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Abstract

We use our maximum inequality for p-th order random variables (p > 1) to prove a strong
law of large numbers (SLLN) for sequences of p-th order random variables. In particular,
in the case p = 2 our result shows that Y f(k)/k < oo is a sufficient condition for SLLN
for f-quasi-stationary sequences to hold. It was known that the above condition, under the
additional assumption of monotonicity of f, implies SLLN (Erdés (1949), Gal and Koksma
(1950), Gaposhkin (1977), Moricz (1977)). Besides getting rid of the monotonicity condition,
the inequality enables us to extend the general result to p-th order random variables, as well
as to the case of Banach-space-valued random variables.

Notations

N stands for the set of positive integers, Ng = N U {0}. X denotes a Banach space, real or
complex. Let (€2, .4, P) be an underlying probability space. By an X-valued random variable
we mean a Bochner measurable mapping £ : 2 — X.

Given a sequence (£,),n € Ng of X-valued random variables denote

a+b—1
Sap= Y & Moy =max|Sok . abeNo.
k=a -
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We say that for a sequence (£,),n € Ng the strong law of large numbers (SLLN) holds, if
Son/n—0 as. as n— oo .

Main Results

The main objective of this note is to prove the following theorem and some of its consequences.
Theorem 1 Let 1 < p < oo . If for a sequence (§,) C Ly(X)

> sup BJ=2E P < oo (1)
kENo

n=0
then SLLN holds for (&,).
We apply Theorem 1 to quasi-stationary sequences.

Corollary 1 Let (§,),n € Ng be a sequence of X -valued random variables such that for some
1 <p< oo and each k,n € Ny
E[[Sknll” < g(n)

for a numerical function g. Then

(1) If

then SLLN holds for (&) .

(ii) If g(n)/nP*! is monotone, and

ZOO g(n)

< o0,
= npt+1
then SLLN holds for (&,).

Part (ii) of Corollary 1 has been proved earlier for the case p = 2, and 1-dimensional X (see
Gal and Koksma, 1950 and Gaposhkin, 1977). Below we also discuss Moricz’s, 1977 further
contribution.

Let f(n),n € Ng be a non-negative function. We say that a real or complex-valued sequence
(€,),n € Ng is f-quasi-stationary, if E|£|? < oo, k € Ng , and

E&E .| < f(m), I,meNg.
The following proposition is a consequence of Theorem 1.

Corollary 2 Let (§,),n € Ng be an f-qusi-stationary sequence. If
— f(m)
0 00 2
o+ 3 0 < oo, 2

then SLLN holds for (&) .
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Corollary 2 was known earlier under the additional condition of monotonicity of f . It has
been established first by Erdés, 1949 for monotone f(m) = O(log™“m),a > 1. In Gal and
Koksma, 1950 it was extended to monotone sequences f(m) satisfying (2). Gaposhkin, 1975
has shown that condition (2) for monotone f isin a sense necessary: If

SR

m=1 m
then there is an f-quasi-stationary sequence (§,),n € N for which SLLN fails.
Regarding a general norming in SLLN for an f-quasi-stationary sequence, the reader is referred
to the papers by Moricz,1977 and Serfling, 1978. In the case of classical norming (A, = 1/n)
Moricz has proved Theorem 1 above for real valued random variables in the case p = 2, and
our Corollary 2 (see Moricz, 1977, Theorem 2’, p.228 and Theorem 2, p.227 respectively),
both under some additional conditions (see (1.16) and (1.17), respectively, p.227). His main
condition (1.16) is in fact equivalent to

Z¢(2m)<oo and Z%<

where

p(m) = sup [E|Sk—m|2] ,and @, = max{a,}.
kENg m nzm

Moricz’s second condition (1.17) is not relevant for the purpose of comparison with our paper
so we do not discuss it.

Example. Let us show that Y  f(m)/m might be finite, whereas Y., f(m)/m is infinite.
This would show that Moricz’s condition (1.16) is restrictive. Notice first that for every
fi 0< f(m) <1, m € Ny there is a sequence (£) of real random variables so that

E¢ =1, E) =0 and f(m)= sup |E&kEh+ml-

Then we put f(m) = 1/logm, if m = n?, n € N, and f(m) = 0 otherwise. It is worthy to
note that for weakly stationary sequences condition (2) can be replaced by a weaker condition
of convergence (conditional) of the series

Z B(m) loglogm

mlog
=1

where R is the correlation function of the sequence (Gaposhkin, 1977).

Proofs

The proof of Theorem 1 is based on the following proposition proved in Chobanyan, Levental
and Salehi, 2004.

Theorem 2 Let 1 <p < oo . For any sequence (§,) C L,(X) we have

>, MJ, ,on ||S2" 2n 2 o G
Z np - Qp_zz no

n=0
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where s s g
k,2n k+2n,2n k,2n+1
EHi“ —E| 7).

10
H 2" 2n+1

G, = sup (= E||
k

€Np

2

For the sake of completeness we outline the proof of Theorem 2. We have for any & € Ny
n € Ny
My ontr < max { My on, [|Skon|| + Myion on}

Making use of the following elementary inequality |a + b|P < 2P~1(|a|? + |b|P), we get

M}fznﬂ < max {My,., 2 P Sk an P + M, hyanon)} <
@ = D)Skanll? + MPgn + 27D gy 3)
(3) can be rewritten as
le,znﬂ - ”51672"“”1) < le,zn - ||Sk72”||p + 21)_1(le+2” 2n ||Sk+2",2"||p)

—[[Skzms1 [P + 2P| Sk 20 [P+ 2P| Sppan 20 ||

Dividing both sides by 2(»+VP  taking expectations, and then maximums over all k’s, we get

1 1
Fn+1§2_pFn +§Fn+Gna 7’L€N0, (4)
where P 1000 [
n k,2n
F, = sup E( k.2 2 ) ;
k€N, 2np
Sk on Sk+2n on Sk,2"+1
Gu=sup (FEIZZ | 4 LB 222 g2

kENQ

It is easy to make sure by induction in n that

n
Fry1 < chika , n€Ng,
k=0

where ¢ = £ + 2L . Summing up (4) from n = 0 to n = N, we come to Theorem 2.

PROOF OF THEOREM 1. Assuming (1) holds we get
o0 oo S
k’2n
> Gn<D sup Bl <
n=0 n—=0 F€No

Therefore, by Theorem 2,

M3 gn — [1S2n 20 [P
S —0 as. (5)
But (1) also implies that
n n p
M — 0 a.s.
onp

This convergence along with (5) implies

[y

on — 0 as.,



222

Electronic Communications in Probability

which is equivalent to SLLN (Chobanyan, Levental and Mandrekar, 2004). O

PROOF OF COROLLARY 2.  Assume that (£,),n € Np is an f-quasi-stationary sequence.
Then we have for any k € Ng and any n € Ny

on_q on_q
Sk,2n fm)(2" —
E| on |2SZ 922n —anf
m=0
This implies

ZsupE| k2n ZZOan < f(0)+21f(m) Z 2i<2f ZfT

n=0 n=(log, m]

Corollary 2 is proved. O
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