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Abstract

Let Rt = sup
0≤s≤t

Xs − Xt be a Lévy process reflected in its maximum. We give necessary
and sufficient conditions for finiteness of passage times above power law boundaries at infinity.
Information as to when the expected passage time for Rt is finite, is given. We also discuss
the almost sure finiteness of lim sup

t→0
Rt/tκ, for each κ ≥ 0.
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1 Introduction

Let X = (Xt, t ≥ 0) be a Lévy process starting at zero with characteristic triplet (γ, σ, Π),
where γ ∈ R, σ ≥ 0 and the Lévy measure Π has the property

∫ ∞
−∞ 1 ∧ x2Π(dx) < ∞. We

use Π(x) =
∫
y≥|x| Π(dy) to denote the two sided tail of the Lévy measure and Π

(+)
and Π

(−)
to

denote the corresponding positive and negative tails. Let ψ(θ) denote the characteristic exponent
of X, so that

Ψ(θ) = iγθ − σ2θ2

2
+

∫ ∞

−∞
(eiθx − 1 − iθx1{|x|≤1})Π(dx), for all θ ∈ R. (1.1)

When EeλX1 exists, for all λ in an open interval containing 0, we can extend Ψ analytically in
some neighbourhood of the real line in the complex plane and refer to the Laplace exponent ψ,
which relates to Ψ via the identity

ψ(θ) = lnEeθX1 = −Ψ(−iθ).

For any Lévy process we can define the reflected process R = (Rt)t≥0 as follows:

Rt = Xt − Xt, for any t ≥ 0,

where Xt = sup0≤s≤t Xs. We note that whenever we have the notation Y t, we mean Y t =
sups∈I∩[0,t] Ys, where I is either R+ or Z+.

The reflected process plays an important role in the theory of random walks and Lévy processes,
and has many applications in finance, genetics and optimal stopping. Thus, for example, the
optimal time to exercise ”Russian option” is the first time the reflected process crosses a fixed
level (Shepp and Shiryaev [13], [14] and Asmussen, Avram and Pistorius). For more discussions
and basic properties of the reflected process we refer to [5].

The first aim of this paper is to obtain necessary and sufficient conditions (NASC) for the almost
sure (a.s.) finiteness of passage times of Rt out of power law regions of the form [0, rtκ] where
r > 0 and κ ≥ 0, and for the finiteness of the expected value of passage times of Rt from linear
(κ = 1) or parabolic (κ = 1/2) regions. We also provide a NASC for the a.s. finiteness of
lim supt→0 Rt/tκ, for any κ ≥ 0.

Section 2 essentially extends results for random walks in [5]. We obtain NASC for when
lim supt→∞ Rt/tκ is a.s. finite or not, for any κ ∈ R+. To achieve this we rely on very useful
stochastic bounds discovered recently by Doney in [7]. The Section is completed by discussing
the finiteness of expected values of passage times of Rt.

In Section 3 new results for the passage time of Rt at 0 are obtained. The NASC are very similar
to the ones at ∞. It turns out that the integrability of the Lévy measure ( see Theorem 3.1 (i)
and Theorem 3.2 (ii)) plays the same role as the finiteness of particular moments of the Lévy
process ( see Theorem 2.1 (b)).

The proofs are given in Section 4 and Section 5, while some technical results are collected in the
Appendix.
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2 Passage times above power law boundaries at infinity

In [5], results about the first exit time of a reflected random walk from power law regions
are obtained. These include NASC for a.s. finiteness of both the the first exit time and its
expectation. In this Section we extend these results to reflected Lévy processes. The main
technique in proving Theorem 2.1 is the stochastic bound discovered recently by Doney, see [7].
It is possible to derive this result using a standard embedded random walk X̂ := (Xn; n ≥ 0),
where Xn is the Lévy process computed at time n. We prove Theorem 2.2 by using functions of
Rt which define martingales on R+.

We define, for any κ ≥ 0 and r > 0:

τκ(r) = inf{t ≥ 0 : Rt > r(t + 1)κ}, (2.1)

where t + 1 is used for t to avoid the case when τκ(r) = 0 a.s. Let X+ = X+ = max{X, 0} and
X− = X− = max{−X, 0}. We may now state our main result.

Theorem 2.1. (a) Suppose κ = 0. Then τ0(r) = τ(r) < ∞ a.s. for all r ≥ 0 iff X is not a
positive subordinator. Moreover for each r > 0, there is λ(r) > 0, such that Eeλτ(r) < ∞,
for all λ ≤ λ(r).

