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Abstract

In this paper we study the problems of invariant and ergodic expectations under
G-expectation framework. In particular, the stochastic differential equations driven
by G-Brownian motion (G-SDEs) have the unique invariant and ergodic expectations.
Moreover, the invariant and ergodic expectations of G-SDEs are also sublinear ex-
pectations. However, the invariant expectations may not coincide with the ergodic
expectations, which is different from the classical case.
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1 Introduction

Recently, Peng systemically established a time-consistent fully nonlinear expectation
theory (see [11, 14, 15] and the references therein), which is an effective tool to study
the problems of model uncertainty, nonlinear stochastic dynamical systems and fully
nonlinear partial differential equations (PDEs). As a typical and important case, Peng
introduced the G-expectation theory. In the G-expectation framework, the notion of
G-Brownian motion and the corresponding stochastic calculus of Itô’s type were also
established. Moreover, Peng [14] and Gao [4] obtained the existence and uniqueness
theorem of G-SDEs.

It is well known that invariant measure plays an important role in the theory of
stochastic dynamical systems and ergodic theory. In particular, the invariant measure
can be thought of as describing the long-term behaviour of a dynamical system, which
has many important applications in, for example, PDEs and financial mathematics. So
far, there are many papers in the literature which were devoted to studying the invariant
measures of Markov processes, in both finite and infinite dimensional spaces (see [1]
and the references therein).
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Invariant and ergodic nonlinear expectations for G-diffusion processes

The aim of this paper is to study the asymptotic property of G-SDEs. First, we obtain
the existence and uniqueness theorem of “invariant measures” for G-SDEs, which indeed
is a sublinear expectations. The proof of the existence theorem is based on Daniell-
Stone Theorem. It is important to point out that the standard techniques and results on
invariant measures for Markov processes cannot be applied to deal with this problem
because G-expectation is not a linear expectation. Under G-expectation framework,
the invariant expectations of G-SDE is a family of probability measures. In particular,
if the initial condition has the distribution equal to an invariant expectation, then the
distribution of the solution to G-SDE is invariant in time as the classical case. Next, we
study the ergodicity of G-SDEs. Under nonlinear case, the ergodic expectation of G-SDE
may not be the corresponding invariant expectation. The proof of the existence theorem
of ergodic expectation is based on the theory of ergodic backward differential equations
driven by G-Brownian motion, which is obtained in [8] (see also [2, 9, 16, 17]).

The paper is organized as follows. In section 2, we present some notations and results
which will be used in this paper. The existence and uniqueness theorem of invariant
expectations of G-diffusion processes is established in section 3. In section 4, we shall
study the relationships between invariant expectations and ergodic expectations under
the G-expectation framework.

2 Preliminaries

The main purpose of this section is to recall some basic notions and results of G-
expectation, which are needed in the sequel. The readers may refer to [5], [6], [12], [13],
[14] for more details.

Definition 2.1. Let Ω be a given set and let H be a vector lattice of real valued functions
defined on Ω, namely c ∈ H for each constant c and |X| ∈ H if X ∈ H. H is considered as
the space of random variables. A sublinear expectation Ê on H is a functional Ê : H → R

satisfying the following properties: for all X,Y ∈ H, we have

(a) Monotonicity: If X ≥ Y then Ê[X] ≥ Ê[Y ];

(b) Constant preservation: Ê[c] = c;

(c) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ];

(d) Positive homogeneity: Ê[λX] = λÊ[X] for each λ ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space. X ∈ H is called a random
variable in (Ω,H, Ê). We often call Y = (Y1, . . . , Yd), Yi ∈ H a d-dimensional random
vector in (Ω,H, Ê).

Definition 2.2. LetX1 andX2 be two n-dimensional random vectors defined respectively
in sublinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are called identically

distributed, denoted by X1
d
= X2, if Ê1[ϕ(X1)] = Ê2[ϕ(X2)], for all ϕ ∈ CLip(Rn), where

CLip(R
n) is the space of real R-valued Lipschitz continuous functions defined on Rn.

Definition 2.3. In a sublinear expectation space (Ω,H, Ê), a random vector Y = (Y1, · ·
·, Yn), Yi ∈ H, is said to be independent of another random vector X = (X1, · · ·, Xm),
Xi ∈ H under Ê[·], denoted by Y⊥X, if for every test function ϕ ∈ CLip(Rm × Rn) we
have Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ].

Definition 2.4. (G-normal distribution) A d-dimensional random vector X = (X1, · · ·, Xd)

in a sublinear expectation space (Ω,H, Ê) is called G-normally distributed if for each
a, b ≥ 0 we have

aX + bX̄
d
=

√
a2 + b2X,
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Invariant and ergodic nonlinear expectations for G-diffusion processes

where X̄ is an independent copy of X, i.e., X̄
d
= X and X̄⊥X. Here the letter G denotes

the function

G(A) :=
1

2
Ê[〈AX,X〉] : Sd → R,

where Sd denotes the collection of d× d symmetric matrices.

Let Ω = C0([0,∞);Rd), the space of Rd-valued continuous functions on [0,∞) with
ω0 = 0, be endowed with the distance

ρ(ω1, ω2) :=

∞∑
N=1

2−N [( max
t∈[0,N ]

|ω1
t − ω2

t |) ∧ 1],

and B = (Bi)di=1 be the canonical process. For each T > 0, denote

Lip(ΩT ) := {ϕ(Bt1 , ..., Btn) : n ≥ 1, t1, ..., tn ∈ [0, T ], ϕ ∈ CLip(Rd×n)}, Lip(Ω) := ∪
T
Lip(ΩT ).

