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Abstract

We define a new class of processes, very useful in applications, F-doubly stochastic Markov
chains which contains among others Markov chains. This class is fully characterized by some
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1 Introduction

Our goal is to find a class of processes with good properties which can be used for modeling differ-
ent kind of phenomena. So, in Section 2 we introduce a class of processes, which we call F-doubly
stochastic Markov chains. The reason for the name is that there are two sources of uncertainty in
their definition, so in analogy to Cox processes, called doubly stochastic Poisson processes, we chose
the name “F-doubly stochastic Markov chains”. This class contains Markov chains, compound Pois-
son processes with jumps in Z, Cox processes, the process of rating migration constructed by Lando
[16] and also the process of rating migration obtained by the canonical construction in Bielecki and
Rutkowski [3]. We stress that the class of F-doubly stochastic Markov chains contains processes
that are not Markov. In the following we use the shorthand “F–DS Markov chain” for the “F-doubly
stochastic Markov chain”. Note that an F-doubly stochastic Markov chain is a different object than a
doubly stochastic Markov chain which is a Markov chain with a doubly stochastic transition matrix.
On the end of this section we give examples of F-doubly stochastic Markov chains. Section 3 is
devoted to investigation of basic properties of F-doubly stochastic Markov chains. In the first part
we prove that an F–DS Markov chain C is a conditional Markov chain and that any F-martingale is
a F ∨ FC -martingale. This means that the immersion property for (F,F ∨ FC), so called hypothesis
H, holds. Moreover, the family of transition matrices satisfies the Chapman-Kolmogorov equations.
In the second part and until the end of the paper we restricted ourselves to a class of F–DS Markov
chains with values in a finite set K = {1, . . . , K}. We introduce the notion of intensity of an F–DS
Markov chain and formulate conditions which ensure its existence. In section 4 we prove that an
F–DS Markov chain C with intensity is completely characterized by the martingale property of the
compensated process describing the position of C as well as by the martingale property of the com-
pensated processes counting the number of jumps of C from one state to another (Theorem 4.1).
The equivalence between points iii) and iv) in Theorem 4.1 in a context of Markov chains has not
yet been known according to the best of our knowledge. In a view of the above characterizations,
the F–DS Markov chains can be described as the class of processes that behave like time inhomoge-
neous Markov chains conditioned onF∞. Moreover these equivalences and the fact that the class of
F-DS Markov chains contains the most of F conditional F∨FC Markov chains used for modeling in
finance, indicate that the class of F-DS Markov chains is a natural, and very useful in applications,
subspace of F conditional F ∨ FC Markov chains. Next, an F–DS Markov chain with a given inten-
sity is constructed. Section 5 is devoted to investigation of properties of distribution of C and the
distribution of sojourn time in fixed state j under assumption that C does not stay in j forever. We
find some conditional distributions which among others allows to find a conditional probability of
transition from one state to another given that transition occurs at known time. In Section 6 a kind
of predictable representation theorem is given. Such theorems are very important for applications,
for example in finance and backward stochastic differential equations (see Pardoux and Peng [18]
and El Karoui, Peng and Quenez [7]). By the way we prove that F–DS Markov chain with intensity
and arbitrary F adapted process do not have jumps at the same time. Our results allows to describe
and investigate a credit risk for a single firm. In such case the predictable representation theorem
(Theorem 6.5) generalize the Kusuoka theorem [14]. In the last section we study how replacing the
probability measure by an equivalent one affects the properties of an F–DS Markov chain.

Summing up, the class of F–DS Markov chains is a class with very good and desirable properties in
modeling. It can be applied to model rating migration in financial markets. More precisely, it can be
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used for modeling a credit rating migration process and which contains processes usually taken for
this purpose. This allows us to include rating migration in the process of valuation of defaultable
claims and generalize the case where only two states are considered: default and non-default (for
such generalizations see Jakubowski and Niewęgłowski [12]). These processes can also be applied
in other fields where system evolves in a way depending on random environment, e.g., in insurance.

2 Definition and examples

In this section we introduce and investigate a new class of processes, which will be called F-doubly
stochastic Markov chains. This class contains among others Markov chains and Cox processes. We
assume that all processes are defined on a complete probability space (Ω,F ,P). We also fix a
filtration F satisfying usual conditions, which plays the role of a reference filtration.

Definition 2.1. A càdlàg process C is called an F–doubly stochastic Markov chain with state space
K ⊂ Z = {. . . ,−1, 0,1,2, . . .} if there exists a family of stochastic matrices P(s, t) = (pi, j(s, t))i, j∈K
for 0≤ s ≤ t such that
1) the matrix P(s, t) is Ft–measurable, and P(s, ·) is F progressively measurable,
2) for any t ≥ s ≥ 0 and every i, j ∈K we have

P(Ct = j | F∞ ∨F C
s )1{Cs=i} = 1{Cs=i}pi, j(s, t). (2.1)

The process P will be called the conditional transition probability process of C .

The equality (2.1) implies that P(t, t) = I a.s. for all t ≥ 0. Definition 2.1 extends the notion
of Markov chain with continuous time (when F∞ is trivial). A process satisfying 1) and 2) is
called a doubly stochastic Markov chain by analogy with Cox processes (doubly stochastic Poisson
processes). In both cases there are two sources of uncertainty. As mentioned in the Introduction, we
use the shorthand “F–DS Markov chain” for the “F–doubly stochastic Markov chain”. Now, we give
a few examples of processes which are F–DS Markov chains.

Example 1. (Compound Poisson process) Let X be a compound Poisson process with jumps in Z,
i.e., X t =

∑Nt
i=1 Yi , where N is a Poisson process with intensity λ, Yi is a sequence of independent

identically distributed random variables with values in Z and distribution ν , moreover (Yi)i≥1 and
N are independent. By straightforward calculations we see that:

a) X is an F–DS Markov chain with F= FN and

pi, j(s, t) = ν⊗(Nt−Ns)( j− i).

b) X is an F–DS Markov chain with respect to F being the trivial filtration, and with deterministic
transition matrix given by the formula

pi, j(s, t) =
∞
∑

k=0

ν⊗k( j− i)
[λ(t − s)]k

k!
e−λ(t−s).

From these examples we have seen that the conditional transition probability matrix depends on
the choice of the reference filtration F, and P(s, t) can be either continuous with respect to s, t or
discontinuous.
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Example 2. (Cox process) The process C with càdlàg trajectories such that

P(Ct − Cs = k | F∞ ∨F C
s ) = e−

∫ t

s
λudu

�

∫ t

s
λudu

�k

k!
(2.2)

for some F–adapted process λ such that λ≥ 0,
∫ t

0
λsds <∞ for all t ≥ 0 we call a Cox process. This

definition implies that

P(Ct − Cs = k | F∞ ∨F C
s ) = P(Ct − Cs = k | F∞),

so the increments and the past (i.e. F C
s ) are conditionally independent given F∞. Therefore for

j ≥ i,

P(Ct = j | F∞ ∨F C
s )1{Cs=i} = 1{Cs=i}P(Ct − Cs = j− i | F∞ ∨F C

s )

= 1{Cs=i}e
−
∫ t

s
λudu

�

∫ t

s
λudu

� j−i

( j− i)!
.

Thus

pi, j(s, t) =







�

∫ t

s
λudu

� j−i

( j−i)! e−
∫ t

s
λudu for j ≥ i,

0 for j < i,

satisfy conditions 1) and 2) of Definition 2.1. A Cox process C is therefore an F–DS Markov chain
with K = N. Usually in a definition of Cox process there is one more assumption on intensity,
namely

∫∞
0
λsds =∞ a.s. Under this assumption C has properties similar to Poisson process and is

called conditional Poisson process (or doubly stochastic Poisson process). So our definition of Cox
process is a slight generalization of a classical one.

Example 3. (Time changed discrete Markov chain) Assume that C̄ is a discrete time Markov chain
with values in K = {1, . . . , K}, N is a Cox process and the processes (C̄k)k≥0 and (Nt)t≥0 are inde-
pendent and conditionally independent given F∞. Then the process Ct := C̄Nt

is an F–DS Markov
chain (see Jakubowski and Niewęgłowski [11, Theorem 7 and 9]).

Example 4. (Truncated Cox process) Simple calculations give us that the process Ct :=min
�

Nt , K
	

,
where N is a Cox process and K ∈ N, is an F–DS Markov chain with state space K = {0, . . . , K}.