(b) Suppose κ > 0. We have τκ(r) < ∞ a.s., for all r > 0, iff

(i) for κ > 1: E(X−
1 )1/κ = ∞;

(ii) for 0 < κ ≤ 1: E(X−
1 )1/κ = ∞ or lim inft→∞

Xt
tκ = −∞ a.s.

Remarks. (i) Note that τκ(r) < ∞ a.s., for all r > 0, is equivalent to

lim sup
t→∞

Rt

tκ
= ∞ a.s. (2.2)

This may not seem obvious, but can be proved in the same way as in Lemma 3.1. in [5]. For an
alternative proof see [12].
(ii) Also note, that for the embedded random walk X̂ = (Xn, n ≥ 0), the following inequality
holds

R
bX
n ≤ Rn, (2.3)

where R
bX is the reflected process for X̂. This implies that

τ
bX

κ (r) ≥ τκ(r), (2.4)

for any κ ≥ 0 and r > 0.
(iii) We exclude the case of positive subordinator since then Rt ≡ 0. In this case obviously
τκ(r) = ∞ a.s.
(iv) For analytic conditions equivalent to lim inft→∞

Xt
tκ = −∞ a.s. we refer to [6].

The second result considers the expected value of the passage time of Rt above linear and square
root boundaries and extends the corresponding result in [5].

Theorem 2.2. (a) Suppose EX2
1 = α2 < ∞ and EX1 = 0. Then
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(i) Eτ1/2(αr) < ∞, for all r < 1;

(ii) Eτ1/2(αr) = ∞, for all r ≥ 1.

(b) Suppose EX1 < 0, E|X1| < ∞ and E(X+
1 )2 < ∞. Then

(i) Eτ1(r) < ∞, for all r < −EX1;

(ii) Eτ1(r) = ∞, for all r ≥ −EX1.

Remarks. (i) The general approach to estimate the expectation of the first exit time is via
functions of Rt that define martingales on R+, see Theorem 2.2. in [5]. This constrains us to
linear and square root boundaries and it is not clear how this approach could be extended for a
general boundary when 1

2 < κ < 1.
(ii) Despite some efforts, we have been unable to remove the restriction E(X+

1 )2 < ∞ in (b).
Generally, it seems to be difficult to obtain results for the finiteness of the expected values of
the passage times when EX2 = ∞, not only for the reflected process, but for random walks as
well. For short discussion we refer to [5].

3 Passage times above power law boundaries at zero

In this Section we discuss passage times of the reflected process above power law boundaries
at zero. To avoid notational complications we will study

lim sup
t→0

Rt

tκ
= ∞ a.s. (3.1)

rather than the equivalent condition

τ̃κ(r) = inf{t > 0 : Rt > rtκ} = 0 a.s., for all r > 0.

The first theorem deals with Lévy processes with bounded variation.

Theorem 3.1. Let X be a Lévy process with bounded variation and drift d, defined by
limt→0 Xt/t = d a.s. Then the following statements hold

(i) For κ > 1, (3.1) holds iff either

∫ 1

0
Π

(−)
(xκ)dx = ∞ or d < 0.

(ii) For κ ≤ 1, we have

(a) If κ < 1, or, if κ = 1 and d ≥ 0, then

lim
t→0

Rt

tκ
= 0 a.s. (3.2)
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(b) If κ = 1 and d < 0, then

lim
t→0

Rt

t
= −d a.s. (3.3)

Next we deal with the unbounded variation case. We have the following result:

Theorem 3.2. Let X be a Lévy process with unbounded variation.

(i) If κ ≥ 1, then (3.1) holds.

(ii) If 1/2 ≤ κ < 1, then (3.1) holds iff

(A)

∫ 1

0
Π

(−)
(xκ)dx = ∞ or

(B) lim inf
t→0

Xt

tκ
= −∞ a.s.

(iii) If κ < 1/2, then

lim
t→0

Rt

tκ
= 0 a.s. (3.4)

Remarks. (i) Now it is worth mentioning the similarity between Theorem 3.1 (ii), Theorem
3.2 (ii) and Theorem 2.1 (b). The integrability of the negative Lévy tail is directly comparable
to the finiteness of E(X−

1 )1/κ.
(ii) It needs to be mentioned, that (A) and (B) in (ii) are not equivalent. For example, if
κ = 1/2, (A) fails while (B) can happen, see Theorem 2.2. in [3]. Moreover, for 1

2 < κ < 1,∫ 1
0 Π(xκ)dx < ∞ implies that lim inft→0

Xt
tκ = 0 a.s., see Theorem 2.1. in [3].