For any given monotonic and sublinear function G : Sd → R, let (Ω, Lip(Ω), Ê, Êt) be the
G-expectation space, where G(A) = 1

2 Ê[〈AB1, B1〉] ≤ 1
2 σ̄

2|A|.
Denote by LpG(Ω) the completion of Lip(Ω) under the norm ‖ξ‖LpG := (Ê[|ξ|p])1/p

for p ≥ 1. Denis et al. [3] proved that the completions of Cb(Ω) (the set of bounded
continuous function on Ω) and Lip(Ω) under ‖ · ‖LpG are the same. Similarly, we can define
LpG(ΩT ) for each T > 0.

Theorem 2.5 ([3, 7]). There exists a weakly compact set P ⊂ M1(Ω), the set of all
probability measures on (Ω,B(Ω)), such that

Ê[ξ] = sup
P∈P

EP [ξ] for all ξ ∈ L1
G(Ω).

P is called a set that represents Ê.

Let P be a weakly compact set that represents Ê. For this P, we define the capacity

c(A) := sup
P∈P

P (A), A ∈ B(Ω).

A set A ⊂ B(Ω) is polar if c(A) = 0. A property holds “quasi-surely′′ (q.s.) if it holds
outside a polar set. In the following, we do not distinguish two random variables X and
Y if X = Y q.s..

Definition 2.6. Let M0
G(0, T ) be the collection of processes in the following form: for a

given partition {t0, · · ·, tN} = πT of [0, T ],

ηt(ω) =

N−1∑
j=0

ξj(ω)1[tj ,tj+1)(t),

where ξi ∈ Lip(Ωti), i = 0, 1, 2, · · ·, N − 1. For each p ≥ 1, denote by Mp
G(0, T ) the

completion of M0
G(0, T ) under the norm ‖η‖Mp

G
:= (Ê[

∫ T
0
|ηs|pds])1/p.

For two processes η ∈M2
G(0, T ) and ξ ∈M1

G(0, T ), the G-Itô integrals (
∫ t

0
ηsdB

i
s)0≤t≤T

and (
∫ t

0
ξsd〈Bi, Bj〉s)0≤t≤T are well defined, see Li-Peng [10] and Peng [14].

3 Invariant nonlinear expectation

In this section, we shall study the invariant expectations of G-diffusion processes.
Let G : Sd → R be a given monotonic and sublinear function and Bt = (Bit)

d
i=1 be the

corresponding d-dimensional G-Brownian motion. For a given integer p ≥ 1, a real-
valued function f defined on Rn is said to be in Cp,Lip(Rn) if there exists a constant Kf
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depending on f such that |f(x)− f(x′)| ≤ Kf (1 + |x|p−1 + |x′|p−1)|x− x′|. Consider the
following type of G-SDEs (in this paper we always use Einstein convention): for each
t ≥ 0 and ξ ∈ LmG (Ωt) with m ≥ 2,

Xt,ξ
s = ξ +

∫ s

t

b(Xt,ξ
r )dr +

∫ s

t

hij(X
t,ξ
r )d〈Bi, Bj〉r +

∫ s

t

σ(Xt,ξ
r )dBr, (3.1)

where b, hij : Rn → Rn, σ : Rn → Rn×d are deterministic continuous functions. In
particular, denote Xx = X0,x. Consider also the following assumptions:

(H1) There exists a constant L > 0 such that

|b(x)− b(x′)|+
∑
i,j

|hij(x)− hij(x′)|+ |σ(x)− σ(x′)| ≤ L|x− x′|.

(H2) G((2p− 1)
∑n
i=1(σi(x)−σi(x′))T (σi(x)−σi(x′)) + 2(〈x−x′, hij(x)−hij(x′)〉)di,j=1) +

〈x− x′, b(x)− b(x′)〉 ≤ −η|x− x′|2 for some constants η > 0, where σi is the i-th row
of σ.

We have the following estimates of G-SDEs which can be found in Chapter V in Peng
[14].

Lemma 3.1. Under assumption (H1), the G-SDE (3.1) has a unique solution Xt,ξ ∈
M2
G(t, T ) for each T > t. Moreover, if ξ, ξ′ ∈ LmG (Ωt) with m ≥ 2, then we have, for each

δ ∈ [0, T − t],
(i) Êt[ sup

s∈[t,T ]

|Xt,ξ
s −Xt,ξ′

s |m] ≤ C ′|ξ − ξ′|m;

(ii) Êt[ sup
s∈[t,T ]

|Xt,ξ
s |m] ≤ C ′(1 + |ξ|m);

(iii) Êt[ sup
s∈[t,t+δ]

|Xt,ξ
s − ξ|m] ≤ C ′(1 + |ξ|m)δm/2,

where the constant C ′ depends on L, G, m, n and T .

The following result is important for our future discussion (see also [8]). Especially,
the constant C is independent of T .

Lemma 3.2. Under assumptions (H1) and (H2), if ξ, ξ′ ∈ L2p
G (Ωt), then there exists a

constant C depending on G,L, p, n and η, such that:

(i) Êt[|Xt,ξ
s −Xt,ξ′

s |2p] ≤ exp(−2ηp(s− t))|ξ − ξ′|2p;

(ii) Êt[|Xt,ξ
s |2p] ≤ C(1 + |ξ|2p), ∀t > 0.