3 Basic properties

3.1 General case

In this subsection we consider the case of an arbitrary countable state space K . We study basic
properties of transition matrices and martingale invariance property of F with respect to F ∨ FC .
Moreover we prove that the class of F-DS Markov chains is a subclass of F conditional F ∨ FC

Markov chains.

For the rest of the paper we assume that C0 = i0 for some i0 ∈K . We start the investigation of F–DS
Markov chains from the very useful lemma describing conditional finite–dimensional distributions
of C , which is a counterpart of the well known result for Markov chains.
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Lemma 3.1. If C is an F–DS Markov chain, then

P(Cu1
= i1, . . . Cun

= in | F∞ ∨F C
u0
)1¦Cu0

=i0
© (3.1)

= 1¦Cu0
=i0
©pi0,i1(u0, u1)

n−1
∏

k=1

pik ,ik+1
(uk, uk+1)

for arbitrary 0≤ u0 ≤ . . .≤ un and (i0, . . . , in) ∈K n+1.

Proof. The proof is by induction on n. For n = 1 the above formula obviously holds. Assume that
it holds for n, arbitrary 0 ≤ u0 ≤ . . . ≤ un and (i0, . . . , in) ∈ K n+1. We will prove it for n+ 1 and
arbitrary 0≤ u0 ≤ . . .≤ un ≤ un+1, (i0, . . . , in, in+1) ∈K n+2. Because

E(1n
Cu1
=i1,...Cun+1

=in+1

o | F∞ ∨F C
u0
)1¦Cu0

=i0
©

= E
�

E
�

1n
Cu2
=i2,...,Cun+1

=in+1

o |F∞∨F C
u1

�

1¦Cu1
=i1
© |F∞∨F C

u0

�

1¦Cu0
=i0
©,

by the induction assumption applied to u1 ≤ . . . ≤ un+1 and (i1, . . . , in+1) ∈ K n+1 we know that the
left hand side of (3.1) is equal to

E

 

1¦Cu1
=i1
©pi1,i2(u1, u2)

n
∏

k=2

pik ,ik+1
(uk, uk+1) | F∞ ∨F C

u0

!

1¦Cu0
=i0
© = I .

Using F∞–measurability of family of transition probabilities (P(s, t))0≤s≤t<∞, and the definition of
F–DS Markov chain, we obtain

I = E
�

1¦Cu1
=i1
© |F∞ ∨F C

u0

�

1¦Cu0
=i0
©

 

pi1,i2(u1, u2)
n
∏

k=2

pik ,ik+1
(uk, uk+1)

!

= 1¦Cu0
=i0
©pi0,i1(u0, u1)

 

pi1,i2(u1, u2)
n
∏

k=2

pik ,ik+1
(uk, uk+1)

!

= 1¦Cu0
=i0
©pi0,i1(u0, u1)

n
∏

k=1

pik ,ik+1
(uk, uk+1)

and this completes the proof.

Remark 3.2. Of course, if (3.1) holds, then condition 2) of Definition 2.1 of F–DS Markov chain is
satisfied. Therefore (3.1) can be viewed as an alternative to equality (2.1).

As a consequence of our assumption that C0 = i0 and Lemma 3.1 we obtain

Proposition 3.3. If C is an F–DS Markov chain, then for arbitrary 0 ≤ u1 ≤ . . . ≤ un ≤ t and
(i1, . . . , in) ∈K n we have

P(Cu1
= i1, . . . Cun

= in | F∞) = pi0,i1(0, u1)
n−1
∏

k=0

pik ,ik+1
(uk, uk+1), (3.2)

and

P(Cu1
= i1, . . . Cun

= in | F∞) = P(Cu1
= i1, . . . Cun

= in | Ft). (3.3)
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The following hypothesis is standard for many applications e.g., in credit risk theory.

HYPOTHESIS H: For every bounded F∞–measurable random variable Y and for each t ≥ 0 we
have

E(Y | Ft ∨F C
t ) = E(Y | Ft).

It is well known that hypothesis H for the filtrations F and FC is equivalent to the martingale
invariance property of the filtration F with respect to F ∨ FC (see Brémaud and Yor [4] or Bielecki
and Rutkowski [3, Lemma 6.1.1, page 167]) i.e. any F martingale is an F ∨ FC martingale. From
results in [4] one can deduce that hypothesis H implies (3.3). So, by Proposition 3.3, we can expect
that for a class of F-DS Markov chains hypothesis H is satisfied. Indeed,

Proposition 3.4. If C is an F–DS Markov chain then hypothesis H holds.

Proof. According to [11, Lemma 2] we know that hypothesis H is equivalent to (3.3). This and
Proposition 3.3 complete the proof.

Now, we will show that each F–DS Markov chain is a conditional Markov chain (see [3, page 340]
for a precise definition). For an example of a process which is an F conditional F∨FC Markov chain
and is not an F–DS Markov chain we refer to Section 3 of Becherer and Schweizer [2].

Proposition 3.5. Assume that C is an F–DS Markov chain. Then C is an F conditional F∨FC Markov
chain.

Proof. We have to check that for s ≤ t,

P(Ct = i | Fs ∨F C
s ) = P(Ct = i | Fs ∨σ(Cs)).

By the definition of an F–DS Markov chain,

P(Ct = i | Fs ∨F C
s ) = E(E(1{Ct=i} | F∞ ∨F

C
s ) | Fs ∨F C

s )

= E
�
∑

j∈K
1{Cs= j}p j,i(s, t) |Fs ∨F C

s

�

=
∑

j∈K
1{Cs= j}E

�

p j,i(s, t) |Fs ∨F C
s

�

= I .

But
I =

∑

j∈K
1{Cs= j}E

�

p j,i(s, t) | Fs

�

since hypothesis H holds (Proposition 3.4), and this ends the proof.

Now we define processes H i , which play a crucial role in our characterization of the class of F–DS
Markov chains:

H i
t := 1{Ct=i} (3.4)

for i ∈ K . The process H i
t tells us whether at time t the process C is in state i or not. Let Ht :=

(Hαt )
>
α∈K , where > denotes transposition.

We can express condition (2.1) in the definition of an F–DS Markov chain, for t ≤ u, in the form

H i
tE(H

j
u | F∞ ∨F

C
t ) = H i

t pi, j(t, u),

1748



or equivalently
E(H j

u | F∞ ∨F
C
t ) =

∑

i∈K
H i

t pi, j(t, u)

and so (2.1) is equivalent to
E
�

Hu | F∞ ∨F C
t

�

= P(t, u)>Ht . (3.5)

The next theorem states that the family of matrices P(s, t) = [pi, j(s, t)]i, j∈K satisfies the Chapman-
Kolmogorov equations.

Theorem 3.6. Let C be an F–DS Markov chain with transition matrices P(s, t). Then for any u≥ t ≥ s
we have

P(s, u) = P(s, t)P(t, u) a.s., (3.6)

so on the set
�

Cs = i
	

we have

pi, j(s, u) =
∑

k∈K
pi,k(s, t)pk, j(t, u).

Proof. It is enough to prove that (3.6) holds on each set
�

Cs = i
	

, i ∈K . So we have to prove that

H>s P(s, u) = H>s P(s, t)P(t, u).

By the chain rule for conditional expectation, equality (3.5) and the fact that P(t, u) is F∞–
measurable it follows that for s ≤ t ≤ u,

P(s, u)>Hs = E
�

Hu | F∞ ∨F C
s

�

= E
�

E
�

Hu | F∞ ∨F C
t

�

| F∞ ∨F C
s

�

= E
�

P(t, u)>Ht | F∞ ∨F C
s

�

= P(t, u)>E
�

Ht | F∞ ∨F C
s

�

= P(t, u)>P(s, t)>Hs = (P(s, t)P(t, u))>Hs,

and this completes the proof.

3.2 The case of a finite state space

From this subsection, until the end of the paper we restrict ourselves to a finite set K , i.e. K =
{1, . . . , K}, with K <∞. It is enough for the most of applications, e.g., in finance to model markets
with rating migrations we use processes with values in a finite set. In this case Ht := (H1

t . . . , HK
t )
>.

We recall the standing assumption that C0 = i0 for some i0 ∈K .

The crucial concept in this subsection and in study of properties of F–DS Markov chains is the
concept of intensity, analogous to that for continuous time Markov chains.

