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Abstract: The tensor Ising model is a discrete exponential family used for
modeling binary data on networks with not just pairwise, but higher-order
dependencies. A particularly important class of tensor Ising models are the
tensor Curie-Weiss models, where all tuples of nodes of a particular order
interact with the same intensity. A computationally efficient alternative
to the intractible maximum likelihood estimator (MLE) in this model, is
the maximum pseudolikelihood estimator (MPLE). In this paper, we show
that the MPLE is in fact as efficient as the MLE (in the Bahadur sense)
in the 2-spin model, and for all values of the null parameter above log 2 in
higher-order tensor models. Also, there exists an estimation threshold be-
low which consistent estimation of the model parameter is impossible, such
that even if the null parameter happens to lie within the very small window
between this threshold and log 2, they are equally efficient unless the alter-
native parameter is large. Therefore, not only is the MPLE computationally
preferable to the MLE, but also theoretically as efficient as the MLE over
most of the parameter space. Our results extend to the more general class
of Erdős-Rényi hypergraph Ising models, under slight sparsities too.
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1. Introduction

With the ever increasing demand for modeling dependent network data in mod-
ern statistics, there has been a noticeable rise in the necessity for introducing
appropriate statistical frameworks for modeling dependent data in the recent
past. One such useful and mathematically tractable model which was originally
coined by physicists for describing magnetic spins of particles, and later used
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by statisticians for modeling dependent binary data, is the Ising model [35]. It
has found immense applications in diverse places such as image processing [22],
neural networks [33], spatial statistics [7], disease mapping in epidemiology [26],
structure detection [16] and property testing [46].

The Ising model is a discrete exponential family on the set of all binary tuples
of a fixed length, with sufficient statistic given by a quadratic form, designed
to capture pairwise dependence between the binary variables, arising from an
underlying network structure. However, in most real-life scenarios, pairwise in-
teractions are not enough to capture all the complex dependencies in a network
data. For example, the behavior of an individual in a peer group depends not
just on pairwise interactions, but is a more complex function of higher order
interactions with colleagues. Similarly, in physics, it is known that the atoms on
a crystal surface do not just interact in pairs, but in triangles, quadruples and
higher order tuples. A useful framework for capturing such higher order depen-
dencies is the p-tensor Ising model [45], where the quadratic interaction term in
the sufficient statistic is replaced by a multilinear polynomial of degree p ≥ 2.
Although constructing consistent estimates of the natural parameter in general
p-tensor Ising models is possible [45], more exact inferential tasks such as con-
structing confidence intervals and hypothesis testing is not possible, unless one
imposes additional constraints on the underlying network structure. One such
useful structural assumption is that all p-tuples of nodes in the underlying net-
work interact, and that too with the same intensity. The corresponding model
is called the p-tensor Curie-Weiss model [44, 43], which is a discrete exponential
family on the hypercube {−1, 1}n, with probability mass function given by:

Pβ,p(x) :=
exp
{
βn1−p

∑
1≤i1,...,ip≤n xi1 . . . xip

}
2nZn(β, p) for x ∈ {−1, 1}n . (1)

Here Zn(β, p) is a normalizing constant required to ensure that∑
x∈{−1,1}n

Pβ,p(x) = 1,

and β ≥ 0. It is precisely this inexplicit normalizing constant Zn(β, p), that
hinders estimation of the parameter β using the maximum likelihood (ML)
approach. Although the ML estimator can still be computed in O(n) time in
the Curie-Weiss model (since the probability mass function (1) is actually a
function of the sum

∑n
i=1 xi which can take 2n + 1 values), in even slightly

more general models, for example the Erdős-Rényi Ising model (6), this is not
true, and the ML estimator is computationally infeasible.

An extremely useful approach in the literature to circumvent this issue, is
the concept of maximum pseudolikelihood (MPL) estimation, which was intro-
duced by Besag in the context of spatial stochastic data with both lattice and
non-lattice interactions [10, 11], and is based on computing explicit conditional
distributions. This approach was later applied by Chatterjee to parameter es-
timation in Ising models (for p = 2) under general network interactions [17].
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To elaborate, the MPL estimate is obtained by maximizing the pseudolikelihood
function:

β̂MPL := arg max
β∈R

n∏
i=1

Pβ,p (Xi|(Xj)j �=i) ,

where X = (X1, . . . , Xn) is simulated from the model (1). It should be quite
clear that the conditional distributions in the expression of the pseudolikelihood
function makes it free of the inexplicit normalizing constant Zn(β, p), thereby
making the MPL estimator explicit and computationally feasible. In fact, meth-
ods as simple as a grid search can be applied to compute the MPL estimator.

A natural question is thus, to what extent does this computationally feasible
MPL approach inherit the desirable theoretical properties of the ML approach?
Quite surprisingly, in spite of being just a proxy for the exact ML estimator,
the MPL estimator in fact satisfies almost all the theoretical guarantees of the
former. We list some of these properties below:

1. Both the ML and the MPL estimators are
√
n-consistent in the so called

low temperature regime (high values of the parameter β). This was first
established in [17] for the p = 2 case, and later extended to tensor Ising
models (p > 2) in [45]. More precisely, it is shown in [45] and [43] that
there exists β∗(p) > 0, such that for all β > β∗(p), both

√
n(β̂MPL − β)

and
√
n(β̂ML − β) are tight, where β̂ML is the Maximum Likelihood (ML)

estimator of β. Further, consistent estimation (and consistent testing) is
impossible in the regime [0, β∗(p)). The initial few values of the threshold
β∗(p) are given by β∗(2) = 0.5, β∗(3) = 0.672 and β∗(4) = 0.689.

2. Above the estimation threshold β∗(p), both
√
n(β̂MPL−β) and

√
n(β̂ML−

β) converge weakly to the same normal distribution [43]. This asymptotic
normality can in fact be used to construct confidence intervals with asymp-
totically valid coverage probabilities for the parameter β in presence of an
external magnetic field term in the model 1 (see Section 5 in [43]).

3. As a consequence of the last point, both the ML and MPL estimates have
the same asymptotic variance everywhere above the threshold. In fact, this
asymptotic variance equals the limiting inverse Fisher information of the
model, so both the estimates saturate the Cramer-Rao information lower
bound of the model in this regime [43].

What happens if we wish to perform a hypothesis testing of the natural pa-
rameter using these two estimators? In particular, which of the two tests would
require a smaller sample size for achieving significance at a given level? The
correct way to address this issue is to use the notion of Bahadur efficiency. In
this paper, we demonstrate that the MPL estimator is in fact as Bahadur ef-
ficient as the ML estimator everywhere in the classical 2-spin (p = 2) model,
and for most values of the null and the alternative parameters in higher-order
(p ≥ 3) tensor models. When p ≥ 3, a two-layer phase transition phenomenon is
observed, depending on the magnitudes of the null and the alternative parame-
ters. To elaborate, in this case, the only regime where the MPL estimator is less
Bahadur efficient than the ML estimator, is a very small window of variation of
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Fig 1. Histogram of
√
n(β̂n(X) − β), where β̂n(X) is the MPL estimator in the 4-tensor

Curie-Weiss model at β = 0.75 > β∗(4) ≈ 0.689 (above the estimation threshold), n = 20, 000
[45].

the null parameter between β∗(p) and log 2, and that too, for large values of the
alternative parameter only. Moreover, this small window (β∗(p), log 2) shrinks
to the empty set as p → ∞ (see Lemma A.1 in [45]). This shows that the min-
imum sample size requirements for the tests based on the ML and the MPL
estimators to achieve significance, are identical in the 2-spin case and same over
most of the parameter space in the higher-order tensor case.

In his seminal paper [6], Bahadur introduced the concept of slope of a test
statistic to calculate the minimum sample size required to ensure its significance
at a given level. The setting considered in [6] involved i.i.d. samples coming from
a certain parametric family, and the goal was to detect the minimum sample
size N(δ) required, so that a test Tn (function of the samples) becomes (and
remains) significant at level δ for all n ≥ N(δ), i.e. the p-value corresponding
to Tn becomes (and remains) bounded by δ for all n ≥ N(δ). If one considers
testing a simple null hypothesis H0 : θ = θ0, then the above discussion may be
quantified by defining:

N(δ)= N(θ0, θ, δ, p) := inf
{
N ≥ 1 : sup

n≥N
Ln ≤ δ

}
,

where Ln := 1 − FTn,θ0(Tn) and FTn,θ0 is the Pθ0 -cumulative distribution func-
tion of Tn, and Tn is generated under Pθ. Note that N(δ) is a random quantity,
as its definition involves the p-value random variable Ln. The p-value Ln typi-
cally converges to 0 exponentially fast with probability 1 under alternatives Pθ

for θ > θ0, and this rate is often an indication of the asymptotic efficiency of Tn

against θ [1, 2, 3, 4, 5]. In particular, if we have the following Pθ-almost surely:

1
n

logLn → −1
2c(θ) as n → ∞ , (2)



Efficient estimation in tensor Ising models 2409

then one can easily verify that (see Proposition 8 in [6]) N(δ) ∼ −2 log(δ)/c(θ)
as δ → 0. c(θ) is called the Bahadur slope of Tn at θ. However, as mentioned
in [6], it is in general a non-trivial problem to determine the existence of the
Bahadur slope in (2), and to evaluate it. This issue is addressed in two steps in
[6], where it is shown that if Tn satisfies the following two conditions:

1. For every alternative θ, n−1/2Tn → b(θ) as n → ∞ under Pθ with proba-
bility 1, for some parametric function b defined on the alternative space,

2. n−1 log[1 − FTn,θ0(n1/2t)] → −f(t) as n → ∞ for every t > 0 in an open
interval which includes each value of b, where f is a continuous function
on the interval, with 0 < f < ∞,

then the Bahadur slope exists for every alternative θ, and is given by 2f(b(θ))
(see [6]). In this context, let us mention that if the convergence (2) holds in
probability, then c(θ) is called the weak Bahadur slope of Tn (see [27]). Finally, if
we have two competing estimators Tn,1 and Tn,2 estimating the same parameter
θ, then the Bahadur asymptotic relative efficiency (ARE) is given by the ratio
of their Bahadur slopes (see [27]):

eff(Tn,1, Tn,2; θ) = c1(θ)
c2(θ)

.

The Bahadur ARE is a well-known tool in the literature for comparing the
performance of two estimators in a wide variety of contexts. Gyorfi et al. [29] ad-
dressed the problem of comparing the efficiencies of information-divergence-type
statistics for testing the goodness of fit. They claim that the Pitman approach is
too weak to detect sufficiently sharply the differences in efficiency of these statis-
tics, and instead, focussed their attention on the Bahadur efficiency. Harremoës
and Vajda [30] show that in the problem of testing the uniformity of a dis-
tribution, the information divergence statistic is more efficient in the Bahadur
sense than any power divergence statistic of order α > 1. The same authors
show in their paper [31] that any two Rényi entropies of different orders ∈ (0, 1]
are equally Bahadur efficient. Huang [34] uses Bahadur efficiency as a measure
of performance in the small sample universal hypothesis testing problem, and
mentions that in the large sample problem where the number of possible out-
comes is at most of the order of the number of samples, the connection between
the error exponent and Bahadur efficiency has been studied in [47, 30]. Keziou
and Regault [37] compare the performances of independence tests derived by
means of dependence thresholding in a semiparametric context, in terms of the
Bahadur ARE. Applications of the Bahadur efficiency in the contexts of non-
parametric tests for independence and separate hypothesis testing can also be
found in [8, 9] and [49], respectively.