Proof. To simplify presentation, we shall prove only the case when n = d = 1, as
the higher dimensional case can be treated in the same way without difficulty. Set
Cs := exp(2pη(s− t)). Applying the G-Itô formula yields that

Cs(X
t,ξ
s −Xt,ξ′

s )2p − |ξ − ξ′|2p

= 2pη

∫ s

t

Cr(X
t,ξ
r −Xt,ξ′

r )2pdr + 2p

∫ s

t

Cr(X
t,ξ
r −Xt,ξ′

r )2p−1(b(Xt,ξ
r )− b(Xt,ξ′

r ))dr

+ p

∫ s

t

ζrd〈B〉r + 2p

∫ s

t

Cr(X
t,ξ
r −Xt,ξ′

r )2p−1(σ(Xt,ξ
r )− σ(Xt,ξ′

r ))dBr

= 2pη

∫ s

t

Cr(X
t,ξ
r −Xt,ξ′

r )2pdr + 2p

∫ s

t

Cr(X
t,ξ
r −Xt,ξ′

r )2p−1(b(Xt,ξ
r )− b(Xt,ξ′

r ))dr

+ 2p

∫ s

t

G(ζr)dr + 2p

∫ s

t

Cr(X
t,ξ
r −Xt,ξ′

r )2p−1(σ(Xt,ξ
r )− σ(Xt,ξ′

r ))dBr

+ p

∫ s

t

ζrd〈B〉r − 2p

∫ s

t

G(ζr)dr,
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where

ζr = Cr(X
t,ξ
r −Xt,ξ′

r )2p−2((2p−1)|σ(Xt,ξ
r )−σ(Xt,ξ′

r )|2 +2(Xt,ξ
r −Xt,ξ′

r )(h(Xt,ξ
r )−h(Xt,ξ′

r ))).

Note that
∫ s
t
ζrd〈B〉r − 2

∫ s
t
G(ζr)dr ≤ 0 and (H2), then we obtain

Cs(X
t,ξ
s −Xt,ξ′

s )2p − |ξ − ξ′|2p ≤ 2p

∫ s

t

Cr(X
t,ξ
r −Xt,ξ′

r )2p−1(σ(Xt,ξ
r )− σ(Xt,ξ′

r ))dBr.

(3.2)

On the other hand, by Lemma 3.1,

Ê[(

∫ T

t

|Xt,ξ
r −Xt,ξ′

r |4pdr)1/2] ≤
√
T Ê[ sup

r∈[t,T ]

|Xt,ξ
r −Xt,ξ′

r |2p] ≤
√
TC ′Ê[|ξ − ξ′|2p].

Then the right side of inequality (3.2) is a G-martingale. Thus we conclude that

Êt[Cs|Xt,ξ
s −Xt,ξ′

s |2p] ≤ |ξ − ξ′|2p.

Consequently,
Êt[|Xt,ξ

s −Xt,ξ′

s |2p] ≤ exp(−2pη(s− t))|ξ − ξ′|2p.

By a similar analysis as Lemma 4.1 of [8], we can also obtain the second inequality, which
completes the proof.

Theorem 3.3. Assume (H1) and (H2) hold. Then for each f ∈ C2p,Lip(R
n), there exists

a constant λ̄f such that
lim
t→∞

Ê[f(Xx
t )] = λ̄f , ∀x ∈ Rn.

In particular, for each t, there exists a constant C1 depending on G, η, L,Kf , n and p

such that
|λ̄f − Ê[f(Xx

t )]| ≤ C1(1 + |x|2p) exp(−ηt).

Proof. For a fixed x and each f ∈ C2p,Lip(R
n), from Lemma 3.2, we can find some

constant C̄ depending on C and Kf such that

Ê[|f(Xx
t )|] ≤ |f(0)|+ C̄Ê[|Xx

t |2p] ≤ C̄(1 + |x|2p).

Then there exists a sequence Tn →∞ such that Ê[f(Xx
Tn

)]→ λ̄f for some constant λ̄f .

From the uniqueness of solutions to G-SDEs, we obtain Xx
s = X

t,Xxt
s with s ≥ t. Note

that Ê[f(Xx
t′)] = Ê[f(Xt−t′,x

t )] for each t and t′ with t′ ≤ t, then we have

|Ê[f(Xx
t )]− Ê[f(Xx

t′)]| =|Ê[f(X
t−t′,Xx

t−t′
t )]− Ê[f(Xt−t′,x

t )]|

≤Kf Ê[(1 + |X
t−t′,Xx

t−t′
t |2p−1 + |Xt−t′,x

t |2p−1)|X
t−t′,Xx

t−t′
t −Xt−t′,x

t |].

Applying Hölder’s inequality and Lemma 3.2, we obtain that

|Ê[f(Xx
t )]− Ê[f(Xx

t′)]|

≤ Kf Ê[(1 + |X
t−t′,Xx

t−t′
t |2p−1 + |Xt−t′,x

t |2p−1)
2p

2p−1 ]
2p−1
2p Ê[|X

t−t′,Xx
t−t′

t −Xt−t′,x
t |2p]

1
2p

≤ C1Ê[1 + |X
t−t′,Xx

t−t′
t |2p + |Xt−t′,x

t |2p]
2p−1
2p Ê[|Xx

t−t′ |2p + |x|2p]
1
2p exp(−ηt′)

≤ C1(1 + |x|2p)
1
2p Ê[Êt−t′ [1 + |X

t−t′,Xx
t−t′

t |2p + |Xt−t′,x
t |2p]]

2p−1
2p exp(−ηt′)

≤ C1(1 + |x|2p)
1
2p Ê[1 + |Xx

t−t′ |2p + |x|2p]
2p−1
2p exp(−ηt′)

≤ C1(1 + |x|2p) exp(−ηt′),
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where the constant C1 depending on p G, η, n, L, and Kf may vary from line to line.
Consequently, for each t, we get

|λ̄f − Ê[f(Xx
t )]| = lim

ρ→∞
|Ê[f(Xx

ρ )]− Ê[f(Xx
t )]| ≤ C1(1 + |x|2p) exp(−ηt),

which derives that
λ̄f = lim

t→∞
Ê[f(Xx

t )].