Definition 3.7. We say that an F–DS Markov chain C has an intensity if there exists an F–adapted
matrix-valued process Λ = (Λ(s))s≥0 = (λi, j(s))s≥0 such that:
1) Λ is locally integrable, i.e. for any T > 0

∫

]]0,T]]

∑

i∈K

�

�λii(s)
�

� ds <∞. (3.7)
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2) Λ satisfies the conditions:

λi, j(s)≥ 0 ∀i, j ∈K , i 6= j, λi,i(s) =−
∑

j 6=i

λi, j(s) ∀i ∈K , (3.8)

the Kolmogorov backward equation: for all v ≤ t,

P(v, t)− I=
∫ t

v

Λ(u)P(u, t)du, (3.9)

the Kolmogorov forward equation: for all v ≤ t,

P(v, t)− I=
∫ t

v

P(v, u)Λ(u)du. (3.10)

A process Λ satisfying the above conditions is called an intensity of the F–DS Markov chain C .

It is not obvious that if we have a solution to the Kolmogorov backward equation then it also
solves the Kolmogorov forward equation. This fact follows from the theory of differential equa-
tions, namely we have

Theorem 3.8. Assume that Λ is locally integrable. Then the random ODE’s

dX (t) =−Λ(t)X (t)d t, X (0) = I, (3.11)

dY (t) = Y (t)Λ(t)d t, Y (0) = I, (3.12)

have unique solutions, and in addition X (t) = Y−1(t). Moreover, Z(s, t) := X (s)Y (t) is a unique
solution to the Kolmogorov forward equation (3.10) and to the Kolmogorov backward equation (3.9).

Proof. The existence and uniqueness of solutions of the ODE’s (3.11) and (3.12) follows by standard
arguments. To deduce that X (t) = Y−1(t) we apply integration by parts to the product X (t)Y (t) of
finite variation continuous processes and get

d(Y (t)X (t)) = Y (t)dX (t) + (dY (t))X (t)

= Y (t) (−Λ(t)X (t)d t) + Y (t)Λ(t)X (t)d t = 0.

From Y (0) = X (0) = I we have Y (t)X (t) = I, which means that X (t) is a right inverse matrix of
Y (t). It is also the left inverse, since we are dealing with square matrices.

Now we check that Z(s, t) are solutions to the Kolmogorov backward equation and also the Kol-
mogorov forward equation. Indeed,

dsZ(s, t) = (dX (s))Y (t) =−Λ(s)X (s)Y (t)ds =−Λ(s)Z(s, t)ds,

and
dt Z(s, t) = X (s)dY (t) = X (s)Y (t)Λ(t)d t = Z(s, t)Λ(t)d t.

This ends the proof since X (t) = Y−1(t) implies that Z(t, t) = I for every t ≥ 0.
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Corollary 3.9. If an F–DS–Markov chain C has intensity, then the conditional transition probability
process P(s, t) is jointly continuous at (s, t) for s ≤ t.

Proof. This follows immediately from Theorem 3.8, since

P(s, t) = X (s)Y (t)

and both factors are continuous in s and t, respectively.

Theorem 3.8 gives us existence and uniqueness of solutions to (3.9) and (3.10). Next proposition
provides the form of these solutions.

Proposition 3.10. Let a matrix process (Λ(s))s≥0 satisfies conditions (3.7) and (3.8). Then the solution
to (3.9) is given by the formula

P(v, t) = I+
∞
∑

n=1

∫ t

v

∫ t

v1

. . .

∫ t

vn−1

Λ(v1) . . .Λ(vn)dvn . . . dv1,

and the solution to (3.10) is given by

P(v, t) = I+
∞
∑

n=1

∫ t

v

∫ v1

v

. . .

∫ vn−1

v

Λ(vn) . . .Λ(v1)dvn . . . dv1.

Proof. It is a special case of Theorem 5 in Gill and Johansen [8], see also Rolski et al. [20, §
8.4.1].

Proposition 3.11. Let P = (P(s, t)), 0 ≤ s ≤ t, be a family of stochastic matrices such that the
matrix P(s, t) is Ft–measurable, and P(s, ·) is F–progressively measurable. Let Λ = (Λ(s))s≥0 be an
F–adapted matrix-valued locally integrable process such that the Kolmogorov backward equation (3.9)
and Kolmogorov forward equation (3.10) hold. Then
i) For each s ∈ [0, t] there exists an inverse matrix of P(s, t) denoted by Q(s, t).
ii) There exists a version of Q(·, t) such that the process Q(·, t) is a unique solution to the integral
(backward) equation

dQ(s, t) =Q(s, t)Λ(s)ds, Q(t, t) = I. (3.13)

This unique solution is given by the following series:

Q(s, t) = I+
∞
∑

k=1

(−1)k
∫ t

s

∫ t

u1

. . .

∫ t

uk−1

Λ(uk) . . .Λ(u1)duk . . . du1. (3.14)

iii) There exists a version of Q(s, ·) such that the process Q(s, ·) is a unique solution to the integral
(forward) equation

dQ(s, t) =−Λ(t)Q(s, t)d t, Q(s, s) = I. (3.15)

This unique solution is given by the following series:

Q(s, t) = I+
∞
∑

k=1

(−1)k
∫ t

s

∫ u1

s

. . .

∫ uk−1

s

Λ(u1) . . .Λ(uk)duk . . . du1. (3.16)
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Proof. i) From Theorem 3.8 it follows that P(s, t) = X (s)Y (t), where X , Y are solutions to the
random ODE’s (3.11), (3.12) and moreover Y = X−1. Therefore the matrix P(s, t) is invertible and
its inverse Q(s, t) is given by Q(s, t) = X (t)Y (s).
ii) We differentiate Q(s, t) with respect to the first argument and obtain

dsQ(s, t) = X (t)dY (s) = X (t)Y (s)Λ(s)ds =Q(s, t)Λ(s)ds.

Moreover Q(t, t) = X (t)Y (t) = I. So Q(·, t) solves (3.13). Uniqueness of solutions to (3.13) follows
by standard arguments based on Gronwall’s lemma. Formula (3.14) is derived analogously to a
similar formula for P(s, t) in § 8.4.1, page 348 of Rolski et al. [20].
iii) The proof of iii) is analogous to that of ii).

In the next theorem we prove that under some conditions imposed on the conditional transition
probability process P, an F–DS Markov chain C has intensity. Using this intensities we can con-
struct martingale intensities for different counting processes building in natural way from F–DS
Markov chains (see Theorem 4.1). Therefore, Theorem 3.12 is in a spirit of approaches of Del-
lacherie (Meyer’s Laplacian see Delacherie [6], Guo and Zeng [9] ) and of Aven [1]. Theorem 3.12
generalizes for F–DS Markov chains results from [1].

Theorem 3.12 (Existence of Intensity). Let C be an F–DS–Markov chain with conditional transition
probability process P. Assume that
1) P as a matrix–valued mapping is measurable, i.e.

P : (R+×R+×Ω,B(R+×R+)⊗F )→ (RK×K ,B(RK×K)).

2) There exists a version of P which is continuous in s and in t.
3) For every t ≥ 0 the following limit exists almost surely

Λ(t) := lim
h↓0

P(t, t + h)− I
h

, (3.17)

and is locally integrable.
Then Λ is the intensity of C.

Proof. By assumption 3 the process Λ is well defined and by 1) it is (R+×Ω,B(R+)⊗F )measurable.
By assumption 3, Λ(t) is Ft+–measurable, but F satisfies the usual conditions, so Λ(t) is Ft–
measurable. It is easy to see that (3.8) holds.
It remains to prove that equations (3.9) and (3.10) are satisfied. Fix t. From the assumptions and
the Chapman–Kolmogorov equations it follows that for v ≤ v+ h≤ t,

P(v+ h, t)− P(v, t) = P(v+ h, t)− P(v, v+ h)P(v+ h, t)

= −(P(v, v+ h)− I)P(v+ h, t),

so
P(v+ h, t)− P(v, t)

h
=−
(P(v, v+ h)− I)

h
P(v+ h, t).
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Therefore ∂ +

∂ v
P(v, t) exists for a.e. v and is (R+ ×R+ × Ω,B(R+ ×R+)⊗F ) measurable. Using

assumptions 2 and 3 we finally have

∂ +

∂ v
P(v, t) =−Λ(v)P(v, t), P(t, t) = I. (3.18)

Since elements of P(u, t) are bounded by 1, and Λ is integrable over [v, t] (by assumption 3), we
see that ∂

+

∂ u
P(u, t) is Lebesgue integrable on [v, t], so (see Walker [21])

I− P(v, t) =

∫ t

v

∂ +

∂ u
P(u, t)du.