(iii) Analytic conditions for lim inft→0
Xt
tκ = −∞ a.s. can be found in [3].

4 Proofs for section 2

Proof of Theorem 2.1. We start with the proof of (a). If X is a negative subordinator, then
Rt = −Xt and the statement that τ(r) < ∞ a.s. is clear from the fact that Xt drifts to −∞.

Without loss of generality, we assume that Π
(−)

(1) > 0. Obviously

τ(r) < ℘(r) = inf{t : X has jumped [r] + 1 times with jumps less than −1}.

Since ℘(r) is a sum of independent exponentially distributed random variables it has gamma
distribution and hence Eeλτ(r) ≤ Eeλ℘(r) < ∞, for λ small enough.

To show Eeλτ(r) < ∞, for some λ > 0, for a general Lévy process, we invoke Theorem 2.1 (a)
in [5] for the embedded random walk defined in remark (ii) of Theorem 2.1 and use inequality
(2.4).

We shall prove the forward part of both (i) and (ii) in (b) together. Assume (2.2) holds.
Denote by {ζi}i≥0 the stopping times defined recursively by

ζi+1 = inf{t > ζi : |∆Xt| > 1} and ζ0 = 0.
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We use Theorem 1.1 in [7] to construct a stochastic bound Mn for Xt with the following property:

Xt ≤ Mn = sup
ζn≤t<ζn+1

Xt = S+
n + m0, for ζn ≤ t < ζn+1, (4.1)

where S+
n is a random walk with steps

Yi = Xζi − sup
ζi−1≤t<ζi

Xt + sup
ζi≤t<ζi+1

(Xt − Xζi),

and m0 = supt≤ζ1 Xt. In fact Yi can be represented in the following useful way

Yi = Ji + X̃ζi − sup
ζi−1≤t<ζi

X̃t + sup
ζi≤t<ζi+1

X̃t − X̃ζi

d
= J1 + X̃ζ1 , (4.2)

where Ji = ∆Xζi = Xζi − Xζi−, and X̃ is obtained from X by removing all jumps bigger in

absolute value than 1. Then the Lévy measure of X̃ has compact support and hence from

Theorem 25.17 in [11], for example, we have that Eeλ eX < ∞, for all λ > 0.

With N(t) := max{i : ζi ≤ t} and MN(t) = maxn≤N(t) Mn, we have the following inequality

Rt = Xt − Xt ≤ MN(t) − MN(t) + MN(t) − Xt.

Recall that m0 ≥ 0 a.s. and therefore the reflected random walk of S+ has the form R+
N(t) =

MN(t)−MN(t) = S
+
N(t)−S+

N(t). Moreover by (4.1) and (4.2) we get MN(t)−Xt = m0+S̃+
N(t)−X̃t,

where S̃+
n = S+

n −∑
k≤n Jk. These observations enable the following useful upper bound for Rt:

Rt ≤ R+
N(t) + m0 + S̃+

N(t) − X̃t. (4.3)

We now show that

lim sup
t→∞

m0 + S̃+
N(t) − X̃t

tκ
= 0 a.s. (4.4)

Indeed note that since m0 + S̃+
N(t) = supζN(t)≤s<ζN(t)+1

X̃s, we immediately have that

lim sup
t→∞

m0 + S̃+
N(t) − X̃t

tκ
≤ lim sup

t→∞

2 supζN(t)≤s<ζN(t)+1
|X̃s − X̃ζN(t)

|
tκ

=

lim
t→∞

N(t)κ

tκ
lim sup

n→∞

2 supζn≤s<ζn+1
|X̃s − X̃ζn |

nκ
≤

C lim sup
n→∞

2 supζn≤s<ζn+1
|X̃s − X̃ζn |

nκ
,

where limt→∞
N(t)κ

tκ = C > 0 a.s. follows by the strong law of large numbers. Now set

Vn = supζn≤s<ζn+1
|X̃s − X̃ζn | and observe that {Vi}i≥0 are mutually independent and Vn

d
= V0.

