 1: δ > 1. Take h(x) = det(x)δ−1. As ε ↓ 0, the left side of (A.1) tends to∫

E
∇f(x) •G(x)m(dx) by dominated convergence. Let C > 0 be such that |f(x)|‖G(x)‖ ≤

C for all x ∈ K. The absolute value of the boundary term is then dominated by

Cεδ−1

∫
∂Uε∩K

dσε(x),

using also that h(x) = εδ−1 for x ∈ ∂Uε. It is easy to see that σε(K) remains bounded as
ε ↓ 0, so we conclude that the boundary term vanishes in the limit. Consider now the
second term on the right side of (A.1). The product rule yields

∇ • (Gh) = h∇ •G+G • ∇h.

By dominated convergence,
∫
Uε
f(x)∇ •G(x)h(x)dx→

∫
E
f(x)∇ •G(x)m(dx). Moreover,

we have G(x) • ∇h(x) = (δ − 1)G(x) • ∇ det(x) det(x)δ−2. Since det(x)δ−2dx is a Radon
measure due to Theorem 2.1 and the fact that δ > 1, we may again use dominated
convergence to get∫

Uε

f(x)G(x) • ∇h(x)dx→ (δ − 1)

∫
E

f(x)G(x) • x−>m(dx).

(Here we used the equality ∇det(x) det(x)δ−2dx = x−>m(dx).) Assembling the pieces
gives the desired formula (2.1).

Case 2: δ = 1. We again take h(x) = det(x)δ−1 ≡ 1. Except for the boundary term,
everything works as in the case δ > 1, if we just note that ∇h = 0. Letting C be a bound
on |f(x)| over K, the boundary term is bounded above by

Cσε(K) sup
x∈Uε∩K

G(x) • ν(x).

Using that G(x) is tangent to ∂E at every x ∈ ∂E it is not hard to show that the supremum
tends to zero. Hence (2.1) is established.

Case 3: δ < 1. Things are now a bit more complicated due to the fact that det(x)δ−1

blows up at ∂E. To get around this, for each n let τn be a smooth, nondecreasing function
satisfying the following properties:

τn(t) ≤ t ∧ n, τn(t) = t for t ≤ n− 1, τn(t) = n for t ≥ n+ 1

0 ≤ τ ′n ≤ 1, τn(t) ↑ t and τ ′n(t) ↑ 1 as n→∞.

In (A.1) we now take h = hn, where hn = τn ◦ w and w(x) = det(x)δ−1. We first hold
n fixed and let ε ↓ 0. The left side of (A.1) converges to

∫
E
∇f(x) • G(x)hn(x)dx by

dominated convergence. The boundary term on the right side will vanish by the same
argument as in the case δ = 1. The integrand in the second term on the right side is in
fact bounded, since by the properties of τn,

∇hn(x) = (δ − 1)(τ ′n ◦ w(x))∇ det(x) det(x)δ−2 ≤ (δ − 1)∇det(x)(n+ 1)
δ−2
δ−1 .

Dominated convergence gives the limit
∫
E
f(x)∇ • (Ghn)(x)dx. Combining these results

and applying the product rule gives the formula∫
E

∇f(x) •G(x)hn(x)dx = −
∫
E

f(x)∇ •G(x)hn(x)−
∫
E

f(x)G(x) • ∇hn(x)dx. (A.2)

The final step is to send n to infinity. The left side of (A.2) converges to
∫
E
∇f(x) •

G(x)m(dx) by dominated convergence, since hn = τn ◦ w ↑ w. For the first term on the
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right side of (A.2), we similarly have
∫
E
f(x)∇ •G(x)hn(x)(dx)→

∫
E
f(x)∇ •G(x)m(dx).

Finally, for the second term on the right side of (A.2), note that

f(x)G(x) • ∇hn(x) = (δ − 1)f(x)τ ′n ◦ w(x)G(x) • x−> w(x).

This is bounded in absolute value by a constant times |G(x) • x−>|1K w(x), which is inte-
grable since |G(x) • x−>| is locally bounded by hypothesis. Thus dominated convergence
yields

∫
E
f(x)G(x) • ∇hn(x)dx→ (δ − 1)

∫
E
f(x)G(x) • x−>w(x)dx, and hence the result.

B The space W 1,2(Ω,m)

In this appendix we review some basic properties of the weighted Sobolev space
W 1,2(Ω,m) introduced in Section 4, as well some related results. The material is not
new—we collect the results here for ease of reference.