Hence, by (3.18), we have

P(v, t)− I=
∫ t

v

Λ(u)P(u, t)du,

and this is exactly the Kolmogorov backward equation (3.9).

Similar arguments apply to the case of right derivatives of P(v, t)with respect to the second variable.
Since for v ≤ t ≤ t + h,

P(v, t + h)− P(v, t) = P(v, t)(P(t, t + h)− I),

we obtain
∂ +

∂ t
P(v, t) = P(v, t)Λ(t), P(v, v) = I,

which gives (3.10),

P(v, t)− I=
∫ t

v

P(v, u)Λ(u)du.

Now, we find the intensity for the processes described in Examples 3 and 4.

Example 5. If Ct = min
�

Nt , K
	

, where N is a Cox process with càdlàg intensity process λ̃, then C
has the intensity process of the form

λi, j(t) =







−λ̃(t) for i = j ∈ {0, . . . K − 1};
λ̃(t) for j = i+ 1 with i ∈ {0, . . . K − 1};
0 otherwise.

Example 6. If an F–DS Markov chain C is defined as in Example 3 with a discrete time Markov
chain C̄ with a transition matrix P and a Cox process N with càdlàg intensity process λ̃, then

P(s, t) = e(P−I)
∫ t

s
λ̃(u)du

(see Theorem 9 in [11]), so the intensity of C is given by

λi, j(t) = (P − I)i, jλ̃(t).
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4 Martingale properties

We prove that under natural assumptions, belonging of a process X to the class of F-DS Markov
chains is fully characterized by the martingale property of some processes strictly connected with X .
These nice martingale characterizations allow to check by using martingales whenever process is an
F-DS Markov chain. To do this, we introduce a filtration bG= ( bGt)t≥0, where

bGt :=F∞ ∨F C
t . (4.1)

Theorem 4.1. Let (Ct)t≥0 be a K –valued stochastic process and (Λ(t))t≥0 be a matrix valued process
satisfying (3.7) and (3.8). The following conditions are equivalent:
i) The process C is an F–DS Markov chain with intensity process Λ.
ii) The processes

M i
t := H i

t −
∫

]]0,t]]
λCu,i(u)du, i ∈K , (4.2)

are bG local martingales.
iii) The processes M i, j defined by

M i, j
t := H i, j

t −
∫

]]0,t]]
H i

sλi, j(s)ds, i, j ∈K , i 6= j, (4.3)

where

H i, j
t :=

∫

]]0,t]]
H i

u−dH j
u, (4.4)

are bG local martingales.
iv) The process L defined by

Lt :=Q(0, t)>Ht , (4.5)

where Q(0, t) is a unique solution to the random integral equation

dQ(0, t) =−Λ(t)Q(0, t)d t, Q(0, 0) = I, (4.6)

is a bG local martingale.

Proof. Denoting by M the vector valued process with coordinates M i , we can write M as follows

Mt := Ht −
∫

]]0,t]]
Λ>(u)Hudu. (4.7)

"i)⇒ ii)" Assume that C is an F–DS Markov chain with intensity process (Λ(t))t≥0. Fix t ≥ 0 and
set

Ns := P(s, t)>Hs for 0≤ s ≤ t. (4.8)

The process C satisfies (3.5), which is equivalent to N being a bG martingale for 0 ≤ s ≤ t. Using
integration by parts and the Kolmogorov backward equation (3.9) we find that

dNs = (dP(s, t))>Hs + P>(s, t)dHs (4.9)

=−P>(s, t)Λ>(s)Hsds+ P>(s, t)dHs = P>(s, t)dMs.
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Hence, using Q(s, t) (the inverse of P(s, t); we know that it exists, see Proposition 3.11iii)), we
conclude that

Ms −M0 =

∫

]]0,s]]
Q>(u, t)P>(u, t)dMu =

∫

]]0,s]]
Q>(u, t)dNu.

Therefore, by the bG martingale property of N , we see that M is a bG local martingale.

"ii)⇒ i)" Assume that the process M associated with C and Λ is a bG martingale. Fix t ≥ 0. To prove
that C is an F–DS Markov chain it is enough to show that for some process (P(s, t))0≤s≤t the process
N defined by (4.8) is a bG martingale on [0, t]. Let P(s, t) := X (s)Y (t) with X , Y being solutions
to the random ODE’s (3.11) and (3.12). We know that P(·, t) satisfies the integral equation (3.9)
(see Theorem 3.8). We also know that P(s, t) is Ft–measurable (Remark 3.10) and continuous in
t, hence F progressively measurable. Using the same arguments as before, we find that (4.9) holds.
So, using the martingale property of M we see that N is a local martingale. The definition of N
implies that N is bounded (since H and P are bounded, see Last and Brandt [17, §7.4]). Therefore
N has an integrable supremum, so it is a bG martingale, which implies that C is an F–DS Markov
chain with transition matrix P. From Theorem 3.8 it follows that Λ is the intensity matrix process
of C .

"ii)⇔ iii)" and "iii)⇔ iv)" These equivalences follows from Lemmas 4.3 and 4.4 below, respec-
tively, with A= bG given by (4.1).
The proof is complete.

Remark 4.2. The equivalence between i) and ii) in the above proposition corresponds to a well known
martingale characterization of a Markov chain with a finite state space. In a view of this character-
ization of F–DS Markov chains with intensities, they can be described as the class of processes that
conditioned on F∞ behave as time inhomogeneous Markov chains with intensities. Hence, we can also
see that the name F–doubly stochastic Markov chain well describe this class of processes. The equiva-
lence between iii) and iv) in a context of Markov chains has not yet been known according to the best of
our knowledge.

The equivalence between points ii), iii) and iv) in Theorem 4.1 is a simple consequence of slightly
more general results, which we formulate in two separate lemmas. It is worth to note that equiva-
lences in lemmas below follow from general stochastic integration theory and in the proofs we do
not use the doubly stochastic property.

Lemma 4.3. Let A be a filtration such that Λ and H are adapted to A. Assume that Λ satisfies (3.7)
and (3.8). The processes M i , defined by (4.2) for i ∈ K , are A local martingales if and only if for all
i, j ∈K , i 6= j, the processes M i, j defined by (4.3) are A local martingales.

Proof. ⇒ Fix i 6= j, i, j ∈K . Using the definition of M i, j
t and M i

t we have

M i, j
t =

∫

]]0,t]]
H i

u−dH j
u−
∫

]]0,t]]
H i

uλi, j(u)du=

∫

]]0,t]]
H i

u−dH j
u−
∫

]]0,t]]
H i

uλCu, j(u)du

=

∫

]]0,t]]
H i

u−dH j
u−
∫

]]0,t]]
H i

u−λCu, j(u)du=

∫

]]0,t]]
H i

u−dM j
u.
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Hence M i, j is an A local martingale, since M j is one and H i
u− is a bounded process.

⇐ Assume that the M i, j
t are A local martingales for all i 6= j, i, j ∈ K . First notice that H i can be

obtained from H j,i by the formula

H i
t = H i

0+
∑

j 6=i

�

H j,i
t −H i, j

t

�

.

Here and in what follows we use the notation
∑

j 6=i =
∑

j∈K \{i}. Indeed, from (4.4) it follows that

∑

j 6=i

(H j,i
t −H i, j

t ) =

∫

]]0,t]]







∑

j 6=i

H j
u−






dH i

u+

∫

]]0,t]]
H i

u−d






−
∑

j 6=i

H j
u







=

∫

]]0,t]]
(1−H i

u−)dH i
u+

∫

]]0,t]]
H i

u−dH i
u = H i

t −H i
0.

Next, by (4.3),

H i
t = H i

0+
∑

j 6=i

(M j,i
t −M i, j

t ) +
∑

j 6=i

 

∫

]]0,t]]
H j

sλ j,i(s)−H i
sλi, j(s)ds

!

= H i
0+
∑

j 6=i

�

M j,i
t −M i, j

t

�

+

∫

]]0,t]]

K
∑

j=1

H j
sλ j,i(s)ds

= H i
0+
∑

j 6=i

�

M j,i
t −M i, j

t

�

+

∫

]]0,t]]
λCs ,i(s)ds,

which implies that

M i
t = H i

t −
∫

]]0,t]]
λCs ,i(s)ds = H i

0+
∑

j 6=i

�

M j,i
t −M i, j

t

�

,

and therefore M i is an A local martingale for each i ∈K as a finite sum of A local martingales.