In this paper, we compare the estimators β̂MPL and β̂ML in the tensor Curie-
Weiss model (1) in terms of the Bahadur ARE. This requires deriving the weak
Bahadur slopes of both β̂MPL and β̂ML in the model (1), which will in turn,
enable one to compute the Bahadur ARE of either of these two estimators
against some other reference estimator. Similar results have been derived in [18]
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Fig 2. Behavior of MLE and MPLE for different values of p.

in the context of Markov random fields on lattices, and in [28] in the context
of d-dimensional nearest neighbor isotropic Ising models, but to the best of our
knowledge, this is the first such work on tensor Curie-Weiss (and Erdős-Rényi
Ising) models. Our basic tools are some recent results on large deviation of the
average magnetization Xn := 1

n

∑n
i=1 Xi in the Curie-Weiss model, established

in [38] and [50]. Throughout the rest of the paper, we will view the entries
X1, . . . , Xn of the tuple X ∈ {−1, 1}n as dependent samples, and refer to the
length n of X as the sample size (although technically speaking, we have just
one multivariate sample X from the model (1)). One of our most interesting
findings is that the relative performance of the ML and the MPL estimators
based on the notion of Bahadur efficiency depends crucially on whether the
model is strictly tensor or not. In other words, in the usual 2-spin (p = 2)
Curie-Weiss model, the two estimators are indistinguishable from the Bahadur
ARE perspective. This is also true if the model is strictly tensor (i.e. p ≥ 3),
but for all values of the null parameter β0 ≥ log 2. However, in this case, the
MPL estimator is strictly less efficient than the ML estimator for each value of
the null parameter β0 in R := (β∗(p), log 2), but that too, only if the alternative
parameter β is sufficiently large. This loss of Bahadur efficiency for the MPL
estimator near threshold in the tensor Curie-Weiss models, can be attributed to
its functional form, which derives false signal from a regime where the average
magnetization Xn is very close to 0.

Our results are a bit more universal, in the sense that they extend beyond
the Curie-Weiss model (1). They hold verbatim in the tensor Erdős-Rényi Ising
model (6) too, which is an exponential family, with sufficient statistic given by
a tensor form, the tensor being the adjacency of a directed Erdős-Rényi hy-
pergraph with loops. Interestingly, we can even allow for slight sparsities in
the underlying Erdős-Rényi hypergraph. We believe that the same results (and
techniques) will also extend to Ising models on dense stochastic block model
hypergraphs, and leave it open for future research.
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The rest of the paper is organized as follows. In Section 2, we compare the
ML and the MPL estimators in terms of their Bahadur ARE. The correspond-
ing Bahadur slope and minimum sample size calculations necessary for the tests
based on these two estimators are also provided in Section 2. Section 3 shows
that these results for the tensor Curie-Weiss model possess a somewhat univer-
sality property, i.e. they are true even for the tensor Erdős-Rényi Ising model.
In Section 4, we provide numerical illustrations of our theoretical findings in
various settings. In Section 6, we prove the main results in Sections 2 and 3. In
Section 7, we summarize some main and interesting aspects of our results, and
talk about possible directions for future research in this area. Finally, proofs of
some technical results needed for showing the main theorems are given in the
appendix.

1.1. Our contributions

Before delving in the main results, let us summarize our contributions once
again in a pointwise fashion. We enlist the results we derived below.

1. In the classical 2-spin (p = 2) Curie-Weiss/Erdős-Rényi model, the ML
and MPL estimators are equally Bahadur efficient.

2. In the higher-order tensor (p ≥ 3) Curie-Weiss/Erdős-Rényi model, the
MPL estimator is equally Bahadur efficient as the ML estimator, if the null
parameter is greater than or equal to log 2. Even if the null parameter lies
strictly between the model threshold and log 2, they are equally efficient
unless the alternative parameter is very large. In the last case, the MPL
estimator is less Bahadur efficient than the ML estimator.

3. The exact Bahadur slopes of the ML and MPL estimators, and the min-
imum sample sizes required by the tests based on these estimators to
achieve significance, are derived for both the tensor Curie-Weiss and the
Erdős-Rényi Ising model.

4. Even if the the null parameter lies in the (β∗(p), log 2) window and the
alternative parameter is very large, the MPL estimator is always at least
a positive fraction as efficient as the ML estimator, an observation similar
to Hodges and Lehmann’s (1956) remarkable result that the Pitman ARE
of Wilcoxon’s test with respect to Student’s T-test, under location alter-
natives, never falls below 0.864, despite the former being non-parametric
and exactly distribution-free for all sample sizes. The same conclusion
holds for fixed values of the alternative above threshold, provided the null
parameter is bounded away from the threshold.

5. The Bahadur slopes and the minimum sample size requirements for both
the ML and MPL estimators remain unchanged, if one moves from the
tensor Curie-Weiss model to the tensor Erdős-Rényi model. This indicates
a possible universality of our results to Ising models on dense, random
block hypergraphs.

Although the MPL estimator shows almost all the desirable efficiency prop-
erties of the ML estimator, in order to provide a completely unbiased and clear
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picture, we must mention two aspects in which the latter beats the former:

1. For p ≥ 3 and every fixed value of the alternative parameter, the Bahadur
ARE of the MPL estimator with respect to the ML estimator approaches
0 as the null parameter approaches the threshold from the right. This
is because, the expression for asymptotic minimum sample size (4) for
significance of the test based on the MPL estimator approaches ∞, but
the corresponding asymptotic minimum sample size for the test based on
the ML estimator remains bounded.

2. In the p ≥ 3 case, as long as the null parameter lies strictly between
the threshold and log 2, the asymptotic minimum sample size required
by the MPL estimator stabilizes at a fixed value after the alternative
parameter exceeds a certain finite value, unlike that of the ML estimator.
This is an undesirable property of the MPL estimator, since the sample
size requirement does not decrease with increase in the separation between
the null and alternative parameters, above a certain limit. However, as
already mentioned above, the asymptotic minimum sample size for the
MPL estimator exceeds that of the ML estimator by a bounded fraction
only, as β → ∞.

2. Theoretical results for the tensor Curie-Weiss model

In this section we compare the MPL and the ML estimates in the tensor Curie-
Weiss model (1) in terms of their Bahadur ARE. The ML estimator β̂ML does
not have an explicit form, but it is shown in [45] that the MPL estimator is
given by:

β̂MPL =
{
p−1Xn

1−p tanh−1(Xn) if Xn 	= 0,
0 if Xn = 0.

Furthermore, it is shown in [43] and [45] that both the ML and MPL estimators
have the same asymptotic normal distribution:

√
N(β̂ − β) D−→ N

(
0,−

H ′′
β,p(m∗(β, p))

p2m∗(β, p)2p−2

)
,

for all β > β∗(p), where β̂ is either β̂ML or β̂MPL,

Hβ,p(x) := βxp − 1
2 {(1 + x) log(1 + x) + (1 − x) log(1 − x)} for x ∈ [−1, 1] ,

(3)
m∗(β, p) is the unique positive global maximizer of Hβ,p, and

β∗(p) := sup
{
β ≥ 0 : sup

x∈[−1,1]
Hβ,p(x) = 0

}
.

A few initial values of the threshold β∗(p) are β∗(2) = 0.5, β∗(3) ≈ 0.672 and
β∗(4) ≈ 0.689. The exact value of β∗(p) is in general inexplicit, but β∗(p) ↑ log 2
as p → ∞ (see Lemma A.1 in [45]).
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In this paper, we will consider testing the hypothesis

H0 : β = β0 vs H1 : β > β0

for some known β0 > β∗(p). The most powerful test for this hypothesis in
model (1) is based on the sufficient statistic Xn, and its asymptotic power is
derived in [12]. Clearly, one can think of using the statistic Tn :=

√
n(β̂−β0) for

testing the above hypotheses, where β̂ is either β̂ML or β̂MPL, and large values
of Tn will denote significance.

We now state the main result in this paper about the Bahadur slopes of
the tests based on the MPL and ML estimators, and the minimum sample
size required to ensure their significance. Towards this, we define a function
ηp : [−1, 1] �→ R as:

ηp(t) =
{
p−1t1−p tanh−1(t) if t 	= 0,
0 if t = 0.

Theorem 2.1. The Bahadur slopes of β̂MPL and β̂ML for the model (1) at an
alternative β are respectively given by:

cβ̂MPL
(β0, β, p) = 2

(
sup

x∈[−1,1]
Hβ0,p(x) − sup

x∈η−1
p ((β,∞))

Hβ0,p(x)
)

,

cβ̂ML
(β0, β, p) = 2

(
sup

x∈[−1,1]
Hβ0,p(x) − sup

x > m∗(β,p)
Hβ0,p(x)

)

Consequently, the minimum sample sizes required, so that the tests
√
n(β̂MPL −

β0) and
√
n(β̂ML − β0) become (and remain) significant at level δ → 0, are

respectively given by:

Nβ̂MPL
(β0, β, δ, p) ∼ log(δ)

supx∈η−1
p ((β,∞)) Hβ0,p(x) − supx∈[−1,1] Hβ0,p(x) ,

Nβ̂ML
(β0, β, δ, p) ∼ log(δ)

supx > m∗(β,p) Hβ0,p(x) − supx∈[−1,1] Hβ0,p(x) .

Theorem 2.1 is proved in Section 6.1. Let us introduce the following notation,
which will be used throughout the rest of the paper:

N∗
β̂MPL

(β0, β, δ, p) = − 2 log(δ)
cβ̂MPL

(β0, β, p)
and N∗

β̂ML
(β0, β, δ, p) = − 2 log(δ)

cβ̂ML
(β0, β, p)

.

(4)
Note that Nβ̂(β0, β, δ, p) ∼ N∗

β̂MPL
(β0, β, δ, p) as δ → 0 for β̂ = β̂MPL and β̂ML

both, so the latter quantities can be called the asymptotic minimum sample
sizes. The natural question at this stage, is when do the expressions for the
Bahadur slope and the asymptotic minimum sample size for the MPL and the
ML estimators differ? It turns out that we have two different scenarios depending
on whether p = 2 or p ≥ 3.
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2.1. The p = 2 case

In this case, it turns out that the Bahadur slopes and the asymptotic minimum
sample sizes for the MPL and the ML estimators agree, and consequently, they
are equally Bahadur efficient.

Theorem 2.2. Consider the model (1) for p = 2. For every β > β0 > β∗(2)
and δ ∈ (0, 1), we have

cβ̂MPL
(β0, β, 2) = cβ̂ML

(β0, β, 2) and N∗
β̂MPL

(β0, β, δ, 2) = N∗
β̂ML

(β0, β, δ, 2) .

Consequently, the Bahadur ARE eff(β̂ML, β̂MPL;β0, β) = 1.

Theorem 2.2 is proved in Section 6.2. It says that in the classical 2-spin
Curie-Weiss model, one cannot distinguish the estimators β̂ML and β̂MPL based
on even the Bahadur efficiency.

2.2. The strictly tensor p ≥ 3 case

All the interesting phenomena occur when the model (1) goes beyond the clas-
sical 2-spin system to the higher-order tensor (p ≥ 3) system. In this case, a two
layer phase transition is observed with respect to both the null and alternative
parameters. To be precise, there exists a small window around the estimation
threshold β∗(p), such that for all values of the null parameter in this window,
β̂MPL is strictly less Bahadur efficient than β̂ML provided the alternative pa-
rameter β is greater than a second threshold (which is different from β∗(p)).

Theorem 2.3. Consider the model (1) for p ≥ 3. Two different situations arise
depending on whether β0 ≥ log 2 or β0 ∈ (β∗(p), log 2).

1. For every β > β0 ≥ log 2 and δ ∈ (0, 1), we have

cβ̂MPL
(β0, β, p) = cβ̂ML

(β0, β, p) and N∗
β̂MPL

(β0, β, δ, p) = N∗
β̂ML

(β0, β, δ, p) .

Consequently, the Bahadur ARE eff(β̂ML, β̂MPL;β0, β) = 1 in this regime.

2. For every β0 ∈ (β∗(p), log 2) and δ ∈ (0, 1), the Bahadur slopes and
asymptotic minimum sample sizes for β̂MPL and β̂ML do not agree, and
eff(β̂ML, β̂MPL;β0, β) > 1, for all β > β0 large enough.

