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30 Years of Synthetic Data
Jörg Drechsler and Anna-Carolina Haensch

Abstract. The idea to generate synthetic data as a tool for broadening access
to sensitive microdata has been proposed for the first time three decades ago.
While first applications of the idea emerged around the turn of the century, the
approach really gained momentum over the last ten years, stimulated at least
in parts by some recent developments in computer science. We consider the
30th jubilee of Rubin’s seminal paper on synthetic data (J. Off. Stat. 9 (1993)
462–468) as an opportunity to look back at the historical developments but
also to offer a review of the diverse approaches and methodological underpin-
nings proposed over the years. We will also discuss the various strategies that
have been suggested to measure the utility and remaining risk of disclosure
of the generated data.
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1. INTRODUCTION

We live in a data-driven world today. Data is collected,
whenever we use our loyalty card in the supermarket,
measure our physical activities through wearables, when
we check the online weather forecast for our weekend
trip, or when we stay in contact with our friends using
social media. In the public sector, the ever-growing im-
portance of data is reflected in concepts such as evidence-
based policy and open data movements (see, e.g., [148] or
[193]), and the fact that increasingly more countries ex-
plicitly define their own data strategies (see, e.g., [40] or
[45] for the UK). In industry, the increased reliance on
machine learning methods for decision-making results in
ever-growing demands for more data to train these mod-
els.

However, the increased availability and storage of data
also raises concerns regarding confidentiality and privacy.
There is an increasing tension between the societal ben-
efits of our digitized world and broad data access on one
hand and the potential harms resulting from the misuse of
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data that have not been sufficiently protected on the other
hand. For example, contact tracing apps played a crucial
role in containing the spread of the Coronavirus [70]. Yet,
it is well known that mobility information can be highly
sensitive [189] and can pose a high risk of reidentification
[41]. Thus, the providers of the tracing apps took great ef-
forts to ensure that the privacy of the app users was main-
tained to increase trust in these tools (see, e.g., Apple and
Google [214]).

Data providers have been concerned about these risks
for decades, and various strategies have been developed
over the years to avoid disclosing sensitive information
when disseminating data to the public [63, 95]. Still, there
is an inherent trade-off between data protection and data
utility: increasing the level of protection will inevitably
lead to lower utility, as some information will be lost.
Besides, several prominent examples of confidentiality
breaches both in the public and in the private sector [42,
86, 141, 171, 186] have demonstrated that risks of dis-
closure often still tend to be underestimated. Increasing
computer power and the fact that more and more data are
publicly available or are sold by private companies also
imply that traditional protection strategies such as swap-
ping, top-coding, or suppression are no longer sufficient
to adequately protect the data.

A promising alternative to address the trade-off be-
tween broad data access and disclosure protection is the
release of synthetic data. With this approach, a model is
fitted to the original data1 and draws from this model are

1We note that there is some ambiguity regarding the meaning of
original data and confidential data in the literature. We use both terms
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used to replace the original values. Depending on the de-
sired level of protection, only some records (partial syn-
thesis) or the entire dataset (full synthesis) are replaced by
synthetic values.

The idea of using synthetic data as a disclosure avoid-
ance strategy is commonly attributed to [175] and [118]
(although related ideas have been proposed earlier by
[115]). Their approach to synthetic data was motivated
by their own work on multiple imputation (MI) for non-
response [119, 173]. Instead of imputing missing values,
they suggested adopting the approach to replace sensitive
values with imputed values. Similar to the nonresponse
context, the release of multiple synthetic datasets would
then allow obtaining valid variance estimates that also ac-
count for the uncertainty from the synthesis models (as-
suming the models are correctly specified). However, it
took another ten years before the methodology was fully
developed, and the first practical applications started to
emerge.

Independent of the developments in the statistical com-
munity, the computer science community also proposed
relying on synthetic data as a way of mitigating the risks
of disclosure. The large body of work developed in this
field has rarely aimed at ensuring valid statistical infer-
ence, including properly quantifying the uncertainty in
the estimates obtained from the synthetic data. The re-
search on synthetic data in computer science was (and
still is) predominantly motivated by providing easier data
access to train machine learning models. For example, a
team of researchers at the University of Michigan suc-
cessfully used synthetic pathology images to improve the
accuracy of their machine learning tool for cancer predic-
tion (https://tinyurl.com/3htnhe4z). Still, both approaches
to synthetic data share the same core goal: ideally, any
analysis run on the synthetic data should provide approx-
imately the same answers that would have been obtained
if the analysis were run on the original data.

While the body of research has grown steadily over the
last thirty years and the first deployments of the idea date
back to the turn of the century, the concept really gained
momentum in the last five to ten years. Many statistical
agencies, but also other government agencies such as tax
authorities, ministries, or central banks, are exploring syn-
thetic data approaches as a promising tool to broaden pub-
lic access to their data. Especially within the health sector,
the approach gained popularity with applications ranging
from generating synthetic patient data [39] over synthetic
electronic health records [206] to generating synthetic cell
images [180]. More and more start-ups are offering syn-
thetic data generation as a service, and in the industry,

interchangeably referring to the (potentially pre-processed) data that
would be analyzed if there were no confidentiality or privacy concerns.

synthetic data are used in such diverse contexts as au-
tonomous driving [142], classifying computed tomogra-
phy images [74] or environmental monitoring [9].

Given this growing interest in the field, we consider the
30th jubilee of synthetic data as an opportunity to look
back at the historical developments but also to offer a re-
view of the diverse approaches and methodological under-
pinnings proposed over the years. We need to emphasize
at this point that the diversity of the field and the exponen-
tial growth in literature in recent years makes it impossi-
ble to offer a detailed review of all methodological tweaks
and use cases. We will therefore limit our review to syn-
thetic data methods and applications that specifically aim
at offering confidentiality protection. Other contexts in
which ideas based on synthetic data have been exploited
include, for example, microsimulation [140], which gen-
erates synthetic populations from various data sources, or
applications in machine learning, where synthetic data are
generated to increase the data pool for model training.
Furthermore, we will only discuss and review strategies
for the synthesis of regular datasets, that is, data structures
in which the units are organized in rows and the columns
contain the information collected about these units. We
will not cover synthesis strategies for text data or images.

The remainder of the paper is organized as follows: In
Section 2, we will provide a brief history of synthetic
data. Although the bounds are sometimes blurry, we treat
the developments in the statistical community separately
from the developments in computer science. The inferen-
tial procedures for obtaining valid inferences for the mul-
tiple imputation inspired synthesis approaches are cov-
ered in Section 3. In Section 4, we provide a taxonomy for
synthetic data and also discuss some extensions that have
been proposed in the literature. Sections 5 and 6 discuss
various approaches to measure the utility and remaining
risks of disclosure. The paper concludes with a discus-
sion of verification servers which might help enhance the
usefulness of synthetic data in the future.

2. A BRIEF HISTORY OF SYNTHETIC DATA

2.1 The Statistical Approach

2.1.1 Methodological developments. The idea of re-
leasing synthetic data instead of the real data was first
proposed by Rubin [175]. In a discussion of another arti-
cle, he suggested that his multiple imputation framework
[173, 174] could be used as an innovative disclosure pro-
tection strategy. He proposed treating the units that were
not sampled for the survey as missing data and to mul-
tiply impute this “missing” information. Simple random
samples from these imputed populations should then be
disseminated to the public. (We note that in practice the
two-step procedure of imputing the full population first
and then sampling from it is not necessary. It suffices to

https://tinyurl.com/3htnhe4z
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draw a new sample from the sampling frame and to gen-
erate synthetic values for the survey variables of the sam-
pled units.) If the risk of releasing original records should
be avoided completely, the records in the original sample
can also be replaced by draws from the imputation model.

Similar to multiple imputation for nonresponse, valid
inferences can be obtained from the synthetic datasets by
analyzing each dataset separately and combining the es-
timates from each dataset using simple formulas to come
up with the final estimates (see Section 3 for details).

An obvious advantage of the approach is that no origi-
nal values are included in the released data (for this rea-
son, this approach has been termed the fully synthetic data
approach in the literature to distinguish it from the par-
tially synthetic data approach described below). Further-
more, synthetic values are generated for units that never
participated in the survey. Thus, the level of protection is
very high. However, this high level of protection comes at
a price. The synthetic data are drawn from a model fitted
to the original data, and the quality of the synthetic data
directly depends on the quality of that model. Finding a
model that reflects all relationships in a complex dataset
with hundreds of variables and complicated logical con-
straints between the variables can be challenging.

A closely related approach that overcomes the lim-
itations of the fully synthetic approach was suggested
by [118]. With this approach, only the sensitive records
and/or records that could be used for re-identification are
replaced with synthetic values. Since some true values
remain in the dataset, the approach has been termed the
partially synthetic data approach. The approach offers
some flexibility over the fully synthetic data approach.
The agency can decide which part of the data needs to
be synthesized. The synthesis can range from synthesiz-
ing only some records for a single variable, for example,
all income values for individuals with an income above
a given threshold, to synthesizing all variables, basically
mimicking the fully synthetic data approach (this connec-
tion between fully and partially synthetic data is further
discussed in Section 3.3).

Ten years after the initial proposal by Rubin and Little,
Raghunathan, Reiter and Rubin [156] and Reiter [160] de-
veloped the full methodology to enable valid inferences
based on fully and partially synthetic data, respectively.
Similar to multiple imputation for nonresponse, the mul-
tiple synthetic datasets are analyzed separately first, and
the results from the different analyses are combined using
simple combining rules to obtain estimates for the first
two moments for the statistic of interest. However, these
combining rules differ slightly from the rules in the nonre-
sponse context, and they also differ between full and par-
tial synthesis. In 2012, Reiter and Kinney [166] identified
another difference between the two synthesis approaches:
posterior draws of the model parameters which are neces-
sary for full synthesis (and also in the context of multiple

imputation for nonresponse) are not required for partial
synthesis. Several years later, [153] developed combining
rules for a variant of the fully synthetic approach that can
also be used if only one synthetic copy of the original data
is available (see Section 3 for further details).

While early illustrations [10, 161] and applications [4,
102] mostly relied on classical parametric modeling ap-
proaches for generating the synthetic data, the suite of
modeling strategies has been extended over the years,
incorporating ideas from the machine learning literature
but also adopting strategies to properly account for the
complex sampling designs found in most sample surveys.
These will be reviewed in more detail in Section 4.

2.1.2 Practical implementations. The earliest applica-
tion of the synthetic data idea dates back to 1997, when
the U.S. Federal Reserve Board decided to replace mon-
etary values at high risk of disclosure in the Survey of
Consumer Finances with synthetic values [102]. [6, 7]
demonstrated the usefulness of the approach for longi-
tudinal, linked datasets using data from the French Na-
tional Institute of Statistics and Economic Studies (IN-
SEE). The most complex synthetic data product gener-
ated so far was first released by the U.S. Census Bu-
reau in 2007: the SIPP synthetic beta [4]. It contains syn-
thetic records of the Survey of Income Program Partic-
ipation (SIPP) linked to administrative records from the
Social Security Administration and the Internal Revenue
Service. Almost all of the more than 600 variables in
this longitudinal dataset are synthesized. Since its first re-
lease, the dataset has been updated regularly [19]. An-
other early application was OntheMap, a graphical in-
terface that allows visualizing detailed commuting pat-
terns for the entire United States [122]. This application
was the first to offer formal privacy guarantees based on
a concept called (ε, δ)-probabilistic differential privacy,
a relaxation of the original definition of differential pri-
vacy proposed by [65]. Three years later, the U.S. Cen-
sus Bureau released the Synthetic Longitudinal Business
Database [108, 109], a partially synthetic copy of the Lon-
gitudinal Business Database, which is generated from ad-
ministrative data at the U.S. Census Bureau and covers all
businesses in the United States. The U.S. Census Bureau
also uses synthetic data to protect sensitive information
in the American Community Survey (ACS) [85]. Another
large scale synthetic data project was conducted by the
Maryland Longitudinal Data System Center (MLDSC),
which houses longitudinal education data for the state
of Maryland, combining data from various sources. The
MLDSC launched the Synthetic Data Project in 2016,
sponsored by the Institute of Education Sciences with the
goal of facilitating access to this rich source of informa-
tion [21, 79].

Outside the United States, the approach has first been
used by Statistics New Zealand to release so-called syn-
thetic unit record files (SURFs) for teaching purposes [73,
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101]. A SURF has also been used more recently as input
data for a micro-simulation model that estimates the up-
take of and fluency in Te Reo Māori, the language of the
Māori people, for various scenarios and policy interven-
tions over the period from 2013 to 2040 [137]. The Ger-
man Institute for Employment Research released a par-
tially synthetic version of one wave of its Establishment
Panel in 2011 [52]. The approach was also adopted to fa-
cilitate access to the Scottish Longitudinal Study [139].
This study links census data with other sensitive infor-
mation from health records and death registers. Due to
the high sensitivity, access to the data is highly restricted.
To prepare their analyses, external researchers can re-
quest synthetic datasets that are tailor made to the research
questions the users are trying to answer; that is, the syn-
thetic datasets will always only contain those variables
that are needed for the planned research. The R package
synthpop [138], which is now a popular tool for generat-
ing synthetic datasets, was also developed as part of this
project.

In 2015, a project under the leadership of Statistics
Netherlands developed synthetic public use files for the
EU Statistics on Income and Living Conditions (EU-
SILC) [43]. These data, which are available for download
at the Eurostat website [71], are not meant to provide valid
statistical inferences. They can be used for training pur-
poses or for developing analysis code while waiting for
accreditation to get access to the restricted scientific use
files. More recently, Statistics Canada generated synthetic
data, which was used in a Hackathon hosted by Statistics
Canada in 2020 [178].