Therefore to get (4.4) we simply need

lim sup
n→∞

Vn

nκ
= 0 a.s. (4.5)
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To achieve this recall that X̃t, as well as ζ1, have finite moments of any order (recall that
Theorem 25.17 in [11] implies EeλXt < ∞, for any λ ∈ R). This easily implies that V0 has
moments of any order and hence, for any ε > 0,

∑

n≥0

P (Vn > εnκ) =
∑

n≥0

P (V0 > εnκ) < ∞.

A simple application of the Borel-Cantelli lemma yields (4.5) and hence (4.4). Lastly we see
that (2.2) and (4.3) along with the strong law of large numbers give

lim sup
t→∞

R+
N(t)

tκ
= C lim sup

n→∞

R+
n

nκ
= ∞ a.s.

All that remains is to apply Theorem 2.1. in [5] to the random walk S+
n and deduce that either

E(Y−)
1
κ = ∞, for any κ ≥ 0, or

lim inf
n→∞

S+
n

nκ
= −∞, when κ ≤ 1.

Then the definition of Y implies that EX
1
κ
− = ∞ in case EY

1
κ
− = ∞, and similarly

lim infn→∞
S+

n
nκ = −∞ a.s. implies lim inft→∞

Xt
tκ = −∞ a.s.

The backward part of (b) is much simpler since we can directly use Rt ≥ −Xt when
lim inft→0 Xt/tκ = −∞, or apply Theorem 2.1. in [5] to the embedded random walk X̂, when
E(X−

1 )1/κ = ∞. We therefore see that

lim sup
n→∞

R
bX
n

nκ
= ∞ a.s.,

where R
bX is the reflected random walk for X̂ and applying (2.3) we conclude the proof.

Proof of Theorem 2.2. Part (i) for both (a) and (b) follow easily from Theorem 2.2 in [5] together
with inequality (2.4). We therefore concentrate on (ii), (a). Observe that since EX1 = 0, Xt is
a martingale. Also note that the maximum process Xt has bounded variation and therefore Rt

is a semimartingale. Moreover EX2
t < ∞ implies that EX

2
t < ∞, see Theorem 25.18 in [11],

which in turn gives ER2
t < ∞.

Denoting by [.]t the quadratic variation of a process and applying Itô’s formula, see [9], p.71, we
see that

R2
t = 2

∫ t

0
Rs−dRs + [R]t = [R]t + 2

∫ t

0
Rs−dXs − 2

∫ t

0
Rs−dXs. (4.6)

Now by virtue of the fact that X has bounded variation, it follows that

[R]t = [X]t − 2[X, X]t + [X]t = [X]t −
∑

s≤t

(2∆Xs∆Xs − ∆X
2
s),

R2
t = [X]t −

∑

s≤t

(2∆Xs∆Xs − ∆X
2
s) + 2

∫ t

0
Rs−dXs − 2

∫ t

0
Rs−dXs. (4.7)
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For P a.e. ω in Ω, we have Xt(ω) =
∑

s≤t ∆Xt(ω) + G(t, w), where the function G(., ω)
is nonnegative, nondecreasing and continuous. This follows from the fact that for any given
ω, t 7→ Xt(ω) is a right continuous, nondecreasing and nonnegative function. Consequently we
see that then

∫ t

0
Rs−dXs(ω) =

∑

s≤t

∆Xs(ω)Rs−(ω) +

∫ t

0
Rs−(ω)dG(s, w). (4.8)

In Proposition 6.1, see Appendix, we show that

∫ t

0
Rs−(ω)dG(s, ω) = 0, a.s. for all t ≥ 0.

Inserting this into (4.8) above and substituting (4.8) into (4.7), we obtain

R2
t = [X]t −

∑

s≤t

(2∆Xs∆Xs − ∆X
2
s − 2∆XsRs−) − 2

∫ t

0
Rs−dXs. (4.9)

Since we have

∆Rs = Rs − Rs− = −(∆Xs1{∆Xs≤Rs−} + Rs−1{∆Xs>Rs−})

∆Xs = ∆Rs + ∆Xs = (∆Xs − Rs−)1{∆Xs>Rs−},

we may insert these identities into (4.9) to deduce that

R2
t = [X]t −

∑

s≤t

(∆Xs − Rs−)21{∆Xs>Rs−} − 2

∫ t

0
Rs−dXs.

We are ready now to conclude the proof of the theorem. First we note that
∫ t
0 Rs−dXs and