Theorem 2.3 is proved in Section 6.3. Below, we provide some intuitions
behind some of the contents of Theorem 2.3 in light of the main ideas behind
its proof.
Remark 1. Theorems 2.2 and 2.3 indicate a theoretical discontinuity in the be-
havior of the Bahadur ARE between the ML and the MPL estimators from the
matrix (p = 2) case to the strictly tensor (p ≥ 3) case. In the former case, this
Bahadur ARE is always 1 (as long as the null parameter is above the threshold),
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whereas in the latter case, a two-layer phase transition is observed. To under-
stand this phenomenon, one needs to look at the expression for the Bahadur
slopes of these two estimates. For the ML estimator, this slope depends on the
supremum of the function Hβ0,p on the set (m∗(β, p), 1], whereas for the MPL
estimator, the slope depends on the supremum of the function Hβ0,p on the set
η−1
p ((β,∞)), because of the explicit form of the MPL estimator β̂MPL = ηp(Xn)

(see Theorem 2.1). Lemma 6.3 shows that these two suprema are exactly equal
for p = 2, but they differ for p ≥ 3 according as whether the former supremum
is strictly positive or not. This is precisely what creates the discrepency in the
Bahadur efficiencies for the strictly tensor case. If one further digs in through
the proof of Lemma 6.3, then he will observe that the region η−1

p ((β,∞)) is
actually the union of the interval (m∗(β, p), 1] with another interval of the form
(0,m(β, p)) (see Eq. (25) for the definition of m(β, p)) for the strictly tensor case
only, which is a consequence of the different behavior of the derivative of Hβ,p

for p ≥ 3 from that in the case p = 2. It is precisely the presence of this region
(0,m(β, p)) in the p ≥ 3 case, that contributes to the differential behavior of the
efficiencies in the matrix and the strictly tensor cases. For p ≥ 3, the supremum
of Hβ0,p over the interval (0,m(β, p)) is 0, and thus, a discrepancy between the
efficiencies of the ML and MPL estimators is observed if and only if its supre-
mum over the other interval, i.e. Hβ0,p(m∗(β, p)) < 0 (see Figures 3 and 4, which
show the plots of Hβ0,p(m∗(β, p)) against β at (β0, p) = (0.69, 3) and (0.69, 4),
respectively; in both these figures, Hβ0,p(m∗(β, p)) is positive for values of β
close to β0, and gradually become negative for β far away). In summary, the
loss of Bahadur efficiency of the MPL estimator in the strictly tensor case for
values of the null parameter close to 0 and large alternatives, can be attributed
to its functional form, which makes it draw false signals from values of Xn close
to 0. This type of theoretical discontinuity between matrix and tensor Ising
models is not unheard of. One such example is the presence of a special point
in the parameter space of a Curie-Weiss model with an external magnetic field
h where the ML estimator is superefficient, i.e. has N−3/4 rate of convergence
(see [43]). The h-coordinate of this special point is 0 for the matrix model, but
strictly positive for the other tensor models, thereby introducing a critical curve
in the interior of the parameter space, where the ML estimators have mixture
limiting distributions, a phenomenon observed in the strictly tensor models only
[43].

The proof of Theorem 2.3 also reveals that the supremum of Hβ0,p on the
interval (m∗(β, p), 1] is lower bounded by β0 − log 2, so that β0 ≥ log 2 is a
sufficient condition for the strict positivity of this supremum, and hence equality
of the Bahadur efficiencies. Conversely, if β0 < log 2, then for large values of β,
this supremum will become negative, and consequently, the efficiencies do not
agree. This motivates the emergence of the discrepency window (β∗(p), log 2).

Some more insight is obtained if one fixes the alternative β > β∗(p), and
looks at the behavior of the asymptotic minimum sample sizes and Bahadur
ARE of the MPL and ML estimators by varying the null parameter in the small
window near β∗(p).
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Fig 3. p = 3, β0 = 0.69. Fig 4. p = 4, β0 = 0.69.

Theorem 2.4 (The fixed alternative scenario). For p ≥ 3 and fixed β > β∗(p),
the set of all β0 > β∗(p) satisfying eff(β̂ML, β̂MPL;β0, β) > 1 is given by:(

β∗(p), I(m∗(β, p))
m∗(β, p)p

)

where I(x) = 1
2 {(1 + x) log(1 + x) + (1 − x) log(1 − x)}. Further, for every p ≥

3 and every fixed β > β∗(p), we have:

lim
β0→β∗(p)+

N∗
β̂MPL

(β0, β, δ, p) = ∞ and

lim
β0→β∗(p)+

N∗
β̂ML

(β0, β, δ, p) = log(δ)
Hβ∗(p),p(m∗(β, p))

< ∞. (5)

and hence,
lim

β0→β∗(p)+
eff(β̂ML, β̂MPL;β0, β) = ∞ .

Theorem 2.4 is proved in Section 6.4.
Remark 2. Theorem 2.4 says that as the null parameter approaches the estima-
tion threshold, the ML estimator becomes infinitely more Bahadur efficient than
the MPL estimator. The reason behind the discrepancy between the efficiencies
of the ML and MPL estimators near the threshold, is the functional form of the
latter. For p ≥ 3, unlike the ML estimator, the MPL estimator takes very high
values if the average magnetization Xn is close to 0. This false signal coming
from the average magnetization lying in a region very close to 0, leads to an
increase in the null probability of the MPL estimator exceeding the observed
MPL estimate, thereby inflating its p-value. This inflation occurs only in a close
neighborhood of the threshold, because for lower values of the parameter β,
there is a higher probability that the average magnetization Xn is small.
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Remark 3. It follows from Lemma C.12 in [43] that

sup
x∈[−1,1]

Hβ0,p(x) = Hβ0,p(m∗(β0, p)) = Θ(β0 − β∗(p)) .

Since supx∈η−1
p ((β,∞)) Hβ0,p(x) eventually becomes 0 as β0 approaches β∗(p)

from the right, the rate at which N∗
β̂MPL

(β0, β, δ, p) approaches ∞ as β0 →
β∗(p)+ for p ≥ 3, is determined just by the supx∈[−1,1] Hβ0,p(x) term in the
denominator of the formula for N∗

β̂MPL
(β0, β, δ, p), and is given by (β0−β∗(p))−1.

Another undesirable property of β̂MPL is that for every fixed value of the
null parameter in the window (β∗(p), log 2), its asymptotic minimum sample
size does not decrease further when the alternative parameter exceeds a cer-
tain value. So, no matter how large the separation between the null and the
alternative are, one does not have any concession in the asymptotic sample size
requirement after a certain value of the separation. This is formalized in the
theorem below:

Theorem 2.5. For p ≥ 3 and fixed β0 ∈ (β∗(p), log 2), there exists β > 0 such
that

N∗
β̂MPL

(β0, β, δ, p) = − log(δ)
Hβ0,p(m∗(β0, p))

> 0 for all β > β.

Theorem 2.5 is proved in Section 6.5. It says that the asymptotic minimum
sample size requirement for the MPL estimator stabilizes at a certain value once
the separation between the null and the alternative is large enough, provided the
null lies in the window (β∗(p), log 2). In this case, note that for β large enough,
we have:

N∗
β̂ML

(β0, β, δ, p) = − log(δ)
Hβ0,p(m∗(β0, p)) −Hβ0,p(m∗(β, p))

< N∗
β̂MPL

(β0, β, δ, p).

It also shows that unlike the β̂MPL, the asymptotic minimum sample size for
β̂ML is strictly decreasing with the alternative β, for all sufficiently large values
of β. This is precisely due to the presence of the Hβ0,p(m∗(β, p)) term in the
denominator of N∗

β̂ML
(β0, β, δ, p), which is strictly decreasing in β for all β large

enough.
Remark 4. It follows from Theorem 2.1 that for every fixed β0 > β∗(p),

lim
β→∞

N∗
β̂ML

(β0, β, δ, p) = log(δ)
β0 − log 2 −Hβ0,p(m∗(β0, p))

.

On the other hand, Theorem 2.5 implies that as long as β0 ∈ (β∗(p), log 2), we
have:

lim
β→∞

N∗
β̂MPL

(β0, β, δ, p) = log(δ)
−Hβ0,p(m∗(β0, p))

.

Hence, for every β0 ∈ (β∗(p), log 2),

lim
β→∞

eff(β̂MPL, β̂ML;β0, β) = Hβ0,p(m∗(β0, p))
Hβ0,p(m∗(β0, p)) + log 2 − β0

> 0 .
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Fig 5. ARE (MLE/MPLE) for p = 3. Fig 6. ARE (MLE/MPLE) for p = 4.

Hence, the Bahadur ARE of the MPL estimator with respect to the ML esti-
mator is bounded away from 0 even when the null parameter is in the interval
(β∗(p), log 2) and the alternative parameter is large. This is analogous to the re-
markable result of Hodges and Lehmann (1956), which shows that the Pitman
ARE of Wilcoxon’s test with respect to Student’s T-test, under location alter-
natives, never falls below 0.864, despite the former being non-parametric and
exactly distribution-free for all sample sizes (see [19]). Figures 5 and 6 show the
ARE of the MLE with respect to the MPLE, as a function of β0 ∈ (β∗(p), log 2)
and β ∈ (0.8, 1.4) for p = 3 and p = 4, respectively. We see values of the ARE
as high as 25 and 20 for values of β0 very close to the threshold β∗(p) and large
β.

3. Theoretical results for the hypergraph Erdős-Rényi Ising model

In this section, we are going to see that all our results for the tensor Curie-Weiss
model hold verbatim for the more general class of hypergraph Erdős-Rényi Ising
model, where we can even introduce some sparsity. A classical survey on these
and more general models of disordered ferromagnets in the physics literature
can be found in [21]. This model for p = 2 was introduced and studied in
[14], and analyzed further in [36], where a quenched central limit theorem has
been proved for the magnetization in the high temperature (small β) regime,
allowing for some sparsity in the underlying random graph. Of course, we will
be concerned with the general p case in this section.

Let A := {Ai1...ip}1≤i1,...,ip≤n be a collection of i.i.d. Bernoulli random vari-
ables with mean αn. Note that A can be viewed as the adjacency tensor of a
directed Erdős-Rényi hypergraph with loops. The p-tensor Erdős-Rényi Ising
model in this context, is a discrete exponential family on {−1, 1}n with proba-
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bility mass function given by:

P
∗
β,p(x) = exp{βHn(x)}

2nZ∗
n(β, p) (for x ∈ {−1, 1}n) , (6)

where
Hn(x) := α−1

n n1−p
∑

1≤i1,...,ip≤n

Ai1...ipxi1 . . . xip

denotes the Hamiltonian of the model, and Z∗
n(β, p) is the normalizing constant.

Note that we will use a ∗ superscript to denote probabilities and moments
corresponding to the model (6). Below, we state the main result of this section:
Theorem 3.1. The Bahadur slopes and asymptotic minimum sample sizes of
β̂MPL and β̂ML for the model (6) at an alternative β are respectively equal to
the Bahadur slopes and asymptotic minimum sample sizes of β̂MPL and β̂ML for
the model (1) at β.

Consequently, all the results in Section 2 for the tensor Curie-Weiss model
also hold for the tensor Erdős-Rényi Ising model. Theorem 3.1 is proved in Sec-
tion 6.6. The main approach, in a nutshell, is an approximation of the Hamilto-
nian and the local fields of the tensor Erdős-Rényi model by the corresponding
quantities for the tensor Curie-Weiss model. In order to show that the Hamilto-
nian Hn(x) of the hypergraph Erdős-Rényi Ising model is very close to that of
the tensor Curie-Weiss model, it is enough to establish a uniform (in x) concen-
tration of Hn(x) around its mean (with respect to the Erdős-Rényi measure)
EHn(x). Define

γn := 3(αnn
p−1)− 1

2 .

Lemma 3.2. Let Hn denote the Hamiltonian of the p-tensor Erdős-Rényi Ising
model. Then,

P

(
1
n

sup
x∈{−1,1}n

|Hn(x) − EHn(x)| ≤ 3γn for all but finitely many n

)
= 1 .

Lemma 3.2 says that as long as the Erdős-Rényi hyperedge probability αn �
n1−p, the Hamiltonian Hn(x) concentrates around its mean (when scaled by a
factor of 1/n) uniformly in x. The proof of Lemma 3.2 is given in Appendix C.
The following result is a corollary of the proof of Lemma 3.2, which says that not
only are the Hamiltonians of the two models close, but their local fields m(n)

i (x)
(defined below) are also close, uniformly over all 1 ≤ i ≤ n and all x ∈ {−1, 1}n.
It will be useful in deriving the Bahadur slope of the MPL estimator.
Corollary 1. For each 1 ≤ i ≤ n, define

m
(n)
i (x) := α−1

n n1−p
∑

(i2,...,ip)∈[n]p−1

Aii2...ipxi2 . . . xip .