Synthetic data are currently at the development stage at
several agencies: Examples include the Urban Institute,
which is developing synthetic tax data for the Internal
Revenue Service [23, 22] and the Australian Bureau of
Statistics that is currently evaluating synthetic data as a
means of broadening access to its microdata [13].

Further practical applications have been discussed in
the context of protecting data containing detailed geo-
graphical information [55, 143, 151, 152, 198], preserv-
ing and protecting longitudinal data structures [133, 157],
small area estimation [176, 177], synthesizing business
data [8, 38, 61, 62, 112, 188] dealing with nested data
structures [92] or accounting for complex survey designs
[47, 48, 94, 104, 134, 212]. Hu, Savitsky and Williams
[93] proposed a strategy to reduce the risk of disclosure
for partially synthetic data by down-weighting the contri-
bution of high-risk records to the Likelihood function of
the synthesizer, while [199] developed a synthesis strat-
egy that preserves additive constraints.

2.2 The Computer Science Approach

The synthetic data approach did not get much atten-
tion in the literature on data privacy in computer science

before the turn of the century, although [115] proposed
a synthetic data approach for disclosure protection sev-
eral years before Rubin’s seminal paper. They outlined a
three-step process: (1) independently estimate the univari-
ate density for each variable that should be protected, (2)
generate new data by randomly drawing new values from
these densities, and (3) map each data point in the gen-
erated data to its corresponding point in the original data
(i.e., sort the generated data and the original data in the
same order and replace each element of the original data
with the corresponding generated element) to preserve re-
lationships between the variables.

We postulate that the lack of interest in data synthesis
can be attributed (at least in part) to the fact that privacy
standards play an important role in the computer science
literature on data privacy and the privacy standards used
before the advent of differential privacy ([65]) only fo-
cused on the properties of the data at hand. Popular stan-
dards such as k-anonymity [185], l-diversity [123], or t-
closeness [114] all establish certain requirements regard-
ing the properties of the data to consider the data safe
from (certain types of) privacy attacks. k-anonymity is
a privacy definition that requires that every unit in the
dataset is indistinguishable from at least k − 1 other units
with respect to certain identifying attributes. This means
that when considering a combination of attributes (such as
age, education, and marital status), each unique combina-
tion should occur at least k times in the dataset. The com-
plementary principle l-diversity ensures that each equiva-
lence class (a set of records that is indistinguishable based
on certain attributes) contains at least l distinct values for
the sensitive attributes. t-closeness requires that the dis-
tribution of a sensitive attribute in any equivalence class
is close to the distribution of the variable in the overall
dataset.

Synthetic data do not really fit into this notion of pri-
vacy. For example, even if a fully synthetic dataset does
not fulfill k-anonymity for any k > 1, this does not au-
tomatically imply a risk. Unlike with the original data, a
combination of attribute values that is unique in the syn-
thetic data does not automatically pose a high risk of rei-
dentification simply because the synthetic records cannot
be sensibly linked to real units. Besides, a unique attribute
combination in the synthetic data might not be unique in
the original data or it might not even exist in the original
data.

Differential privacy (DP) brought a fundamental change
in the way computer scientists think about privacy, which
paved the way for synthetic data applications in the com-
puter science literature. DP requires that changing the
database by one record has a strictly limited impact on
the results of a mechanism run on the data (we will offer
a more detailed review of DP in Section 4.5).2 Note the

2We note that two definitions of DP exist in the literature: One fo-
cuses on the impact of changing the values of one existing record
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change of focus from the data to the mechanism, which
implies that it is no longer the data that needs to be ad-
justed to achieve privacy, but the mechanism. This con-
cept of privacy aligns much better with the ideas of syn-
thetic data. All that is required is to find a synthesis mech-
anism that satisfies the requirements of DP. Soon after the
concept of DP was established in 2006, the first papers on
differentially private synthetic data started to appear.

2.2.1 Methodological developments. One of the first
approaches was developed by [16] who generated syn-
thetic data using a Fourier transformation and linear pro-
gramming for low-order contingency tables [64]. Other
early applications include [20, 32, 67, 203]. Several pa-
pers also explicitly adapted the ideas from the statistical
community to the DP context [5, 34, 122, 126]. The ap-
proach of [122] was later extended in [149] and [150].
[209, 210] proposed an approach that uses Bayesian net-
works to synthesize high-dimensional datasets, called
PrivBayes. In parallel, [113] employed Copula functions
to take into account the dependency structure of the data
(DPCopula). DP guarantees were also integrated in Gen-
erative Adversarial Networks (GANs) [204, 207].

The advent of GANs proposed by [82] resulted in a
boost in synthetic data research and applications in the
computer science literature. This is probably not surpris-
ing, as synthetic data are generated as a by-product with
any GAN model. We will review GANs in more detail
in Section 4.4.1, but the basic setup of GANs consists of
two neural networks, a generator and a discriminator. The
generator produces fake data trying to fool the discrim-
inator, which tries to distinguish the fake data from the
real data. Both neural networks are improved in an itera-
tive process. The final data produced by the generator can
be seen as a variant of synthetic data. GANs turned out to
be extremely successful for image and speech recognition
and natural language understanding. Early applications
of GANs for data synthesis also focused on generating
synthetic images (see, e.g., [44]). However, the approach
was quickly adapted for synthesizing microdata (micro-
data are often referred to as tabular data in the computer
science literature. Thus, many approaches explicitly refer
to tabular data in the title of the paper or the labeling of
the algorithm to distinguish the approach from other ap-
plications that focus on images and other types of data).
However, the adoption of GANs for microdata poses addi-
tional challenges. Microdata often have categorical vari-
ables that are sparse, and correlations among variables
are often weaker than, for example, relationships between
pixels that are located next to each other. The position of

(bounded DP), while the other limits the impact of adding or remov-
ing one record (unbounded DP) (see, e.g., Kifer and Machanavajjhala
[103] for further details.). We do not distinguish between these two
definitions in the remainder of this paper.

observations in a dataset is also only rarely informative
for microdata, as the individual records are typically in-
dependent. Relationships between variable therefore have
to be modeled without the help of any kind of spatial in-
formation.

Several of the early applications to microdata only fo-
cused on specific types of data, such as time series [69,
206] or count and binary data [39], medGAN. tableGAN
[145] claims to be the first approach capable of handling
continuous and categorical variables simultaneously. The
approach is built on a GAN originally used for image
data by converting records in the original table into a
square matrix form. medGAN was extended to categori-
cal variables and further refined in several works [15, 31].
corGAN uses Convolutional GANs and Convolutional
Autoencoders to generate discrete and continuous health
records [191]. Other applications relied on Wasserstein-
GANs (WGANs) [111, 211]. In recent years, more fo-
cus has been put on modeling relationships between vari-
ables. Conditional tabular GAN (CTGAN) developed by
[205] addresses challenges from imbalanced categorical
and multi-modal continuous data. Causal Tabular GAN
[200], Causal TGAN allows for modeling the causal rela-
tionships between variables in datasets.

Beyond approaches based on GANs, other synthesis
strategies based on (Variational) Autoencoders [31, 121,
195], Bayesian Networks [210], copulas [99, 146], ap-
proaches based on latent normal variables and Gaussian
processes [77], CLGP, or approaches that explicitly pre-
serve certain marginal distributions [129, 130] have also
been developed in recent years. For a short taxonomy of
approaches, see Section 4.

2.2.2 Practical implementations. The earliest deploy-
ment of a differentially private synthesis strategy is On-
theMap [122] already mentioned in the previous section.
The enforcement of DP for some of the publicly avail-
able tables from the US Decennial Census 2020 gener-
ated using the 2020 Disclosure Avoidance System [3] can
also be seen as a synthetic data approach. At its core,
the underlying algorithm ensures DP by cross-classifying
all variables in the dataset and adding noise to each cell
of the resulting table. The noisy table counts are turned
into synthetic microdata from which the released tables
are generated. Various strategies are implemented to im-
prove the accuracy of the generated tables. For example,
the noisy tables are generated in a hierarchical fashion.
The algorithm starts by generating noisy counts at the na-
tional level. Next, noisy counts are produced on the state
level under the constraint that the sum of noisy counts
on this level matches the counts on the state level. This
process is continued all the way down to the block level.
We note that this strategy was only used for some of the
released tables. The more granular tabulations used a dif-
ferent approach [98].
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The usefulness of various differentially private synthe-
sis approaches in practical applications was also assessed
in the three rounds of the Differential Privacy Synthetic
Data Challenge organized by the National Institute of
Standards and Technology (NIST) over the years 2018
to 2019 [33]. The winning teams relied on Bayesian net-
works or approaches to preserve pre-specified marginal
distributions. See [26] for a review of the results from the
competition.

Further applications of computer science approaches
have been envisioned, proposed, and conducted by aca-
demic institutions and industry alike. GANs, for exam-
ple, have been used to create financial time series data
[201] and synthetic health records [69, 190, 191]. [35]
also provides a validation study of a synthetic data gen-
erator for patient data with mixed results. Beyond the mi-
crodata context that is the focus of this review, GANs have
also been used to create realistic images of, for example,
skin lesions [78], pathology slides [124], and chest X-rays
[197].

3. OBTAINING VALID INFERENCES FOR THE MI
INSPIRED APPROACHES

As indicated in the Introduction, Rubin’s initial pro-
posal for data synthesis was motivated by his prior work
on multiple imputation for nonresponse. Given the close
relationships to those ideas, it seems natural to also adopt
the simple combining procedures from the multiple im-
putation literature (Rubin’s combining rules) to obtain
valid point and variance estimates from the synthetic data.
However, the synthetic data approaches differ in two im-
portant aspects from the original framework. With full
synthesis as proposed by Rubin, synthetic data are only
generated for a simple random sample of the population.
This extra sampling step needs to be taken into account.
With partial synthesis, the synthesis models are estimated
using the full data and not only the fully observed subset
of the data, as done in the nonresponse context. These de-
viations imply that the combining procedures also need to
be adjusted. The correct rules for fully synthetic data were
derived in [156], those for partially synthetic data are pre-
sented in [160]. Later, [162] also derived the multivari-
ate analogs that can be used for multi-component testing
based on Wald tests or Likelihood ratio tests. We will only
review the combining rules for univariate estimates here,
borrowing heavily from [50]. The interested reader is re-
ferred to [169], which offers a full review of all combining
rules for synthetic data and also for the nonresponse con-
text.

To understand the procedure of analyzing multiply im-
puted synthetic datasets, think of an analyst interested in
an unknown scalar parameter Q, where Q could be, for
example, the mean of a variable, the correlation coeffi-
cient between two variables, or a regression coefficient in

a linear regression. For simplicity, assume that there are
no data with items missing in the observed dataset. Infer-
ences for Q derived from the original dataset usually are
based on a point estimate q , an estimate for the variance
of q , u, and a normal or Student’s t reference distribution.
For analysis of the synthetic datasets, let q(i) and u(i) for
i = 1, . . . ,m be the point and variance estimates for each
of the m synthetic datasets. The following quantities are
needed for inferences for scalar Q:

q̄m =
m∑

i=1

q(i)/m,(1)

bm =
m∑

i=1

(
q(i) − q̄m

)2
/(m − 1),(2)

ūm =
m∑

i=1

u(i)/m.(3)

3.1 Combining Rules for Fully Synthetic Data

The analyst can use q̄m as an unbiased point estimate
for Q under the assumption that the synthesis models are
correctly specified (i.e., they match the true data generat-
ing process) and that q would be an unbiased estimate for
Q based on the original data. Its variance can be estimated
using

(4) Tf = (
1 + m−1)

bm − ūm,

where bm is an estimate for the variability of the point
estimates between the synthetic datasets and ūm is an es-
timate for the sampling variance. When n is large, infer-
ences for scalar Q can be based on t distributions with de-
grees of freedom νf = (m−1)(1− ūm/((1+m−1)bm))2.
Similar to the nonresponse context, these inferences are
valid under the assumption that the point estimate q that
would have been used on the original data approximately
follows a normal distribution. Furthermore, valid infer-
ences can only be obtained if the analysis model and the
synthesis model are based on the same modeling assump-
tions (congeniality). We will come back to this point in
Section 4.2. We note that similar assumptions are also re-
quired for the estimation procedures for partially synthetic
data outlined below.

A disadvantage of the variance estimate for fully syn-
thetic data is that it can become negative. For that rea-
son, [158] suggested a slightly modified variance estima-
tor that is always positive but will tend to overestimate the
true variance, T ∗

f = max(0, Tf )+ δ(
nsyn
n

ūm), where δ = 1
if Tf < 0 and δ = 0 otherwise. Here, nsyn is the number
of observations in the released datasets sampled from the
synthetic population. Negative variance estimates can be
avoided by increasing the number of synthetic datasets,
as this helps to stabilize the estimate of the variance be-
tween the synthetic datasets, bm. Given the large variabil-
ity of this estimate in the fully synthetic data context, most
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researchers recommend generating more than the m = 5
datasets that are often found in the nonresponse literature.
Suggestions for picking m range from m = 10 [155] to
20 < m < 40 [158], while some illustrative applications
use m = 100 [161].

3.2 Combining Rules for Partially Synthetic Data

Similar to fully synthetic data, the analyst can use q̄m

to estimate Q. The variance of q̄m for partially synthetic
data can be estimated using

(5) Tp = bm/m + ūm.

When n is large, inferences for scalar Q can be based
on t distributions with degrees of freedom νp = (m −
1)(1 + ūm/(bm/m))2. Note that the variance estimate Tp

can never be negative, so no adjustments are necessary for
partially synthetic datasets. Given that bm/m is usually
dominated by ūm, choosing the number of imputations for
partial synthesis has received limited attention so far, but
m = 5 seems to be the default choice that is often used in
practice.