X2
t − [X]t are zero mean martingales. Then we apply the optional sampling theorem to the last

identity to get

ER2
τ1/2(αr)∧m − α2Eτ1/2(αr) ∧ m + E(

∑

s≤τ1/2(αr)∧m

(∆Xs − Rs−)21{∆Xs>Rs−}) = 0,

for any m > 0, and hence
ER2

τ1/2(αr)∧m ≤ α2Eτ1/2(αr) ∧ m, (4.10)

If we assume that Eτ1/2(αr) < ∞, we see from Fatou’s lemma and the definition of τ.(r) that

lim inf
m→∞

(E(Rτ1/2(αr)∧m)2) ≥ E(R2
τ1/2(αr)) > r2α2(Eτ1/2(αr) + 1).

Applying the monotone convergence theorem we deduce

lim
m→∞

E(τ1/2(αr) ∧ m) = E(τ1/2(αr))

and this together with (4.10) gives (1 − r2)α2Eτ1/2(αr) > r2α2 > 0. Since this is an obvious
contradiction when r ≥ 1, we see that we must have Eτ1/2(αr) = ∞, for all r ≥ 1.
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Turning now to the proof of part (b), (ii), we can assume, without loss of generality, that
EX1 = −1. From [12] and E(X+

1 )2 < ∞ we see that l = EX∞ < ∞. Define the exit times,

Tq = inf{t > 0 : Rt > t + q},

for all q ≥ 1. Assume that ETq < ∞, for each q ≥ 1. An easy application of the optional sampling
theorem to XTq∧m, followed by the monotone convergence theorem and Fatou’s lemma, yields

ETq + q ≤ ERTq ≤ lim
m→∞

ERTq∧m = EXTq + ETq ≤ l + ETq.

Therefore we must have ETq = ∞ when q > l. Next observe that, for each q ≥ 1,

ETq1{Tq>1} ≥
∫ 1−ε

0
E(Tq|R1 = y, Tq > 1)P (R1 ∈ dy, Tq > 1) ≥

∫ 1−ε

0
E(T1+q−y)P (R1 ∈ dy, Tq > 1) ≥ ETq+εP (R1 ∈ (0, 1 − ε), T1 > 1).

The first inequality comes from narrowing the possible values of R1, while the second, which
reads E(Tq|R1 = x, Tq > 1) ≥ ETq−x, for x ∈ (0, 1), is verified using the fact that Rt is a Markov
process. If we assume that X is not a negative drift, then ∃δ > 0 : P (R1 ∈ (0, 1−ε), T1 > 1) > δ.
This implies that

ETq1{Tq>1} ≥ δETq+ε ≥ δETq+ε1{Tq+ε>1},

and repeating this step finitely many times, we get

ETq1{Tq>1} > CET2l1{T2l>1} = ∞,

where C is some constant. Therefore we must have ET1 = ∞.

5 Proofs for Section 3

First of all, we observe that for a study of the behaviour at zero we can always assume that
the Lévy measure is carried by [−1, 1]. With this in mind we proceed with the proof of Theorem
3.1. Recall that, since X has bounded variation, we can write

Xt = dt + Yt + Zt, (5.1)

where Y is a driftless positive subordinator and Z is a driftless negative subordinator.
To show (i), let us first suppose that

∫ 1

0
Π

(−)
(xκ)dx < ∞. (5.2)

Then applying Theorem 9, Chapter 3 in [2] to −Zt in (5.1), we easily get

lim
t→0

Zt

tκ
= 0 a.s.
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Therefore, if d ≥ 0 we have the bound

Rt ≤ sup
s≤t

(Ys + ds) − Yt − dt − Zt = −Zt

and (3.1) fails. However, if d < 0, we know that limt→0
Xt
t = d a.s., and hence limt→0

Xt
tκ =

−∞ a.s. Then by the simple inequality Rt ≥ −Xt we deduce (3.1).

Assume now that (5.2) fails. Then a standard argument, see Theorem 9 on page 85 of [2], gives,
for any c > 1, −∆Xt > ctκ i.o., which along with Rt ≥ −∆Xt1{∆Xt<0} shows that (3.1) holds.
For (ii), (a), all we need to observe is that from (5.1) we have

Rt ≤ sup
s≤t

(Ys + ds) − Yt − dt − Zt ≤ 0 ∨ −dt − Zt,

and recall limt→0
Zt
t = 0 a.s.