Then, we have:

P

(
sup

1≤i≤n
sup

x∈{−1,1}n

∣∣∣m(n)
i (x) − xn

p−1
∣∣∣ ≤ 3γn for all but finitely many n

)
= 1 .
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The proof of Corollary 1 is given in Appendix C. We will henceforth assume
the slightly stronger condition αn = Ω(n1−p logn), which in particular implies
that γn � 1. Note that for p = 2, this condition is satisfied if the Erdős-
Rényi graph is almost-surely connected. This technical condition is required
for establishing the consistency of the MPL estimator (see Lemma C.2). See
Section 6.6 for a complete proof of Theorem 3.1.

3.1. Sketch of proofs of the main results

We now provide a brief sketch of some of the main ideas involved in the proofs
of the main results stated in Sections 2 and 3. The main result in Section 2 is
Theorem 2.1, and its proof starts by establishing the probability limit of β̂−β0
under the alternative, where β̂ denotes either the ML or the MPL estimator
(see Lemma 6.1). This verifies Condition (1). In order to verify Condition (2),
we use a large deviation principle of Xn to pinpoint the asymptotic behavior of
the p-values (see Lemma 6.2). The proofs of the other results in Section 2 follow
from Theorem 2.1 and an analysis of the behavior of the function Hβ0,p and its
maximum value over certain regions.

The proof of Theorem 3.1 relies on comparing the Erdős-Rényi Ising model
with the Curie-Weiss model, and showing that the two models are close in the
exponential scale (see Lemma 6.6). This follows from an exponential concen-
tration of the Hamiltonian of the Erdős-Rényi Ising model around its expected
value, the latter being the Hamiltonian of the Curie-Weiss model. This keeps
the asymptotics of the parameter estimates and the large deviation behavior of
the sample mean unchanged in the Erdős-Rényi Ising model.

4. Numerical results

In this section, we provide a graphical presentation of the numerical values of
the asymptotic minimum sample sizes for the tests based on the ML and MPL
estimators in the model (1), using the theoretical formula given in Theorem 2.1.
Note that the Curie-Weiss model can be rewritten as

Pβ,h,p(XN = m) = 1
2nZn(β, p)

(
n

n(1 + m)/2

)
enβm

p

(7)

for m ∈
{
−1,−1 + 2

n , · · · , 1 − 2
n , 1
}
, whence the partition function can be com-

puted as

Zn(β, p) =
∑

m∈M

1
2n

(
n

n(1 + m)/2

)
enβm

p

. (8)

Consequently, the mass function can be computed exactly for all moderately
large n (say n up to 1000) and the Curie-Weiss model can be sampled directly
from this mass function without the use of any MCMC approach.

In Figures 7, 8 and 9, we fix the level δ = 0.05. In Figure 7, we fix β0 = 0.7,
a value slightly larger than log 2, and plot the asymptotic minimum sample size
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Fig 7. Asymptotic minimum sample size for the tests based on MLE and MPLE with varying
β; β0 = 0.7 > log 2, δ = 0.05, p ∈ {2, 3, 4} (with logarithmic vertical scale).

(for both the MPL and the ML tests, which must be same in this regime) for
p = 2, 3 and 4, across β > β0. We see that the asymptotic minimum sample size
decreases as the alternative parameter β increases, which is expected, since the
detection capability of the tests should increase as the alternative β moves far
apart from the null β0. Another important observation is that with increase in
the interaction complexity p, the asymptotic minimum sample size requirement
also increases at every alternative. One possible explanation of this phenomenon
is that with increase in p, the threshold β∗(p) also increases, and hence, the null
β0 (which is fixed at 0.7) gets closer to β∗(p), which causes a slight increase in
the difficulty of the testing problem.

In Figure 8, we fix the alternative β = 0.9, and demonstrate graphically (for
the cases p = 3 and 4 respectively), that the asymptotic minimum sample sizes
for the MPL and the ML tests differ for all β0 in a small right neighborhood of
β∗(p) below log 2, and agree above that neighborhood. The figures also demon-
strate that the asymptotic minimum sample size for the MPL test approaches
∞ as the null β0 approaches the threshold β∗(p). In Figure 9, we fix the null
β0 to values slightly smaller than log 2, and demonstrate (for the cases p = 3
and 4 respectively) that although the asymptotic minimum sample sizes for the
MPL and the ML tests coincide for all small values of the alternative β > β0,
they disagree for all β large enough. All these results reflect the contents of
Theorems 2.3 and 2.4.

Now, we illustrate our theoretical results with numericals obtained from sim-
ulated data. In the left window of Figure 10, we plot the average p-value of the
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Fig 8. Asymptotic minimum sample size for the tests based on MLE and MPLE with varying
β0;β = 0.90, δ = 0.05. The left window corresponds to the case p = 3 and the right window
to the case p = 4.

Fig 9. Asymptotic minimum sample size for the tests based on MLE and MPLE with varying
β; δ = 0.05 (with logarithmic vertical scale). The left window corresponds to the case p =
3, β0 = 0.68 < log 2 and the right window to the case p = 4, β0 = 0.69 < log 2.

MPL test obtained from 10, 000 tuples generated from the 2-spin Curie-Weiss
model at β = 0.9 against the null β0 = 0.7 > β∗(2), for each sample size ranging
from around 175 to 375. We see that from around sample size 266, the average p-
value goes down (and remains) below δ := 0.01. This matches very closely with
the theoretical sample-size value of 270 that one will obtain in this setting, from
Theorem 2.1. The right window of Figure 10 illustrates the average p-value of the
MPL test obtained from 10, 000 tuples generated from the 3-tensor Curie-Weiss
model at β = 0.9 against the null β0 = 0.68 ∈ (β∗(3), log 2), for each sample
size ranging from around 575 to 775. We see that from around sample size 625,
the average p-value goes down (and remains) below δ := 0.01. Once again, this
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Fig 10. p-values for different sample sizes for β = 0.9. The left window corresponds to the case
p = 2, β0 = 0.7 > β∗(2) and the right window to the case p = 3, β0 = 0.68 ∈ (β∗(3), log 2).

matches somewhat closely with the theoretical asymptotic sample-size value of
679 for the MPL test that one will obtain in this setting, from Theorem 2.1.
In this case, the theoretical asymptotic sample size for the ML test turns out
to be 533. This is smaller than the theoretical and empirically obtained sample
sizes of 679 and 625 (respectively) for the MPL test, thereby demonstrating our
theoretical finding that the MPL test becomes much less efficient than the ML
test for β0 < log 2 and sufficiently high β.

Next, we consider the Erdős-Rényi Ising model in our numerical studies. The
strategy is to generate a random matrix A with independent Bernoulli (αn)
entries, and simulate 1000 samples under both the null and alternative Erdős-
Rényi Ising distributions using Glauber dynamics. We vary n in steps of size 5
in a region around the asymptotic minimum sample size given by Theorem 3.1.
Given A, we generate each sample using 106 iterations of the Glauber dynamics
(see [24, 39]) repeating the simulation independently 1000 times each under the
null distribution β0 and the alternative distribution β 	= β0. In Figure 11, we
plot the average p-values of the MPL tests obtained from 1000 tuples generated
from the 2-spin Erdős-Rényi model at β0 = 0.7 > β∗(2) against the alternative
β = 0.9, for sample size ranging from around 150 to 350. The simulation results
match with the theoretical results indicating that the chains in the Glauber
dynamics have mixed properly.
Remark 5 (Computation of the ML and MPL estimators). Although the likeli-
hood function of the p-spin Curie-Weiss model can be computed in polynomial
time (because the sufficient statistic Xn can take at most n + 1 many values;
see (7), (8)), its computation for general Ising models (including the Erdős-Rényi
Ising model) takes exponential time, since the inexplicit normalizing constant
Zn is computationally expensive. Hence, ML estimation is computationally in-
feasible for general Ising models, and involves computational complexity of at
least 2n. However, as seen in [45] equation (2.3), computing the MPL estimator
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Fig 11. p-values for different sample sizes in the 2-spin Erdős-Rényi model (β0 = 0.7 > β∗(2)
and β = 0.9).

involves finding the root of a monotone function (see Eq. (2.2) in [45]) (which
can be computed in polynomial time O(np)), which can be executed very easily
using the Newton-Raphson method or a simple grid search. Thus, the MPL es-
timate is much more computationally efficient than its ML counterpart in the
general case, and the purpose of this paper, is in some sense, to show that the
former also does not loose too much theoretical efficiency.

5. Applications of the MPL estimator on real data

The MPL estimator being computationally efficient, can be easily implemented
to infer the coupling intensity in real-life network data. There are natural scenar-
ios where the underlying network data exhibit peer-group effects, which make
higher-order tensor models good fits, whereas for some other examples, it turns
out that classical 2-spin models are better fits. We illustrate these two scenarios
below.

In the first author’s thesis (see [42] and the references therein), he applies
the pseudolikelihood method on a recommender system dataset, the Last.fm
dataset (http://millionsongdataset.com/lastfm/). This dataset is a part
of the Million Song Dataset (http://millionsongdataset.com/) and contains
a list of 1892 users, their friendship network, and a list of their most favorite
artists. For each artist, a vector of ±1 was then formed, the ith entry being
+1 if user i is a fan of that artist, and −1 otherwise. Based on the four most

http://millionsongdataset.com/lastfm/
http://millionsongdataset.com/
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Fig 12. Lady Gaga. Fig 13. Britney Spears.

Fig 14. Rihanna. Fig 15. Beatles.

Fig 16. Relative position of the true Hamiltonian within the 2.5 and 97.5 percentiles of the
empirical Hamiltonians in the 2-spin model.

popular artists in the dataset, namely Lady Gaga, Britney Spears, Rihanna and
the Beatles, the network interaction parameter β was estimated using the pseu-
dolikelihood method in each of these cases, assuming a classical 2-spin Ising
model, and then 100 observations were simulated in each case from the esti-
mated model (with parameter β̂MPL). In three out of these four cases (Lady
Gaga, Britney Spears and the Beatles), the true Hamiltonian lied outside the
2.5 and 97.5 percentiles of the empirical Hamiltonians obtained from the 100
simulated observations, and even in the remaining case (Rihanna), it only lied
marginally within these quantiles (see Fig 16). Things are however completely
different if one tries to fit a 3-spin Ising model with the triangles in the net-
work forming the hyperedges, and in this case, all the four true Hamiltonians
lied inside the acceptance quantiles of the empirical Hamiltonians (see Fig 21).
This clearly demonstrates that higher interaction models are more suitable to
capture the complex network dependencies in these recommender system type
datasets where peer group effects are dominant.

On the other side of the coin, there are scenarios where the classical 2-spin
models seem to be a better fit for some network data, than its higher-order
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Fig 17. Lady Gaga. Fig 18. Britney Spears.

Fig 19. Rihanna. Fig 20. Beatles.

Fig 21. Relative position of the true Hamiltonian within the 2.5 and 97.5 percentiles of the
empirical Hamiltonians in the 3-spin Model.

versions. One such example appears to be the facebook dataset (see [48] and
the references therein). This dataset consists of a page to page graph of veri-
fied facebook sites, which can be formulated as a network, with nodes repre-
senting official facebook pages and the (undirected) edges representing mutual
likes between the sites. The webpages are restricted to 4 categories defined by
facebook, namely politicians, governmental organizations, television shows, and
companies. In the dataset, there are 5768, 6880, 3227, and 6495 politicians, gov-
ernment, TV show, and company webpages, respectively. Of all the categories,
the government organizations webpages were the most inter-connected, followed
by their connections with the politicians webpages. This was followed by politi-
cians webpages, which were the second-most inter-connected, followed by their
connections with the government webpages. Hence, we decided to analyze these
two categories of webpages.