3.3 An Alternative Variance Estimate for Fully
Synthetic Data

When generating fully synthetic data, most researchers
do not follow the protocol as initially envisioned by [175].
Rubin assumed that in addition to the survey variables Y

some additional variables X would be available for the
full population. In the survey context, these variables rep-
resent design variables available from the sampling frame.
Under this assumption, fully synthetic data for Y would
be generated by fitting a model for f (Y |X) using the sur-
vey data and using this model to generate synthetic values
for a new sample of design variables Xnew by drawing
from f (Y |Xnew). Only the synthetic Y values would then
be released to the public.

In practice, researchers typically only use the informa-
tion in Y to generate synthetic data. In this setting, fully
synthetic data can be seen as an extreme variant of par-
tial synthesis for which the set of unsynthesized records
is empty. This also implies that the combining rules for
partial synthesis are still valid as first noted by [51]. Ex-
tending these ideas, [153] proposed an alternative vari-
ance estimator that can be used in this situation:

Ts =
(

nsyn

norg
+ 1

m

)
ūm,

where nsyn is the number of synthetic records and norg
is the number of records in the original dataset. Note that
this variance estimator does not rely on the between impu-
tation variance bm. This offers three important advantages
compared to Tf , the variance estimator for fully synthetic
data discussed above: (i) the estimator Ts can never be
negative, (ii) it has less variability than Tf (bm is only an

estimate for the true variability between the datasets and
the fact that it is based on a limited number of m syn-
thetic datasets implies high uncertainty in this estimate,
which is also the reason why Tf can sometimes be neg-
ative), and (iii) valid variance estimates can be obtained
from a single synthetic dataset. The last point is especially
important because previous research has shown that the
risk of disclosure increases with the number of synthetic
datasets [57, 165]. Of course, the price to pay is an in-
creased level of uncertainty if only one synthetic dataset
is released. Note that assuming nsyn = norg, the variance
can be reduced by 25% when releasing two datasets in-
stead of one dataset. These accuracy gains are diminish-
ing quickly with increasing m and the relative reduction
in variance is bounded by 0.5 for m → ∞. See [53] for
further discussion of the advantages and disadvantages of
the different synthesis strategies and which variance esti-
mator is appropriate in which scenario.

An alternative approach for obtaining valid inferences
from a single synthetic dataset was proposed by Klein and
Sinha [110] under the assumption that the data follow a
multivariate normal distribution. The authors also present
analysis procedures for the linear regression context under
the assumption that only the dependent variable is synthe-
sized.

4. A TAXONOMY OF SYNTHETIC DATA
APPROACHES

Given the broad range of synthetic data approaches and
use cases, finding a one-dimensional taxonomy that fully
covers all variants of synthetic data is difficult. Beyond
the obvious distinction between approaches inspired by
the ideas of multiple imputation (and their extensions)
and approaches that originated in computer science, we
suggest three alternative classification schemes: sequen-
tial vs. joint modeling approaches, parametric vs. machine
learning inspired approaches, and approaches that offer
formal privacy guarantees vs. those that do not. Obvi-
ously, other classifications, such as partial vs. full syn-
thesis would be possible. However, we feel that classify-
ing the approaches along these lines is obvious and does
not require a separate discussion. Instead, we list a final
class of synthesis approaches that are extensions of the
MI-based approaches. These approaches are treated sepa-
rately, as they typically require different procedures to ob-
tain valid inferences compared to those discussed in Sec-
tion 3.

4.1 Sequential vs. Joint Modeling

Most of the early applications of synthetic data relied
on a sequential modeling approach, in which each vari-
able is synthesized sequentially using models that condi-
tion on any variables that have been synthesized previ-
ously or variables that remain unchanged in the final data.
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The underlying idea is that any joint distribution can be
rewritten as a product of conditional distributions.

The sequential regression approach offers great flexi-
bility, as different models can be used for each variable.
These might include parametric models such as linear re-
gression, logit models [161], or models based on quan-
tile regressions [147], but also any machine learning tool
that enables random draws from a conditional distribu-
tion, such as Classification and Regression Trees (CART,
Reiter [163]) or random forests [30].

In contrast to the sequential modeling approach, joint
modeling aims at directly specifying the joint distribu-
tion of the data. While early approaches such as the IPSO
method [28] relied on a multivariate normality assump-
tion that is seldom justified with real data, more flexi-
ble models have been proposed recently. For categori-
cal data, [91] demonstrated that an approach based on
a Dirichlet Process Mixture of Products of Multinomi-
als (DPMPM) can offer high utility in real data appli-
cations. The approach was later extended to also allow
for structural zeros, that is, impossible variable combi-
nations such as married toddlers [125]. Synthesis ap-
proaches based on DPMPMs are implemented in the
R package NPBayesImputeCat [89]. A related approach
based on Quasi-Multinomial distributions was proposed
by Hu and Hoshino [90], while Jackson et al. [96, 97] pro-
posed saturated count models for easy synthesis of large
databases with a-priori utility guarantees. [105] showed
good performance of Dirichlet Process Normal Mixture
Models for synthesizing continuous business data. This
approach was later extended to also account for informa-
tive sampling designs that are common with business sur-
veys [104]. Furthermore, many of the synthesis strategies
used in computer science, such as Generative Adversarial
Networks [82] or Bayesian Networks [210] can be sub-
sumed under this category. We will review the literature
based on these approaches in Section 4.4.

4.2 Parametric vs. Machine Learning Based

The methodology for obtaining valid inferences based
on synthetic data reviewed in Section 3 above relies on the
assumption that the synthesis models are correctly speci-
fied, that is, they match the true data generating process.
An additional requirement is that the synthesis model is
congenial to the analysis model to be run on the synthetic
data. In broad terms, congeniality [131] means that the
synthesis model is based on the same (modeling) assump-
tions as the analysis model.

To be fair, as it is impossible to anticipate all analyses
that will be run on the synthetic data, achieving conge-
niality is typically a hopeless goal in practice. Still, it has
been shown in the nonresponse context [131] that approx-
imately valid inferences can be obtained if the synthesis
model encompasses the analysis model, that is, it con-
tains more variables than the analysis model. Intuitively,

this makes sense: adding a predictor variable during syn-
thesis that, in reality, is conditionally independent of the
variable to be synthesized given the other predictors in
the model will not do much harm. It might unnecessarily
increase the variance from synthesis, but it will not in-
troduce any bias. However, omitting important variables
will introduce bias, as the relationship between the omit-
ted variable and the synthetic variable will be attenuated
in the synthetic data.

Based on this reasoning, it is generally recommended
to use a rich set of predictors in the synthesis model,
ideally conditioning on all other variables in the dataset
and also including interaction and squared terms if possi-
ble (see [117] for a similar argument in the nonresponse
context). However, this strategy is typically not feasible
when using parametric models, as many datasets contain
dozens of variables. Especially with categorical variables,
multicollinearity issues and the problem of perfect predic-
tion often imply that fitting parametric models containing
many variables is no longer possible and uncongeniality
becomes a major concern.

To overcome this problem, researchers started explor-
ing alternative synthesis strategies, borrowing ideas from
the machine learning literature. In 2005, [163] suggested
using CART. [30] later extended these ideas to random
forests, and [49] developed strategies to adapt Support
Vector Machines for data synthesis. Synthesis strategies
based on genetic algorithms were explored in [36] and
[37]. All these approaches have the advantage that they
let the data speak for itself, that is, they might automati-
cally identify higher-order relationships that might easily
be missed when specifying parametric models. Further-
more, they are not affected by multicollinearity or per-
fect prediction problems and can still be directly applied
if the number of variables exceeds the number of obser-
vations. In an evaluation study, [59] compared the differ-
ent approaches and found that CART models offered the
best results in terms of preserving the information from
the original data. As explained in more detail below, a
possible downside of these models is the risk of exactly
replicating some records from the original data even for
continuous variables.

In the computer science approach to synthetic data, the
problem of uncongeniality was never explicitly consid-
ered. Since from the beginning the expected use case was
the training of machine learning models, the focus of the
research was on machine learning models right from the
start. Before we review the different approaches from the
computer science literature, we briefly discuss some ex-
tensions of the MI based synthesis procedures.

4.3 Extensions of the MI Inspired Approaches

The approaches reviewed in this section offer various
extensions to the classical synthesis problem. They differ
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from the other approaches in that they require different
inferential procedures than those discussed in Section 3.
We will not review all these procedures here for brevity.
Instead, we refer to the various papers for further detail.

The first extension of the classical MI-based synthesis
approach was proposed by [159]. The paper offers a strat-
egy to deal with missing data and data confidentiality si-
multaneously. The author proposes a two-step procedure,
in which missing values are imputed m times at the first
stage, and r partially synthetic datasets are generated at
the second stage within each first stage nest, that is, the
final data comprises m · r datasets. The appropriate pro-
cedures for multi-component hypothesis testing under this
scenario were derived in [107].

In a similar spirit, [165] proposed a two-stage synthesis,
for which variables that have a higher risk of disclosure
are synthesized at the first stage, and variables that require
a larger number of synthetic datasets to reduce the model
uncertainty are synthesized on the second stage. This ap-
proach was motivated by previous findings [57] that in-
creasing the number of synthetic datasets can lead to in-
creased risks of disclosure. The authors show that their
approach offers better disclosure protection and similar
utility compared to standard one-stage synthesis with the
same total number of synthetic datasets.

A final type of extension proposes to use a (sub)sam-
pling step before the synthesis. This approach is espe-
cially attractive for Census data, for which it is common
practice that only random samples of the full data are
released to the public. What makes this approach spe-
cial in the synthesis context is that the synthesis mod-
els can be estimated using the full data even if only a
(sub)sample is synthesized later. [58] present the method-
ology if the original data covers the full population. Using
a real dataset, they illustrate that releasing synthetic sam-
ples can actually offer higher utility than releasing sam-
ples of the original data. This surprising result is due to
the fact that the synthesis models are based on informa-
tion from the full population. [60] extend the methodol-
ogy to the context where the original data is itself already
a sample.

4.4 MI Based vs. Computer Science Approaches

The methods covered in Sections 4.1 to 4.3 were mostly
inspired by the multiple imputation framework, treating
the synthesis process as a missing data problem. The goal
is to “impute” synthetic values given the original data. As
discussed previously, an important focus from the begin-
ning was to be able to obtain valid point estimates based
on the synthetic data and to accurately quantify the un-
certainty of these estimates. A key distinction between
the MI-based approaches and the concepts proposed in
the computer science literature is that the latter never
aimed at being able to quantify the uncertainty of the es-
timates obtained from the synthetic data. Thus, the idea

of generating multiple synthetic datasets was never dis-
cussed and different modeling strategies were proposed.
In computer science, machine learning and deep learning
methods such as Generative Adversarial Networks [82],
GANs and Variational Autoencoders [106], VAEs have
been popular generative modeling frameworks in recent
years. Thus, it is perhaps not surprising that a large body
of work on synthetic data in computer science is based
on one of these concepts. In this section, we offer a brief
overview of the most popular variants of these two ap-
proaches. Due to the large body of work in the field, we
discuss only the most influential contributions, excluding
works that are targeted toward very narrow areas of appli-
cation.

4.4.1 Generative adversarial networks (GANs). As in-
dicated in the Introduction, we will only focus on GANs
for microdata synthesis in this review. Compared with the
abundance of literature on GANs and other deep learn-
ing approaches for text, audio, and visual data genera-
tion, literature on the use of deep generative learning ap-
proaches for the synthesis of microdata is relatively sparse
but rapidly growing [31, 39, 111, 145, 205].

GANs consist of two neural networks that compete with
each other: the so-called generator (network) is trained
to generate synthetic data and outputs synthetic samples
given a random noise input. The discriminator (network)
is trained to discriminate between real and synthetic data.
The discriminator tries to minimize the misclassification
error while the generator loss is calculated from the dis-
criminator’s classification—it gets penalized if it does not
fool the discriminator. The standard combined loss func-
tion was described by [82] and is also called minimax
loss, since the generator tries to minimize it while the dis-
criminator tries to maximize it. The training of the GAN
is an iterative process in which each of the neural net-
works updates its parameters based on the feedback re-
ceived from the other network, that is, GANs make use of
adversarial feedback loops to learn how to generate syn-
thetic data that is indistinguishable from real data.

In recent years, Wasserstein GANs (WGANs) [11]
have become increasingly popular. WGANs use the
Wasserstein distance for the cost function instead of the
Kullback–Leibler (KL) and Jensen–Shannon (JS) Diver-
gence to avoid the problem of vanishing gradients [11]. In
the context of Generative Adversarial Networks (GANs),
vanishing gradients can occur if the discriminator be-
comes too strong compared to the generator. This is be-
cause if the discriminator can easily distinguish between
real and fake data, the gradients of the loss function with
respect to the parameters of the neural network become
very small as they propagate from the output layer to
the earlier layers of the network. This means that the up-
dates to the parameters during training become extremely
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small, leading to slow or stalled learning. The Wasser-
stein distance is also called Earth Mover’s distance and is
widely used to solve optimal transport problems, that is,
problems where the goal is to move things from a given
configuration to a desired configuration with the smallest
cost possible. Early examples for the use of WGANs for
data synthesis can be found in [31].