Besides W 1,2(Ω,m) there is occasionally a need to consider spaces W 1,2(U,m) for
open sets U ⊂Md different from Ω. Here the following subtlety arises: If U ∩ ∂E 6= ∅
and δ > 1, then f ∈ L2(Ω,m) need not lie in L1

loc(U), see [25, Example 1.7]. Thus we
cannot speak about its distributional gradient. In this case we therefore define

W 1,2(U,m) = {f ∈ L2(Ω,m) ∩ L1
loc(U) : Df ∈ L2(Ω,m;Md) ∩ L1

loc(U)}.

It is clear that for two open subsets U , V satisfying U ⊂ V and an element f ∈W 1,2(V,m),
we have f |U ∈ W 1,2(U,m). To alleviate notation we simply write f ∈ W 1,2(U,m). If the
open set U ⊂ Md has compact closure in Ω, we have C−1 ≤ (detx)δ−1 ≤ C for some
constant C > 1 and all x ∈ U . Hence

‖ · ‖W 1,2(U,m) and ‖ · ‖W 1,2(U,dx) are equivalent, (B.1)

and the unweighted space W 1,2(U, dx) coincides with W 1,2(U,m). This has several useful
consequences.

Lemma B.1. Let f ∈W 1,2(Ω,m). The following statements hold.

(i) Mollification: Let ψ be a mollifier and set ψε(x) = ε−dψ(x/ε). If f ∈W 1,2(Ω,m) has
compact support in Ω, then limε→0 ψε ∗ f = f in W 1,2(Ω,m).

(ii) Stability under truncation: For f ∈ W 1,2(Ω,m) we have limn→∞ f ∧ n = f in
W 1,2(Ω,m).

(iii) Let f, g ∈W 1,2(Ω,m) with f and g bounded. Then fg ∈W 1,2(Ω,m) and we have

D(fg) = fDg + gDf. (B.2)

(iv) The set {f ∈W 1,2(Ω,m) : f is bounded with bounded support} is dense inW 1,2(Ω,m).

Proof. (i): Let K be the support of f and pick an open set U b Ω with K ⊂ U . Then
ψε∗f → f in W 1,2(U, dx) by standard results in the unweighted case, see [1, Lemma 3.16].
Thus, for all sufficiently small ε > 0 we have ‖f−ψε∗f‖W 1,2(Ω,m) = ‖f−ψε∗f‖W 1,2(U,m) →
0.

(ii): Pick a test function φ ∈ C∞c (Ω) with support K, and choose an open set U b Ω

with K ⊂ U . Then f lies W 1,2(U, dx), as does g = f ∧ n by [28, Lemma 1.7.1], with weak
derivative Dg = Df1{f<n} on U . Thus∫

U

g∇φdx = −
∫
U

Df1{f<n}φdx,

EJP 20 (2015), paper 60.
Page 25/29

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3785
http://ejp.ejpecp.org/


Matrix-valued Bessel processes

and since φ = 0 outside U , this equality holds with U replaced by Ω. Hence Dg =

Df1{f<n} on Ω, and the result follows by monotone convergence.

(iii): First note that fg and fDg+ gDf lie in L2(Ω,m), so it remains to prove (B.2). To
this end, pick a test function φ ∈ C∞c (Ω) with support K, and choose an open set U b Ω

with K ⊂ U . Let φε be as in (i). Then f ∗ φε → f and g ∗ φε → g in W 1,2(U, dx). Hence
f ∗φε g ∗φε → fg, f ∗φε∇(g ∗φε)→ fDg and g ∗φε∇(f ∗φε)→ gDf , all in L1(U), which
yields ∫

U

fg∇φdx = lim
ε→0

∫
U

f ∗ φε g ∗ φε ∇φ dx

= − lim
ε→0

∫
U

(f ∗ φε∇(g ∗ φε) + g ∗ φε∇(f ∗ φε))φdx

= −
∫
U

(fDg + gDf)φdx.

This gives the result since φ = 0 outside U .

(iv): For f ∈W 1,2(Ω,m) and ε > 0, let U ⊂ Ω be such that
∫
Uc

(|f |2 +‖Df‖2)m(dx) ≤ ε.
Let φ ∈ C∞c (Md) be a smooth cutoff function with φ = 1 on U ⊂Md and ‖∇φ‖ ≤ 1. Then
g = φf has bounded support, lies in W 1,2(Ω,m), and satisfies ‖f − g‖W 1,2(Ω,m) ≤ ε. An
application of (ii) now yields the result.