The process H i, j defined by (4.4) counts the number of jumps from state i to j over the time interval
]]0, t]]. Indeed, it is easy to see that

H i, j
t =

∑

0<u≤t

H i
u−H j

u.

Lemma 4.4. Let A be a filtration such that Λ and H are adapted to A. Assume that Λ satisfies (3.7)
and (3.8). The processes M i , i ∈ K , are A local martingales if and only if the process L defined by
(4.5) is an A local martingale.

Proof. Integration by parts formula gives

d Lt =Q(0, t)>dMt , (4.10)
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indeed

d Lt =Q(0, t)>dHt + d(Q(0, t)>)Ht =Q(0, t)>dHt −Q(0, t)>Λ(t)>Ht d t =Q(0, t)>dMt .

We know that Q is A predictable and locally bounded. So, if M is an A local martingale, then L is
also an A local martingale.
On the other hands, taking P(0, t) as an unique solution to the integral equation

dP(0, t) = P(0, t)Λ(t)d t, P(0,0) = I

and noting that P(0, t) is the inverse of Q(0, t) (see Proposition 3.11) we have

P(0, t)>d Lt = P(0, t)>Q(0, t)>dMt = dMt .

Therefore, if L is an A local martingale, then M is also an A local martingale.

Corollary 4.5. If C is an F–DS Markov chain, then M i are G local martingales with Gt =Ft ∨F C
t .

Proof. This follows from the fact that the M i are adapted to G, and G is a subfiltration of bG.

Remark 4.6. The process C obtained by the canonical construction in [3] is an F–DS Markov chain.
This is a consequence of Theorem 4.1, because Λ in the canonical construction is bounded and calcula-
tions analogous to those in [3, Lemma 11.3.2 page 347] show that M i are bG martingales. In a similar
way one can check that if C is a process of rating migration given by Lando [16], then M i are bG local
martingales, so C is an F–DS Markov chain.

The martingale M is orthogonal to all square integrable F martingales.

Proposition 4.7. Let C be an F–DS Markov chain. The martingale M given by (4.7) is strongly
orthogonal to all square integrable F martingales.

Proof. Denote by N an arbitrary Rd–valued, square integrable F martingale. Since C is an F–DS
Markov chain we have, by Proposition 3.5, that H hypothesis holds and therefore N is also F ∨ FC

martingale. Since M is an F∨ FC martingale, we need to show that the process N j M i is an F∨ FC

martingale for every i ∈K and j ∈ {1, . . . , d}. Fix arbitrary t ≥ 0 and any s ≤ t, then

E
�

N j
t M i

t

�

�Fs ∨F C
s

�

= E
�

N j
t E
�

M i
t

�

�F∞ ∨F C
s

� �

�Fs ∨F C
s

�

= E
�

N j
t M i

s

�

�Fs ∨F C
s

�

= M i
s E
�

N j
t

�

�Fs ∨F C
s

�

= N j
s M i

s

and hence the result follows.

Now we construct an F–DS Markov chain with intensity given by an arbitrary F adapted matrix-
valued locally bounded stochastic process which satisfies condition (3.8).

Theorem 4.8. Let (Λ(t))t≥0 be an arbitrary F adapted matrix-valued stochastic process which satisfies
conditions (3.7) and (3.8). Then there exists an F–DS Markov chain with intensity (Λ(t))t≥0.
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Proof. We assume that on a probability space (Ω,F ,P) with a filtration F we have a family of Cox
processes N i, j for i, j ∈K with intensities (λi, j(t)) such that the N i, j are conditionally independent
given F∞ (otherwise we enlarge the probability space). We construct on (Ω,F ,P) an F–DS Markov
chain C with intensity (Λ(t))t≥0 and given initial state i0. It is a pathwise construction inspired by
Lando [16]. First, we define a sequence (τn)n≥1 of jump times of C and a sequence (C̄n)n≥0 which
describes the states of rating after change. We define these sequences by induction. We put

C̄0 = i0, τ1 := min
j∈K \C̄0

inf
n

t > 0 :∆N C̄0, j
t > 0

o

If τ1 =∞, then C never jumps so C̄1 := i0. If τ1 <∞, then we put C̄1 := j, where j is the element
of K \ C̄0 for which the above minimum is attained. By conditional independence of N i, j given
F∞, the processes N i, j have no common jumps, so C̄1 is uniquely determined. We now assume that
τ1, . . . ,τk, C̄1, . . . , C̄k are defined, τk <∞ and we construct τk+1 as the first jump time of the Cox
processes after τk, i.e.

τk+1 := min
j∈K \C̄k

inf
n

t > τk :∆N C̄k , j
t > 0

o

.

If τk+1 =∞ then C̄k+1 = C̄k, and if τk+1 <∞ we put C̄k+1 := j, where j is the element of K \ C̄k
for which the above minimum is attained. Arguing as before, we see that τk+1 and C̄k+1 are well
defined.

Having the sequences (τn)n≥0 and (C̄n)n≥0 we define a process C by the formula

Ct :=
∞
∑

k=0

1[τk ,τk+1)(t) C̄k. (4.11)

This process C is càdlàg and adapted to the filtration A= (At)t≥0, whereAt :=Ft ∨
�

∨

i 6= jF
N i, j

t

�

,

and hence it is also adapted to the larger filtration eA = ( fAt)t≥0, fAt :=F∞ ∨
�

∨

i 6= jF
N i, j

t

�

. Notice

that H i, j defined by (4.4) is equal to

H i, j
t =

∫

]]0,t]]
1{i}(Cs−)dN i, j

s a.s.

The processes N i, j
t −

∫

]]0,t]]
λi, j(s)ds are eA local martingales (since they are compensated Cox’s pro-

cesses, see e.g. [3]). Likewise, each M i, j defined by (4.3) is an eA local martingale, since

M i, j
t = H i, j

t −
∫

]]0,t]]
H i

sλi, j(s)ds = H i, j
t −

∫

]]0,t]]
H i

s−λi, j(s)ds

=

∫

]]0,t]]
1{i}(Cs−)d(N

i, j
s −λi, j(s)ds).

Recall that bGt =F∞ ∨F C
t , so bG⊆ eA. Therefore each M i, j is also a bG local martingale, since M i, j is

bG adapted. Hence, using Theorem 4.1, we see that C is an F–DS Markov chain.
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Remark 4.9. Suppose that in the above construction τk <∞ a.s. and Cτk
= i. Then

a) τk+1 <∞ a.s. provided

∃ j ∈K \ {i}
∫ ∞

0

λi, j(s)ds =∞ a.s.,

b) τk+1 =∞ a.s. provided

∀ j ∈K \ {i}
∫ ∞

τk

λi, j(s)ds = 0 a.s.

5 Distribution of C and sojourn times

In this section we investigate properties of distribution of C and the distribution of sojourn time in
a fixed state j under assumption that C does not stay in j forever. These properties give, among
others, some interpretation to

λ j(t) :=
∑

l∈K \{ j}
λ j,l(t) =−λ j, j(t) (5.1)

and to the ratios
λi, j

λi
. The first result says that the sojourn time of a given state has an exponential

distribution in an appropriate time scale.

Proposition 5.1. Let C be an F–DS Markov chain with intensity Λ, τ0 = 0, and

τk = inf
¦

t > τk−1 : Ct 6= Cτk−1
, Ct− = Cτk−1

©

. (5.2)

If τk <∞ a.s., then the random variable

Ek :=

∫ τk

τk−1

λCτk−1
(u)du (5.3)

is independent of bGτk−1
and Ek is exponentially distributed with parameter equal to 1. Moreover,

(Ei)1≤i≤k is a sequence of independent random variables.

Proof. For arbitrary j ∈K define the process that counts number of jumps from j

N j
t :=

∑

l∈K \{ j}
H j,l

t .

Let

eY j
t := N j

t −
∫ t

0

H j
u−λ j(u)du.

eY j is a bG local martingale by Theorem 4.1. Moreover, a sequence of stopping times defined by

σn := inf

¨

t ≥ 0 : N j
t ≥ n∨

∫ t

0

H j
u−λ j(u)du≥ n

«
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reduces eY j . In what follows we denote
Y n

t := eY j
t∧σn

.