For each x, x′ ∈ Rn, applying Lemma 3.2 (i) yields that

lim
t→∞

|Ê[f(Xx
t )]− Ê[f(Xx′

t )]|

≤ lim
t→∞

Ê[|f(Xx
t )− f(Xx′

t )|]

≤ Kf lim
t→∞

Ê[(1 + |Xx
t |2p−1 + |Xx′

t |2p−1)|Xx
t −Xx′

t |]

≤ Kf lim
t→∞

Ê[(1 + |Xx
t |2p−1 + |Xx′

t |2p−1)
2p

2p−1 ]
2p−1
2p Ê[|Xx

t −Xx′

t |2p]
1
2p

≤ C1 lim
t→∞

(1 + |x|2p + |x′|2p) exp(−ηt) = 0,

which completes the proof.

The following result is a direct consequence of Theorem 3.3.

Corollary 3.4. For each f ∈ C2p,Lip(R
n), we get

lim
T→∞

1

T

∫ T

0

Ê[f(Xx
t )]dt = λ̄f , ∀x ∈ Rn.

From the nonlinear Feynman-Kac formula in [14], we obtain uf (t, x) = Ê[f(Xx
t )]

which is the unique viscosity solution to the following fully nonlinear PDE.{
∂tu

f −G(H(D2
xu

f , Dxu
f , x))− 〈b(x), Dxu

f 〉 = 0, (t, x) ∈ (0,∞)×Rn,
uf (0, x) = f(x).

(3.3)

where

Hij(D
2
xu

f , Dxu
f , x) = 〈D2

xu
fσi(x), σj(x)〉+ 2〈Dxu

f , hij(x)〉.

Then by Lemma 3.3, we get the following large time behaviour of solution to the fully
nonlinear parabolic PDE (3.3).

Corollary 3.5. For each f ∈ C2p,Lip(R
n), we have for any x ∈ Rn,

lim
T→∞

uf (T, x) = λ̄f and |uf (T, x)− λ̄f | ≤ C1(1 + |x|2p) exp(−ηT ).

We define the function Λ̄ : C2p,Lip(R
n) 7→ R by

Λ̄[f ] = λ̄f .

Lemma 3.6. Assume (H1) and (H2) hold. Then Λ̄ is a sublinear expectation on (Rn, C2p,Lip(R
n)),

i.e.,

(a) If f1 ≥ f2, then Λ̄[f1] ≥ Λ̄[f2];

(b) Λ̄[c] = c for any constant c;

(c) Λ̄[f1 + f2] ≤ Λ̄[f1] + Λ̄[f2];
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(d) Λ̄[λf ] = λΛ̄[f ] for each λ ≥ 0.

Proof. The proof is immediate from Theorem 3.3 and the definition of G-expectation.

Lemma 3.7. For each sequence {fi}∞i=1 ⊂ C2p−1,Lip(R
n) satisfying fi ↓ 0, we have

Λ̄[fi] ↓ 0.

Proof. For each fixed N > 0,

fi(x) ≤ kNi + f1(x)1[|x|>N ] ≤ kNi +
f1(x)|x|
N

for every x ∈ Rn,

where kNi = max|x|≤N fi(x). Then we have,

Ê[fi(X
x
t )] ≤ kNi +

1

N
Ê[f1(Xx

t )|Xx
t |].

Applying Lemma 3.2, there exits a constant C1 depending on G, f1, p, n and η such that,

Ê[f1(Xx
t )|Xx

t |] ≤ C̄Ê[|f1(0)Xx
t |+ |Xx

t |2p] ≤ C1(1 + |x|2p).

Consequently,

Λ̄[fi] = lim
t→∞

Ê[fi(X
x
t )] ≤ kNi +

C1(1 + |x|2p)
N

.

It follows from fi ↓ 0 and Dini’s theorem that kNi ↓ 0. Thus we have limi→∞ Λ̄[fi] ≤
C1(1+|x|2p)

N . Since N can be arbitrarily large, we get Λ̄[fi] ↓ 0.

Remark 3.8. From the above proof, in general we cannot get the result for {fi}∞i=1 ⊂
C2p,Lip(R

n).

Theorem 3.9. Suppose (H1) and (H2) hold. Then there exists a family of weakly
compact probability measures {mθ}θ∈Θ̄ defined on (Rn,B(Rn)) such that

λ̄f = sup
θ∈Θ̄

∫
Rn
f(x)mθ(dx), ∀f ∈ C2p−1,Lip(R

n).

Proof. By the representation theorem (Theorem 2.1 of Chapter 1 in [14]), for the sub-
linear expectation Λ̄[f ] defined on (Rn, C2p−1,Lip(R

n)), there exists a family of linear
expectations {Mθ}θ∈Θ̂ on (Rn, C2p−1,Lip(R

n)) such that

Λ̄[f ] = sup
θ∈Θ̂

Mθ[f ], ∀f ∈ C2p−1,Lip(R
n).