Lemma B.2. Let f ∈ W 1,2(Ω,m) with |f | ≤ 1. Then for any ε > 0 there is a constant
C > 0, depending only on f and ε, such that

‖fg‖2W 1,2(Ω,m) ≤ C‖g‖
2
W 1,2(Ω,m) + ε

holds for all g ∈W 1,2(Ω,m) with |g| ≤ 1.

Proof. Due to Lemma B.1(iii) the product rule holds for f and g. Therefore we have
|fg|2 + ‖D(fg)‖2 ≤ |g|2 + 2‖Dg‖2 + 2|g|2‖Df‖2 and hence

‖fg‖2W 1,2(Ω,m) ≤ 2‖g‖2W 1,2(Ω,m) + 2

∫
Ω

|g|2 ‖Df‖2m(dx).

Let A = {x ∈ Ω : ‖Df(x)‖ ≤ κ}, where κ is chosen large enough that
∫

Ω\A ‖Df‖
2m(dx) ≤

ε/2. Then∫
Ω

|g|2‖Df‖2m(dx) ≤ κ2

∫
A

|g|2m(dx) +

∫
Ω\A
‖Df‖2m(dx) ≤ κ2‖g‖2W 1,2(Ω,m) + ε/2.

The result now follows with C = 2 + 2κ2.

Lemma B.3. Consider open subsets U ⊂ V and a function φ ∈ C∞c (V ) with φ = 0 on
V \ U . Then there is a constant C > 0 such that

‖φg‖2W 1,2(V,m) ≤ C‖g‖
2
W 1,2(U,m)

holds for all g ∈W 1,2(U,m).

Proof. Let κ denote a bound on φ2 and ‖∇φ‖2. We then have |φg|2 + ‖D(φg)‖2 ≤ 3κ|g|2 +

2κ‖Dg‖2 on U . Since φ = 0 on V \ U , the result follows with C = 3κ.
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C Tube segments

The proofs of some of our results require the notion of a tube segment, which we
now introduce. For a background on the relevant notions from differential geometry the
reader is referred to [26]. Let M be a smooth n1-dimensional embedded submanifold
of Rn (n1 < n) and set n2 = n − n1. For the applications in the present paper, Rn

is identified with Md, and M is one of the smooth manifolds Mk, k ∈ {0, . . . , d − 1},
consisting of rank k matrices. We then have n = d2, n1 = d2 − (d− k)2, and n2 = (d− k)2,
see [21, Proposition 4.1]. Note that M is not closed in Rn, but only locally closed.

Definition C.1. A tube segment around x ∈M is a neighborhood U of x in Rn together
with an open ball A ⊂ Rn1 and a diffeomorphism

Φ : A×B1 → U,

where B1 is the open unit ball in Rn2 , such that

(i) Φ(A× {0}) = M ∩ U ,

(ii) M ∩ U has compact closure in M ,

(iii) U does not intersect the frontier of M—that is, U ∩ (M \M) = ∅,

(iv) Φ and Φ−1 have bounded derivatives.

Proposition C.2. For any x ∈M , there exists a tube segment around x.

Proof. Let NM denote the normal bundle of M , and χ : NM → Rn the addition map
χ(x, v) = x + v. Consider a tubular neighborhood of M , i.e. the diffeomorphic image
under χ of a set of the form

T = {(x, v) ∈ NM : ‖v‖ < ρ(x)},

with ρ : M → R strictly positive and continuous. Tubular neighborhoods exist by [26,
Theorem 10.19]. Choose a neighborhood V of x in M . Shrinking V if necessary, we
may assume that V has compact closure in M , and that there exists a diffeomorphism
ψ : V → A for some open ball A ⊂ Rn1 . Now, set ε = infx∈V ρ(x) > 0 and define

TV,ε = {(x, v) ∈ NM : x ∈ V, ‖v‖ < ε}.

Let U = χ(TV,ε). Finally, consider the diffeomorphism ϕ : TV,ε → A × B1, (x, v) 7→
(ψ(x), ε−1v). To summarize, we have the diffeomorphisms

U
χ−1

−→ TV,ε
ϕ−→ A×B1,

and thus define Φ = χ ◦ ϕ−1. It remains to check properties (i)–(iv). For (i), we compute
Φ−1(M ∩U) = ϕ ◦χ−1(M ∩U) = ϕ({(x, 0) : x ∈ V }) = V ×{0}. Property (ii) is immediate
since M ∩ U = V has compact closure in M by construction. For (iii), note that the
inclusion U ⊂ χ(T ) holds, and that the latter set does not intersect M \M . Finally, by
shrinking A and B1, and then applying a homothety to recover B1, allows one to assume
that (iv) holds.
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