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Abstract

Consider a real valued stationary process X = {X; : s € R}. For a fixed ¢t € R and a set D in
the state space of X, let g; and d; denote the starting and the ending time, respectively, of an
excursion from and to D (straddling ¢). Introduce also the occupation times I;” and I;” above
and below, respectively, the observed level at time ¢ during such an excursion. In this note
we show that the pairs (1,7, ;") and (¢ — g, d; — t) are identically distributed. This somewhat
curious property is, in fact, seen to be a fairly simple consequence of the known general uniform
sojourn law which implies that conditionally on I,;" + I, = v the variable I,” (and also I,")
is uniformly distributed on (0,v). We also particularize to the stationary diffusion case and
show, e.g., that the distribution of I,” + I," is a mixture of gamma distributions.

1 Introduction

Let X = {X; : s € R} be a stationary measurable process with the range F C R. For a given
D C E let
M:={seR:X, e D}, (1)

where ¢l means the closure of the set in the braces. Next define for fixed t € R

gei=sup{s<t:se M}, dy:=inf{s>t:se M}, (2)
and
dy dy
It+ Z:/ 1{X5>X,,} dS, I; Z:/ 1{X5<X1,} ds. (3)
gt gt
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The main result of this note is

Theorem 1. Let X be as above with the property
Leb{s: Xs = X0} =0 aus.

where Leb stands for the Lebesgue measure. Then
.\ d
(It-’_vjt ) = (t_gtvdt _t)a (4)

where 4 means “is identical in law with”. Moreover, conditioned on V := I;“ +1, =d;—g; the
random variables I;’ , I, ,t—g:, and d; —t are identically distributed the common distribution
being the uniform distribution on (0,V).

The property (4) was observed in [16] to be valid for reflected Brownian motion on R with
negative drift, RBM!, for short, and for stationary excursions from 0 to 0. Later the authors
of this note found (4) to be valid for all positively recurrent linear diffusions under smoothness
assumptions on the scale function and the speed measure. Jim Pitman pointed out to us then
the full generality (as stated in Theorem 1) of the result and remarked that it is a consequence
of the results in [12] and [4]. However, because we have not found the identity (4) in the
literature, we feel that it is worthwhile to discuss briefly this interesting but not widely known
equality in law. The diffusion case is also very appealing with nice explicit formulae.

Clearly, from Theorem 1, it follws that

Ay (5)

In the case X is a RBM! and stationary excursions from 0 to 0 are considered one would
expect that the occupation time below the observed level is bigger (in some sense) than the
time above, but the randomness of the level “balances” the random variables so that (5) holds.
We refer also to [9], where (5) for a RBM! is shown to be a consequence of reversibility in
space of the excursions.

The paper is organised so that in the next section we prove Theorem 1. The proof worked
out from Pitman’s remark relies on some results from [12] and [4] which are first recalled.
In Section 3 we present an alternative proof of Theorem 1 in the case when X is a linear
diffusion. The main tool in this proof is the Feynman-Kac formula. The common distribution
of (I;7,1;) and (t — g;,d; — t) is also characterized via the Lévy measure of the inverse local
time at the point where the excursions start and end. Applying Krein’s spectral theory of
strings the distribution of V' (which determines the joint distribution of (I;", ;7)) is shown to
be a mixture of gamma distributions.

2 General case

2.1 On the distributions of —¢gy and d,

Let X = {X; : s € R} be an arbitrary stationary process taking values in £ C R. It is assumed
that the sample paths of X are right continuous and have left limits (cadlag). We consider
X in the canonical space (2, F) of cadlag functions. Let {05 : s € R} denote the usual shift
operator in this framework. For a set D C E and ¢t = 0 define M, dy and go as in (1) and (2).
Moreover, set

L:={s:ds—=0,ds>0}.
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We now collect, following [12] (where, in fact, even more general case is considered), some
formulae concerning the distributions of gy and V := dy — go. The crucial concept hereby is
the Palm measure.

Definition 2. The Palm measure Q associated with X is defined by
QB)=E(|{s:0<s<1,seL,0;€ B}|), BEF,
where | - | denotes the number of points of the set in the braces.