For WGANs, a Lipschitz constraint is usually enforced
for the discriminator. A Lipschitz constraint limits the rate
at which the output of a function can change with respect
to its input. When applied to WGANs, this property helps
stabilize the training process by controlling the rate of
change in the discriminator’s output function. This in turn
ensures more controlled and stable updates to the model
parameters, enhancing the overall performance of the net-
work. To implement this constraint, [11] propose to clip
the weights if necessary, but noted that this approach is
not optimal. To overcome this problem, WGAN-gradient
penalty (WGAN-GP) [83] uses a gradient penalty to ful-
fill the Lipschitz constraint. [15], [111], actGAN, [205]
and [211], CTAB-GAN, all use different adaptations of
WGAN or WGAN-GP for data synthesis. [205] use nor-
mal mixture distributions to improve the fit for continuous
variables. They also use a conditional generator, aiming
for proper conditional distributions for each variable.

There also exist alternatives to WGANs for data syn-
thesis, for example, GANs based on the Cramér Distance
[135].

Causal-TGAN is an approach that stands out from other
GAN approaches, as it explicitly takes the potentially
complex causal relationships between the variables into
account. It is composed of two steps, first obtaining the
causal graph that represents the causal relations of the
original dataset and then using the causal graph when
training the GAN [200].

4.4.2 Variational autoencoders (VAEs). Another ap-
proach based on deep neural networks that has been
adapted for data synthesis lately are variational autoen-
coders [106], VAE. In comparison to GANs, a VAE has
three instead of two networks, which learn complemen-
tary tasks: an encoder network, a decoder network, and
a discriminator. The encoder network maps the data onto
a latent representation, while the decoder network tries
to reconstruct it. As with GANs, the discriminator net-
work decides for each given sample whether it is real
data or data generated by the decoder network. A VAE
is trained to minimize the reconstruction error between
the reconstructed data and the initial data. Data synthesis
approaches that use VAE are discussed in Srivastava et al.
[183], VEEGAN, [31, 195, 205], and [121].

4.5 Differentially Private vs. Nondifferentially Private
Data Synthesis

In recent years, DP [65] has been widely adopted as a
definition of privacy offering formal, that is, mathemati-
cally quantifiable privacy guarantees. DP requires that the

impact that any single record can have on the probability
of obtaining a specific result is strictly bounded. Specifi-
cally, ε-DP, often referred to as pure DP to distinguish it
from relaxations such as (ε, δ)-DP, requires that the log-
difference in the probability of obtaining a specific output
computed on two neighboring datasets, that is, datasets
that differ only in one record, is bounded between ε and
−ε. In layman’s terms, an algorithm is differentially pri-
vate if someone seeing the output statistic cannot tell if
the information on a specific individual was used in the
computation or not. See [66] or [194] for an in-depth dis-
cussion of DP and some relaxations of the concept that
have been proposed in the literature. The body of work on
DP has grown exponentially in recent years and several
tech companies, such as Apple [213], Google [68], and
Microsoft [46] as well as the U.S. Census Bureau [2, 72]
recently adopted the approach for some of their data.

The concept of DP has also stimulated research on gen-
erating differentially private synthetic data. In this case,
the synthetic data is the output of the algorithm, and
hence a synthesizer needs to ensure that the generated
data would not change substantially if any possible orig-
inal data (and not only the data at hand) is changed by
one record. Without further adjustments, all synthesis ap-
proaches discussed in the previous sections do not satisfy
this requirement. For example, if a standard linear regres-
sion approach is used to generate synthetic data, it is easy
to come up with extreme examples, in which the estimated
regression coefficients change substantially if the value of
a single record is changed in the original data. Since this
would imply that the distribution from which the synthetic
data are sampled can change arbitrarily if one record is
changed in the original data, such a synthesizer violates
the requirements of DP.

The major advantage of differentially private synthetic
data is that it also offers a strong formal privacy guaran-
tee for any output computed on the synthetic data: DP is
immune to post-processing, that is, any function of a dif-
ferentially private output is guaranteed to also be differen-
tially private with the same privacy guarantees as the orig-
inal output (see, for example, Proposition 2.1 in Dwork
and Roth [66]). This implies that researchers working
with the differentially private synthetic data are more free
to interact with the data and use any tools and workflows
to process the data without the risk of accidentally or pur-
posefully revealing any sensitive information.

Various approaches have been proposed in the literature
for generating differentially private synthetic data (see
[24] for a review of early approaches). Using marginal
distributions for the synthesis has been one of the most
popular approaches. Noise is added to either one-, two- or
three-way marginal distributions [120, 129, 130]. Another
popular approach for differentially private data synthesis
are Bayesian networks [14], most prominently PrivBayes
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by [210]. It can be difficult to represent all important cor-
relations in PrivBayes. Therefore, [29] propose a Markov
random field (MRF) that models the correlations among
the variables in the original datasets, and then uses the
MRF for data synthesis (PrivMRF). Game-based ap-
proaches such as those by Hardt, Ligett and McSherry
[84], MWEM, and Gaboardi et al. [76], Dual-Query, re-
quire a set of specified queries, optimizing the synthesis
to ensure high validity for these queries. Yet another pop-
ular approach developed by Li, Xiong and Jiang [113],
DPCopula, is based on Copula functions.

Finally, work on integrating DP into generative adver-
sarial networks (GANs) has been growing fast in the last
few years [18, 136, 192, 204, 207]. Since the generator
commonly never accesses the real data directly, only the
discriminator needs to be modified to ensure DP: [18]
and [204] built on [1] for the private optimization, adding
Gaussian noise to the gradient of the Wasserstein distance
in the WGAN algorithm. The gradients are also clipped
if necessary. [75] also proposes a private extension of
WGAN. Conditional GANs [132], CGAN are adapted
by [192]. [207] use the Private Aggregation of Teacher
Ensembles (PATE) framework proposed by [144], which
provides a differentially private method for classification
tasks. The framework is used for the discriminator’s task
to differentiate real and fake data.

To provide greater robustness against low utility of gen-
erated DP data sets, [136] proposed a method combining
weighted samples produced by a sequence of generators.
Their approach can be applied to differentially private or
nonprivate GANs for data synthesis.

5. UTILITY EVALUTION

There is a large body of literature on measuring the va-
lidity of data that has undergone some form of perturba-
tion to protect confidentiality. Most of these methods can
also be used to measure the validity of synthetic data. We
will focus on the measures that are most relevant for syn-
thetic data. Additional measures are discussed, for exam-
ple, in [95] or [12].

Utility metrics can be broadly divided into three cate-
gories: The first category, commonly referred to as global
utility metrics or broad measures of utility, tries to assess
the utility by directly comparing the original data with the
protected data. These measures offer the advantage that no
assumptions regarding the types of analyses the synthetic
data will be used for need to be made. On the downside,
given that utility is measured on a very aggregated level,
good results for these measures do not necessarily guar-
antee high utility for a specific type of analysis the user
might be interested in. Outcome-specific utility metrics or
narrow measures of utility sit on the other end of the spec-
trum. They measure the utility for a specific analysis, for
example, the results of a linear regression model. A third

class of measures that we label fit-for-purpose measures
usually form the starting point of any utility assessment.
In broad terms, they assess whether the synthetic data
look reasonable. Examples of these measures would be
graphical comparisons of the marginal and bivariate dis-
tributions of all variables or consistency checks to avoid
implausible values such as negative age values in the syn-
thetic data.

5.1 Global Utility Metrics

As discussed above, these measures try to evaluate the
utility by directly comparing the synthetic data to the orig-
inal data. One common approach in this context is to use
some distance measure, such as Kulback–Leibler diver-
gence [100] or Hellinger distance [80]. A downside of
these general distance measures is that they can be dif-
ficult to compute for large datasets. An alternative strat-
egy tries to assess how easy it is to discriminate be-
tween the original data and the synthetic data, borrow-
ing ideas from the literature on propensity score match-
ing [172]. Propensity scores are estimated by stacking the
norg original records and the nsyn synthetic records and
adding an indicator, which is one if the record is from
the synthetic data and zero otherwise. In the next step,
a model is fitted using the information contained in the
data to estimate the propensity scores, that is, to esti-
mate the probability for each record to belong to the syn-
thetic data. If the synthetic data would be an exact copy
of the original data, the data would not offer any infor-
mation to discriminate between the data sources and the
distribution of the estimated propensity scores would be
the same for both datasets. Thus, one way to measure
the utility of the synthetic data is to evaluate the differ-
ence in the distribution of the propensity score between
the original data and the synthetic data. Various metrics
can be used for this purpose. [25] suggest estimating the
Kolmogorov–Smirnov distance between the two distribu-
tions (they call this measure SPECKS for Synthetic data
generation; Propensity score matching; Empirical Com-
parison via the Kolmogorov–Smirnov distance). Alter-
natively, the Mann–Whitney U test (Wilcoxon rank-sum
test) can also be used.

A measure that gained popularity in recent years is
the propensity score mean squared error (pMSE) as an
evaluation metric [182, 202]. Let pi , i = 1, . . . ,N with
N = norg + nsyn denote the predicted value obtained from
the model for record i in the stacked dataset. The pMSE
is calculated as 1/N

∑
N(pi − c)2, with c = nsyn/N . The

smaller the pMSE the higher the analytical validity of
the synthetic data (note that pi → c if the model cannot
discriminate between the original data and the synthetic
data). A downside of the pMSE noted by [202] is that it
increases with the number of predictors included in the
propensity model. To overcome this problem, [182] de-
rived the expected value and the standard deviation of the
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pMSE under the null hypothesis that the synthesis model
is correctly specified and proposed two additional utility
measures. The first measure is the pMSE ratio which is
computed as the empirical pMSE divided by its expected
value under the null. The second measure is the standard-
ized pMSE, which is the empirical pMSE minus its ex-
pectation under the null divided by its standard deviation
under the null. In a recent paper, [54] critically discussed
the pMSE illustrating that the estimated scores are highly
dependent on the specification of the propensity model
and that even blatant differences in the utility between
different synthesizers are sometimes not picked up by the
pMSE.

5.2 Outcome-Specific Utility Measures

These measures explicitly focus on measuring the use-
fulness of the synthetic data for a specific analysis task.
For example, a straightforward visualization of the ana-
lytical validity is to plot estimates of interest (means, re-
gression coefficients, etc.) obtained from the original data
against the same estimates obtained from the synthetic
data. If the utility is high, the coefficients should cluster
around the 45 degree line. Typically, the comparison plots
between the original and synthetic datasets are only acces-
sible to the entity or individual synthesizing the data, not
the end user. This is because releasing these comparison
plots could potentially reveal sensitive information about
the original dataset.

A downside of this evaluation is that it does not account
for the inherent uncertainty of the estimates. Larger devi-
ations between the estimates might be acceptable, if the
sampling error is large, for example, if the estimate of in-
terest is based on a small subset of the data. The same
deviation might be problematic for a statistic based on the
entire sample. A popular measure that also takes the un-
certainty of the estimates into account is the confidence in-
terval overlap measure proposed by [100]. It measures the
relative average overlap between the confidence interval
obtained from the original data and the confidence inter-
val obtained from the synthetic data. An overlap measure
close to one indicates that approximately the same infer-
ential conclusions will be drawn irrespective of whether
the synthetic data or the original data were used for the
analysis. The measure is defined in such a way that it pun-
ishes increased uncertainty in the synthetic data, that is,
for two synthetic data intervals that fully contain the inter-
val from the original data, the measure favors the shorter
interval. A downside of the measure is that it becomes
meaningless for very large datasets as very small biases
in the point estimates will inevitably lead to no overlap
between the confidence intervals.

Given the increased relevance of machine learning ap-
proaches, another utility metric gained popularity in re-
cent years, especially in the computer science literature:

machine learning efficacy. Utility measures of this type,
which are also referred to as measures of model compara-
bility, assess whether machine learning models trained on
the synthetic data give similar results compared to when
they were trained on the original data. For these evalua-
tions, the models of interest are typically trained on both
the synthetic data and the original data and then the per-
formance of the models is compared based on the same
set of test records, which is obtained from the original
data. The utility of the synthetic data is considered high,
if classical evaluation criteria such as accuracy, F1 score,
etc., are similar irrespective of whether the models were
trained using the original data or the synthetic data. Some-
times, utility is also evaluated by assessing whether using
the synthetic data for model training would lead to the
same ranking of various machine learning models. For ex-
ample, if the original data would suggest that a classifier
based on a multilayer perceptron performs better than a
random forest and the random forest is better than logistic
regression, the same ranking should be found if the syn-
thetic data were used for model training.

5.3 Fit-for-Purpose Measures

These measures represent the first step when evaluating
the usefulness of the generated data. We treat them sepa-
rately from the other two measures, as they do not neces-
sarily focus on measuring the validity of specific analyses
that might be important for the users of the data. They also
do not try to directly assess the similarity of the original
and the synthetic data in one global metric. Their main
aim is to get a first impression of the quality of the syn-
thetic data, and, unlike the global measures, they can help
to identify aspects of the synthesis process that might still
need to be improved. These measures can be divided into
three groups: graphical evaluations, plausibility checks,
and computing various goodness-of-fit measures.

Graphical evaluations typically include strategies such
as side-by-side plots of the marginal distributions of the
synthetic and the original data or contour plots for com-
paring bi-variate distributions. They also include visual
comparisons of conditional distributions such as the in-
come distribution for males and females or for different
age groups.

For the plausibility checks, it is important to involve
subject-matter experts that regularly work with the data.
This is crucial, as not all inconsistencies are immediately
obvious. For example, while it might be straightforward
to identify problems such as married two-year-olds, it is
much more difficult to judge which year-to-year change
in turnover would be considered plausible for an estab-
lishment in a given industry in a given year.