The definition of σn implies that Y n is a bounded bG martingale for every n. Using the Itô lemma on
the interval ]τk−1,τk] we get

eiuY n
τk = eiuY n

τk−1 +

∫

]]τk−1,τk]]
iueiuY n

s−dY n
s +

∑

τk−1<s≤τk

�

eiuY n
s − eiuY n

s− − iueiuY n
s−∆Y n

s

�

= eiuY n
τk−1 +

∫

]]τk−1,τk]]
iueiuY n

s−dY n
s +

∑

τk−1<s≤τk

eiuY n
s−
�

eiu− 1− iu
�

∆N j
s .

For every n the boundedness of (Y n) and (eiuY n
) imply that the process

 

∫

]]0,t]]
iueiuY n

s dY n
s

!

t≥0

is a uniformly integrable bG martingale. Therefore, by the Doob optional sampling theorem we have

E






eiu
�

Y n
τk
−Y n

τk−1

�

−
∑

τk−1<s≤τk

eiu
�

Y n
s−−Y n

τk−1

�

�

eiu− 1− iu
�

∆N j
s∧σn

�

�

�

�

bGτk−1






= 1. (5.4)

On the set
¦

Cτk−1
= j
©

we have

Y n
τk
− Y n

τk−1
= 1{τk≤σn}

 

1−
∫ τk

τk−1

λ j(s)ds

!

−1{τk−1≤σn<τk}

 

∫ σn

τk−1

λ j(s)ds

!

and

Y n
τk−
− Y n

τk−1
=−

∫ τk∧σn

τk−1∧σn

λ j(u)du.

Hence using (5.4) and facts that ∆N j
τk∧σn

= 1{τk≤σn} and ∆N j
s∧σn

= 0 for τk−1 < s < τk we infer

that on the set
¦

Cτk−1
= j
©

:

E
�

1{τk≤σn}e
iu
�

1−
∫ τk
τk−1

λ j(s)ds
�

+1{σn<τk}e
−iu

∫ σn
τk−1∧σn

λ j(s)ds

−1{τk≤σn}e
−iu

∫ τk
τk−1

λ j(s)ds �
eiu− 1− iu

�

�

�

�

bGτk−1

�

= 1,

and therefore

E
�

1{τk≤σn}e
−iu

∫ τk
τk−1

λ j(s)ds
(1+ iu) +1{σn<τk}e

−iu
∫ σn
τk−1∧σn

λ j(s)ds
�

�

�

bGτk−1

�

= 1.

Applying Lebesgue’s dominated convergence theorem and the fact that σn ↑+∞ yields

E
�

e
−iu

∫ τk
τk−1

λ j(u)du
�

�

�

bGτk−1

�

1n
Cτk−1

= j
o =

1

1+ iu
.

Which implies the first statement of theorem. The second statement follows immediately from the
above considerations.
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As a consequence of the Proposition 5.1 we have the following result which states that the exit times
are in some sense exponentially distributed. This is a generalization of the well known property of
Markov chains.

Corollary 5.2. Let C be an F–DS Markov chain with intensity Λ and let τk < ∞ a.s., where τk is
defined by (5.2). Then

P
�

τk −τk−1 > t | bGτk−1

�

= e
−
∫ τk−1+t

τk−1
λCτk−1

(u)du
. (5.5)

Moreover, on the set
¦

Cτk−1
= i
©

we have

∫ ∞

τk−1

λi(u)du=∞. (5.6)

Proof. Because

τk −τk−1 = inf

(

t ≥ 0 :

∫ τk−1+t

τk−1

λCτk−1
(u)du≥ Ek

)

,

we obtain (5.5). Indeed

P
�

τk −τk−1 ≥ t | bGτk−1

�

= P

 

∫ τk−1+t

τk−1

λCτk−1
(u)du≤ Ek

�

�

�

�

bGτk−1

!

= e
−
∫ τk−1+t

τk−1
λCτk−1

(u)du
.

(5.5) yields (5.6) by letting t →∞.

The next proposition describes the conditional distribution of the vector (Cτk
,τk−τk−1) given bGτk−1

.

Proposition 5.3. Let C be an F-DS Markov chain with an intensity Λ and τk be given by (5.2). If
τk <∞ a.s., then we have

P
�

Cτk
= j,τk −τk−1 ≤ t

�

�
bGτk−1

�

=

∫ t

0

e−
∫ u

0
λi(v+τk−1)dvλi, j(τk−1+ u)du (5.7)

on the set
¦

Cτk−1
= i
©

.

Proof. First we note that RHS of (5.7) is well defined. Fix arbitrary j ∈ K . Let N j be the process
that counts number of jumps of C to the state j, i.e.

N j
t :=

∑

i∈K \{ j}
H i, j

t ,

and

Y j
t := N j

t −
∫ t

0

∑

i∈K \{ j}
H i

u−λi, j(u)du.
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Then Y j is a bG local martingale by Theorem 4.1. Therefore there exist a sequence of bG stopping
times σn ↑ +∞ such that (Y j

t∧σn
)t≥0 is an uniformly integrable martingale. By Doob’s optional

sampling theorem we have on the set
¦

Cτk−1
= i
©

E
�

N j
(t+τk−1)∧τk∧σn

− N j
τk−1∧σn

�

�
bGτk−1

�

= E

 

∫ (t+τk−1)∧τk∧σn

τk−1∧σn

λi, j(u)du

�

�

�

�

bGτk−1

!

. (5.8)

Since on the set
¦

Cτk−1
= i
©

N j
(t+τk−1)∧τk∧σn

− N j
τk−1∧σn

=

¨

1 if Xτk
= j,τk −τk−1 ≤ t,τk ≤ σn,

0 otherwise ,

we can pass to the limit on the LHS of (5.8) and obtain

lim
n→∞

E
�

N j
(t+τk−1)∧τk∧σn

− N j
τk−1∧σn

�

�
bGτk−1

�

= P(Xτk
= j,τk −τk−1 ≤ t | bGτk−1

).

The RHS of (5.8) we can write as a sum

E

 

∫ (t+τk−1)∧τk∧σn

τk−1∧σn

λi, j(u)du

�

�

�

�

bGτk−1

!

= I1(n) + I2(n),

where

I1(n) := E

 

1{τk≤σn}

∫ (τk−τk−1)∧t

0

λi, j(s+τk−1)ds

�

�

�

�

bGτk−1

!

,

I2(n) := E

 

1{τk−1≤σn<τk}

∫ (σn−τk−1)∧t

0

λi, j(s+τk−1)ds

�

�

�

�

bGτk−1

!

.

By a monotone convergence theorem and fact that σn ↑+∞ we obtain

lim
n→∞

I1(n) = E

 

∫ (τk−τk−1)∧t

0

λi, j(s+τk−1)ds

�

�

�

�

bGτk−1

!

.

On the other hand
lim

n→∞
I2(n) = 0, a.s.

Summing up, we have proved the following equality holds on the set
¦

Cτk−1
= i
©

P
�

Xτk
= j,τk −τk−1 ≤ t

�

�
bGτk−1

�

= E

 

∫ (τk−τk−1)∧t

0

λi, j(s+τk−1)ds| bGτk−1

!

. (5.9)

To finish the proof it is enough to transform the RHS of (5.9). Corollary 5.2 and Fubbini theorem
yield

E

 

∫ (τk−τk−1)∧t

0

λi, j(s+τk−1)ds

�

�

�

�

bGτk−1

!
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=

∫ ∞

0

�
∫ r∧t

0

λi, j(s+τk−1)ds

�

e−
∫ r

0
λi(v+τk−1)dvλi(r +τk−1)dr

=

∫ t

0

�
∫ r

0

λi, j(s+τk−1)ds

�

e−
∫ r

0
λi(v+τk−1)dvλi(r +τk−1)dr

+

∫ ∞

t

�
∫ t

0

λi, j(s+τk−1)ds

�

e−
∫ r

0
λi(v+τk−1)dvλi(r +τk−1)dr

=

∫ t

0

�
∫ t

s

λi, j(s+τk−1)e
−
∫ r

0
λi(v+τk−1)dvλi(r +τk−1)dr

�

ds

+

∫ t

0

�
∫ ∞

t

λi, j(s+τk−1)e
−
∫ r

0
λi(v+τk−1)dvλi(r +τk−1)dr

�

ds

=

∫ t

0

λi, j(s+τk−1)

�
∫ ∞

s

e−
∫ r

0
λi(v+τk−1)dvλi(r +τk−1)dr

�

ds

=

∫ t

0

λi, j(s+τk−1)e
−
∫ s

0
λi(v+τk−1)dvds.

