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Abstract
In this note, we revisit the work of T. Tao and V. Vu on large non-hermitian random matrices with
independent and identically distributed (i.i.d.) entries with mean zero and unit variance. We
prove under weaker assumptions that the limit spectral distribution of sum and product of non-
hermitian random matrices is universal. As a byproduct, we show that the generalized eigenvalues
distribution of two independent matrices converges almost surely to the uniform measure on the
Riemann sphere

1 Introduction

We start with some usual definitions. We endow the space of probability measures on C with the
topology of weak convergence: a sequence of probability measures (µn)n≥1 converges weakly to µ
is for any bounded continuous function f : C→R,

∫

f dµn −
∫

f dµ

converges to 0 as n goes to infinity. In this note, we shall denote this convergence by µn  n→∞ µ.

Similarly, for two sequences of probability measures (µn)n≥1, (µ′n)n≥1, we will use µn − µ′n  n→∞ 0,

or say that µn −µ′n tends weakly to 0, if
∫

f dµn −
∫

f dµ′n

converges to 0 for any bounded continuous function f . We will say that a measurable function
f : C→R is uniformly bounded for (µn)n≥1 if

lim sup
n→∞

∫

| f |dµn <∞.
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Finally, recall that a function f is uniformly integrable for (µn)n≥1 if

lim
t→+∞

lim sup
n→∞

∫

| f |≥t

| f |dµn = 0.

The above definitions will also be used for probability measures on R+ = [0,∞) and functions
f :R+→R.
The eigenvalues of an n× n complex matrix M are the roots in C of its characteristic polynomial.
We label them λ1(M), . . . ,λn(M) so that |λ1(M)| ≥ · · · ≥ |λn(M)| ≥ 0. We also denote by s1(M)≥
· · · ≥ sn(M) ≥ 0 the singular values of M , defined for every 1 ≤ k ≤ n by sk(M) := λk(

p
M M∗)

where M∗ is the conjugate transpose of M . We define the empirical spectral measure and the
empirical singular values measure as

µM =
1

n

n
∑

k=1

δλk(M) and νM =
1

n

n
∑

k=1

δsk(M).

Note that µM is a probability measure on C while νM is a probability measure on R+. The
generalized eigenvalues of (M , N), two n × n complex matrices, are the zeros of the polynomial
det(M − zN). If N is invertible, it is simply the eigenvalues of N−1M .
Let (X i j)i, j≥1 and (Yi j)i, j≥1 be independent i.i.d. complex random variables with mean 0 and vari-
ance 1. Similarly, let (Gi j)i, j≥1 and (Hi j)i, j≥1 be independent complex centered gaussian variables
with variance 1, independent of (X i j , Yi j). We consider the random matrices Xn = (X i j)1≤i, j≤n,
Yn = (Yi j)1≤i, j≤n, Gn = (Gi j)1≤i, j≤n and Hn = (Hi j)1≤i, j≤n. For ease of notation, we will sometimes
drop the subscript n. It is known that almost surely (a.s.) for n large enough, X is invertible (see
the forthcoming Theorem 11) and then µX−1Y is a well defined random probability measure on C.
Now, let µ be the probability measure whose density with respect to the Lebesgue measure on
C'R2 is

1

π(1+ |z|2)2
.

Through stereographic projection, µ is easily seen to be the uniform measure on the Riemann
sphere. Haagerup and several authors afterwards have independently observed the following
beautiful identity (see Krishnapur [17], Rogers [21] and Forrester and Mays [7]).

Lemma 1 (Spherical ensemble). For each integer n≥ 1,

EµG−1H = µ.

By reorganizing the results of Tao and Vu [23, 24], we will prove a universality result.

Theorem 2 (Universality of generalized eigenvalues). Almost surely,

µX−1Y −µG−1H  n→∞ 0.

Applying once Lemma 1 and twice Theorem 2, we get

Corollary 3 (Spherical law). Almost surely

µX−1Y  n→∞ µ.

This statement was recently conjectured in [21, 7]. More generally, our argument also leads to
the following universality result for sums and products of random matrices.
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Theorem 4 (Universality of sum and product of random matrices). For every integer n, let Mn, Kn, Ln
be n× n complex matrices such that, for some α > 0,

(i) x 7→ x−α is uniformly bounded for (νKn
)n≥1, and (νLn

)n≥1 and x 7→ xα is uniformly bounded
for (νMn

)n≥1,

(ii) for almost all (a.a.) z ∈ C, νK−1
n Mn L−1

n −K−1
n L−1

n z converges weakly to a probability measure νz .

Then, almost surely,
µM+KX L/

p
n  n→∞ µ,

where µ depends only (νz)z∈C.