By Lemma 3.7, for each sequence {fi}∞i=1 in C2p−1,Lip(R
n) such that fi ↓ 0 on Rn, we

have Λ̄[fi] ↓ 0. Thus Mθ[fi] ↓ 0 for each θ ∈ Θ̂. It follows from the Daniell-Stone
Theorem that, for each θ ∈ Θ̂, there exists a unique probability measure mθ(·) on
(Rn, σ(C2p−1,Lip(R

n)) = (Rn,B(Rn)), such that Mθ[f ] =
∫
Rn
f(x)mθ(dx).

Let P̄ = {mθ : θ ∈ Θ̄} be the family of all probability measures on (Rn,B(Rn)) such
that ∫

Rn
f(x)mθ(dx) ≤ Λ̄[f ], ∀f ∈ C2p−1,Lip(R

n).

Then from the above result, we obtain that

Λ̄[f ] = sup
θ∈Θ̄

∫
Rn
f(x)mθ(dx), ∀f ∈ C2p−1,Lip(R

n).
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Invariant and ergodic nonlinear expectations for G-diffusion processes

Now we prove that P̄ is weakly compact. Set fi(x) = (|x| − i)+ ∧ 1, it is easy to check
that fi ⊂ C2p−1,Lip(R

n) and fi ↓ 0. Then by Lemma 3.7, we obtain

sup
θ∈Θ̄

mθ({|x| ≥ i+ 1}) ≤ Λ̄[fi] ↓ 0.

Thus P̄ is tight. Let mθi , i ≥ 1, converge weakly to m. Then by the definition of weak
convergence, we can get for any f ∈ C2p−1,Lip(R

n), N > 0, M > 0,∫
Rn

(f(x) ∧N) ∨ (−M)m(dx) ≤ Λ̄[(f ∧N) ∨ (−M)].

Note that f ∨ (−M)− (f ∧N) ∨ (−M) ↓ 0 as N ↑ ∞, then by Lemma 3.7, we can get

0 ≤ Λ̄[f ∨ (−M)]− Λ̄[(f ∧N) ∨ (−M)] ≤ Λ̄[f ∨ (−M)− (f ∧N) ∨ (−M)] ↓ 0.

Thus by the monotone convergence theorem under m, we obtain∫
Rn
f(x) ∨ (−M)m(dx) ≤ Λ̄[f ∨ (−M)],

which implies
∫
Rn
f(x) ∨ (−M)m(dx) ∈ R. Similarly, we can get

∫
Rn
f(x)m(dx) ≤ Λ̄[f ].

Thus m ∈ P̄, which completes the proof.

In the classical case, i.e., Λ̄[·] is a linear expectation, it is easy to check that Θ̄ consists
of a single element θ0. In particular, the probability measure mθ0 is the unique invariant
measure for the diffusion process X. Under the G-expectation framework, we can also
give the following definition.

Definition 3.10. A sublinear expectation Ẽ on (Rn, C2p,Lip(R
n)) is said to be an invariant

expectation for the G-diffusion process X if

Ẽ[Ê[f(Xx
t )]] = Ẽ[f(x)] for each f ∈ C2p,Lip(R

n) and t ≥ 0.

The family of probability measures that represents Ẽ on (Rn, C2p−1,Lip(R
n)) is called

invariant for the G-diffusion process X.

Remark 3.11. For the invariant expectation Ẽ[·], it corresponds to the family of prob-
ability measures, which can be explained as the uncertainty of the initial distribution.
Given this uncertainty of the initial distribution, the left-hand side of the equality in the
above definiton can be explained as the uncertainty of the distribution of Xt. Thus under
the invariant expectation Ẽ[·], the distribution uncertainty of the G-diffusion process X
is invariant in time.

Theorem 3.12. Assume (H1) and (H2) hold. Then there exists a unique invariant
expectation Ẽ for the G-diffusion process X. Moreover, for each f ∈ C2p,Lip(R

n), we
have

Ẽ[f ] = Λ̄[f ].

Proof. Existence: Denote f̄(x) := Ê[f(Xx
t )]. By Lemma 3.2 and Theorem 3.3, we can

find some constant C1 such that

|f̄(x)− f̄(x′)| ≤|Ê[f(Xx
t )]− Ê[f(Xx′

t )]|

≤Kf Ê[(1 + |Xx
t |2p−1 + |Xx′

t |2p−1)|Xx
t −Xx′

t |]

≤C1Ê[(1 + |Xx
t |2p−1 + |Xx′

t |2p−1)
2p

2p−1 ]
2p−1
2p Ê[|Xx

t −Xx′

t |2p]
1
2p

≤C1 exp(−ηt)(1 + |x|2p−1 + |x′|2p−1)|x− x′|.
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Invariant and ergodic nonlinear expectations for G-diffusion processes

Thus f̄(x) ∈ C2p,Lip(R
n). From Theorem 3.3 and Lemma A.3 of [8], we get

Λ̄[f̄ ] = lim
s→∞

Ê[f̄(Xx
s )] = lim

s→∞
Ê[Ê[f(Xx

t )]x=Xxs
]

= lim
s→∞

Ê[Ê[f(Xs,x
s+t)]x=Xxs ]

= lim
s→∞

Ê[Ê[f(X
s,Xxs
s+t )]]

= lim
s→∞

Ê[f(Xx
t+s)]

= Λ̄[f ],

which concludes that Λ̄ is an invariant expectation for the G-diffusion process X.
Uniqueness: Assume Λ̃ is also an invariant expectation for the G-diffusion process

X. Then for each f ∈ C2p,Lip(R
n) and t ≥ 0, we obtain

Λ̃[f ] = Λ̃[Ê[f(Xx
t )]].