In the last equality we use (5.6). The proof is now complete.

Remark 5.4. Using Corollary 5.2 in the same way as in the last part of the proof of Proposition 5.3 we
obtain on the set

¦

Cτk−1
= i
©

E

�

λi, j(τk)

λi(τk)
1{0≤τk−τk−1≤t}

�

�

�

�

bGτk−1

�

=

∫ t

0

λi, j(s+τk−1)

λi(s+τk−1)
e−
∫ s

0
λi(v+τk−1)dvλi(s+τk−1)ds,

which, by (5.7), is equal to P(Cτk
= j,τk −τk−1 ≤ t

�

�
bGτk−1
). This together with

∑

j∈K \{i}

λi, j(τk)

λi(τk)
= 1

suggest that the ratio
λi, j(τk)
λi(τk)

can be treated as a conditional probability of transition from i to j given
that transition occurs at the time τk. The next corollary confirms this suggestion.

Corollary 5.5. On the set
¦

Cτk−1
= i
©

, under assumptions of Proposition 5.3, we have

P
�

Cτk
= j
�

�
bGτk−1

∨
�

τk −τk−1 = t
	

�

=
λi, j(t +τk−1)

λi(t +τk−1)
. (5.10)
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Proof. In a view of Proposition 5.3 and Corollary 5.2 we have on the set
¦

Cτk−1
= i
©

:

P
�

Cτk
∈ d x ,τk −τk−1 ∈ d t

�

�
bGτk−1

�

=
∑

j∈K \{i}

δ{ j}(d x)e−
∫ t

0
λi(v+τk−1)dvλi, j(t +τk−1)d t

=
∑

j∈K \{i}

δ{ j}(d x)
λi, j(t +τk−1)

λi(t +τk−1)
e−
∫ t

0
λi(v+τk−1)dvλi(t +τk−1)d t

=
∑

j∈K \{i}

δ{ j}(d x)
λi, j(t +τk−1)

λi(t +τk−1)
P
�

τk −τk−1 ∈ d t
�

�
bGτk−1

�

,

which implies (5.10).

6 Predictable representation theorem

In this section we prove a predictable representation theorem in the form useful for applications. At
first we study a hypothesis which often appears in literature as hypothesis that a given ρ avoids F
stopping times. This hypothesis says that for every F stopping time σ it holds P(ρ = σ) = 0.

Proposition 6.1. Every τk defined by (5.2) such that τk <∞ a.s. avoids F stopping times.

Proof. Fix k and let σ be an arbitrary F stopping time. Using the random variable Ek+1 defined by
(5.3) we have

P(τk+1 = σ) = P

 

∫ τk+1

τk

λCτk
(u)du=

∫ σ

τk

λCτk
(u)du

!

= E

�

E

�

1§

Ek+1=
∫ σ

τk
λCτk

(u)du
ª

�

�

�F∞ ∨F C
τk

��

= E

�

E
�

1{Ek+1=x}
�

�

�

x=
∫σ
τk
λCτk

(u)du

�

= 0.

The third equality follows from measurability of
∫ σ

τk
λCτk
(u)du with respect to F∞ ∨ F C

τk
and in-

dependence of Ek+1 and F∞ ∨ F C
τk

. Moreover P(Ek+1 = x) = 0 since random variable Ek+1 has
an exponential distribution (see Proposition 5.1), so the fourth equality holds, and the assertion
follows.

This proposition immediately implies

Corollary 6.2. An F–DS Markov chain with intensity and an arbitrary F adapted process do not have
jumps at the same time.

Remark 6.3. The assertion of Proposition 4.7 follows immediately from Corollary 6.2, since [M , N] = 0
for any square integrable F martingale N.
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Now we precise the notion of predictable representation property for square integrable martingales
(although this definition has sense for local martingales, see Klebaner [13, Chapter 8§12], Cont and
Tankov [5, Chapter 9§2]).

Definition 6.4. Let N be a square integrable martingale. We say that the predictable representation
property (PRP) holds for N if for every T > 0 and every F N

T measurable square integrable random
variable X there exists an FN predictable stochastic process Z such that

X = EX +

∫ T

0

Z>t dNt . (6.1)

Assume that PRP holds for N and let C be an FN -DS Markov chain. It turns out that the PRP holds
for an (N , M) where M is given by (4.7), so M is a martingale which characterizes C . Indeed, the
following form of a predictable representation theorem holds:

Theorem 6.5. Assume that the predictable representation property holds for N and let C be an FN –DS
Markov chain. Then the predictable representation property holds for (N , M), where M is a martingale
given by

Mt := Ht −
∫

]]0,t]]
Λ>(u)Hudu.

Proof. Proposition 3.4 implies that N is an FN ∨FC martingale and, by Theorem 4.1, the process M
is FN ∨ FC martingale. For every square integrable F N

T ∨F
C
T measurable random variable X and

T > 0 we have to find an FN ∨ FC predictable stochastic process such that (6.1) holds with (N , M)
instead of N . Fix arbitrary T > 0. In the proof we will use a monotone class theorem. Let

N =
�

X ∈ L2(F N
T ∨F

C
T ) : X = EX +

∫

]]0,T]]
R>s dNs +

∫

]]0,T]]
S>s dMs,

where R, S are FN ∨FC predictable stochastic processes
�

.

We claim that N is a monotone vector space. Obviously, it is a vector space over R and 1 ∈ N .
From closedness of the space of integrals follows that the bounded limit of monotone sequence of
elements from N belongs to N . Let

M :=
�

X : X = Y
n
∏

k=1

1n
Ctk
=ik
o where Y ∈ L∞(F N

T ), (6.2)

(t1, . . . , tn) ∈ [0, T]n, (i1, . . . , in) ∈K n : n ∈ N
�

.

It is easy to see thatM is a multiplicative class. To finish the proof it is enough to prove thatM ⊂N ,
because by a monotone class theorem, N contains all bounded functions that are measurable with
respect to the σ-algebra generated byM i.e. L∞(F N

T ∨F
C
T ) ⊂ N . Hence, by standard arguments

we obtain L2(F N
T ∨F

C
T )⊂N , so N = L2(F N

T ∨F
C
T ).
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Therefore, we need to derive predictable representation for an arbitrary random variable inM . Fix
X ∈M . Without loss of generality we can assume that t1 ≤ . . . ≤ tn. Let Z be a martingale defined
by Zt := E(X

�

�F N
t ∨F

C
t ), so it has the form

Zt = E

 

Y
n
∏

k=1

1n
Ctk
=ik
o

�

�

�F N
t ∨F

C
t

!

.

Fix m ∈ {1, . . . , n}. For K dimensional vectors eik with 1 on ik-th component and zero otherwise, and
t ∈ (tm−1, tm] we have

Zt =

 

m−1
∏

k=1

1n
Ctk
=ik
o

!

E

 

Y
n
∏

k=m

1n
Ctk
=ik
o

�

�

�F N
t ∨F

C
t

!

=

 

m−1
∏

k=1

1n
Ctk
=ik
o

!

∑

i∈K
H i

tE

 

Y Pi,im(t, tm)
n
∏

k=m+1

Pik−1,ik(tk−1, tk)
�

�

�F N
t

!

=

 

m−1
∏

k=1

1n
Ctk
=ik
o

!

H>t E

 

P(t, tm)eim Y
n
∏

k=m+1

Pik−1,ik(tk−1, tk)
�

�

�F N
t

!

=

 

m−1
∏

k=1

1n
Ctk
=ik
o

!

H>t Q(0, t)E

 

P(0, tm)eim Y
n
∏

k=m+1

Pik−1,ik(tk−1, tk)
�

�

�F N
t

!

,

where we have used conditional Chapman-Kolmogorov equation, i.e., P(0, tm) = P(0, t)P(t, tm),
together with invertibility of P(0, t). Define a bounded martingale N m by

N m
t = E

 

P(0, tm)eim Y
n
∏

k=m+1

Pik−1,ik(tk−1, tk)
�

�

�F N
t

!

.

Then for t ∈ (tm−1, tm], using L defined by (4.5), we have

Zt =

 

m−1
∏

k=1

1n
Ctk
=ik
o

!