Proposition 3. For a measurable function f: R x Q — [0, 00)

do
E(f (040, —90)1{—co<go<0}) = / Q(dw) f(t,w)dt. (6)
Q 0

In particular,
P(—o00 < go < 0,04, € dw) = Q(dw) do(w), (7
P(—go € da) = Q(dp > a)da, a > 0. (8)

Moreover,

P(V € dv) =vQ(dy € dv), (9)

and conditionally on the paths {Xg,1s : s > 0} the distribution of —go depends only on V' and
is the uniform distribution on (0,V).

Proof. See [12] Theorem p. 290 and Corollary p. 298. O

Remark 4. (i) In [12] it is also proved that the Palm measure is a multiple of the It6 excursion
law. Comparing formulae (8) and (9) with (16) and (17) in Proposition 8 gives an indication
for this fact (in the diffusion case).

(ii) Proposition 3 yields also easily (cf. (18))

P(—go € da, dy € db) = dan(a,db),
where the measure 7 is characterized via
m(a,B)=pla+B), a+B:={a+b:bec B}

with B a Borel set on R and p(dv) :=P(V € dv).

2.2 Occupation times for cyclically stationary processes

We consider now a cyclically stationary measurable process on finite time interval and its
sojourn times above and below the initial level. Cyclically stationarity hereby means roughly
that the periodic extension of the process is stationary.

Definition 5. The measurable process {X; : 0 <t < 1}, wherel > 0 is fixed, is called cyclically
stationary if the process {Y; := Xy); : t € R}, where t|l means t modulo I, is stationary in the
usual sense, i.e., for any s € R the processes {Y:} and {Ys1+} are identical in law.

The important property of cyclically stationary processes needed in the proof of Theorem 1 is
given in [4] Theorem 3.1. For the convenience of the reader we state and prove this result in
the form directly applicable for our purpose; however, following closely [4].
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Proposition 6. Let X = {X; : 0 <t < 1} be a measurable cyclically stationary process such
that
Leb{t: X; = Xo} =0 as. (10)

Then the occupation times

1 1
/ 1{x,<x,} dt and / 1ix,>x,y dt
0 0

are uniformly on (0,1) distributed random variables.

Proof. To start with, recall Tucker’s extension of the Glivenko-Cantelli theorem (see [18]):
if Z = {Z,} is a stationary sequence of random variables and ZZ is the invariant o-field
determined by Z (for this concept see, e.g., [5]) then a.s.

1 n
gZL{Zin}—P(ZlSﬂIZ) —0 asn—oo. (11)

sup
-

Let Y be the stationary process obtained by a periodic continuation of X as introduced in
Definition 5 and let Z¥ be the invariant o-field of Y. Then for all n the sequence {Z ,E,n) =Y }
is stationary and we have for all x and positive integers m a.s.

1 on_1 (2" ~1)m
/0 lix, <ayds = ,}LH;O om Z 1{Z(”)< Y= n_,oo mon Z 1{Z(")<:r}

Notice that by the measurability assumption the integral above is well defined. From (11) it
follows that a.s.
2m—1 @ " —1)m

o Z Lizmcay = mﬂoom% Z Lizmeey = P(Yo <z|I"),

where 7" is the invariant o-algebra determined by Z("). By the martingale convergence
theorem, since Y = o{Z',7?,...}, we have a.s.
1
/ lix.,<syds = lim P(Yy <xz|Z")
0 = n—oo

= lim E(P(Yy <z|ZV)|I")

= P(Yo<z|TV). (12)
Next define for any Borel set B

n(B) :==P(Yy € B|T").

From (12) it follows that a.s.

1
[ texx ds = (o050,
0

and, from the assumption (10),  — n((—o0,x]) is continuous. Using the tower property we
have a.s.

P(Yo € Bln) =E(P (Yo € B|Fy)|n) =En(B)|n) =n(B)
showing that 7 is the regular version of P(Yj € - | ). Therefore, by the continuity of 7, it holds
that 7((—o0, Yp]) is uniformly distributed on (0, 1), as claimed. O
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We have the following surprisingly general corollary covering, e.g., all excursion and other
bridges.

Corollary 7. Let Z = {Z; : 0 < t < [} be a measurable process and U uniformly on (0,1)
distributed random variable independent of Z. Assume that

Leb{t: Z, =Zy} =0 as.

Then the occupation times

l l
/O l{Zt<ZU} dt and A l{Zt>ZU} dt

are uniformly distributed on (0,1).