Finally, any goodness-of-fit measure can be used to as-
sess the similarity for specific aspects of the original and
synthetic data. For example, the Kolmogorov–Smirnov
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test statistic can be used for each continuous variable in
the dataset. Cross-tabulations of several variables (dis-
cretizing continuous variables if necessary) can be evalu-
ated using the χ2 statistic or the likelihood ratio statistic.
[196] discuss the advantages and disadvantages of var-
ious metrics. However, it must be noted that the statis-
tics should not be used to test for statistically significant
differences between the original and the synthetic data.
Given that the synthetic data are generated based on infor-
mation from the original data, the two samples cannot be
treated as independent—an assumption underlying most
goodness-of-fit tests. Thus, any p-values computed using
the standard test procedure would be misleading. Never-
theless, the value of the test statistic can still be used to
compare the performance of different synthesis strategies.
Furthermore, the test statistic can also be used as a met-
ric to identify potential problems with the quality of the
synthetic data. For example, if the test statistic is high for
many of the cross-tabulations involving age, this serves as
an indicator that the synthesis of the age variable needs to
be improved.

The pMSE measure discussed in Section 5.2 can also
be used as a fit-for-purpose measure by only including the
variables of interest when estimating the propensity score.
An illustration of how this strategy can be used to visual-
ize the utility for bi-variate distributions is presented in
[154]. These graphical visualization tools are also imple-
mented in the R package synthpop [153].

In [154], the authors empirically evaluate various good-
ness-of-fit measures and find a large correlation (> 0.9)
between most of them. Noticeably, the adjusted χ2 test
proposed by [196], the Freeman–Tukey statistic, the
Jensen–Shannon divergence (JSD), and the pMSE had an
empirical correlation above 0.99, so did the Kolmogorov–
Smirnoff test statistic, the Mann–Whitney test statistic,
and two additional measures that we don’t review here
for brevity. In practice, this seems to imply that it is suffi-
cient to only use one or two goodness-of-fit criteria when
assessing the utility of the generated data.

6. RISK ASSESSMENT

From a risk perspective, there is a fundamental differ-
ence between disseminating partially or fully synthetic
data. With partial synthesis, there still exists a one-to-one
mapping between the original data and the synthetic data.
With fully synthetic data, this is no longer the case. In fact,
with this approach, the synthetic data does not have to
be of the same size as the original data. This implies that
measuring the risk of re-identification, as commonly done
for other disclosure protection strategies [164, 179, 181],
is not meaningful for fully synthetic data. However, this
does not mean that fully synthetic data can be assumed

to have no risk of spilling sensitive information. For ex-
ample, [125] illustrate using real data that if a fully con-
ditional specification approach (which is commonly ap-
plied when using multiple imputation in the nonresponse
context) is used for CART-based synthesis, there is a risk
that the synthesizer simply replicates most of the origi-
nal records. The problem arises as the approach always
conditions on all other variables in the dataset. With com-
plex datasets containing many (categorical) variables, this
can lead to situations in which the values of the variable
to be synthesized are completely deterministic given the
other variables. The CART synthesizer can get stuck in
such a situation, simply replicating the records from the
original data. While such a problem can easily be avoided
by not using the fully conditional specification approach
(the approach offers no advantages in the context of syn-
thetic data), this example still highlights that it would be
naïve to assume that fully synthetic data will never pose
any threats of disclosing sensitive information. However,
measuring these risks is challenging and research in this
area is still limited.

We start this section by reviewing the approaches that
have been proposed in the literature to assess risks for
fully synthetic data. In principle, these measures can also
be used to assess the risks for partially synthetic data,
while the risk measures that we review in the second part
of this section are only useful for partial synthesis as they
try to assess the risk of re-identification for the generated
data. We also refer the interested reader to Hu [88], which
contains a detailed review of Bayesian risk measures for
synthetic data.

6.1 Measuring the Risk of Disclosure for Fully
Synthetic Data

Even though the link between the original and the syn-
thetic data is broken with full synthesis, some agencies
still evaluate how many synthetic records have a unique
match in the original data. The reasoning behind this eval-
uation is that the agencies are concerned about perceived
risks. Survey respondents might be concerned if they find
a synthetic record that exactly matches their own record,
especially if their combination of attributes makes them
unique in the original data.

Some authors [145, 211] also compute the distance be-
tween the synthetic data records and their closest neigh-
bors in the original data. The average of these distances
across all synthetic records is then used as a risk mea-
sure. From a practical perspective, it is not obvious which
risk this measure is supposed to quantify. Even if the aver-
age distance is small, the distance could be large for some
records. A potential attacker would never know which
records have small distance and even if the distance is
small, this does not necessarily imply a risk if the clos-
est record is in a high density area of the data distribution.
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Another measure that evaluates risk by matching cases
from the original and synthetic data was proposed by
[187]. They suggest dividing the variables in the dataset
into key variables, which are assumed to be known by the
attacker, and target variables, which the attacker tries to
infer. They assume that the attacker focuses on records
with low l-diversity for the target variables within a given
equivalence class given by the key variables. Let K denote
the vector containing the key variables and T denote the
vector of target variables. The authors define the Within
Equivalence Class Attribution Probability (WEAP) as

WEAPj = Pr(Tj |Kj) =
∑n

i=1 I (Ti = Tj ,Ki = Kj)∑n
i=1 I (Ki = Kj)

,

where I (·) is the indicator function that is one whenever
the statement inside the parentheses is true and zero oth-
erwise, and n is the size of the database. In their appli-
cation, the authors focus on those synthetic records for
which WEAPj = 1. For those records, they compute the
Targeted Correct Attribution Probability (TCAP):

TCAPsj = Pr(Tsj |Ksj )o

=
∑n

i=1 I (To,i = Ts,j ,Ko,i = Ks,j )∑n
i=1 I (Ko,i = Ks,j )

,

where the subscript s denotes synthetic data and o denotes
the original data. The TCAP score is bounded between
zero and one, with larger values indicating higher risks.

Another class of risk measures for fully synthetic data
focuses on the fact that the synthesis models themselves
can leak some information regarding the content of the
original data. For example, when using a fully saturated
log-linear model to synthesize a set of categorical vari-
ables combined with vague prior information, the exis-
tence of certain attribute combinations in the synthetic
data reveals that the same combination must have been
present in the original data. In the computer science liter-
ature, these types of risk evaluations are called member-
ship attacks, as an attacker will learn that a certain record
was present in the original data. Various strategies to es-
timate the risks from membership attacks have been pro-
posed in the literature. Most of these approaches assume
that the attacker already knows the true values for some
target records and uses this information to learn whether
these units are included in the original data [184]. These
evaluations are based on the strong assumption that the
attacker is not interested in learning something new about
a unit contained in the data. Instead, the only goal is to
learn whether the unit was part of the original data. There
are situations in which learning this information is con-
sidered unacceptable: some laws explicitly state that such
risks must be avoided. In addition, sometimes the fact that
someone is contained in a database already reveals sensi-
tive information, if the database only contains a specific
subgroup of the population such as the Survey of Prison

Inmates conducted by the Bureau of Justice Statistics in
the United States.

However, there are also risk measures based on in-
ferential attacks that do not make such strong assump-
tions. Borrowing ideas from the DP literature, [170]
propose strategies to compute the posterior distribution
f (Yi |D,X,M,d−i

org), where Yi is the original value of
some variable Y for unit i, D is the synthetic data, X

might contain unchanged values from the original data
(X will be empty for full synthesis), M contains informa-
tion about the synthesis model and d−i

org is the original data
excluding record i. The approach evaluates how much an
attacker can learn about an unknown value Yi after see-
ing the synthetic data. If the posterior distribution for Yi

has low variability (especially if compared to the prior
distribution before seeing the synthetic data) disclosure
can occur. In principle, the strong assumption that the at-
tacker knows all the information from the original data
except for record i is not strictly necessary. However, in
practice, it is typically unavoidable to make the problem
computationally tractable. But even with these assump-
tions, this risk assessment is only feasible if the number
of variables in the data is very limited (see [91] and [127]
for illustrations).

In general, measuring disclosure risks for fully syn-
thetic data remains challenging. While most researchers
agree that fully synthetic data are not free from risk, more
research is needed to quantify these risks under realis-
tic settings. Another challenge in this context is the fact
that the metrics used to assess risk must be interpretable
for decision-makers such as disclosure review boards that
will have to make the final decision whether the data are
sufficiently protected before the release. If the metrics are
too technical it can be difficult for the board to make this
judgment call.

6.2 Measuring the Risk for Partially Synthetic Data

As indicated above, most of the risk measures from the
previous section can also be used for partial synthesis.
However, the fact that synthetic records are only gener-
ated for units that were already included in the original
data implies that each record in the synthetic data has
a unique match in the original data. Thus, one way to
measure the risk with partially synthetic data is to eval-
uate whether an attacker would be able to reidentify some
records in the synthetic data. Building on previous work
in [164, 167] developed strategies to measure the risk of
reidentification for partially synthetic data.

Borrowing from [58], the risk computations can be
summarized as follows. Suppose the intruder has a vec-
tor of information, t, on a particular target unit in the
population P. Let t0 be the unique identifier of the tar-
get, and let Pi0 be the (not released) unique identifier for
record i in dsyn, where dsyn denotes the synthetic data and
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i = 1, . . . , n. Let S be any information released about the
synthesis models.

The intruder’s goal is to match unit i in dsyn to the tar-
get when Pi0 = t0. Let J be a random variable that equals
i when Pi0 = t0 for i ∈ dsyn. The intruder thus seeks to
calculate Pr(J = i|t,dsyn,S) for i = 1, . . . , n. Because
the intruder does not know the actual values of the syn-
thesized variable Y ∗, he or she should integrate over its
possible values when computing the match probabilities.
Hence, for each record he or she computes

Pr(J = i|t,dsyn,S)

=
∫

Pr
(
J = i|t,dsyn, Y

∗,S
)

Pr
(
Y ∗|t,dsyn,S

)
dY ∗.

(6)

This construction suggests a Monte Carlo approach to
estimating each Pr(J = i|t,dsyn,S). First, sample a value
of Y ∗ from Pr(Y ∗|t,dsyn,S). Let Ynew represent one set of
simulated values. Second, compute Pr(J = i|t,dsyn, Y

∗ =
Ynew,S) using a matching strategy such as nearest neigh-
bor matching assuming Ynew are collected values. This
two-step process is iterated h times, where ideally h is
large, and (6) is estimated as the average of the resultant
h values of Pr(J = i|t,dsyn, Y

∗ = Ynew,S). When S has
no information, the intruder treats the simulated values as
plausible draws of Y ∗.

The disclosure risk can be measured using summaries
of these identification probabilities. It is reasonable to as-
sume that the intruder selects as a match for t the record i

with the highest value of Pr(J = i|t,dsyn,S), if a unique
maximum exists. [167] proposed three risk measures: the
expected match risk, the true match rate, and the false
match rate. Let ci be the number of records with the high-
est match probability for the target ti; let Ii = 1 if the
true match is among the ci units and Ii = 0 otherwise.
The expected match risk equals

∑
Ii/ci . When Ii = 1 and

ci > 1, the contribution of unit i to the expected match
risk reflects the intruder randomly guessing at the correct
match from the ci candidates. Let Ki = 1 when ciIi = 1
and Ki = 0 otherwise and let N denote the total number of
target records. The true match rate equals

∑
Ki/N , which

is the percentage of true unique matches among the tar-
get records. Finally, let Fj = 1 when cj (1 − Ij ) = 1 and
Fj = 0 otherwise and let s equal the number of records
with ci = 1. The false match rate equals

∑
Fj/s, which is

the percentage of false matches among unique matches.
Risk measures inspired by this methodology are available
in the R package IdentificationRiskCalculation [87].

These risk assessments are based on the conservative
assumption that the intruder knows that the target record
is included in the released data. Extensions of the ap-
proach which also account for the extra uncertainty from
sampling if the intruder does not know whether the indi-
vidual he or she is looking for participated in the survey
are given in [56].

7. CONCLUSION

The interest in synthetic data has been growing steadily
over the last thirty years. While the focus was on method-
ological aspects and statistical properties during the first
decade, first applications started to appear around the turn
of the century. The great success of GANs, which always
require generating synthetic data even if the final goal is
not to disseminate these data, had a huge impact on the
synthetic data movement, especially in the computer sci-
ence community. The availability of easy-to-use software
such as synthpop [153] or the synthetic data vault [146]
also meant that more statistical agencies and other data
disseminating organizations were able to explore the ap-
proach without the need to implement the synthesizers
from scratch.

In this paper, we reviewed the historic developments
of the synthetic data approach, offered a taxonomy of
approaches, and discussed methods to measure risk and
utility of the generated data. For organizational reasons,
we treated the statistical approach separately from the
computer science approach. While it is true that the de-
velopments in the two fields mostly happened indepen-
dently with little exchange between the disciplines, the
lines have always been blurry (e.g., [122] already inte-
grate ideas from both fields), and the increasing number
of collaborations between statisticians and computer sci-
entists in recent years will hopefully make this distinction
obsolete in the future.

Furthermore, most of the applications of the synthetic
data approach do not use the synthetic data as the final
product. The synthetic data are either used for training
purposes [73] or to develop code in preparation for work-
ing with the real data [43, 154]. Even in those cases in
which final access to the real data is not possible, the data
providers typically guarantee that they will run the final
results on the original data and report back the results if
they can be released without violating confidentiality [19,
27]. This implies that procedures for obtaining valid vari-
ance estimates from the synthetic data as discussed in Sec-
tion 3 are less relevant in practice, and the fact that many
of the computer science approaches never achieved this
goal is less of a concern.