By Theorem 3.3, there exists a constant C1 such that

|Λ̄[f ]− Ê[f(Xx
t )]| ≤ C1(1 + |x|2p) exp(−ηt).

Consequently, we derive that

|Λ̄[f ]− Λ̃[f ]| ≤ lim
t→∞

|Λ̃[Λ̄[f ]]− Λ̃[Ê[f(Xx
t )]]| ≤ C1 lim

t→∞
exp(−ηt)Λ̃[(1 + |x|2p)] = 0,

and this completes the proof.

Theorem 3.13. Assume (H1)-(H2) hold and Ẽ is a sublinear expectation on (Rn, C2p,Lip(R
n)).

If there exists a point t0 > 0 such that,

Ẽ[Ê[f(Xx
t0)]] = Ẽ[f(x)], ∀f ∈ C2p,Lip(R

n),

then Ẽ is the unique invariant expectation for X.

Proof. Denote f̄(x) := Ê[f(Xx
t0)]. Then using the same method as in the proof of Theorem

3.12, we have

Ẽ[f̄(x)] = Ẽ[Ê[f̄(Xx
t0)]] = Ẽ[Ê[Ê[f(Xx

t0)]x=Xxt0
]] = Ẽ[Ê[f(Xx

2t0)]].

In a similar way, we obtain for each integer n ≥ 1,

Ẽ[f(x)] = Ẽ[Ê[f(Xx
nt0)]].

Then by Theorem 3.3, we get

Ẽ[f(x)] = lim
n→∞

Ẽ[Ê[f(Xx
nt0)]] = λ̄f ,

which is the desired result.

Now we give some examples of invariant expectations.

Example 3.14. Assume that b(0) = hij(0) = σ(0) = 0, then it is easy to check that
X0
t = 0. Then by Lemma 3.2, we obtain Ê[|Xx

t |] ≤ exp(−ηt)|x| for each t ≥ 0. In
particular, we obtain that

Λ̄[f ] = lim
t→∞

Ê[f(X0
t )] = f(0), ∀f ∈ C2p−1,Lip(R

n).

Thus

Λ̄[f ] =

∫
Rn
f(x)δ0(dx), ∀f ∈ C2p−1,Lip(R

n),

where δ0 is the Dirac measure.
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Invariant and ergodic nonlinear expectations for G-diffusion processes

Consider the following Ornstein-Uhlenbeck process driven by G-Brownian motion:
for each x ∈ Rd,

Y xt = x− α
∫ t

0

Y xs ds+Bt, (3.4)

where α > 0 is a given constant. It is obvious that assumption (H2) holds for each p ≥ 1

in this case.

Lemma 3.15. The invariant expectation for G-Ornstein-Uhlenbeck process Y is the

G-normal distribution of
√

1
2αB1.

Proof. From the G-Itô formula, we get

Y xt = exp(−αt)x+ exp(−αt)
∫ t

0

exp(αs)dBs, for all t ≥ 0.

For each integer N , denote tNi = it
N with 0 ≤ i ≤ N and hNs := exp(αtNi )1[tNi ,t

N
i+1)(s).

Then it is obvious that

lim
N→∞

Ê[

∫ t

0

| exp(αs)− hNs |2ds] = 0.

Thus ‖
∫ t

0
exp(αs)dBs −

∫ t
0
hNs dBs‖L2

G
→ 0 as N →∞.

Note that
∫ t

0
hNs dBs =

N−1∑
i=0

exp(αtNi )(BtNi+1
−BtNi ). Then we get

∫ t
0
hNs dBs and√

N∑
i=0

exp(2αtNi )(tNi+1 − tNi )B1 are identically distributed. Consequently, for each p ≥ 1

and f ∈ Cp,Lip(Rd),

Ê[f(

∫ t

0

exp(αs)dBs)] = lim
N→∞

Ê[f(

∫ t

0

hNs dBs)] = lim
N→∞

Ê[f(

√√√√ N∑
i=0

exp(2αtNi )(tNi+1 − tNi )B1)]

=Ê[f(

√∫ t

0

exp(2αs)dsB1)]

=Ê[f(

√
1

2α
(exp(2αt)− 1)B1)].

Thus, for each p ≥ 1 and f ∈ Cp,Lip(Rd) , we have

Ê[f(exp(−αt)
∫ t

0

exp(αs)dBs)] = Ê[f(

√
1

2α
(1− exp(−2αt))B1)].

Applying Lemma 3.2 yields that

lim
t→∞

Ê[f(Y 0
t )] = lim

t→∞
Ê[f(exp(−αt)

∫ t

0

exp(αs)dBs)] = lim
t→∞

Ê[f(

√
1

2α
(1− exp(−2αt))B1)]

=Ê[f(

√
1

2α
B1)].

Thus by Theorem 3.12, we obtain

Λ̄[f ] = Ê[f(

√
1

2α
B1)],

which is the desired result.
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Invariant and ergodic nonlinear expectations for G-diffusion processes

Example 3.16. Suppose B is a 1-dimensional G-Brownian motion. For each x ∈ R, let

Y xt = x+

∫ t

0

(m− Y xs )ds+Bt + 〈B〉t,

where m is a given constant. From the G-Itô formula, we get

Y xt = exp(−t)x+m(1− exp(−t)) +

∫ t

0

exp(s− t)dBs +

∫ t

0

exp(s− t)d〈B〉s, for all t ≥ 0.