To be precise, we define a network consisting only of the webpages whose
page types are either governmental organizations (labeled as −1) or politicians
(labeled as +1). Once again, we fit the p-tensor Ising model, this time for p =
2, 3 and 4, with the hyperedges being all cliques of size p. We then randomly
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split the observations into a training set containing 80% of the data and a test
set containing 20% of the data. On the training set, we estimate the coupling
intensity β of the Ising model using the MPL estimator, and for each observation
in the test set, we then predict its sign using the conditional distribution of that
observation given all observations in the training set. The MPL estimate for
the case p = 2 is β̂2 = 0.1422, and the misclassification rate on the test set
is 0.119, which exactly matches with that obtained from the consensus model,
which maps a node to the sign that majority of its neighbors have. For the cases
p = 3, 4, the MPL estimates blow up, and in fact, the misclassification rates for
these cases are constants at 0.419 and 0.3, respectively, across a grid of values
of the parameter β, which indicates a lack of fit of the tensor Ising model, and
suggests that the webgraph network data does not exhibit peer group effects.

6. Proofs of the main results

In this section, we prove the main results stated in Sections 2 and 3. We start
with the proof of Theorem 2.1.

6.1. Proof of Theorem 2.1

A main ingredient in the proof of Theorem 2.1 is the verification of conditions (1)
and (2) in [6]. We begin with the verification of condition (1) with almost sure
convergence replaced by convergence in probability.

Lemma 6.1. Under every β > β∗(p), we have:

n−1/2Tn
P−→ β − β0 as n → ∞ ,

where Tn is either
√
n(β̂MPL − β0) or

√
n(β̂ML − β0).

We will now verify condition 2. For this, we will need the following lemma
on the large deviation of Xn, which follows from [50].

Lemma 6.2. For every subset A ⊆ [−1, 1] such that Ao is dense in A, we have:

lim
n→∞

1
n

logPβ,p(Xn ∈ A) = sup
x∈A

Hβ,p(x) − sup
x∈[−1,1]

Hβ,p(x) .

where Hβ,p is as defined in (3).

Lemmas 6.1 and 6.2 are proved in Appendix A. We are now ready to prove
Theorem 2.1.

Proof of Theorem 2.1. We deal with the test based on the MPL estimator first.
To begin with, note that β̂MPL = ηp(Xn). Fix t > 0, whence we have by
Lemma 6.2:

n−1 log[1 − FTn,β0(n1/2t)] = n−1 logPβ0,p

(
n−1/2Tn > t

)
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= n−1 logPβ0,p

(
β̂MPL − β0 > t

)
= n−1 logPβ0,p

(
ηp(Xn) > β0 + t

)
= n−1 logPβ0,p

(
Xn ∈ η−1

p ((β0 + t,∞))
)

→ sup
x∈η−1

p ((β0+t,∞))
Hβ0,p(x) − sup

x∈[−1,1]
Hβ0,p(x).

where the last step follows from Lemma 6.2, since it follows from the proof of
Lemma 6.3, that the set η−1

p ((β0 + t,∞)) is a union of finitely many disjoint,
non-degenerate intervals, and hence, its interior is dense in its closure.

In view of the above discussion, we conclude that the function f in condi-
tion (2) is given by:

f(t) = sup
x∈[−1,1]

Hβ0,p(x) − sup
x∈η−1

p ((β0+t,∞))
Hβ0,p(x) .

Since x �→ Hβ0,p(x) and β �→ m∗(β, p) are continuous functions (by Lemma B.3)
on [−1, 1] and (β∗(p),∞) respectively, we conclude (in view of Lemma 6.3) that
f is continuous on an open neighborhood of β−β0. Also, in view of Lemma 6.3,
the argument given below for the ML estimator, and the fact that β0 > β∗(p),
it will follow that f > 0 on a non-empty open neighborhood of β − β0.

The Bahadur slope of β̂MPL at an alternative β is then given by 2f(β −
β0). This completes the proof of Theorem 2.1 for the test based on the MPL
estimator.

For the test based on the ML estimator, note that for every t > 0, we have:

n−1 log[1 − FTn,β0(n1/2t)] = n−1 logPβ0,p

(
n−1/2Tn > t

)
= n−1 logPβ0,p

(
β̂ML − β0 > t

)
= n−1 logPβ0,p

(
Xn

p
> Eβ0+t,p(Xn

p)
)

.

The last step follows from the following facts:

1. The function Fn(β, p) := logZn(β, p) is strictly convex in β (Lemma C.5
in [43]) and hence, ∂FN (β,p)

∂β is strictly increasing in β;

2. The ML equation is given by ∂FN (β,p)
∂β

∣∣∣
β=β̂ML

= NXn
p;

3. ∂FN (β,p)
∂β = Eβ,p(NXn

p).

Now, it follows from [43] and the dominated convergence theorem, that

Eβ0+t,p(Xn
p) → m∗(β0 + t, p)p .

Fix ε ∈ (0,m∗(β0 + t, p)), to begin with. Then, there exists N ≥ 1, such that

(m∗(β0 + t, p) − ε)p ≤ Eβ0+t,p(Xn
p) ≤ (m∗(β0 + t, p) + ε)p
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for all n ≥ N . Let us first consider the case p is odd. We then have the following
by Lemma 6.2:

lim sup
n→∞

n−1 log[1 − FTn,β0(n1/2t)]

= lim sup
n→∞

n−1 logPβ0,p

(
Xn

p
> Eβ0+t,p(Xn

p)
)

≤ lim sup
n→∞

n−1 logPβ0,p

(
Xn

p
> (m∗(β0 + t, p) − ε)p

)
= lim sup

n→∞
n−1 logPβ0,p

(
Xn > m∗(β0 + t, p) − ε

)
= sup

x > m∗(β0+t,p)−ε

Hβ0,p(x) − sup
x∈[−1,1]

Hβ0,p(x) .

Similarly, we also have:

lim inf
n→∞

n−1 log[1 − FTn,β0(n1/2t)]

= lim inf
n→∞

n−1 logPβ0,p

(
Xn

p
> Eβ0+t,p(Xn

p)
)

≥ lim inf
n→∞

n−1 logPβ0,p

(
Xn

p
> (m∗(β0 + t, p) + ε)p

)
= lim inf

n→∞
n−1 logPβ0,p

(
Xn > m∗(β0 + t, p) + ε

)
= sup

x > m∗(β0+t,p)+ε

Hβ0,p(x) − sup
x∈[−1,1]

Hβ0,p(x) .

Since ε > 0 can be arbitrarily small, and Hβ,p is continuous, we must have for
all odd p:

lim
n→∞

n−1 log[1 − FTn,β0(n1/2t)] = sup
x > m∗(β0+t,p)

Hβ0,p(x) − sup
x∈[−1,1]

Hβ0,p(x) .

(9)
Next, suppose that p is even. In this case, X and −X have the same distri-

bution, and hence, so do Xn and −Xn. Hence, for every positive real number
α, we have:

n−1 logPβ0,p

(
Xn

p
> αp

)
= n−1 log

[
2 Pβ0,p

(
Xn > α

)]
= n−1 logPβ0,p(Xn > α) + o(1) .

Hence, the same argument as for the case of odd p also works here, showing
that (9) holds when p is even, too.

In view of the above discussion, we conclude that the function f in condi-
tion (2) is given by:

f(t) = sup
x∈[−1,1]

Hβ0,p(x) − sup
x > m∗(β0+t,p)

Hβ0,p(x) .

Since x �→ Hβ0,p(x) and β �→ m∗(β, p) are continuous functions (by Lemma B.3)
on [−1, 1] and (β∗(p),∞) respectively, we conclude that f is continuous on an
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open neighborhood of β − β0. Also, f(β − β0) > 0 (and hence, f(t) > 0 on a
non-empty open neighborhood of β − β0), since Hβ0,p is strictly decreasing on
m∗(β, p), and m∗(β, p) > m∗(β0, p) (by Lemma B.3).

The Bahadur slope of β̂ML at an alternative β is thus given by 2f(β − β0).
This completes the proof of Theorem 2.1 for the test based on the ML estimator.
The proof of Theorem 2.1 is now complete.

6.2. Proof of Theorem 2.2

The result for p = 2 follows directly from Theorem 2.1 and the following lemma,
which is proved in Appendix A.

Lemma 6.3. For every β > β0 > β∗(p), we have:

sup
x∈η−1

p ((β,∞))
Hβ0,p(x) =

{
supx > m∗(β,p) Hβ0,p(x) if p = 2,
max

{
supx > m∗(β,p) Hβ0,p(x) , 0

}
if p ≥ 3.

6.3. Proof of Theorem 2.3

The proof of Theorem 2.3 depends crucially on the following important lemma:

Lemma 6.4. For p ≥ 3, β > β0 > β∗(p) and δ ∈ (0, 1), a necessary and
sufficient condition for cβ̂MPL

(β0, β, p) = cβ̂ML
(β0, β, p) ⇐⇒ N∗

β̂MPL
(β0, β, δ, p) =

N∗
β̂ML

(β0, β, δ, p) is Hβ0,p(m∗(β, p)) ≥ 0.

Proof of Lemma 6.4. For p ≥ 3, it follows from Lemma B.2 that H ′
β,p ≤ 0 on

(m∗(β, p), 1), and hence, H ′
β0,p

≤ 0 on (m∗(β, p), 1). Consequently,

sup
x > m∗(β,p)

Hβ0,p(x) = Hβ0,p(m∗(β, p)) . (10)

Lemma 6.4 now follows from Lemma 6.3.

Returning to the proof of Theorem 2.3, note that it follows from (10) that

Hβ0,p(m∗(β, p)) ≥ Hβ0,p(1) = β0 − log 2 .

This shows that the condition β0 ≥ log 2 is sufficient to ensure equality of
the Bahadur slopes and the asymptotic minimum sample sizes. On the other
hand, if β0 < log 2, then limx→1 Hβ0,p(x) < 0. Since limβ→∞ m∗(β, p) = 1 (by
Lemma B.3), we must have for all β > β0 large enough, Hβ0,p(m∗(β, p)) < 0,
which shows, in view of Lemma 6.4, that the Bahadur slopes and asymptotic
minimum sample sizes for the tests based on the MPL and ML estimators do
not agree in this case.
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6.4. Proof of Theorem 2.4

By Lemma 6.4, β0 > β∗(p) satisfies eff(β̂ML, β̂MPL, β0, β) > 1 if and only if
Hβ0,p(m∗(β, p)) < 0, i.e. β0m∗(β, p)p < I(m∗(β, p)). This establishes the first
part of Theorem 2.4. Next, note that

lim
β0→β∗(p)+

sup
x∈[−1,1]

Hβ0,p(x) = 0 . (11)

On the other hand, we also have:

lim
β0→β∗(p)+

sup
x > m∗(β,p)

Hβ0,p(x) = Hβ∗(p),p(m∗(β, p)) < 0 .

Hence, it follows from Lemma 6.3 that:

lim
β0→β∗(p)+

sup
x∈η−1

p ((β,∞))
Hβ0,p(x)

= lim
β0→β∗(p)+

max
{

0 , sup
x > m∗(β,p)

Hβ0,p(x)
}

= 0 . (12)

It thus follows from (11), (12) and Theorem 2.1, that

lim
β0→β∗(p)+

N∗
β̂MPL

(β0, β, δ, p) = ∞ and

lim
β0→β∗(p)+

N∗
β̂ML

(β0, β, δ, p) = log(δ)
Hβ∗(p),p(m∗(β, p))

< ∞. (13)

Finally, the limiting Bahadur efficiency part follows directly from (13). This
completes the proof of Theorem 2.4.

6.5. Proof of Theorem 2.5

Since m∗(β, p) → 1 as β → ∞ (by Lemma B.3), we have:

lim
β→∞

Hβ0,p(m∗(β, p)) = β0 − log 2 < 0 .

Hence, Hβ0,p(m∗(β, p)) < 0 for all β large enough, which shows, in view of
Lemma 6.3, that:

sup
x∈η−1

p ((β,∞))
Hβ0,p(x) = 0 .

Theorem 2.5 now follows from Theorem 2.1.