Proof. For all s € [0,]], the random variable U’(s) := U + s modulo [ is also uniformly
distributed on (0,/), and, thus, Y = {Y; : 0 < t < I}, where Y; := Zy/ (), is cyclically
stationary. We have

l l
jﬁ Wzi<zpydt = jﬁ Wy <zvy dt

l
/ 1{Yt<y0} dt.
0

Consequently, the claim follows from Proposition 6. O

2.3 Proof of Theorem 1

Let {X; : s € R} be a measurable stationary process as defined in Section 15. We consider
the case t = 0. Because

IF+I; =dy—go=V

it is enough to show that, e.g., the conditional distributions of I and dy given V coincide.
From Proposition 3 we know that dy given V is uniformly distributed on (0, V'). To prove that
this is also the case for I; define for 0 <t <V

Zy = Xgott

and consider

do v
Iy ::/ 1{X5<X0}d5:/ L{zi<2_ 5} dt-
0

90

By Proposition 3, given V' the random variable —gq is uniformly distributed on (0, V') but oth-
erwise independent of Z. Consequently, combining this with the result in Corollary 7 concludes
the proof. O
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3 Diffusion case

3.1 Proof of Theorem 1 via the Feynman-Kac formula

We prove Theorem 1 for a stationary diffusion X = {X; : s € R} living in an interval [0,7) or
[0, 7] where 0 is a reflecting boundary and in the case of the half open interval r is either natural
or entrance-not-exit and in the other case r is reflecting. It is also assumed that D = {0} in

(1), i.e.,

The cases when the state space of X is the whole R or D is an interval can be treated similarly.

The generator of X is denoted by

d d
9=Imds’

where S is the scale function and m is the speed measure. We assume that
m(dz) = m(z)dx and S(z) z/ S’ (y) dy
0

with continuous m(z) and S’(x). Recall that the stationary distribution of X is given by
(da) = m(dz) /m(E)

with m(F) < co. Fix y € E and introduce

Ho HO
u(r) =B, (eXp ( - a/ Lio<x.<ypds — ﬂ/ 1{xs>y}d8)> ,
0 0

where E, denote the expectation associated with X given that Xy = = and
HO = 1nf{t >0: Xt = 0}

From the Feynman-Kac formula it follows that u(z), > 0, is the unique bounded smooth
solution of the generalized differential equation

| au(r), 0<z<y,
gu(;z:){ Bu(z), =>y

satisfying the condition u(0) = 1. For z = y we have

_ ba (0) 05(y)
va (y) vs(y) — vYa(y) 05 (1)

where 1, and ¢, are the increasing and the decreasing fundamental solution, respectively, of
the equation

u(y)

)

Gu(z) = au(z), x> 0. (13)

For 1, the killing condition 1,(04+) = 0 must be imposed. The notation 90;, for instance,
means the derivative with respect to the scale function. Next noting that

d

Lo 0) 2= L (0 0) 98(0) — Yale) 25 W) = (@~ Bia(y) 9a(v)
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and using the time reversibility of stationary diffusions we have
E (exp(—oz]t_ — ﬁ]t"'))

- /E E (exp(—al; — BI}) | X = y) P(X, € dy)
=/ (u(y))? p(dy)
E

 (WE)”
= /E p(dy

1 1
) (Ga(oao) - Gﬁ(0,0)) ’ (14)

where, in the next to the last step, we have integrated by parts and G, (0, 0) denotes the Green
kernel at (0,0) for X (for more information about Green kernels see [1]).

It is seen in the similar way or by using the Chapman-Kolmogorov equation (see [8] Proposition
3.4) that the joint Laplace transform of (¢ — g;,d; — t) is also given by the right-hand side of
(14).

From the special form (14) of the Laplace transform of (I;", I;) it follows that

(I, 17) = UV, (L= D)V),
where V = I, + I; and U is a uniformly on (0, 1) distributed random variable independent

of V (see [8] Proposition 5.7) proving the latter statement of the Theorem.

3.2 Density of (—go,dp) in terms of a Lévy measure

Let X and M be as in Section 3.1. Clearly, the distribution of (¢ — g;,d; —t) (and of (I;", ;"))
does not depend on ¢; therefore, to simplify the notation, we take t = 0. Let A = {A;: s > 0}
be the right-continuous inverse of the local time of {X, : s > 0} at 0 (taken with respect to
the speed measure). As is well known, A is a subordinator and under the assumption Xy =0

Eo(exp(—a,)) = exp <5 /O N n+(dt))

= exp (—s / ae “nt(t,00) dt) , (15)
0
where the Lévy measure n' is given by (see [2] p. 214)
nt(dt) = LPE(HO € dt)|
dS(x) z=0+

Proposition 8. With the notation as above,

nt(t, 00)

P(—go € dt) = P(dy € dt) = dt, (16)
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__ v 4+ : g
P(V edv) = m(E) n"(dv) with V = dg — go; (17)
P(do € dt, —go € ds)/dt ds — ——— L n* (1, 00) (18)
0 » 90 - m(E) dU ’ v:t+s.