For M = K = L = I , the identity matrix, this statement gives the famous circular law theorem,
that was established through a long sequence of partial results [19, 8, 10, 16, 6, 9, 1, 11, 2, 20,
12, 23, 24]. In this note, the steps of proof are elementary and they borrow all difficult technical
statements from previously known results. Nevertheless, this theorem generalizes Theorem 1.18
in [24] in two directions. First, we have removed the assumption of uniformly bounded second
moment for νM+KX L/

p
n, νK−1 M L−1 and νK−1 L−1 . Secondly, it proves the convergence of the spectral

measure. The explicit form of µ in terms of νz is quite complicated. It is given by the forthcoming
equations (2-3). This expression is not very easy to handle. However, following ideas developed in
[21] or using tools from free probability as in [22, 14], it should be possible to find more elegant
formulas. For nice examples of limit spectral distributions, see e.g. [21]. It is interesting to notice
that we may deal with non-centered variables (X i j) by including the average matrix of X/

p
n into

M , and recover [4]. Finally, as in [13], it is also possible by induction to apply Theorem 4 to
product of independent copies of X (with the use of the forthcoming Theorem 8).

2 Proof of Theorem 2

2.1 Replacement Principle

The following is an extension of Theorem 2.1 in [24]. The idea goes back essentially to Girko.

Lemma 5 (Replacement principle). Let An, Bn be n× n complex random matrices. Suppose that for
a.a. z ∈ C, a.s.

(i) νAn−z − νBn−z tends weakly to 0,

(ii) ln(·) is uniformly integrable for (νAn−z)n≥1 and (νBn−z)n≥1.

Then a.s. µAn
−µBn

tends weakly to 0. Moreover the same holds if we replace (i) by

(i’)
∫

ln(x)dνAn−z −
∫

ln(x)dνBn−z tends to 0.

Proof. It is a straightforward adaptation of [3, Lemma A.2]. �

Corollary 6. Let An, Bn, Mn be n× n complex random matrices. Suppose that a.s. Mn is invertible
and for a.a. z ∈ C, a.s.

(i) νAn−zM−1
n
− νBn−zM−1

n
tends weakly to 0,

(ii) ln(·) is uniformly integrable for (νAn−zM−1
n
)n≥1 and (νBn−zM−1

n
)n≥1.
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Then a.s. µMnAn
−µMnBn

tends weakly to 0.

Proof. If Mn is invertible, note that
∫

ln(x)dνMnAn−z =
1

n
ln |det(MnAn − z)|=

∫

ln(x)dνAn−zM−1
n
+

1

n
ln |det Mn|.

We may thus apply Lemma 5(i’)-(ii). Indeed, in the expression
∫

ln(x)dνAn−z −
∫

ln(x)dνBn−z , the
term 1

n
ln |det Mn| cancels. �

2.2 Convergence of singular values

The following result is due to Dozier and Silverstein.

Theorem 7 (Convergence of singular values, [5]). Let (Mn)n≥1 be a sequence of n × n complex
matrices such that νMn

converges weakly to a probability measure ν . Then a.s. νXn/
p

n+Mn
converges

weakly to a probability measure ρ which depends only on ν .

The measure ρ has an explicit characterization in terms of ν . Its exact form is not relevant here.

2.3 Uniform integrability

In order to use the replacement principle, it is necessary to prove the uniform integrability of ln(·)
for some empirical singular values measures. This is achieved by proving that, for some β > 0,
x 7→ x−β + xβ is uniformly bounded.

Theorem 8 (Uniform integrability). Let (Mn)n≥1 be a sequence of n × n complex matrices, and
assume that x 7→ xα is uniformly bounded for (νMn

)n≥1 for some α > 0. Then there exists β > 0 such
that a.s. x 7→ x−β + xβ is uniformly bounded for (νXn/

p
n+Mn
)n≥1.

In the remainder of the paper, the notation n � 1 means large enough n. We start with an
elementary lemma.

Lemma 9 (Large singular values). Almost surely, for n� 1,
∫

x2dνX/
p

n ≤ 2.

Proof. We have 1
n

∑n
i=1 s2

i (X/
p

n) = 1
n2 trX ∗X = 1

n2

∑

1≤i, j≤n |X i j |2, and the latter converges a.s. to
1 by the law of large number. �

Corollary 10. Let 0< α≤ 2 and let (Mn)n≥1 be a sequence of n× n complex matrices such that x 7→
xα is uniformly bounded for (νMn

)n≥1. Then, a.s. x 7→ xα is uniformly bounded for (νXn/
p

n+Mn
)n≥1.