For (ii), (b), we note that

lim
t→0

sups≤t Xs

t
≤ lim

t→0

Yt − Zt

t
= 0 a.s.

and therefore

lim
t→0

Rt

t
= lim

t→0

sups≤t Xs − Xt

t
= lim

t→0

−Xt

t
= −d a.s.

This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. For κ ≥ 1, we invoke a standard result of Rogozin, see [10], to show that
lim inft→0

Xt
t = −∞ a.s.

For (iii) we use a result of Khintchine, see [8], stating that:

lim sup
t→0

Xt√
2t ln | ln t|

= lim sup
t→0

−Xt√
2t ln | ln t|

= σ a.s. .

Hence (3.1) fails since
√

2t ln | ln t| = o(tκ), for all κ < 1/2, as t goes to 0. The same way we see
that, for κ = 1/2 and σ > 0, (3.1) fails and that (3.1) holds, for 1/2 < κ < 1 and σ > 0.

From now on we set σ = 0 and proceed with part (ii). Suppose first that κ = 1/2, so that (A)
fails. In view of Theorem 2.2. in [3], we have that either

lim inf
t→∞

Xt√
t

= −∞ a.s.,

which is exactly condition (B) and mean that (3.1) holds, or

lim sup
t→0

|Xt|√
t

< ∞ a.s.,

which means that (3.1) and (B) fail simultaneously.
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For 1/2 < κ < 1, if
∫ 1
0 Π(xκ)dx < ∞, then in view of Theorem 2.1 in [3], we see that (B) and

(3.1) fail, while if
∫ 1
0 Π

(−)
(xκ)dx = ∞, then Theorem 3.1 in [3] implies that (3.1) holds since

lim inft→0
Xt
tκ = −∞ a.s. It remains to consider the case

∫ 1

0
Π

(−)
(xκ)dx < ∞ =

∫ 1

0
Π

(+)
(xκ)dx.

Write X = X+ + X− as a sum of two independent Lévy processes, where X+ is a zero mean,
spectrally positive Lévy process and X− is a zero mean, spectrally negative Lévy process. Then

since
∫ 1
0 Π

(−)
(xκ)dx < ∞, we can apply Theorem 2.1, Proposition 4.1 and Proposition 4.2 in [3]

to deduce that

lim
t→0

sups≤t |X−
s |

tκ
= 0 a.s.,

and thus

lim sup
t→0

Rt

tκ
= lim sup

t→0

R+
t

tκ
, a.s.

where R+
t = X

+
t −X+

t . Therefore we may additionally assume that X is a zero mean, spectrally
positive Lévy process and continue with the proof. Let us define the functions

V (x) :=

∫ x

0
y2Π(dy), (5.3)

W (x) :=

∫ x

0

∫ 1

z
sΠ(ds)dz = V (x) + x

∫ 1

x
sΠ(ds), (5.4)

for all x ≥ 0, so that W (x) is continuous and nondecreasing. For any λ > 0, we now define the
function

J(λ) :=

∫ 1

0
e
−λ y(2κ−1)/(1−κ)

W (y)κ/(1−κ) dy

y
(5.5)

and
λJ := inf{λ > 0| J(λ) < ∞} ∈ [0,∞]. (5.6)

From Theorem 3.1 in [3] applied to −X we see that lim inft→∞
Xt
tκ = −∞ if and only if λJ = ∞.

Thus λJ = ∞ implies (3.1).
We now assume, without loss of generality, that λJ < 1.
We will often refer to Proposition 6.2 in the Appendix, where important properties for the
function

D(x) = inf{z > 0 :
W (z)

z
=

1

x1−κ
}, (5.7)

for all x ≥ 0, are obtained.
We proceed to show that (3.1) fails when λJ < 1. First we establish some notation. We will
write Xt = Xb

t + X̃b
t , where Xb is a spectrally positive Lévy process with jumps bounded by b

and X̃b is a compensated Poisson process of jumps bigger than b. Since X is spectrally positive,
a handy bound for X̃b

t is

X̃b
t =

∑

s≤t

∆X̃b
t − t

∫ 1

b
xΠ(dx) ≥ −t

∫ 1

b
xΠ(dx). (5.8)
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Also we have

sup
t≤v

Rt = sup
t≤v

sup
s≤t

(Xs − Xt) = sup
t≤v

sup
s≤t

(XD(v)
s − X

D(v)
t + X̃D(v)

s − X̃
D(v)
t ),

where by (5.8), (5.4) and Proposition 6.2 (b) we immediately obtain the bound

sup
t≤v

Rt ≤ sup
t≤v

sup
s≤t

(XD(v)
s − X

D(v)
t ) +

vW (D(v))