By a similar analysis as in Lemma 3.15, we obtain that
∫ t

0
exp(s−t)dBs+

∫ t
0

exp(s−t)d〈B〉s
and

√
1
2 (1− exp(−2t))B1 + (1− exp(−t))〈B〉1 are identically distributed. Then for each

p ≥ 1 and f ∈ Cp,Lip(R) , we have

Ê[f(Y xt )] = Ê[f(m+

√
1

2
B1 + 〈B〉1)].

Next we shall consider the following G-diffusion process: for each x ∈ R,

Y xt = x− α
∫ t

0

Y xs d〈B〉s +Bt, (3.5)

where α > 0 is a given constant. Applying the G-Itô formula, we get

Y xt = exp(−α〈B〉t)x+ exp(−α〈B〉t)
∫ t

0

exp(α〈B〉s)dBs, for all t ≥ 0.

From Theorems 3.3, 3.13 and Lemma 3.15, we have the following.

Corollary 3.17. Given a sublinear space (R, Cp,Lip(R), Ẽ) and denote ζ(x) = x for x ∈ R,
then Ẽ is the invariant expectation for G-process Y x if and only if for some point t > 0 and
x ∈ R, exp(−α〈B〉t)ζ + exp(−α〈B〉t)

∫ t
0

exp(α〈B〉s)dBs and ζ are identically distributed,
where (Bt)t≥0 is independent from ζ.

4 Ergodic nonlinear expectation

In this section, we shall only consider non-degenerate G-Brownian motion, i.e., there
exists some constant σ2 > 0 such that, for any A ≥ B

G(A)−G(B) ≥ 1

2
σ2tr[A−B].

We begin with the following lemma, which is essentially from [8].

Lemma 4.1. Assume (H1) and (H2) hold. Then for each f ∈ C2p,Lip(R
n), the following

fully nonlinear ergodic PDE:

G(H(D2
xv,Dxv, x)) + 〈b(x), Dxv〉+ f(x) = λf , (4.1)

has a solution (v, λf ) ∈ C2p,Lip(R
n)×R, where

Hij(D
2
xv,Dxv, x) =〈D2

xvσi(x), σj(x)〉+ 2〈Dxv, hij(x)〉.

Moreover, if (v̄, λ̄) ∈ C2p,Lip(R
n)×R is also a solution to equation (4.1), then we have

λ̄ = λf = lim
T→∞

1

T
Ê[

∫ T

0

f(Xx
s )ds], ∀x ∈ Rn.

Proof. The proof is immediate from Lemma 3.2, Theorems 5.4 and 5.5 of [8].
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Invariant and ergodic nonlinear expectations for G-diffusion processes

Denote a mapping Λ : C2p,Lip(R
n) 7→ R by

Λ[f ] = λf .

By a similar analysis as in Lemma 3.3, it is easy to check that Λ is a sublinear expectation
on (Rn, C2p,Lip(R

n)).

Lemma 4.2. Assume (H1) and (H2) hold. Then we obtain

(a) If f1 ≥ f2, then Λ[f1] ≥ Λ[f2];

(b) Λ[c] = c for each constant c;

(c) Λ[f1 + f2] ≤ Λ[f1] + Λ[f2];

(d) Λ[λf ] = λΛ[f ] for each λ ≥ 0.

In addition, we have the following result.

Theorem 4.3. Assume (H1) and (H2) hold. Then there exists a family of weakly compact
probability measures {mθ}θ∈Θ defined on (Rn,B(Rn)) such that

Λ[f ] = sup
θ∈Θ

∫
Rn
f(x)mθ(dx), ∀f ∈ C2p−1,Lip(R

n).

Proof. The proof is similar to that of Theorem 3.9.

Definition 4.4. A sublinear expectation Ẽ on (Rn, C2p,Lip(R
n)) is said to be an ergodic

expectation for the G-diffusion process X if

Ẽ[f ] = lim
T→∞

1

T
Ê[

∫ T

0

f(Xx
s )ds], ∀f ∈ C2p,Lip(R

n).

The family of probability measures that represents Ẽ is called ergodic for the G-diffusion
process X.

Proposition 4.5. Let (H1) and (H2) hold. Then for each v ∈ C2p−1,Lip(R
n) with ∂xiv ∈

C2p−2,Lip(R
n) and ∂2

xixjv ∈ C2p−3,Lip(R
n), we have

Λ[−G(H(D2
xv,Dxv, x))−〈b(x), Dxv〉] = sup

θ∈Θ

∫
Rn

[−G(H(D2
xv,Dxv, x))−〈b(x), Dxv〉]mθ(dx) = 0.

Proof. Taking f = −G(H(D2
xv,Dxv, x))−〈b(x), Dxv〉, by equation (4.1), we obtain λf = 0

and the proof is complete.

Example 4.6. Assume that b(0) = hij(0) = σ(0) = 0, then we obtain that

Λ[f ] = lim
T→∞

1

T
Ê[

∫ T

0

f(X0
t )dt] = f(0), ∀f ∈ C2p−1,Lip(R

n).

Thus

Λ[f ] = Λ̄[f ] =

∫
Rn
f(x)δ0(dx), ∀f ∈ C2p−1,Lip(R

n).