For those cases in which access to the original data can-
not be provided, verification servers can be a useful alter-
native. These servers hold both the synthetic and the orig-
inal data. Researchers can submit their analysis of interest
to the server, it runs the analysis on both datasets, and re-
ports back some fidelity measure of how close the results
from the synthetic data are to the results based on the orig-
inal data. Compared to the guarantee of running the final
models on the original data (sometimes called validation
servers in the literature), verification servers have the ad-
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vantage that the procedure can be automated.3 Since the
server only reports a fidelity measure and not the actual re-
sults, no manual output checking is required. This means
that the server could also be used frequently during data
preparation and not only for the final model. However,
some care must be taken, as even fidelity measures might
spill sensitive information. Developing measures that are
informative but at the same time are guaranteed not to
spill sensitive information is an area of active research
[17, 128, 168, 208].

A systematic comparison between the approaches de-
veloped in the different fields is currently lacking, al-
though Goncalves et al. [81] and [116] offer some first
insights. The authors compared several synthesis strate-
gies based on CART models, Bayesian Networks, various
parametric and nonparametric models and three GAN im-
plementations (medGAN, tableGAN and CTGAN). Al-
though only some of the methods were considered in
both papers, the general findings are comparable. Both pa-
pers found that the sequential-regression-based CART ap-
proach offered the highest utility, but also the highest risk.
Goncalves et al. [81] also found high utility for DPMPM
models and for CLGP, which only work for categorical
data. Two of the GANs (tableGAN and medGAN) re-
sulted in unacceptably low utility, while CTGAN and the
approach based on Bayesian Networks performed almost
similarly. However, these evaluations were based on only
on a limited number of datasets and either relied on the
default settings of the different synthesis implementations
[116] or used limited hyperparameter tuning [81]. More
extensive evaluations of the advantages and disadvantages
of the various approaches that have been proposed in the
literature would be an important area of future research.

Additionally, it will also be important to obtain a better
understanding of the disclosure risk of (fully) synthetic
data in the future. The measures that currently exist are
either computationally too expensive to be useful, make
unrealistically strong assumptions regarding the attacker,
or only partially address the potential risks of the data re-
lease. Furthermore, many potential users especially from
the scientific community have concerns and reservations
against working with synthetic data. How can they be sure
that the results that they obtained based on the synthetic
data are reliable? The verification servers discussed above
might be one strategy to address these concerns. Finally,
DP synthetic data is still in its infancy. Many of the exist-
ing methods require so much noise to be infused that the
utility of the resulting data would be too low, especially
for the complex high-dimensional datasets that statisti-
cal agencies typically have to handle. It remains an open

3We note that the terms “validation” and “verification” are not well-
defined and are sometimes used exactly in the opposite meaning in the
literature.

question whether the methodology can be sufficiently im-
proved to be able to generate differentially private syn-
thetic data with acceptable levels of utility for these com-
plex data products in the future.

ACKNOWLEDGMENTS

The authors are grateful for helpful feedback on an
earlier version of this paper from the FK2RG group
at Mannheim University and LMU Munich. The au-
thors also acknowledge very valuable feedback from three
anonymous referees and an Associate Editor.

FUNDING

This work was partially supported by the German Fed-
eral Institute for Drugs and Medical Devices and a grant
from the German Federal Ministry of Education and Re-
search (grant number 16KISA096) with funding from the
European Union—NextGenerationEU.

REFERENCES

[1] ABADI, M., CHU, A., GOODFELLOW, I., MCMAHAN, H. B.,
MIRONOV, I., TALWAR, K. and ZHANG, L. (2016). Deep learn-
ing with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Secu-
rity 308–318. ACM, Vienna, Austria.

[2] ABOWD, J., ASHMEAD, R., CUMINGS-MENON, R.,
GARFINKEL, S., HEINECK, M., HEISS, C., JOHNS, R.,
KIFER, D., LECLERC, P. et al. (2022). The 2020 census
disclosure avoidance system TopDown algorithm. Harv. Data
Sci. Rev. 2. Special Issue.

[3] ABOWD, J., ASHMEAD, R., SIMSON, G., KIFER, D.,
LECLERC, P., MACHANAVAJJHALA, A. and SEXTON, W.
(2019). Census topdown: Differentially private data, incremen-
tal schemas, and consistency with public knowledge. U.S. Cen-
sus Bureau, Washington, DC.

[4] ABOWD, J. M., STINSON, M. and BENEDETTO, G. (2006).
Final report to the social security administration on the
SIPP/SSA/IRS public use file project Technical report, longitu-
dinal employer–household dynamics program. U.S. Bureau of
the Census, Washington, DC.

[5] ABOWD, J. M. and VILHUBER, L. (2008). How protective are
synthetic data? In Privacy in Statistical Databases (J. Domingo-
Ferrer and Y. Saygın, eds.) 5262 239–246. Springer, Berlin.

[6] ABOWD, J. M. and WOODCOCK, S. D. (2001). Disclosure
limitation in longitudinal linked data. In Confidentiality, Dis-
closure, and Data Access: Theory and Practical Applications
for Statistical Agencies (P. Doyle, J. Lane, L. Zayatz and
J. Theeuwes, eds.) 215–277. North-Holland, Amsterdam.

[7] ABOWD, J. M. and WOODCOCK, S. D. (2004). Multiply-
imputing confidential characteristics and file links in longitudi-
nal linked data. In Privacy in Statistical Databases (J. Domingo-
Ferrer and V. Torra, eds.) 290–297. Springer, New York.

[8] ALAM, M. J., DOSTIE, B., DRECHSLER, J. and VILHU-
BER, L. (2020). Applying data synthesis for longitudinal busi-
ness data across three countries. Statist. Transition New Series
21 212–236.

[9] ALLKEN, V., HANDEGARD, N. O., ROSEN, S.,
SCHREYECK, T., MAHIOUT, T. and MALDE, K. (2018).
Fish species identification using a convolutional neural network
trained on synthetic data. ICES J. Mar. Sci. 76 342–349.



30 YEARS OF SYNTHETIC DATA 237

[10] AN, D. and LITTLE, R. J. A. (2007). Multiple imputation:
An alternative to top coding for statistical disclosure con-
trol. J. Roy. Statist. Soc. Ser. A 170 923–940. MR2408985
https://doi.org/10.1111/j.1467-985X.2007.00492.x

[11] ARJOVSKY, M., CHINTALA, S. and BOTTOU, L. (2017).
Wasserstein GAN. Available at arXiv:1701.07875 [stat.ML].

[12] ARNOLD, C. and NEUNHOEFFER, M. (2020). Really useful
synthetic data–a framework to evaluate the quality of differen-
tially private synthetic data. Available at arXiv:2004.07740.

[13] AUSTRALIAN BUREAU OF STATISTICS (2021). Method-
ological news, Dec 2021. Available at https://www.abs.gov.
au/statistics/research/methodological-news-dec-2021. Last ac-
cessed on 2022-05-17.

[14] BAO, E., XIAO, X., ZHAO, J., ZHANG, D. and DING, B.
(2021). Synthetic data generation with differential privacy via
Bayesian networks. J. Priv. Confid. 11.

[15] BAOWALY, M. K., LIN, C.-C., LIU, C.-L. and CHEN, K.-T.
(2019). Synthesizing electronic health records using improved
generative adversarial networks. J. Amer. Med. Inform. Assoc.
26 228–241.

[16] BARAK, B., CHAUDHURI, K., DWORK, C., KALE, S., MCSH-
ERRY, F. and TALWAR, K. (2007). Privacy, accuracy, and con-
sistency too: A holistic solution to contingency table release.
In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems—PODS
’07 273–282. ACM, Beijing, China.

[17] BARRIENTOS, A. F., BOLTON, A., BALMAT, T., RE-
ITER, J. P., DE FIGUEIREDO, J. M., MACHANAVAJJHALA, A.,
CHEN, Y., KNEIFEL, C. and DELONG, M. (2018). Providing
access to confidential research data through synthesis and ver-
ification: An application to data on employees of the U.S. fed-
eral government. Ann. Appl. Stat. 12 1124–1156. MR3834297
https://doi.org/10.1214/18-AOAS1194

[18] BEAULIEU-JONES, B. K., WU, Z. S., WILLIAMS, C.,
LEE, R., BHAVNANI, S. P., BYRD, J. B. and GREENE, C. S.
(2019). Privacy-preserving generative deep neural networks
support clinical data sharing. Circ. Cardiovasc. Qual. Out-
comes 12 e005122. https://doi.org/10.1161/CIRCOUTCOMES.
118.005122

[19] BENEDETTO, G., STANLEY, J. C., TOTTY, E. et al. (2018). The
creation and use of the SIPP synthetic beta version 7.0.

[20] BLUM, A., LIGETT, K. and ROTH, A. (2013). A learning the-
ory approach to noninteractive database privacy. J. ACM 60 Art.
12, 25. MR3060810 https://doi.org/10.1145/2450142.2450148

[21] BONNÉRY, D., FENG, Y., HENNEBERGER, A. K., JOHN-
SON, T. L., LACHOWICZ, M., ROSE, B. A., SHAW, T., STA-
PLETON, L. M., WOOLLEY, M. E. et al. (2019). The promise
and limitations of synthetic data as a strategy to expand access
to state-level multi-agency longitudinal data. J. Res. Educ. Eff.
12 616–647.

[22] BOWEN, C. M., BRYANT, V., BURMAN, L., CZAJKA, J., KHI-
TATRAKUN, S., MACDONALD, G., MCCLELLAND, R., MUC-
CIOLO, L., PICKENS, M. et al. (2022). Synthetic individual in-
come tax data: Methodology, utility, and privacy implications.
In International Conference on Privacy in Statistical Databases
191–204. Springer, Berlin.

[23] BOWEN, C. M., BRYANT, V., BURMAN, L., KHITA-
TRAKUN, S., MCCLELLAND, R., STALLWORTH, P.,
UEYAMA, K. and WILLIAMS, A. R. (2020). A synthetic
supplemental public use file of low-income information re-
turn data: Methodology, utility, and privacy implications. In
International Conference on Privacy in Statistical Databases
257–270. Springer, Berlin.

[24] BOWEN, C. M. and LIU, F. (2020). Comparative study of dif-
ferentially private data synthesis methods. Statist. Sci. 35 280–
307. MR4106606 https://doi.org/10.1214/19-STS742

[25] BOWEN, C. M., LIU, F. and SU, B. (2021). Differentially
private data release via statistical election to partition sequen-
tially. Metron 79 1–31. MR4239846 https://doi.org/10.1007/
s40300-021-00201-0

[26] BOWEN, C. M. and SNOKE, J. (2021). Comparative study of
differentially private synthetic data algorithms from the NIST
PSCR differential privacy synthetic data challenge. J. Priv. Con-
fid. 11. https://doi.org/10.29012/jpc.748

[27] BURMAN, L. E., ENGLER, A., KHITATRAKUN, S.,
NUNNS, J. R., ARMSTRONG, S., ISELIN, J., MACDON-
ALD, G. and STALLWORTH, P. (2019). Safely expanding
research access to administrative tax data: creating a syn-
thetic public use file and a validation server Technical report,
Technical report US, Internal Revenue Service.

[28] BURRIDGE, J. (2003). Information preserving statisti-
cal obfuscation. Stat. Comput. 13 321–327. MR2005433
https://doi.org/10.1023/A:1025658621216

[29] CAI, K., LEI, X., WEI, J. and XIAO, X. (2021). Data synthe-
sis via differentially private Markov random fields. Proc. VLDB
Endow. 14 2190–2202.

[30] CAIOLA, G. and REITER, J. P. (2010). Random forests for gen-
erating partially synthetic, categorical data. Trans. Data Priv. 3
27–42. MR2725418

[31] CAMINO, R., HAMMERSCHMIDT, C. and STATE, R. (2018).
Generating multi-categorical samples with generative adversar-
ial networks. Available at arXiv:1807.01202 [cs, stat].

[32] CANO, I., LADRA, S. and TORRA, V. (2010). Evaluation of
information loss for privacy preserving data mining through
comparison of fuzzy partitions. In International Conference on
Fuzzy Systems 1–8 IEEE Press, Barcelona, Spain.

[33] CHALLENGE.GOV (2019). NIST differential privacy syn-
thetic data challenge. Available at https://www.challenge.gov/
?challenge=differential-privacy-synthetic-data-challenge. Last
accessed on 2022-06-08.

[34] CHAREST, A.-S. (2011). How can we analyze differentially-
private synthetic datasets? J. Priv. Confid. 2.

[35] CHEN, J., CHUN, D., PATEL, M., CHIANG, E. and JAMES, J.
(2019). The validity of synthetic clinical data: A validation
study of a leading synthetic data generator (synthea) using clin-
ical quality measures. BMC Med. Inform. Decis. Mak. 19 1–9.

[36] CHEN, Y., ELLIOT, M. and SAKSHAUG, J. (2016). A genetic
algorithm approach to synthetic data production. In Proceed-
ings of the 1st International Workshop on AI for Privacy and
Security. 1–4.

[37] CHEN, Y., ELLIOT, M. and SMITH, D. (2018). The application
of genetic algorithms to data synthesis: A comparison of three
crossover methods. In International Conference on Privacy in
Statistical Databases 160–171. Springer, Berlin.

[38] CHIEN, C.-H., WELSH, A. H. and MOORE, J. D. (2020). Syn-
thetic business microdata: An Australian example. J. Priv. Con-
fid. 10.

[39] CHOI, E., BISWAL, S., MALIN, B., DUKE, J., STEW-
ART, W. F. and SUN, J. (2018). Generating multi-label discrete
patient records using generative adversarial networks. Available
at arXiv:1703.06490 [cs].

[40] COMMISSION, E. (2022). European data strategy. Available
at https://ec.europa.eu/info/strategy/priorities-2019-2024/
europe-fit-digital-age/european-data-strategy_en. Last ac-
cessed on 2022-05-03.