(N m
t )
>Lt . (6.3)

By assumption, N m admits the following predictable decomposition:

N m
T = N m

0 +

∫

]]0,T]]
(Rm

t )
>dNt

for some F-predictable stochastic process Rm. Hence, using (4.10) and Proposition 6.1, we have

d((N m
t )
>Lt) = (N

m
t−)
>d Lt + d(N m

t )
>Lt− = (N

m
t−)
>d Lt + (L

>
t−dN m

t )
>

= (N m
t−)
>Q(0, t)>dMt +H>t−Q(0, t)dN m

t

= (Q(0, t)N m
t−)
>dMt + (H

>
t−Q(0, t))dN m

t

= (Q(0, t)N m
t−)
>dMt + (H

>
t−Q(0, t))

�

Rm
t

�>
dNt .
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Therefore,

(N m
tm
)>Ltm

=(N m
tm−1
)>Ltm−1

+

∫

]]tm−1,tm]]
(Q(0, u)N m

u−)
>dMu (6.4)

+

∫

]]tm−1,tm]]

�

Rm
u Q(0, u)>Hu−

�>
dNu.

Moreover,

(N m
tm
)>Ltm

= (N m
tm
)>Q(0, tm)

>Htm
= (Q(0, tm)N

m
tm
)>Htm

= e>im Htm
E

 

Y
n
∏

k=m+1

Pik−1,ik(tk−1, tk)
�

�

�F N
tm

!

and

(N m+1
tm
)>Ltm

= (N m+1
tm
)>Q(0, tm)

>Htm
= (Q(0, tm)N

m+1
tm
)>Htm

=

 

E

 

Q(0, tm)P(0, tm+1)eim+1
Y

n
∏

k=m+2

Pik−1,ik(tk−1, tk)
�

�

�F N
tm

!!>

Htm

=

 

E

 

P(tm, tm+1)eim+1
Y

n
∏

k=m+2

Pik−1,ik(tk−1, tk)
�

�

�F N
tm

!!>

Htm
.

These imply that

Ztm
=

 

m
∏

k=1

1n
Ctk
=ik
o

!

(N m+1
tm
)>Ltm

, (6.5)

By (6.4), (6.3), (6.5) for m− 1 and properties of stochastic integral we have

Ztm
= Ztm−1

+

∫

]]tm−1,tm]]

 

m−1
∏

k=1

1n
Ctk
=ik
o

!

(Q(0, u)N m
u−)
>dMu

+

∫

]]tm−1,tm]]

 

m−1
∏

k=1

1n
Ctk
=ik
o

!

�

Rm
u Q(0, u)>Hu−

�>
dNu.

Thus defining processes R, S by

Rt :=
n
∑

m=1

1]]tm−1,tm]](t)

 

m−1
∏

k=1

1n
Ctk
=ik
o

!

Rm
u Q(0, u)>Hu−

St :=
n
∑

m=1

1]]tm−1,tm]](t)

 

m−1
∏

k=1

1n
Ctk
=ik
o

!

Q(0, t)N m
t−

we obtain the desired predictable representation.
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7 Change of probability and doubly stochastic property

Now, we investigate how changing the probability measure to an equivalent one affects the proper-
ties of an F–DS Markov chain. We start from a lemma

Lemma 7.1. Let Q, P be equivalent probability measures with density factorizing as

dQ

dP

�

�

�

F∞∨F C
T∗

:= η1η2, (7.1)

where η1 is an F∞–measurable strictly positive random variable and η2 is an F∞ ∨F C
T ∗–measurable

strictly positive random variable integrable under P. Let (η2(t))t∈[0,T ∗] be defined by the formula

η2(t) := EP(η2 | F∞ ∨F C
t ), η2(0) = 1. (7.2)

Then (N(t))t∈[0,T ∗] is a bG martingale (resp. local martingale) under Q if and only if
(N(t)η2(t))t∈[0,T ∗] is a bG martingale (resp. local martingale) under P.

Proof. ⇒ By the abstract Bayes rule and the fact that η1 is F∞ measurable and hence also Gu
measurable for all u≥ 0, we obtain, for s < t,

N(s) = EQ

�

N(t) | bGs

�

=
EP

�

N(t)η1η2 | bGs

�

EP

�

η1η2 | bGs

� = EP

 

N(t)
EP

�

η1η2 | bGt

�

EP

�

η1η2 | bGs

�

�

�

�

bGs

!

= EP

 

N(t)
EP

�

η2 | bGt

�

EP

�

η2 | bGs

�

�

�

�

bGs

!

= EP

�

N(t)
η2(t)
η2(s)

�

�

�

bGs

�

=
EP

�

N(t)η2(t) | bGs

�

η2(s)
.

⇐ The proof is similar.

The next lemma is a standard one, describing the change of compensator of a pure jump martingale
under a change of probability measure. Although it can be proved using Girsanov-Meyer theorem
(see e.g. [10], [15], [19]), we give a short self-contained proof.

Lemma 7.2. Let C be an F–DS Markov chain under P with intensity (λi, j) and suppose that η2 defined
by (7.2) satisfies

dη2(t) = η2(t−)





∑

k,l∈K :k 6=l

κk,l(u)dM k,l
u



 (7.3)

with some G predictable stochastic processes κi, j , i, j ∈K , such that κi, j >−1. Then

eM i, j
t = H i, j

t −
∫

]]0,t]]
H i

u(1+κi, j(u))λi, j(u)du, (7.4)

i, j ∈K , is a bG local martingale under Q defined by (7.1).
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Proof. By Lemma 7.1 it is enough to prove that eM i, jη2 is a bG local martingale under P. Integration
by parts yields

d( eM i, j
t η2(t)) = eM

i, j
t−dη2(t) +η2(t−)d eM

i, j
t +∆ eM

i, j
t ∆η2(t) =: I .

Since

eM i, j
t = M i, j

t −
∫

]]0,t]]
H i

uκi, j(u)λi, j(u)du,

we have
d eM i, j

t = dM i, j
t −H i

tκi, j(t)λi, j(t)d t

and

∆ eM i, j
t ∆η2(t) = ∆M i, j

t η2(t−)





∑

k,l∈K :k 6=l

κk,l(t)∆M k,l
t



= η2(t−)κi, j(t)
�

∆M i, j
t

�2

= η2(t−)κi, j(t)
�

∆H i, j
t

�2
= η2(t−)κi, j(t)∆H i, j

t .

Hence

I = eM i, j
t−η2(t−)





∑

k,l∈K :k 6=l

κk,l(t)dM k,l
t



+η2(t−)dM i, j
t + η2(t−)κi, j(t)(∆H i, j

t −H i
tλi, j(t)d t)

= eM i, j
t−η2(t−)





∑

k,l∈K :k 6=l

κk,l(t)dM k,l
t



+η2(t−)(1+κi, j(t))dM i, j
t ,

which completes the proof.

Hence and from Theorem 4.1 we deduce that the doubly stochastic property is preserved by a wide
class of equivalent changes of probability measures.

Theorem 7.3. Let C be an F–DS Markov chain under P with intensity (λi, j), and Q be an equivalent
probability measure with density given by (7.1) and η2 satisfying (7.3) with an F predictable matrix-
valued process κ. Then C is an F–DS Markov chain under Q with intensity ((1+κi, j)λi, j).

Now, we exhibit a broad class of equivalent probability measures such that the factorization (7.1) in
Lemma 7.1 holds.

Example 7. Let F= FW be the filtration generated by some Brownian motion W under P, and let C
be an F–DS Markov chain with intensity matrix process Λ. Let Q be a probability measure equivalent
to P with Radon-Nikodym density process given as a solution to the SDE

dηt = ηt−



γt dWt +
∑

k,l∈K :k 6=l

κk,l(u)dM k,l
u



 , η0 = 1,

with F predictable stochastic processes γ and κ. It is easy to see that this density can be written as
a product of the following two Doleans-Dade exponentials:

dη1(t) = η1(t−)γt dWt , η1(0) = 1;
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and

dη2(t) = η2(t−)





∑

k,l∈K :k 6=l

κk,l(u)dM k,l
u



 , η2(0) = 1.

Therefore a factorization
η(t) = η1(t)η2(t)

as in Lemma 7.1 holds, since η1 is F∞ measurable. As an immediate consequence we find that C
is an F–DS Markov chain under Q with intensity [λQ]i, j = ((1+κi, j)λi, j) and moreover the process

defined by W ∗
t :=Wt −

∫ t

0
γudu is a Brownian motion under Q.

Acknowledgments The authors thank to anonymous referee for her/his bibliographical comments.
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