D(v)
= sup

t≤v
sup
s≤t

(XD(v)
s − X

D(v)
t ) + vκ. (5.9)

Therefore it will suffice to show that

lim sup
v→0

supt≤v X
D(v)
t + supt≤v −X

D(v)
t

vκ
< ∞ a.s. (5.10)

For this purpose we use inequality (4.11) in [3], which holds for any zero mean Lévy process
with σ = 0. Using this result together with (5.3) gives

P (sup
t≤v

X
D(v)
t > avκ) ≤ 2P

(
(XD(v)

v > avκ −
√

2vV (D(v))
)

(5.11)

P (sup
t≤v

−X
D(v)
t > avκ) ≤ 2P

(
− XD(v)

v > avκ −
√

2vV (D(v))
)
. (5.12)

In order to estimate
√

2vV (D(v)), we use (5.4) together with (b) and (d) from Proposition 6.2
and get

√
2vV (D(v)) = o(vκ). This means that, for any ε > 0 and v ≤ v(ε), we have

P (sup
t≤v

X
D(v)
t > avκ) ≤ 2P

(
XD(v)

v > (a − ε)vκ
)

(5.13)

P (sup
t≤v

−X
D(v)
t > avκ) ≤ 2P

(
− XD(v)

v > (a − ε)vκ
)
. (5.14)

For any a > e + ε, we have by Proposition 6.3 that

max{P (sup
t≤v

X
D(v)
t > avκ), P (sup

t≤v
−X

D(v)
t > avκ)} ≤ e−ρvκ/D(v), (5.15)

where we have set ρ = a− ε− e. Choose vn = D←(1/2n) (see Proposition 6.2 for definition) and
use (5.15) above together with Proposition 6.2, part (c), to get

∑

n>0

P (sup
t≤vn

|XD(vn)
t | > avκ

n) ≤ 2K−1
∑

n>0

Ke
−ρ

(1/2n)(2κ−1)/(1−κ)

W (1/2n)κ/(1−κ) ,

where K = ln 2. Then setting q = 2
2κ−1
1−κ , we see that

∑

n>0

P (sup
t≤vn

|XD(vn)
t | > avκ

n) ≤ K−1
∑

n>0

Ke
−qρ

(1/2n+1)(2κ−1)/(1−κ)

W (1/2n)κ/(1−κ) ≤

K−1

∫ 1

0
e
−ρq y(2κ−1)/(1−κ)

W (y)κ/(1−κ) dy

y
.
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Choose ρ, which is the same as choosing a, such that qρ = 1 and use the fact that J(1) < ∞
(recall that λJ < 1) to get ∑

n>0

P (sup
t≤vn

|XD(vn)
t | > avκ

n) < ∞,

where a = 1
q + ε + e. Then the Borel-Cantelli lemma gives (5.10) over {vn}, which reads as

lim sup
n→∞

sups≤vn
Rs

vκ
n

< ∞ a.s.

Therefore, for any s ∈ [vn+1, vn), we have

Rs

sκ
≤

supt≤vn
Rt

vn+1
≤

supt≤vn
Rt

vκ
n

vκ
n

vκ
n+1

= 2κ/(1−κ)(
W (2−n)

W (2−n−1)
)κ/(1−κ) supt≤vn

Rt

vκ
n

≤

22κ/(1−κ) supt≤vn
Rt

vκ
n

,

where we have made use of the definition of vn and the fact that W (x)
x ↑ ∞, as x ↓ 0. This

establishes the theorem.

6 Appendix

The first technical result in this Section is the following proposition.

Proposition 6.1. Let X be a Lévy process. Then

∫ t

0
Rs−dXs =

∑

s≤t

∆Xs(ω)Rs−(ω) for all t a.s.