Proof. If M , N are n× n complex matrices, from [15, Theorem 3.3.16], for all 1 ≤ i, j ≤ n with
1≤ i+ j ≤ n+ 1,

si+ j−1(M + N)≤ si(M) + s j(N).

Hence,
s2i(M + N)≤ s2i−1(M + N)≤ si(M) + si(N).
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We deduce that for any non-decreasing function, f :R+→R+ and t > 0,

∫

f (x)dνM+N ≤ 2

∫

f (2x)dνM + 2

∫

f (2x)dνN ,

where we have used the inequality

f (x + y)≤ f (2x) + f (2y).

Now, in view of Lemma 9, we may apply the above inequality to f (x) = xα and deduce the
statement. �
The above corollary settles the problem of the uniform integrability of ln(·) at +∞ for νX/

p
n+M .

The uniform integrability at 0+ is a much more delicate matter. The next theorem is a deep result
of Tao and Vu.

Theorem 11 (Small singular values, [23, 24]). Let (Mn)n≥1 be a sequence of n×n complex invertible
matrices such that x 7→ xα is uniformly bounded for (νMn

)n≥1 for some α > 0. There exist c1, c0 > 0
such that a.s. for n� 1,

sn(Xn/
p

n+Mn)≥ n−c1 .

Moreover for i ≥ n1−γ with γ= 0.01, a.s. for n� 1,

sn−i(Xn/
p

n+Mn)≥ c0
i

n
.

Proof. The first statement is Theorem 2.1 in [23] and the second is contained in [24] (see the
proof of Theorem 1.20 and observe that the statement of Proposition 5.1 remains unchanged if
we consider a row of the matrix Xn +

p
nMn). �

Proof of Theorem 8.
By Corollary 10, it is sufficient to prove that x 7→ x−β is uniformly bounded for (νX/

p
n+M ) and

some β > 0. We have

lim sup
n

1

n

n
∑

i=1

s−βi (X/
p

n+M)<∞,

By Theorem 11, we may a.s. write for n� 1,

1

n

n
∑

i=1

s−βi (X/
p

n+M) ≤
1

n

bn1−γc
∑

i=1

nβ c1 +
1

n

n
∑

i=bn1−γc+1

c2

�n

i

�β

≤ nβ c1−γ +
1

n

n
∑

i=1

c2

�n

i

�β

.

This last expression is uniformly bounded if 0< β <min(γ/c1, 1). �

2.4 End of proof of Theorem 2

If ρ is a probability measure on C\{0}, we define ρ̌ as the pull-back measure of ρ under φ : z 7→
1/z, for any Borel E inC\{0}, ρ̌(E) = ρ(φ−1(E)). Obviously, if (ρn)n≥1 is a sequence of probability
measures on C\{0}, then ρn converges weakly to ρ is equivalent to ρ̌n converges weakly to ρ̌.
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Note that by Theorem 8, a.s. for n� 1, Xn is invertible and x 7→ x−β + xβ is uniformly bounded
for (νXn/

p
n)n≥1. Also, from the quarter circular law theorem, νXn/

p
n converges a.s. to a probability

distribution with density
1

π

p

4− x21[0,2](x),

(see Marchenko-Pastur theorem [18, 25, 26]). From the independence of (X i j), (Yi j), (Gi j), (Hi j),
we may apply Corollary 6, Theorem 7 and Theorem 8 conditioned on (X i j) to Mn = zXn/

p
n. We

get a.s.
µX−1Y −µX−1H  n→∞ 0.

By Theorem 11, a.s. for n� 1, X−1H and G−1H are invertible, it follows that

µX−1H −µG−1H  n→∞ 0 is equivalent to µ̌X−1H − µ̌G−1H  n→∞ 0.

However since µMN = µN M and µ̌M = µM−1 , we get

µX−1H −µG−1H  n→∞ 0 is equivalent to µH−1X −µH−1G  n→∞ 0.

The right hand side holds by applying again, Corollary 6, Theorem 7 and Theorem 8.

3 Proof of Theorem 4

3.1 Bounds on singular values

Lemma 12 (Singular values of sum and product). If M , N are n × n complex matrices, for any
α > 0,

∫

xαdνM+N ≤ 21+α

�
∫

xαdνM +

∫

xαdνN

�

,

∫

xαdνMN ≤ 2

�
∫

x2αdνM

�1/2�∫

x2αdνN

�1/2

.

Proof. The first statement was already treated in the proof of Corollary 10. Also, from [15,
Theorem 3.3.16], for all 1≤ i, j ≤ n with 1≤ i+ j ≤ n+ 1,

si+ j−1(MN)≤ si(M)s j(N).