[41] DE MONTJOYE, Y.-A., HIDALGO, C. A., VERLEYSEN, M.
and BLONDEL, V. D. (2013). Unique in the crowd: The privacy
bounds of human mobility. Sci. Rep. 3 1–5.

https://mathscinet.ams.org/mathscinet-getitem?mr=2408985
https://doi.org/10.1111/j.1467-985X.2007.00492.x
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/2004.07740
https://www.abs.gov.au/statistics/research/methodological-news-dec-2021
https://mathscinet.ams.org/mathscinet-getitem?mr=3834297
https://doi.org/10.1214/18-AOAS1194
https://doi.org/10.1161/CIRCOUTCOMES.118.005122
https://mathscinet.ams.org/mathscinet-getitem?mr=3060810
https://doi.org/10.1145/2450142.2450148
https://mathscinet.ams.org/mathscinet-getitem?mr=4106606
https://doi.org/10.1214/19-STS742
https://mathscinet.ams.org/mathscinet-getitem?mr=4239846
https://doi.org/10.1007/s40300-021-00201-0
https://doi.org/10.29012/jpc.748
https://mathscinet.ams.org/mathscinet-getitem?mr=2005433
https://doi.org/10.1023/A:1025658621216
https://mathscinet.ams.org/mathscinet-getitem?mr=2725418
http://arxiv.org/abs/1807.01202
https://www.challenge.gov/?challenge=differential-privacy-synthetic-data-challenge
http://arxiv.org/abs/1703.06490
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-data-strategy_en
https://www.abs.gov.au/statistics/research/methodological-news-dec-2021
https://doi.org/10.1161/CIRCOUTCOMES.118.005122
https://doi.org/10.1007/s40300-021-00201-0
https://www.challenge.gov/?challenge=differential-privacy-synthetic-data-challenge
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-data-strategy_en


238 J. DRECHSLER AND A.-C. HAENSCH

[42] DE MONTJOYE, Y.-A., RADAELLI, L., SINGH, V. K. and
PENTLAND, A. S. (2015). Identity and privacy. Unique in the
shopping mall: On the reidentifiability of credit card metadata.
Science 347 536–539. https://doi.org/10.1126/science.1256297

[43] DE WOLF, P.-P. (2015). Public use files of EU-SILC and EU-
LFS data. Joint UNECE/Eurostat work session on statistical
data confidentiality Helsinki, Finland, 1–10.

[44] DENTON, E. L., CHINTALA, S., FERGUS, R. et al. (2015).
Deep generative image models using a Laplacian pyramid of
adversarial networks. Adv. Neural Inf. Process. Syst. 28.

[45] DEPARTMENT FOR DIGITAL, CULTURE, MEDIA

& SPORT (2022). National data strategy. Avail-
able at https://www.gov.uk/government/publications/
uk-national-data-strategy/national-data-strategy. Last ac-
cessed on 2022-05-03.

[46] DING, B., KULKARNI, J. and YEKHANIN, S. (2017). Col-
lecting telemetry data privately. Adv. Neural Inf. Process. Syst.
3571–3580.

[47] DONG, Q., ELLIOTT, M. R. and RAGHUNATHAN, T. E.
(2014). A nonparametric method to generate synthetic popu-
lations to adjust for complex sampling design features. Surv.
Methodol. 40 29–46.

[48] DONG, Q., ELLIOTT, M. R. and RAGHUNATHAN, T. E.
(2014). Combining information from multiple complex surveys.
Surv. Methodol. 40 347–354.

[49] DRECHSLER, J. (2010). Using support vector machines for
generating synthetic datasets. In International Conference on
Privacy in Statistical Databases 148–161. Springer, Berlin.

[50] DRECHSLER, J. (2011). Synthetic Datasets for Statistical
Disclosure Control: Theory and Implementation. Lecture
Notes in Statistics 201. Springer, New York. MR2809912
https://doi.org/10.1007/978-1-4614-0326-5

[51] DRECHSLER, J. (2011). Improved variance estimation for
fully synthetic datasets. Proceedings of the joint UN-
ECE/EUROSTAT work session on statistical data confidential-
ity.

[52] DRECHSLER, J. (2012). New data dissemination approaches in
old Europe—synthetic datasets for a German establishment sur-
vey. J. Appl. Stat. 39 243–265. MR2879819 https://doi.org/10.
1080/02664763.2011.584523

[53] DRECHSLER, J. (2018). Some clarifications regarding fully
synthetic data. In International Conference on Privacy in Sta-
tistical Databases 109–121. Springer, Berlin.

[54] DRECHSLER, J. (2022). Challenges in measuring utility for
fully synthetic data. In International Conference on Privacy in
Statistical Databases 220–233. Springer, Berlin.

[55] DRECHSLER, J. and HU, J. (2021). Synthesizing geocodes to
facilitate access to detailed geographical information in large-
scale administrative data. J. Surv. Stat. Methodol. 9 523–548.

[56] DRECHSLER, J. and REITER, J. P. (2008). Accounting for in-
truder uncertainty due to sampling when estimating identifica-
tion disclosure risks in partially synthetic data. In Privacy in
Statistical Databases (J. Domingo-Ferrer and Y. Saygin, eds.)
227–238. Springer, New York.

[57] DRECHSLER, J. and REITER, J. P. (2009). Disclosure risk and
data utility for partially synthetic data: An empirical study using
the German IAB establishment survey. J. Off. Stat. 25 589–603.

[58] DRECHSLER, J. and REITER, J. P. (2010). Sampling with syn-
thesis: A new approach for releasing public use census micro-
data. J. Amer. Statist. Assoc. 105 1347–1357. Supplementary
materials available online. MR2796555 https://doi.org/10.1198/
jasa.2010.ap09480

[59] DRECHSLER, J. and REITER, J. P. (2011). An empirical evalu-
ation of easily implemented, nonparametric methods for gener-
ating synthetic datasets. Comput. Statist. Data Anal. 55 3232–
3243. MR2825406 https://doi.org/10.1016/j.csda.2011.06.006

[60] DRECHSLER, J. and REITER, J. P. (2012). Combining syn-
thetic data with subsampling to create public use microdata files
for large scale surveys. Surv. Methodol. 38 73–79.

[61] DRECHSLER, J. and VILHUBER, L. (2014). Synthetic longitu-
dinal business databases for international comparisons. In Inter-
national Conference on Privacy in Statistical Databases 243–
252. Springer, Berlin.

[62] DRECHSLER, J. and VILHUBER, L. (2014). A first step towards
a German SynLBD: Constructing a German longitudinal busi-
ness database. Stat. J. IAOS 30 137–142.

[63] DUNCAN, G. T., ELLIOT, M. and SALAZAR-GONZÁLEZ, J.-
J. (2011). Statistical Confidentiality: Principles and Practice.
Statistics for Social and Behavioral Sciences. Springer, New
York. MR3186259 https://doi.org/10.1007/978-1-4419-7802-8

[64] DWORK, (2008). Differential privacy: A survey of results.
In Theory and Applications of Models of Computation (M.
Agrawal, D. Du, Z. Duan and A. Li, eds.) 1–19. Springer,
Berlin.

[65] DWORK, C., MCSHERRY, F., NISSIM, K. and SMITH, A.
(2006). Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography. Lecture Notes in Computer Science
3876 265–284. Springer, Berlin. MR2241676 https://doi.org/10.
1007/11681878_14

[66] DWORK, C. and ROTH, A. (2013). The algorithmic founda-
tions of differential privacy. Found. Trends Theor. Comput. Sci.
9 211–487. MR3254020 https://doi.org/10.1561/0400000042

[67] ENO, J. and THOMPSON, C. W. (2008). Generating synthetic
data to match data mining patterns. IEEE Internet Comput. 12
78–82.

[68] ERLINGSSON, Ú., PIHUR, V. and KOROLOVA, A. (2014). Rap-
por: Randomized aggregatable privacy-preserving ordinal re-
sponse. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security 1054–1067.

[69] ESTEBAN, C., HYLAND, S. L. and RÄTSCH, G. (2017). Real-
valued (medical) time series generation with recurrent condi-
tional gans. Available at arXiv:1706.02633.

[70] EUROPEAN COMMISSION (2024). How contact tracing and
warning apps helped during the COVID-19 pandemic. Avail-
able at https://commission.europa.eu/strategy-and-policy/
coronavirus-response/travel-during-coronavirus-pandemic/
contact-tracing-and-warning-apps-during-covid-19_en. Last
accessed on 2024-01-12.

[71] EUROSTAT (2022). Statistics on income and living condi-
tions. Available at https://ec.europa.eu/eurostat/web/microdata/
statistics-on-income-and-living-conditions. Last accessed on
2022-05-16.

[72] FOOTE, A. D., MACHANAVAJJHALA, A. and MCKINNEY, K.
(2019). Releasing earnings distributions using differential pri-
vacy: Disclosure avoidance system for post-secondary employ-
ment outcomes (PSEO). J. Priv. Confid. 9.

[73] FORBES, S. and ZEALAND, S. N. (2008). Raising statistical ca-
pability: Statistics New Zealand’s contribution. In Government
Statistical Offices and Statistical Literacy 1–18.

[74] FRID-ADAR, M., KLANG, E., AMITAI, M., GOLDBERGER, J.
and GREENSPAN, H. (2018). Synthetic data augmentation us-
ing GAN for improved liver lesion classification. In 2018 IEEE
15th International Symposium on Biomedical Imaging (ISBI
2018) 289–293.

[75] FRIGERIO, L., DE OLIVEIRA, A. S., GOMEZ, L. and DU-
VERGER, P. (2019). Differentially private generative adversarial
networks for time series, continuous, and discrete open data.

https://doi.org/10.1126/science.1256297
https://www.gov.uk/government/publications/uk-national-data-strategy/national-data-strategy
https://mathscinet.ams.org/mathscinet-getitem?mr=2809912
https://doi.org/10.1007/978-1-4614-0326-5
https://mathscinet.ams.org/mathscinet-getitem?mr=2879819
https://doi.org/10.1080/02664763.2011.584523
https://mathscinet.ams.org/mathscinet-getitem?mr=2796555
https://doi.org/10.1198/jasa.2010.ap09480
https://mathscinet.ams.org/mathscinet-getitem?mr=2825406
https://doi.org/10.1016/j.csda.2011.06.006
https://mathscinet.ams.org/mathscinet-getitem?mr=3186259
https://doi.org/10.1007/978-1-4419-7802-8
https://mathscinet.ams.org/mathscinet-getitem?mr=2241676
https://doi.org/10.1007/11681878_14
https://mathscinet.ams.org/mathscinet-getitem?mr=3254020
https://doi.org/10.1561/0400000042
http://arxiv.org/abs/1706.02633
https://commission.europa.eu/strategy-and-policy/coronavirus-response/travel-during-coronavirus-pandemic/contact-tracing-and-warning-apps-during-covid-19_en
https://ec.europa.eu/eurostat/web/microdata/statistics-on-income-and-living-conditions
https://www.gov.uk/government/publications/uk-national-data-strategy/national-data-strategy
https://doi.org/10.1080/02664763.2011.584523
https://doi.org/10.1198/jasa.2010.ap09480
https://doi.org/10.1007/11681878_14
https://commission.europa.eu/strategy-and-policy/coronavirus-response/travel-during-coronavirus-pandemic/contact-tracing-and-warning-apps-during-covid-19_en
https://commission.europa.eu/strategy-and-policy/coronavirus-response/travel-during-coronavirus-pandemic/contact-tracing-and-warning-apps-during-covid-19_en
https://ec.europa.eu/eurostat/web/microdata/statistics-on-income-and-living-conditions


30 YEARS OF SYNTHETIC DATA 239

[76] GABOARDI, M., ARIAS, E. J. G., HSU, J., ROTH, A. and
WU, Z. S. (2014). Dual query: Practical private query release
for high dimensional data. In Proceedings of the 31st Inter-
national Conference on Machine Learning (E. P. Xing and
T. Jebara, eds.). Proceedings of Machine Learning Research 32
1170–1178. PMLR, Bejing, China.

[77] GAL, Y., CHEN, Y. and GHAHRAMANI, Z. (2015). Latent
Gaussian processes for distribution estimation of multivari-
ate categorical data. In International Conference on Machine
Learning 645–654. PMLR.

[78] GHORBANI, A., NATARAJAN, V., COZ, D. and LIU, Y.
(2020). DermGAN: Synthetic generation of clinical skin im-
ages with pathology. In Proceedings of the Machine Learning
for Health NeurIPS Workshop (A. V. Dalca, M. B. A. McDer-
mott, E. Alsentzer, S. G. Finlayson, M. Oberst, F. Falck and
B. Beaulieu-Jones, eds.). Proceedings of Machine Learning Re-
search 116 155–170. PMLR.

[79] GOLDSTEIN, R., WOOLLEY, M. E., STAPLETON, L. M.,
BONNÉRY, D., LACHOWICZ, M., SHAW, T. V., HEN-
NEBERGER, A. K., JOHNSON, T. L. and FENG, Y. (2020). Ex-
panding MLDS data access and research capacity with synthetic
data sets.

[80] GOMATAM, S. and KARR, A. F. (2003). Distortion measures
for categorical data swapping Technical report, National Insti-
tute of Statistical Sciences, Research Triangle Park, NC.

[81] GONCALVES, A., RAY, P., SOPER, B., STEVENS, J.,
COYLE, L. and SALES, A. P. (2020). Generation and evalu-
ation of synthetic patient data. BMC Med. Res. Methodol. 20
1–40.

[82] GOODFELLOW, I. J., POUGET-ABADIE, J., MIRZA, M.,
XU, B., WARDE-FARLEY, D., OZAIR, S., COURVILLE, A. and
BENGIO, Y. (2014). Generative adversarial networks. Available
at arXiv:1406.2661 [cs, stat].