6.6. Proof of Theorem 3.1

As in the Curie-Weiss model, a main ingredient in the proof of Theorem 3.1 is
the verification of conditions (1) and (2) in [6]. Once again, we begin with the
verification of condition (1) with almost sure convergence replaced by conver-
gence in probability. The following result is an analogous version of Lemma 6.1
for the model (6).
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Lemma 6.5. Under the model (6), for every β > β∗(p), we have:

n−1/2Tn
P−→ β − β0 as n → ∞ ,

where Tn is either
√
n(β̂MPL − β0) or

√
n(β̂ML − β0).

We will now verify condition 2. Towards this, we will use Lemma 3.2 to
compare the probability models (1) and (6). In fact, we prove a slightly more
general result below, which solves our purpose, but may be of independent
interest for more general objectives.

Lemma 6.6. Let {βn}n≥1 be a bounded sequence of positive real numbers. Then,
with probability 1, we have:

sup
A,B⊆{−1,1}n

∣∣ logP∗
βn,p(A|B) − logPβn,p(A|B)

∣∣ = O(nγn) .

Remark 6. One can compare the logarithms of the two (unconditional) measures
P
∗ (6) and P (1) by taking B := {−1, 1}n in Lemma 6.6.
One can now use Lemmas 3.2 and 6.6 to compare the log-normalizing con-

stants and asymptotics of the sample mean in the two models (1) and (6).

Lemma 6.7. We have the following with probability 1.

1. If Z∗
n(β, p) denotes the normalizing constant of the model (6), then

| logZn(β, p) − logZ∗
n(β, p)| = O(nγn) .

2. If X is generated from the model (6), then for every β > β∗(p) and fixed
ε > 0, we have:

P
∗
β,p

(
|Xn

p −m∗(β, p)p| ≥ ε
)
≤ e−nΩ(1) . (14)

In particular, Xn
P−→ m∗(β, p) under the model (6).

Lemmas 6.6 and 6.7 are proved in Appendix A. In view of all that we have
above, we are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. We begin with the ML estimator first. Note that by
Lemma 3.2, we have:

P
∗
β0,p(Xn

p
> E

∗
β0+t,pXn

p + 6γn) ≤ P
∗
β0,p(Hn(X) > E

∗
β0+t,pHn(X))

≤ P
∗
β0,p(Xn

p
> E

∗
β0+t,pXn

p − 6γn).

Now, note that by part (2) of Lemma 6.7 and the dominated convergence the-
orem, E∗

β0+t,pXn
p → m∗(β0 + t, p)p. Hence, we have:

P
∗
β0,p(Xn

p
> m∗(β0 + t, p)p + o(1)) ≤ P

∗
β0,p(Hn(X) > E

∗
β0+t,pHn(X))

≤ P
∗
β0,p(Xn

p
> m∗(β0 + t, p)p + õ(1))
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where o(1) and õ(1) denote two real sequences converging to 0. Hence, for every
fixed ε > 0 sufficiently small, one has the following for all large n:

P
∗
β0,p(Xn

p
> (m∗(β0 + t, p) + ε)p) ≤ P

∗
β0,p(Hn(X) > E

∗
β0+t,pHn(X))

≤ P
∗
β0,p(Xn

p
> (m∗(β0 + t, p) − ε)p).

It now follows from Lemma 6.6, that:

1
n

logPβ0,p(Xn
p
> (m∗(β0 + t, p) + ε)p) + o(1)

≤ 1
n

logP∗
β0,p(Hn(X) > E

∗
β0+t,pHn(X))

≤ 1
n

logPβ0,p(Xn
p
> (m∗(β0 + t, p) − ε)p) + o(1).

Theorem 3.1 for the ML estimator now follows from the proof of Theorem 2.1
and Lemma 6.5.

Next, we consider the MPL estimator. It follows from (2.3) in [45], that β̂MPL
is the least solution of the equation (in β):

Hn(X) =
n∑

i=1
mi(X) tanh(pβmi(X)) .

Define ψn(β) := n−1∑n
i=1 mi(X) tanh(pβmi(X)). Since with probability 1, we

have the following for all large n

ψ′
n(β) = p

n

n∑
i=1

m2
i (X)sech2(pβmi(X)) > 0,

the function ψn is strictly increasing for all large n, with probability 1. Hence,
we have (with probability 1 for all large n) the following for all t > 0:

1
n

logP∗
β0,p(β̂MPL > β0 + t)

= 1
n

logP∗
β0,p(ψn(β̂MPL) > ψn(β0 + t))

= 1
n

logP∗
β0,p

(
1
n
Hn(X) > 1

n

n∑
i=1

mi(X) tanh(p(β0 + t)mi(X))
)

= 1
n

logP∗
β0,p

(
Xn

p
>

1
n

n∑
i=1

mi(X) tanh(p(β0 + t)mi(X)) + o(1)
)

Therefore, in view of Lemma 3.2, Corollary 1 and Lemma 6.6, we have the
following for every fixed ε > 0 sufficiently small:

lim sup
n→∞

1
n

logP∗
β0,p(β̂MPL > β0 + t)
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≤ lim sup
n→∞

1
n

logP∗
β0,p

(
Xn

p
>

1
n

n∑
i=1

Xn
p−1 tanh(p(β0 + t)Xn

p−1) + o(1)
)

= lim sup
n→∞

1
n

logP∗
β0,p

(
Xn

p
> Xn

p−1 tanh(p(β0 + t)Xn
p−1) + o(1)

)
≤ lim sup

n→∞

1
n

logP∗
β0,p

(
ηp(Xn) > β0 + t− ε

)
= lim sup

n→∞

1
n

logPβ0,p

(
ηp(Xn) > β0 + t− ε

)
= sup

x∈η−1
p ((β0+t−ε,∞))

Hβ0,p(x) − sup
x∈[−1,1]

Hβ0,p(x).

We can now take ε ↓ 0 to conclude that:

lim sup
n→∞

1
n

logP∗
β0,p(β̂MPL > β0+t) ≤ sup

x∈η−1
p ((β0+t,∞))

Hβ0,p(x)− sup
x∈[−1,1]

Hβ0,p(x) .

(15)
By an exactly similar approach, we can show that:

lim inf
n→∞

1
n

logP∗
β0,p(β̂MPL > β0+t) ≥ sup

x∈η−1
p ((β0+t,∞))

Hβ0,p(x)− sup
x∈[−1,1]

Hβ0,p(x) .

(16)
Theorem 3.1 now follows from (15) and (16).

7. Discussion

In this paper, we derived the Bahadur slopes and minimum sample sizes required
for significance of the tests based on the maximum likelihood (ML) and the
maximum pseudolikelihood (MPL) estimators for the tensor Curie-Weiss model.
One of our interesting findings is that although the MPL estimator is just an
approximation of the ML estimator, the former is as Bahadur efficient as the
latter everywhere in the parameter space for p = 2, and throughout most of
the parameter space for p ≥ 3. More precisely, the MPL estimator is equally
Bahadur efficient as the ML estimator for p = 2, and for p ≥ 3 this is true for all
values of the alternative, if and only if the null parameter is greater than or equal
to log 2. For p ≥ 3, if the null parameter lies strictly between the estimation
threshold and log 2, then the MPL estimator is strictly less efficient than the ML
estimator for all sufficiently large values of the alternative parameter. However,
even in this regime, the Bahadur ARE of the MPL estimator with respect to
the ML estimator is lower bounded by a positive fraction. We also showed that
our results hold verbatim for the more general class of tensor Erdős-Rényi Ising
models, where we can even allow for some sparsity in the underlying hypergraph.

We conjecture that similar results are also true for Ising models on dense
deterministic and stochastic block model hypergraphs (with the Hamiltonian
being suitably scaled) too, and believe that this can be shown by slight (rou-
tine) modifications of the methods used in Section 3. A potentially interesting
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direction for future research in this area, would be to consider Ising models on
more general hypergraphs, for example arbitrary regular hypergraphs. Probabil-
ity limits and fluctuations of the average magnetization for 2-spin Ising models
on d-regular graphs have been recently derived in [20], where the authors show
that the fluctuations are universal and same as that of the 2-spin Curie-Weiss
model in the entire ferromagnetic parameter regime as long as d � √

n. The
next natural step would thus, be to derive a large deviation principle for the
Hamiltonians of such models, not just in the 2-spin case, but also for the ten-
sor case. These will in turn enable one to derive the Bahadur slopes and the
minimum sample sizes for the ML and the MPL estimators in Ising models on
regular hypergraphs.

Since the behavior of the MPL estimator in terms of its Bahadur ARE with
respect to the ML estimator is dependent on whether p = 2 or p > 2, one may be
interested in asking if it is possible to test the hypothesis p = 2 versus p > 2, at
least in the Curie-Weiss model, based on a single observation X from the model.
This is an interesting problem in its own right, and one plausible approach may
be to estimate β assuming p = 2 (by either the ML or the MPL approach),
simulate a large number B of observations X(1),X(2), . . . ,X(B) from the 2-spin
Curie-Weiss model with parameter β̂, and determine whether X lies within the
2.5% and 97.5% quantiles of the histogram formed by X(1), X(2), . . . ,X(B). If
not, then that should be a reasonable evidence against the null hypothesis p = 2.
This approach has some flaws though, one being that we are never sure if the
actual observation X is coming from a Curie-Weiss model at low temperature
(β above the threshold), because otherwise, β̂ will be inconsistent. The second
drawback is that one can never say surely that the observation is coming from a
2-spin Curie-Weiss model indeed, even if X does lie within the 2.5% and 97.5%
quantiles of the empirical histogram. In other words, the power guarantee of this
testing approach is dubious. We leave this problem as an interesting direction
for future research.

Finally, we would like to mention that although this paper is concerned with
efficient estimation and testing of the coupling strength in tensor Ising models
and the model considered here does not have any external magnetic field term,
there is a significant literature on testing for external fields as well (see for
example, [40, 41]), at least in the classical 2-spin setting. In the Curie-Weiss
model with external field, the sufficient statistic is still the sample mean Xn,
and both the ML and the MPL estimates are once again functions of Xn. Hence,
we expect similar techniques involving asymptotics and large deviations of Xn to
apply in deriving the Bahadur slopes and minimum sample sizes corresponding
to the estimates of the external fields, as well.

Appendix A: Proofs of technical lemmas

In this section, we prove the technical lemmas mentioned in Sections 2 and 3.
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A.1. Proof of Lemma 6.1

Note that n−1/2Tn = β̂ − β0, where β̂ is either β̂ML or β̂MPL. It follows from
[43] and [45], that under every β > β∗(p), β̂ P−→ β. This proves Lemma 6.1.

A.2. Proof of Lemma 6.2

It follows from display (18) in [50] that Xn satisfies a large deviation principle
(LDP) with rate function:

I(x) := −βxp + x

2 sinh−1
(

2x
1 − x2

)
+ 1

2 log
(
1 − x2)− Ξ(β, p)

where Ξ(β, p) := infy∈R {supz∈R
{yz − log cosh(z)} − βyp}. Using the identity

sinh−1(x) = log
(
x +

√
x2 + 1

)
,

we have:

−βxp + x

2 sinh−1
(

2x
1 − x2

)
+ 1

2 log
(
1 − x2)

= −βxp + x

2 log
(

2x
1 − x2 +

√
4x2

(1 − x2)2 + 1
)

+ 1
2 log

(
1 − x2)

= −βxp + x

2 log
(

(1 + x)2

1 − x2

)
+ 1

2 log
(
1 − x2)

= −βxp + x log(1 + x) + 1 − x

2 log(1 − x2)

= −βxp + x log(1 + x) + 1 − x

2 log(1 + x) + 1 − x

2 log(1 − x)

= −βxp + 1
2 {(1 + x) log(1 + x) + (1 − x) log(1 − x)} = −Hβ,p(x) .

It now follows from Lemma B.1 that

I(x) = −Hβ,p(x) + sup
y∈[−1,1]

Hβ,p(y) . (17)

Lemma 6.2 now follows from (17) and the fact that I is a continuous function
on [−1, 1].