Hence,
s2i(MN)≤ s2i−1(MN)≤ si(M)si(N).

We deduce
∫

xαdνMN ≤
2

n

n
∑

i=1

sαi (M)s
α
i (N).

We conclude by applying the Cauchy-Schwarz inequality. �



110 Electronic Communications in Probability

3.2 Logarithmic potential and Girko’s hermitization method

We denote by D ′(C) the set of Schwartz distributions endowed with its usual convergence with
respect to all infinitely differentiable functions with bounded support. Let P (C) be the set of
probability measures on C which integrate ln |·| in a neighborhood of infinity. For every µ ∈ P (C),
the logarithmic potential Uµ of µ on C is the function Uµ : C→ [−∞,+∞) defined for every z ∈ C
by

Uµ(z) =

∫

C

ln |z− z′|µ(dz′),

(in classical potential theory, the definition is opposite in sign). Since ln |·| is Lebesgue locally
integrable on C, one can check by using the Fubini theorem that Uµ is Lebesgue locally integrable
on C. In particular, Uµ < ∞ a.e. (Lebesgue almost everywhere) and Uµ ∈ D ′(C). Since ln |·| is
the fundamental solution of the Laplace equation in C, we have, in D ′(C),

∆Uµ = πµ, (1)

where ∆ is the Laplace differential operator on C is given by ∆= 1
4
(∂ 2

x + ∂
2
y ).

We now state an alternative statement of Lemma 5 which is closer to Girko’s original method, for
a proof see [3, Lemma A.2].

Lemma 13 (Girko’s hermitization method). Let An be a n× n complex random matrix. Suppose
that for a.a. z ∈ C, a.s.

(i) νAn−z tends weakly to a probability measure νz on R+,

(ii) ln(·) is uniformly integrable for (νAn−z)n≥1.

Then there exists a probability measure µ ∈ P (C) such that a.s.

(j) µAn
converges weakly to µ

(jj) for a.a. z ∈ C,

Uµ(z) =

∫

ln(x) dνz .

Moreover the same holds if we replace (i) by

(i’)
∫

ln(x)dνAn−z tends to
∫

ln(x) dνz .

Corollary 14. Let An, Kn, Mn be n× n complex random matrices. Suppose that a.s. Kn is invertible
and ln(·) is uniformly bounded for (νKn

)n≥1, and for a.a. z ∈ C, a.s.

(i) νAn+K−1
n (Mn−z) tends weakly to a probability measure νz ,

(ii) ln(·) is uniformly integrable for (νAn+K−1
n (Mn−z))n≥1.

Then there exists a probability measure µ ∈ P (C) such that a.s.

(j) µMn+KnAn
converges weakly to µ,

(jj) in D ′(C),

µ=
1

π
∆

∫

ln(x) dνz .
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Proof. If Kn is invertible, we write

∫

ln(x)dνMn+KnAn−z =
1

n
ln |det(An + K−1

n (Mn − z))|+
1

n
ln |det Kn|

=

∫

ln(x)dνAn+K−1
n (Mn−z) +

1

n
ln |det Kn|.

By assumption, 1
n

ln |det Kn|=
∫

ln(x)dνKn
is a.s. bounded. We may thus consider any converging

subsequence and apply Lemma 5(i’)-(ii) together with (1). �

3.3 End of proof of Theorem 4

We first notice that
µM+KX L/

p
n = µLM L−1+LKX/

p
n.

It is thus sufficient to prove that the right hand side converges. We set eM = LM L−1 and eK = LK .
Since eK−1( eM − z) = K−1M L−1 − K−1 L−1z, we may apply Lemma 12 and deduce that x 7→ xα/4

is uniformly bounded for (ν
eKn( eMn−z))n≥1. It only remains to invoke Theorem 8 and Theorem 7

applied to eK−1( eM − z), and use Corollary 14 for eM + eKX/
p

n.

3.4 Explicit expression of the limit spectral measure

Let C+ = {z ∈ C : ℑ(z) > 0}, for a probability measure ρ on R, its Cauchy-Stieltjes transform is
defined as, for all z ∈ C+,

mρ(z) =

∫

1

x − z
dρ(x).

By Corollary 14 and Theorem 7, in D ′(C),

µ=
1

2π
∆

∫

ln(x) dρz(x), (2)

where for z ∈ C, ρz is a probability distribution on R+. From [5], for a.a. z ∈ C, ρz has a
Cauchy-Stieltjes transform that satisfies the integral equation: for all w ∈ C+,

mρz
(w) =

∫

2x(1+mρz
(w))

x2 − (1+mρz
(w))2w

dνz(x), (3)

where νz is as in Theorem 4.
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