Note that Ê[
∫ T

0
f(Xx

s )ds] ≤
∫ T

0
Ê[f(Xx

s )]ds. Then it follows from Corollary 3.4 that
λf ≤ λ̄f and Θ ⊂ Θ̄. In the classical case, it is obvious that Λ = Λ̄. In particular, if Θ̄ only
has a single element, it is easy to check that λf = λ̄f . However, in general we cannot get
Λ = Λ̄ under G-framework.
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Invariant and ergodic nonlinear expectations for G-diffusion processes

Example 4.7. Assuming d = 1 and 0 < σ2 < σ̄2 = 1. Consider the following G-Ornstein-
Uhlenbeck process: for each x ∈ R,

Y xt = x− 1

2

∫ t

0

Y xs ds+Bt. (4.2)

Note that Y xt = exp(− 1
2 t)x + exp(− 1

2 t)
∫ t

0
exp( 1

2s)dBs. By Proposition 4.5 and taking
v(x) = 1

2x
4, we have

Λ[x4 −G(6x2)] = Λ[x4 − 3x2] = 0.

It follows from Lemma 3.15 that Λ̄[x4 − 3x2] = Ê[B4
1 − 3B2

1 ]. Denote by Eσ the linear
expectation corresponding to the normally distributed density function N(0, σ2) with
σ2 ≤ σ2 ≤ 1. Then for each p ≥ 1 and f ∈ Cp,Lip(R) ,

Ê[f(B1)] ≥ sup
σ2≤σ2≤1

Eσ[f(B1)].

From the definition of G-expectation, we obtain that Ê[B4
1 − 3B2

1 ] = Ê[Ê[(x + B1 −
B 1

2
)4 − 3(x + B1 − B 1

2
)2]x=B 1

2

]. Set g(x) = Ê[(x + B1 − B 1
2
)4 − 3(x + B1 − B 1

2
)2] and

g1(x) = E1[(x+B1−B 1
2
)4−3(x+B1−B 1

2
)2], g2(x) = Eσ[(x+B1−B 1

2
)4−3(x+B1−B 1

2
)2].

It is obvious that g(x) ≥ g1 ∨ g2(x). After a direct calculation, we obtain

g1(x) = x4 − 3

4
, g2(x) = x4 + 3(σ2 − 1)x2 +

3

4
σ4 − 3

2
σ2.

Consequently,
g1 ∨ g2(x) = g1(x)1

|x|>
√

1−σ2
2

+ g2(x)1
|x|≤

√
1−σ2
2

.

Then we have

E1[g1 ∨ g2(B 1
2
)] =E1[B4

1
2
− 3

4
1
|B 1

2
|>
√

1−σ2
2

+ (3(σ2 − 1)B2
1
2

+
3

4
σ4 − 3

2
σ2)1

|B 1
2
|≤
√

1−σ2
2

]

=3E1[[
1

4
(1− σ2)2 − (1− σ2)B2

1
2
]1
|B 1

2
|≤
√

1−σ2
2

]

≥3E1[[
1

4
(1− σ2)2 − (1− σ2)B2

1
2
]1
|B 1

2
|≤
√

1−σ2
4

]

≥ 9

16
(1− σ2)2E1[1

|B 1
2
|≤
√

1−σ2
4

] > 0.

Thus we get Ê[B4
1 − 3B2

1 ] ≥ E1[g1 ∨ g2(B 1
2
)] > 0 and Λ̄[x4 − 3x2] 6= Λ[x4 − 3x2].

Example 4.8. Assuming d = 1 and 0 < σ2 < σ̄2 = 1. Let us consider equation (3.5)
with α = 1

2 . Under each linear expectation Eσ with σ2 ≤ σ2 ≤ 1, it is easy to check
that the invariant expectation of equation (3.5) is the standard normal distribution E1.
However, we claim that the invariant expectation of equation (3.5) cannot be the normal
distribution E1. Otherwise, the ergodic expectation of equation (3.5) is also the normal
distribution E1. Therefore, by Proposition 4.5 and taking v(x) = x2, we have

Λ[−G(2−2x2)] = E1[−G(2−2B2
1)] = E1[(σ2(1−B2

1)−−(1−B2
1)+)] = (σ2−1)E1[(1−B2

1)+] 6= 0,

which is a contradiction.

Remark 4.9. Assume d = 1 and b(x) = −x, h(x) = 0 and σ = 1. Then consider the
following equation:{

∂tu−G(D2
xu) + xDxu = 0, (t, x) ∈ (0,∞)×R,

u(0, x) = f(x).
(4.3)
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Invariant and ergodic nonlinear expectations for G-diffusion processes

Denote ū(t, x) :=
∫ t

0
u(s, x)ds =

∫ t
0
Ê[f(Xx

s )]ds. Assume u(s, x) is a smooth function. Then

∂tū(t, x) = u(t, x), ∂xū(t, x) =

∫ t

0

∂xu(s, x)ds, ∂2
xxū(t, x) =

∫ t

0

∂2
xxu(s, x)ds.

In the linear case, i.e., G(a) = 1
2a, it is easy to check that

∂tū−
1

2
D2
xū+ xDxū+ f = 0.

Then by the ergodic theory, we obtain

Λ̄[f ] = lim
T→∞

1

T

∫ T

0

E[f(Xx
s )]ds = lim

T→∞

ū(T, x)

T
= Λ[f ].

However, under the nonlinear expectation framework, there is no such relationship for
fully nonlinear PDE (4.3).

Remark 4.10. In the linear expectation case, ergodic theory and related problems
are connected with the invariant expectation. However, from the above results, this
relationship may not hold true under the nonlinear expectation framework. Thus we
should study nonlinear ergodic problems via ergodic expectation Λ instead of invariant
expectation Λ̄. In particular, [8] obtained the links between ergodic expectation and
large time behaviour of solutions to fully nonlinear PDEs.
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