Consequently, given V the random wvariable —go (and also dy) is uniformly distributed on
(0, V).

Proof: Formula (16) is obtained by inverting the corresponding Laplace transform. Indeed,

¢4 (0)

E (exp(—adyp)) = _7m(E) @ a(0)’

(19)

and from here the inversion can be done as in [2] p. 215, see also [13, 14]. Notice that for the
right hand end point r of I it holds

lim ¢} (z) =0

xr—r

since r is either natural or entrance-not-exit or regular and reflecting. Next consider formulae
(17) and (18). Because

(—g0,do) £ (UV, (1 - U)V),

where V = dy — go and U is a uniformly on (0, 1) distributed random variable independent, of
V it follows (see [17] Proposition 2.4) that the density fir of V' is obtained from the density
fqo of —go by the rule

d
firlo) = v 2 foul0)
yielding (17). Moreover, the joint density fq, 4, of (—go,do) is given by
f!]o,do (u’ U) = fV(u + ’U)/(U + U)
and this is equivalent with (18). O

Remark 9. Let X denote the diffusion obtained from {Xs : s > 0} by killing at the first
hitting time of 0, and p(¢; z,y) the transition density (with respect to the speed measure) of
X . Then (see [2], p. 154)

d
P,(Hy € dt)/dt = ——b(t; x, =:p"(t;z,0).
(Ho € dt)/dt = TeesPlizy)| =P (52,0)

Hence, we may derive the density f,, 4, by proceeding informally via the Chapman-Kolmogorov
equation

P(dy € dt,—go € ds)/dtds

_ /0 " (da)p (t e, 0)p (512, 0)

1 d d N N
= n(B) (dsm ) /Im(dx)p(“’y”p(s;“’2)) —
! d__d .
~ m(E) (d5<y1> 250 *S’y“”)) v a0t
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3.3 Spectral representations for dy and V

In this section we show that the common distribution of dy, —go, Iy, and I; is a mixture of
exponential distributions and the distribution of

Vizdo—gozl(—)i_—FIO_

is a mixture of gamma distributions. The mixing measures are the same and closely related
to the so called principal spectral measure of X, as defined in Krein’s theory of strings, see
[3, 7, 10]. Our starting point is the result in [6] which states that there exists a unique measure
A such that

v(t) :=nt(dt)/dt = / e *t A(dz). (20)
0
Moreover, A has the properties
> A(dz)
21
| smen < 2!
and o A(g
/ ald2) _ (22)
0 z

We remark (cf. [6]) that (21) is equivalent with the defining property of the Lévy measure of
a subordinator, i.e.,

/ (IAt)nT(dt) < oo
0
For the property in (22) see [3] p. 82. and [11].
Proposition 10. Let A be the measure introduced above. Then the measure

A(dz) = A(dz)/(m(E) 2%),
is a probability measure. Moreover,

P(dy € dt)/dt = / ze~* A(dz), (23)
0

and

P(V € dv)/dv = / " e A(dz). (24)
0

Proof: To prove that A is a probability measure recall (see [15]) first that the Green kernel
G, of X has the property

11{1% aGy(z,z) =1/m(E), forallxel. (25)
Because (cf. (14))

Ga(0,0) = —0a(0)/¢4 (0),
it follows from (25), (19), (20), and Fubini’s theorem,

—ot (0 o0
m(E) = lim %( ) :/ nt (t, 00) dt
a0 Oé(pa 0

[e%e) [e’] efzt
/ dt/ dS*/ dt/ A(dz)
0 z
/°° A( dz
= ; 2
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and, therefore, A is a probability measure. Formulae (23) and (24) follow now from (17) in
Proposition 8 and spectral representation (20). O

Remark 11. From the proof of Proposition 10 a new test for positive recurrence emerges: a
recurrent diffusion X is positively recurrent if and only if

/°° A(dz) .
0

22

Acknowledgements We thank Jim Pitman for informing us about [4] and pointing out the
generality of the identity (4).
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