[83] GULRAJANI, I., AHMED, F., ARJOVSKY, M., DUMOULIN, V.
and COURVILLE, A. (2017). Improved training of Wasserstein
GANs.

[84] HARDT, M., LIGETT, K. and MCSHERRY, F. (2012). A simple
and practical algorithm for differentially private data release.
Available at arXiv:1012.4763 [cs].

[85] HAWALA, S. (2008). Producing partially synthetic data to avoid
disclosure. In Proceedings of the Joint Statistical Meetings
Amer. Statist. Assoc., Alexandria, VA.

[86] HOMER, N., SZELINGER, S., REDMAN, M., DUG-
GAN, D., TEMBE, W., MUEHLING, J., PEARSON, J. V.,
STEPHAN, D. A., NELSON, S. F. et al. (2008). Re-
solving individuals contributing trace amounts of DNA
to highly complex mixtures using high-density SNP
genotyping microarrays. PLoS Genet. 4 e1000167.
https://doi.org/10.1371/journal.pgen.1000167

[87] HORNBY, R. and HU, J. (2021). Identification risks evaluation
of partially synthetic data with the IdentificationRiskCalcula-
tion R package. Trans. Data Priv. 14 37–52.

[88] HU, J. (2019). Bayesian estimation of attribute and iden-
tification disclosure risks in synthetic data. Trans. Data Priv.
12 61–89.

[89] HU, J., AKANDE, O. and WANG, Q. (2021). Multiple imputa-
tion and synthetic data generation with NPBayesImputeCat. R
J. 13.

[90] HU, J. and HOSHINO, N. (2018). The quasi-multinomial syn-
thesizer for categorical data. In International Conference on
Privacy in Statistical Databases 75–91. Springer, Berlin.

[91] HU, J., REITER, J. P. and WANG, Q. (2014). Disclosure risk
evaluation for fully synthetic categorical data. In Privacy in Sta-
tistical Databases (J. Domingo-Ferrer, ed.). Lecture Notes in
Computer Science 8744 185–199. Springer, Heidelberg.

[92] HU, J., REITER, J. P. and WANG, Q. (2018). Dirichlet pro-
cess mixture models for modeling and generating synthetic ver-
sions of nested categorical data. Bayesian Anal. 13 183–200.
MR3737948 https://doi.org/10.1214/16-BA1047

[93] HU, J., SAVITSKY, T. D. and WILLIAMS, M. R. (2021). Risk-
efficient Bayesian data synthesis for privacy protection. J. Surv.
Stat. Methodol. (online-first).

[94] HU, J., SAVITSKY, T. D. and WILLIAMS, M. R. (2022). Pri-
vate tabular survey data products through synthetic microdata
generation. J. Surv. Stat. Methodol. 10 720–752.

[95] HUNDEPOOL, A., DOMINGO-FERRER, J., FRANCONI, L.,
GIESSING, S., NORDHOLT, E. S., SPICER, K. and DE

WOLF, P.-P. (2012). Statistical Disclosure Control. Wiley Se-
ries in Survey Methodology. Wiley, Chichester. MR3026260
https://doi.org/10.1002/9781118348239

[96] JACKSON, J., MITRA, R., FRANCIS, B. and DOVE, I. (2022).
On integrating the number of synthetic data sets m into the a
priori synthesis approach. In Privacy in Statistical Databases
(J. Domingo-Ferrer and M. Laurent, eds.) 205–219. Springer,
Cham.

[97] JACKSON, J., MITRA, R., FRANCIS, B. and DOVE, I. (2022).
Using saturated count models for user-friendly synthesis of
large confidential administrative database. J. Roy. Statist. Soc.
Ser. A 185 1613–1643. MR4537790 https://doi.org/10.1111/
rssa.12876

[98] JANICKI, R., HOLAN, S. H., IRIMATA, K. M., LIVSEY, J. and
RAIM, A. (2023). Spatial change of support models for differ-
entially private decennial census counts of persons by detailed
race and ethnicity. J. Stat. Theory Pract. 17 Paper No. 31, 20.
MR4565882 https://doi.org/10.1007/s42519-023-00328-5

[99] KAMTHE, S., ASSEFA, S. and DEISENROTH, M. (2021).
Copula flows for synthetic data generation. Available at
arXiv:2101.00598 [cs, stat].

[100] KARR, A. F., KOHNEN, C. N., OGANIAN, A., REITER, J. P.
and SANIL, A. P. (2006). A framework for evaluating the utility
of data altered to protect confidentiality. Amer. Statist. 60 224–
232. MR2246755 https://doi.org/10.1198/000313006X124640

[101] KEEGAN, A. and TIDESWELL, A. (2013). Enabling learners
to discover real stories in official statistics with a new syn-
thetic unit record file of the New Zealand Income Survey 2011.
Contributed paper to satellite: Statistics education for progress:
Youth and official statistics.

[102] KENNICKELL, A. B. (1997). Multiple imputation and disclo-
sure protection: The case of the 1995 survey of consumer fi-
nances. In Record Linkage Techniques, 1997 (W. Alvey and
B. Jamerson, eds.) 248–267. National Academy Press, Wash-
ington, DC.

[103] KIFER, D. and MACHANAVAJJHALA, A. (2011). No free lunch
in data privacy. In Proceedings of the 2011 ACM SIGMOD In-
ternational Conference on Management of Data 193–204.

[104] KIM, H. J., DRECHSLER, J. and THOMPSON, K. J. (2021).
Synthetic microdata for establishment surveys under infor-
mative sampling. J. Roy. Statist. Soc. Ser. A 184 255–281.
MR4204919 https://doi.org/10.1111/rssa.12622

[105] KIM, H. J., REITER, J. P. and KARR, A. F. (2018). Si-
multaneous edit-imputation and disclosure limitation for busi-
ness establishment data. J. Appl. Stat. 45 63–82. MR3736858
https://doi.org/10.1080/02664763.2016.1267123

[106] KINGMA, D. P. and WELLING, M. (2014). Auto-encoding
variational bayes. Available at arXiv:1312.6114 [cs, stat].

[107] KINNEY, S. K. and REITER, J. P. (2010). Tests of multivari-
ate hypotheses when using multiple imputation for missing data
and disclosure limitation. J. Off. Stat. 26 301–315.

http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1012.4763
https://doi.org/10.1371/journal.pgen.1000167
https://mathscinet.ams.org/mathscinet-getitem?mr=3737948
https://doi.org/10.1214/16-BA1047
https://mathscinet.ams.org/mathscinet-getitem?mr=3026260
https://doi.org/10.1002/9781118348239
https://mathscinet.ams.org/mathscinet-getitem?mr=4537790
https://doi.org/10.1111/rssa.12876
https://mathscinet.ams.org/mathscinet-getitem?mr=4565882
https://doi.org/10.1007/s42519-023-00328-5
http://arxiv.org/abs/2101.00598
https://mathscinet.ams.org/mathscinet-getitem?mr=2246755
https://doi.org/10.1198/000313006X124640
https://mathscinet.ams.org/mathscinet-getitem?mr=4204919
https://doi.org/10.1111/rssa.12622
https://mathscinet.ams.org/mathscinet-getitem?mr=3736858
https://doi.org/10.1080/02664763.2016.1267123
http://arxiv.org/abs/1312.6114
https://doi.org/10.1111/rssa.12876


240 J. DRECHSLER AND A.-C. HAENSCH

[108] KINNEY, S. K., REITER, J. P. and MIRANDA, J. (2014).
Synlbd 2.0: Improving the synthetic longitudinal business
database. Stat. J. IAOS 30 129–135.

[109] KINNEY, S. K., REITER, J. P., REZNEK, A. P., MIRANDA, J.,
JARMIN, R. S. and ABOWD, J. M. (2011). Towards unre-
stricted public use business microdata: The synthetic longitu-
dinal business database. Int. Stat. Rev. 79 362–384.

[110] KLEIN, M. and SINHA, B. (2015). Likelihood based finite sam-
ple inference for singly imputed synthetic data under the mul-
tivariate normal and multiple linear regression models. J. Priv.
Confid. 7.

[111] KOIVU, A., SAIRANEN, M., AIROLA, A. and PAHIKKALA, T.
(2020). Synthetic minority oversampling of vital statistics data
with generative adversarial networks. J. Amer. Med. Inform. As-
soc. 27 1667–1674. https://doi.org/10.1093/jamia/ocaa127

[112] LEE, J. H., KIM, I. Y. and O’KEEFE, C. M. (2013). On
regression-tree-based synthetic data methods for business data.
J. Priv. Confid. 5.

[113] LI, H., XIONG, L. and JIANG, X. (2014). Differentially private
synthesization of multi-dimensional data using Copula func-
tions.

[114] LI, N., LI, T. and VENKATASUBRAMANIAN, S. (2007). t-
closeness: Privacy beyond k-anonymity and l-diversity. In 2007
IEEE 23rd International Conference on Data Engineering 106–
115.

[115] LIEW, C. K., CHOI, U. J. and LIEW, C. J. (1985). A data dis-
tortion by probability distribution. ACM Trans. Database Syst.
10 395–411. MR0794552

[116] LITTLE, C., ELLIOT, M., ALLMENDINGER, R. and
SAMANI, S. S. (2021). Generative adversarial networks
for synthetic data generation: A comparative study. Available at
arXiv:2112.01925.

[117] LITTLE, R. J. and RAGHUNATHAN, T. (1997). Should imputa-
tion of missing data condition on all observed variables. In Pro-
ceedings of the Section on Survey Research Methods 617–622.
Amer. Statist. Assoc., Alexandria, VA.

[118] LITTLE, R. J. A. (1993). Statistical analysis of masked data. J.
Off. Stat. 9 407–426.

[119] LITTLE, R. J. A. and RUBIN, D. B. (1987). Statistical Analysis
with Missing Data. Wiley Series in Probability and Mathemat-
ical Statistics: Applied Probability and Statistics. Wiley, New
York. MR0890519

[120] LIU, T., VIETRI, G., STEINKE, T., ULLMAN, J. and WU, S.
(2021). Leveraging public data for practical private query re-
lease. In International Conference on Machine Learning 6968–
6977. PMLR.

[121] MA, C., TSCHIATSCHEK, S., HERNÁNDEZ-LOBATO, J. M.,
TURNER, R. and ZHANG, C. (2020). VAEM: A deep gener-
ative model for heterogeneous mixed type data. Available at
arXiv:2006.11941 [cs, stat].

[122] MACHANAVAJJHALA, A., KIFER, D., ABOWD, J. M.,
GEHRKE, J. and VILHUBER, L. (2008). Privacy: Theory meets
practice on the map. In IEEE 24th International Conference on
Data Engineering 277–286.

[123] MACHANAVAJJHALA, A., KIFER, D., GEHRKE, J. and
VENKITASUBRAMANIAM, M. (2007). l-diversity: Privacy be-
yond k-anonymity. ACM Trans. Knowl. Discov. Data 1 3–es.

[124] MAHMOOD, F., BORDERS, D., CHEN, R. J., MCKAY, G. N.,
SALIMIAN, K. J., BARAS, A. and DURR, N. J. (2019).
Deep adversarial training for multi-organ nuclei segmentation
in histopathology images. IEEE Trans. Med. Imag. 39 3257–
3267.

[125] MANRIQUE-VALLIER, D. and HU, J. (2018). Bayesian non-
parametric generation of fully synthetic multivariate categori-
cal data in the presence of structural zeros. J. Roy. Statist. Soc.

Ser. A 181 635–647. MR3807501 https://doi.org/10.1111/rssa.
12352

[126] MCCLURE, D. and REITER, J. P. (2012). Differential privacy
and statistical disclosure risk measures: An investigation with
binary synthetic data. Trans. Data Priv. 5 535–552. MR3018910

[127] MCCLURE, D. and REITER, J. P. (2016). Assessing disclosure
risks for synthetic data with arbitrary intruder knowledge. Stat.
J. IAOS 32 109–126.

[128] MCCLURE, D. R. and REITER, J. P. (2012). Towards providing
automated feedback on the quality of inferences from synthetic
datasets. J. Priv. Confid. 4.

[129] MCKENNA, R., MIKLAU, G. and SHELDON, D. (2021). Win-
ning the NIST contest: A scalable and general approach to dif-
ferentially private synthetic data. J. Priv. Confid. 11.

[130] MCKENNA, R., SHELDON, D. and MIKLAU, G. (2019).
Graphical-model based estimation and inference for differential
privacy.

[131] MENG, X.-L. (1994). Multiple-imputation inferences with un-
congenial sources of input (Disc: P558-573). Statist. Sci. 9 538–
558.

[132] MIRZA, M. and OSINDERO, S. (2014). Conditional generative
adversarial nets. CoRR. Available at arXiv:1411.1784.

[133] MITRA, R., BLANCHARD, S., DOVE, I., TUDOR, C. and
SPICER, K. (2020). Confidentiality challenges in releasing lon-
gitudinally linked data. Trans. Data Priv. 13 151–170.

[134] MITRA, R. and REITER, J. P. (2006). Adjusting survey weights
when altering identifying design variables via synthetic data.
In International Conference on Privacy in Statistical Databases
177–188. Springer, Berlin.

[135] MOTTINI, A., LHERITIER, A. and ACUNA-AGOST, R. (2018).
Airline passenger name record generation using generative ad-
versarial networks. Available at arXiv:1807.06657 [cs, stat].

[136] NEUNHOEFFER, M., WU, Z. S. and DWORK, C. (2021). Pri-
vate post-GAN boosting. Available at arXiv:2007.11934 [cs,
stat].

[137] NICHOLSON CONSULTING & KŌTĀTĀ INSIGHT (2021). He
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