A.3. Proof of Lemma 6.3

First, suppose that p is even. Then, ηp is an even function, and hence, the set
η−1
p ((β,∞)) is symmetric around 0. This, together with the fact that Hβ0,p is

an even function, implies that

sup
x∈η−1

p ((β,∞))
Hβ0,p(x) = sup

x∈η−1
p ((β,∞))

⋂
(0,1]

Hβ0,p(x) . (18)
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Now, note that if p is odd, then η−1
p ((β,∞))

⋂
[−1, 0] = ∅, since ηp(x) ≤ 0 for

all x ∈ [−1, 0]. Hence, (18) is valid for odd p, too.
Now, x ∈ η−1

p ((β,∞))
⋂

(0, 1] if and only if x ∈ (0, 1] satisfies the inequality
p−1x1−p tanh−1(x) > β, if and only if x ∈ (0, 1] satisfies the inequality

H ′
β,p(x) = βpxp−1 − tanh−1(x) < 0 .

If p ≥ 3, then by Lemma B.2, this region is precisely equal to the set:{
(0,m(β, p))

⋃
(m∗(β, p), 1]

}
\ F

for some finite set F (which is either singleton or empty). Hence, for p ≥ 3, we
have by continuity of Hβ0,p, that:

sup
x∈η−1

p ((β,∞))
Hβ0,p(x) = max

{
sup

x∈(0,m(β,p))
Hβ0,p(x) , sup

x∈(m∗(β,p),1]
Hβ0,p(x)

}
.

(19)
Since Hβ,p(0) = 0 and Hβ,p is decreasing on (0,m(β, p)), we must have:

sup
x∈(0,m(β,p))

Hβ,p(x) = 0 .

Further, since Hβ0,p(0) = 0 and Hβ0,p ≤ Hβ,p on [0, 1], we must have:

sup
x∈(0,m(β,p))

Hβ0,p(x) = 0 .

Lemma 6.3 for p ≥ 3 now follows from (19). Now, let p = 2. Then,

η−1
p ((β,∞))

⋂
(0, 1] = (m∗(β, p), 1] .

Hence,
sup

x∈η−1
p ((β,∞))

Hβ0,p(x) = sup
x > m∗(β,p)

Hβ0,p(x) .

This completes the proof of Lemma 6.3.

A.4. Proof of Lemma 6.5

Note that n−1/2Tn = β̂ − β0, where β̂ is either β̂ML or β̂MPL. All the follow-
ing arguments are on the following event, which has probability 1 in view of
Lemma 3.2:

E :=
{

sup
x∈{−1,1}n

|Hn(x) − nxn
p| ≤ 3nγn for all but finitely many n

}
.

Let us first consider the case β̂ = β̂ML. Then, for every fixed t > 0, we have:

P
∗
β,p(β̂ML > β + t) = P

∗
β,p(Hn(X) > E

∗
β+t,pHn(X))

≤ P
∗
β,p

(
Xn

p
> E

∗
β+t,p(Xn

p) − 6γn
)

.
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Now, by part (2) of Lemma 6.7 and the dominated convergence theorem, we
have:

E
∗
β+t,p(Xn

p) → m∗(β + t, p)p .

Hence, once again by part (2) of Lemma 6.7, we have:

P
∗
β,p(β̂ML > β + t) ≤ P

∗
β,p(Xn

p
> m∗(β + t, p)p − o(1))

≤ P
∗
β,p

(
|Xn

p −m∗(β, p)p| > Ω(1)
)

= o(1).

Similarly, we can show that for every t ∈ (0, β − β∗(p)),

P
∗
β,p(β̂ML < β − t) ≤ P

∗
β,p(Xn

p
< m∗(β − t, p)p + o(1))

≤ P
∗
β,p

(
|Xn

p −m∗(β, p)p| > Ω(1)
)

= o(1).

Hence, we conclude that β̂ML
P−→ β under the model P∗

β,p. This proves Lemma 6.5
when β̂ = β̂ML.

Now, suppose that β̂ = β̂MPL. By part 1 of Lemma 6.7, we have:

1
n

logZ∗
n(β, p) = 1

n
logZn(β, p) + o(1) .

By Theorem 2.3 in [45] and Lemma C.2, we conclude that β̂MPL is a consistent
estimator of β under the model P∗

β,p. This completes the proof of Lemma 6.5.

A.5. Proof of Lemma 6.6

For any two sets A,B ⊆ {−1, 1}n, note that:

P
∗
βn,p(A|B)

=
∑

x∈A
⋂

B exp{βnHn(x)}∑
x∈B exp{βnHn(x)}

=
∑

x∈A
⋂

B exp{βnEHn(x)}eβn(Hn(x)−EHn(x))∑
x∈B exp{βnEHn(x)}eβn(Hn(x)−EHn(x)) . (20)

It follows from (20) and Lemma 3.2, that with probability 1, we have the fol-
lowing for all large n,

e−6nβnγnPβn,p(A|B) ≤ P
∗
βn,p(A|B) ≤ e6nβnγnPβn,p(A|B) . (21)

Lemma 6.6 now follows on taking logarithm on both sides of (20), and recalling
that the sequence {βn}n≥1 is bounded.
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A.6. Proof of Lemma 6.7

Proof of 1. Using Lemma 3.2, we have the following for all large n, with prob-
ability 1:

e−3βnγnZn(β, p) ≤ Z∗
n(β, p) ≤ e3βnγnZn(β, p) . (22)

Part 1 follows on taking logarithm on both sides of (22).

Proof of 2. To begin with, define:

Mε :=
{

(m∗(β, p) − ε,m∗(β, p) + ε) (p odd)
(m∗(β, p) − ε,m∗(β, p) + ε)

⋃
(−m∗(β, p) − ε,−m∗(β, p) + ε) (p even)

It follows from the arguments used in the proof of Lemma 3.1 in [43], that

Pβ,p(Xn ∈ M c
ε ) = O(n 3

2 ) exp
{
n

(
sup
t∈Mc

ε

Hβ,p(t) −Hβ,p(m∗(β, p))
)}

= e−nΩ(1).

(23)
It follows from (23) and Lemma 6.6, that

P
∗
β,p(Xn ∈ M c

ε ) ≤ Pβ,p(Xn ∈ M c
ε )eO(nγn) = e−nΩ(1). (24)

Hence, we have:

P
∗
β,p

(
|Xn

p −m∗(β, p)p| ≥ ε
)
≤ P

∗
β,p(Xn ∈ M c

ε/p) = e−nΩ(1) .

This completes the proof of Lemma 6.7.

Appendix B: Technical results for the tensor Curie-Weiss model

In this section, we prove some technical results, which will be useful in the proofs
of the main results concerning the tensor Curie-Weiss model.

Lemma B.1. We have the following:

sup
z∈R

{yz − log cosh(z)}

=
{

1
2 {(1 + y) log(1 + y) + (1 − y) log(1 − y)} (if y ∈ [−1, 1]),
∞ (otherwise) .

Proof. Fix y ∈ R and define g(z) := yz − log cosh(z). Let us begin with the
case y ∈ (−1, 1). In this case, g′′(z) = −sech2(z) < 0 and hence, g is a strictly
concave function. Consequently, any stationary point of g is the unique global
maximum of g. Since g′(z) = y − tanh(z), it follows that the only stationary
point of g is tanh−1(y), and hence,

sup
z∈R

{yz − log cosh(z)} = y tanh−1 y − log cosh(tanh−1(y))

= y tanh−1(y) + 1
2 log(1 − y2)
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where in the last step, we used the identity:

cosh(tanh−1(y)) = 1√
1 − y2

for y ∈ (−1, 1).

The proof for the case y ∈ (−1, 1) now follows from the observation that

y tanh−1(y) + 1
2 log(1 − y2) = 1

2 {(1 + y) log(1 + y) + (1 − y) log(1 − y)} .

Now, suppose that y ≥ 1. Then, g′(z) > 0 for all z ∈ R, and hence,

sup
z∈R

g(z) = lim
z→∞

g(z) .

Now, note that

lim
z→∞

eg(z) = lim
z→∞

2eyz

ez + e−z
= lim

z→∞
2e(y−1)z

1 + e−2z =
{

2 if y = 1,
∞ if y > 1.

Hence,

lim
z→∞

g(z) =
{

log 2 if y = 1,
∞ if y > 1.

This completes the case y ≥ 1. Finally, suppose that y ≤ −1. Then, g′(z) < 0
for all z ∈ R, and hence,

sup
z∈R

g(z) = lim
z→−∞

g(z) .

Now, note that

lim
z→−∞

eg(z) = lim
z→−∞

2eyz

ez + e−z
= lim

z→−∞
2e(y+1)z

1 + e2z =
{

2 if y = −1,
∞ if y < −1.

Hence,

lim
z→∞

g(z) =
{

log 2 if y = −1,
∞ if y < −1.

This completes the case y ≤ −1, and the proof of Lemma B.1.

The following lemma describes the behavior of the function Hβ,p.

Lemma B.2. Suppose that β > β∗(p). Then, the following are true.

1. H ′
β,2 > 0 on (0,m∗(β, 2)) and H ′

β,2 < 0 on (m∗(β, 2), 1).
2. If p ≥ 3, then Hβ,p can have at most 3 positive stationary points. Further,

there exists m(β, p) ∈ (0,m∗(β, p)) such that H ′
β,p ≤ 0 on (0,m(β, p)),

H ′
β,p ≥ 0 on (m(β, p),m∗(β, p)) and H ′

β,p ≤ 0 on (m∗(β, p), 1).
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Proof. To begin with, define Nβ,p(x) := (1 − x2)H ′′
βp

(x). Then,

N ′
β,p(x) = βp(p− 1)xp−3(p− 2 − px2) .

Let us first consider the case p ≥ 3. Since N ′
β,p has exactly 1 root in (0, 1), it

follows by repeated applications of Rolle’s theorem, that H ′
β,p can have at most

3 roots in (0, 1). Define:

m(β, p) := sup{t ∈ (0, 1] : H ′
β,p ≤ 0 on (0, t]} . (25)

Since H ′
β,p(x) = βpxp−1 − tanh−1(x) and limx→0 tanh−1(x)/x = 1, we have

m(β, p) > 0. Clearly, H ′
β,p ≤ 0 on (0,m(β, p)]. On the other hand, since m∗(β, p)

is a global maximizer of Hβ,p, and since Hβ,p can have at most finitely many
stationary points, we must have H ′

β,p(x) > 0 for some x < m∗(β, p). This
shows that m(β, p) < m∗(β, p). Now, by definition of m(β, p), there must exist
a sequence xn ↓ m(β, p), such that H ′

β,p(xn) > 0 and xn > m(β, p) for all n.
Continuity of H ′

β,p now implies that m(β, p) is a stationary point of Hβ,p.
We will now show that H ′

β,p ≥ 0 on (m(β, p),m∗(β, p)). Suppose towards a
contradiction, that H ′

β,p(y) < 0 for some y ∈ (m(β, p),m∗(β, p)). Then, there
exist y1 ∈ (m(β, p), y) and y2 ∈ (y,m∗(β, p)), such that H ′

β,p(y1) > 0 and
H ′

β,p(y2) > 0. This creates two extra stationary points of Hβ,p, one within (y1, y)
and the other within (y, y2), giving a total of at least 4 positive stationary points
of Hβ,p, a contradiction! Hence, H ′

β,p ≥ 0 on (m(β, p),m∗(β, p)).
Finally, we show that H ′

β,p ≤ 0 on (m∗(β, p), 1). Once again, suppose towards
a contradiction, that H ′

β,p(y) > 0 for some y ∈ (m∗(β, p), 1). Since m∗(β, p)
is a global maximizer of Hβ,p and limx→1 H

′
β,p(x) = −∞, there exist y1 ∈

(m∗(β, p), y) and y2 ∈ (y, 1), such that H ′
β,p(y1) < 0 and H ′

β,p(y2) < 0. This
creates two extra stationary points of Hβ,p, one within (y1, y) and the other
within (y, y2), giving a total of at least 4 positive stationary points of Hβ,p, a
contradiction! Hence, H ′

β,p ≤ 0 on (m∗(β, p), 1). This completes the proof of
part (2) of Lemma B.2.