Proof. Note that
∫ t
0 Rs−dXs is increasing in t, so it will be sufficient to show that

∫ t

0
Rs−dXs =

∑

s≤t

∆Xs(ω)Rs−(ω) a.s.,

for any fixed t. Note that X is monotone and fix a path ω. Write the process X as

Xu(ω) =
∑

s≤u

∆Xs(ω) + G(u, ω),

where G(., ω) is nondecreasing and continuous, so that G(., ω) defines a diffuse measure on R+.
Thus ∫ t

0
Rs−dXs =

∑

s≤t

∆Xs(ω)Rs−(ω) +

∫

supp G(ω)∩[0,t]
Rs−dG(s, ω).
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Clearly supp G(ω) excludes the points in time, s ∈ R+, at which Xs = Xs+h = Xs−h, for some
h > 0. Then we have supp G(ω) ⊆ A ∪ B ∪ C ∪ D with :

A = {s : s is an end or a start point of an excursion}
B = {s : Xs− = Xs−h < Xs, for some h > 0}
C = {s : Xs−h = Xs < Xs+δ, for some h > 0 and any δ > 0}
D = {s : Xs− = Xs > Xs−h, for any h > 0}.

It is immediate that A is countable, since the number of the excursion is countable. B is also
countable since by its definition the maximum should be attained by a jump. Finally we see that
C is countable by its definition, since it requires a neighbourhood (s−h, s), where no maximum
is attained. Using the fact that G is diffuse we get

∫

A∩B∩C∩[0,t]
Rs−dG(s, ω) = 0 a.s.

The very definition of D implies, Rs− = 0 on D a.s. This establishes the result.

Proposition 6.2. With W (x) as defined in (5.4) we have W (x)
x is decreasing and limx→0

W (x)
x =

∞. Then D(x) defined in (5.7) has the following properties:

(a) D(x) ↓ 0 as x ↓ 0 and the function is continuous and increasing.

(b) W (D(x))
D(x) = xκ−1.

(c) D←(x) = ( x
W (x))

1/1−κ, where D←(x) is the inverse function.

(d) Given that λJ < ∞ we have D(x)
xκ → 0.

Proof. The result is standard. The proof of (a), (b) and (c) is obvious. For (d) we refer to
[12].

Proposition 6.3. For (5.13) and (5.14), and any a > ε + e, we have the following exponential
bound:

max{P
(
XD(v)

v > (a − ε)vκ
)
, P

(
− XD(v)

v > (a − ε)vκ
)
} ≤ e−ρvκ/D(v),

where ρ = a − ε − e.

Proof. An application of the Chebyshev inequality to (5.14) yields:

P
(
− XD(v)

v > (a − ε)vκ
)

= P
(
e−θX

D(v)
v > eθ(a−ε)vκ)

≤ ev
R D(v)
0 (e−θx+θx−1)Π(dx)−θ(a−ε)vκ

,

for any θ > 0. We now use the fact that e−θx + θx − 1 ≤ θ2x2 and the definition of V (x) and
W (x), to obtain further

P
(
− XD(v)

v > (a − ε)vκ
)
≤ evθ2V (D(v))−θ(a−ε)vκ ≤ evθ2W (D(v))−θ(a−ε)vκ

.

Finally we invoke (b) in Proposition 6.2, to deduce that

P (−X
D(v)
t > avκ) ≤ 2evκθ2D(v)−θ(a−ε)vκ

,

170



and setting θ = γ
D(v) , with γ > 0, we get

P (−X
D(v)
t > (a − ε)vκ) ≤ 2e

γvκ

D(v)
(γ−(a−ε))

. (6.1)

A further application of the Chebyshev inequality to (5.13) with θ = 1
D(v) gives

P
(
e

1
D(v)

X
D(v)
v > e

1
D(v)

(a−ε)vκ)
≤ e

v
R D(v)
0 (e

x
D(v) − 1

D(v)
x−1)Π(dx)− 1

D(v)
(a−ε)vκ

.

Now, for u ≤ 1, we have eu − u − 1 ≤ eu2, and therefore

P
(
e

1
D(v)

X
D(v)
v > e

1
D(v)

(a−ε)vκ)
≤ e

ve 1
D(v)2

R D(v)
0 x2Π(dx)− 1

D(v)
(a−ε)vκ

.

Recalling the definition of W (x) we see that

∫ D(v)

0
x2Π(dx) = V (D(v)) ≤ W (D(v)) = vκ−1D(v),

and hence

P (X
D(v)
t > (a − ε)vκ) ≤ 2e

vκ

D(v)
(e−(a−ε))

. (6.2)

In order to equate the upper bounds in (6.1) and (6.2) set

γ(γ − (a − ε)) = e − (a − ε)

and then put a − ε = e + ρ. Thus we get the equation γ2 − (e + ρ)γ = −ρ, which clearly has a
positive root γ(ρ), and choose γ = γ(ρ) to get the desired result.
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