Now, suppose that p = 2. Since N ′
β,2 has exactly one root in (−1, 1), it

follows by repeated applications of Rolle’s theorem, that H ′
β,2 can have at most

3 roots in (−1, 1). Since H ′
β,2 is an odd function, it follows that it can have at

most 1 positive root, which must be m∗(β, 2). Hence, H ′
β,2 must be non-zero and

cannot change sign on each of the intervals (0,m∗(β, 2)) and (m∗(β, 2), 1). Since
m∗(β, 2) is a global maximizer of Hβ,2, we must have H ′

β,2(x) > 0 for some x ∈
(0,m∗(β, 2)), and since limx→1 H

′
β,2(x) = −∞, we must have H ′

β,2(x) < 0 for
some x ∈ (m∗(β, 2), 1). Hence, we must have H ′

β,2(x) > 0 for all x ∈ (0,m∗(β, 2))
and H ′

β,2(x) < 0 for all x ∈ (m∗(β, 2), 1). This proves (1), and completes the
proof of Lemma B.2.

Lemma B.3. The function ξp(β) := m∗(β, p) is continuous and strictly in-
creasing on (β∗(p),∞). Further,

lim
β→∞

ξp(β) = 1 .
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Proof. Fix β ∈ (β∗(p),∞) and take a sequence βn → β. Then, βn ∈ (β∗(p),∞)
for all large n, and hence, Hβn,p will have a unique global maximizer m∗(βn, p) ∈
(0, 1) for all large n. Take a subsequence {nk}k≥1 of the positive integers. This
subsequence must have a further subsequence {nk�

}�≥1 such that m∗(βnk�
, p) →

m′ for some m′ ∈ [0, 1]. Clearly, Hβnk�
, p(m∗(βnk�

, p)) → Hβ,p(m′). Since
Hβnk�

, p(m∗(βnk�
, p)) ≥ Hβnk�

, p(x) for all x ∈ [0, 1] and for all large �, we
must have Hβ,p(m′) ≥ Hβ,p(x) for all x ∈ [0, 1] (taking lim�→∞ on both sides).
This means that m′ is a non-negative global maximizer of Hβ,p. Since m∗(β, p)
is the only non-negative global maximizer of Hβ,p, it follows that m′ = m∗(β, p).
Hence, m∗(βnk�

, p) → m∗(β, p), showing that ξp(βn) → ξp(β), and thereby es-
tablishing continuity of ξp.

Next, take any t ∈ (0, 1), whence H ′
β,p(t) = βptp−1 − tanh−1(t) > 0 for all β

large enough. On the other hand, it follows from Lemma B.2, that H ′
β,p ≤ 0 on

[m∗(β, p), 1]. This shows that m∗(β, p) > t for all β large enough, showing that
limβ→∞ ξp(β) = 1.

Finally, to show that ξp is increasing on (β∗(p),∞), take β2 > β1 > β∗(p).
Then, by Lemma B.2, H ′

β2,p
≤ 0 on [m∗(β2, p), 1]. Since H ′

β1,p
< H ′

β2,p
on (0, 1],

we must have H ′
β1,p

< 0 on [m∗(β2, p), 1]. However, since m∗(β1, p) is a global
maximizer of Hβ1,p, and since Hβ1,p can have at most finitely many stationary
points, there must exist ε > 0, such that H ′

β1,p
> 0 on (m∗(β1, p)−ε,m∗(β1, p)).

Continuity of H ′
β1,p

now implies that m∗(β2, p) > m∗(β1, p), proving that ξp is
strictly increasing. This completes the proof of Lemma B.3.

Appendix C: Technical results for the hypergraph Erdős-Rényi
Ising model

In this section, we prove some technical results related to the hypergraph Erdős-
Rényi Ising model. We start with the proof of Lemma 3.2.

C.1. Proof of Lemma 3.2

To begin with, for every x ∈ {−1, 1}n, let us define the set:

Λn(x) := {(i1, . . . , ip) ∈ [n]p : xi1 . . . xip = 1} .

Also, let Ln(x) :=
∑

(i1,...,ip)∈Λn(x) Ai1...ip . In these notations, we have:

Hn(x) = α−1
n n1−p

⎛
⎝2Ln(x) −

∑
(i1,...,ip)∈[n]p

Ai1...ip

⎞
⎠ .

For each γ > 0, define an event:

Ωn(γ) :=
{

sup
x∈{−1,1}n

∣∣∣∣ Ln(x)
ELn(x) − 1

∣∣∣∣ ≤ γ

}
.
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Since supx∈{−1,1}n |ELn(x)| ≤ αnn
p, we have the following on the event Ωn(γn):

1
n

sup
x∈{−1,1}n

|Hn(x) − EHn(x)|

≤ 2α−1
n n−p sup

x∈{−1,1}n

|Ln(x) − ELn(x)| +

∣∣∣∣∣∣α−1
n n−p

∑
(i1,...,ip)∈[n]p

Ai1...ip − 1

∣∣∣∣∣∣
≤ 2γn +

∣∣∣α−1
n n−p

∑
(i1,...,ip)∈[n]p

Ai1...ip − 1
∣∣∣ . (26)

It follows from Theorem 4 in [25], that

P

⎛
⎝∣∣∣α−1

n n−p
∑

(i1,...,ip)∈[n]p
Ai1...ip − 1

∣∣∣ > γn

⎞
⎠ ≤ 2e− 1

3γ
2
nαnn

p

= 2e−3n (27)

In view of (26), (27) and the Borel-Cantelli Lemma, it thus suffices to show that

P (Ωn(γn) occurs for all but finitely many n) = 1 , (28)

in order to complete the proof of Lemma 3.2. Towards this, note that by a union
bound,

P(Ωn(γ)c) ≤
∑

x∈{−1,1}n

P (Ln(x) > (1 + γ)ELn(x))

+
∑

x∈{−1,1}n

P (Ln(x) < (1 − γ)ELn(x)) . (29)

It follows from Theorem 1 in [32], that

P (Ln(x) > (1 + γ)ELn(x)) = P

(
Ln(x)
|Λn(x)| > (1 + γ)αn

)
≤ e−|Λn(x)|D((1+γ)αn‖αn) , (30)

and

P (Ln(x) < (1 − γ)ELn(x)) = P

(
Ln(x)
|Λn(x)| < (1 − γ)αn

)
≤ e−|Λn(x)|D((1−γ)αn‖αn) , (31)

where D(x‖y) := x log x
y + (1 − x) log

(
1−x
1−y

)
. Also, let

Mn :=
{
−1,−1 + 2

n
, . . . , 1 − 2

n
, 1
}
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denote the set of all values xn := n−1∑n
i=1 xi can take, for some x ∈ {−1, 1}n.

Combining (29), (30) and (31), we have by Lemma C.1 and Equation (2.17) in
[14],

P(Ωn(γ)c)

≤
∑

x∈{−1,1}n

{
e−|Λn(x)|D((1+γ)αn‖αn) + e−|Λn(x)|D((1−γ)αn‖αn)

}

=
∑

m∈Mn

(
n

n(1 + m)/2

){
e−

1
2n

p(1+mp)D((1+γ)αn‖αn)

+ e−
1
2n

p(1+mp)D((1−γ)αn‖αn)
}

=
(
e
−n
[
np−1

2 D((1+γ)αn‖αn)−log 2
]
− log n

2 +O(n−1)

×
∑

m∈Mn

e−
npmp

2 D((1+γ)αn‖αn)−nI(m)
)

+
(
e
−n
[
np−1

2 D((1−γ)αn‖αn)−log 2
]
− log n

2 +O(n−1)

×
∑

m∈Mn

e−
npmp

2 D((1−γ)αn‖αn)−nI(m)
)
, (32)

where I(t) := 1
2 (1 + t) log(1 + t) + 1

2 (1− t) log(1− t). Since the functions D and
I are non-negative, we have∑

m∈Mn

e−
npmp

2 D((1±γ)αn‖αn)−nI(m) ≤ |Mn| = n + 1 .

Hence, we have from (32) and Equation (2.30) in [14],

P(Ωn(γn)c)

≤ O(
√
n)
(
e
−n
[
np−1

2 D((1+γn)αn‖αn)−log 2
]
+ e

−n
[
np−1

2 D((1−γn)αn‖αn)−log 2
])

≤ O(
√
n)
(
e
−n

[
αnn

p−1 γ2
n
6 −log 2

]
+ e

−n

[
αnn

p−1 γ2
n
4 −log 2

])

≤ O(
√
n)e−0.8n . (33)

Since
∑∞

n=1 P(Ωn(γn)c) < ∞, (28) follows from (33) and the Borel-Cantelli
lemma, completing the proof of Lemma 3.2.

C.2. Proof of Corollary 1

For each 1 ≤ i ≤ n, define A
(i)
i2...ip

:= Aii2...ip . Then, for each 1 ≤ i ≤ n, one can
view mi(X) as the Hamiltonian (scaled by n−1) of the (p−1)-spin Erdős-Rényi
Ising model with adjacency tensor A(i) := ((A(i)

i2...ip
)). The rest of the proof will

follow exactly as the proof of Lemma 3.2.
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C.3. Other technical lemmas

In this section, we prove some other technical lemmas required for the proof of
the main results in Section 3. We begin with deriving the cardinality of Λn(x)
that was required in the proof of Lemma 3.2.

Lemma C.1. For every x ∈ {−1, 1}n, we have:

|Λn(x)| = 1
2n

p(1 + xn
p) ,

where xn := n−1∑n
i=1 xi.

Proof. First, note that (i1, . . . , ip) ∈ Λn(x) if and only if xi� = −1 for an
even number of � ∈ [p] := {1, . . . , p}. Now, it is easy to see that the number
of indices i ∈ [n] for which xi = −1, is given by n(1 − xn)/2. To form an
(i1, . . . , ip) ∈ Λn(x), we must thus choose an even number of these p indices
from the total number of n(1 − xn)/2 possible indices where we have −1, and
the rest of these p indices from the remaining n(1 + xn)/2 number of possible
indices where we have +1. We thus have:

|Λn(x)| =
∑

k∈[p]
⋃
{0}: k is even

(
p

k

)(
n(1 − xn)

2

)k (
n(1 + xn)

2

)p−k

= 1
2

(
n(1 + xn)

2 + n(1 − xn)
2

)p

+ 1
2

(
n(1 + xn)

2 − n(1 − xn)
2

)p

.

(34)

Lemma C.1 follows from (34).

The following lemma is crucial in showing consistency of the MPL estimator
in the hypergraph Erdős-Rényi Ising model.

Lemma C.2. With probability 1, we have the following:

max
1≤i1≤n

∑
(i2,...,ip)∈[n]p−1

Ai1...ip = O
(
αnn

p−1) .

Proof. Note that
∑

(i2,...,ip)∈[n]p−1 Ai1...ip ∼ Bin(np−1, αn). So, by Theorem 4 in
[25], we have:

P

⎛
⎝α−1

n n1−p
∑

(i2,...,ip)∈[n]p−1

Ai1...ip ≥ 1 + δ

⎞
⎠ ≤ e−

δ2
2+δαnn

p−1

for every δ > 0. Hence,

P

⎛
⎝ max

1≤i1≤n

∑
(i2,...,ip)∈[n]p−1

Ai1...ip ≥ 2(1 + δ)αnn
p−1

⎞
⎠

≤ ne−
δ2
2+δαnn

p−1
= elogn− δ2

2+δαnn
p−1

.
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Since αn = Ω(n1−p logn), we can choose δ > 0 large enough, so that logn −
δ2

2+δαnn
p−1 ≤ −2 logn thereby ensuring that

P

⎛
⎝ max

1≤i1≤n

∑
(i2,...,ip)∈[n]p−1

Ai1...ip ≥ 2(1 + δ)αnn
p−1

⎞
⎠ ≤ n−2 .

It now follows by an application of the Borel-Cantelli lemma, that:

P

⎛
⎝ max

1≤i1≤n

∑
(i2,...,ip)∈[n]p−1

Ai1...ip ≤ 2(1 + δ)αnn
p−1 for all large n

⎞
⎠ = 1 ,

which completes the proof of Lemma C.2.
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