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Abstract: Non-stationary source separation is a well-established branch of
blind source separation with many different methods. However, for none of
these methods large-sample results are available. To bridge this gap, we de-
velop large-sample theory for NSS-JD, a popular method of non-stationary
source separation based on the joint diagonalization of block-wise covari-
ance matrices. We work under an instantaneous linear mixing model for
independent Gaussian non-stationary source signals together with a very
general set of assumptions: besides boundedness conditions, the only as-
sumptions we make are that the sources exhibit finite dependency and that
their variance functions differ sufficiently to be asymptotically separable.
The consistency of the unmixing estimator and its convergence to a lim-
iting Gaussian distribution at the standard square root rate are shown to
hold under the previous conditions. Simulation experiments are used to
verify the theoretical results and to study the impact of block length on
the separation.
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1. Introduction

The linear blind source separation (BSS) model assumes that a set of p-dimensio-
nal signals Xt is an instantaneous linear mixture of a set of p source signals Zt,

Xt = AZt, t ∈ N, (1)
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where the parameter of interest is the mixing matrix A ∈ R
p×p (or, equivalently,

the unmixing matrix A−1) which is assumed to be invertible, see [12]. In practice
one observes the series Xt at the instances 1, . . . , T , for some T ∈ N.

Generally, the latent signals in Zt are assumed to exhibit a dependency struc-
ture that is simpler than the one existing between the observed signals in Xt

(often temporal uncorrelatedness or full independence). This assumption makes
model (1) especially attractive in modelling and prediction. This is because it
essentially divides the modelling of Xt into two easier tasks that can be carried
out separately: (a) modelling the global dependency structure between the com-
ponents of Xt, as determined by the matrix A, and (b) after having estimated
A, modelling the time-evolution of the estimated independent or uncorrelated
latent variables in Zt = A−1Xt [12, 10, 39]. Among the most common assump-
tions on the dependency structure of Zt is second order stationarity coupled with
the fact that the autocovariance structures of the signals are sufficiently differ-
ent to be distinguishable from each other [12, 37]. The resulting methodology
is called second order source separation (SOS), incorporating classical methods
such as AMUSE [43] and SOBI [4], which are based on the diagonalization of
autocovariance matrices, and also more recent ones, see, e.g., [28, 27].

The stationarity (and ergodicity) of the series are convenient assumptions
also with respect to large-sample statistics. Under them, the sample moments
of the series can be expected to converge to their population values [5], often
a key requirement in studying the limiting behavior of unmixing estimators. In
this work, we step outside of this standard asymptotic framework and develop
large-sample theory under the model (1) and the assumption of non-stationary
sources. The resulting non-stationary source separation (NSS) model is highly
appealing in many applications, such as speech recognition, where the signals
cannot be expected to be stationary, but rather piece-wise stationary [32] or in
a group independent component analysis (ICA) framework in which the data
from N subjects are concatenated. In group ICA it is assumed that model (1)
holds for each subject with the same mixing matrix A but that the sources
might have slightly different properties [38].

Three standard methods of estimating A−1 in NSS are known as NSS-SD,
NSS-JD and NSS-TD-JD, [7, 8, 9]. Each of the methods is based on dividing the
total observed T -length time series into K blocks and jointly diagonalizing a set
of block-wise covariance or autocovariance matrices. More precisely, NSS-SD (si-
multaneous diagonalization) uses K = 2 blocks and simultaneously diagonalizes
the block-wise covariance matrices of the two blocks. NSS-JD (joint diagonaliza-
tion) instead first whitens the series using the global covariance matrix, and then
jointly diagonalizes the block-wise covariance matrices of an arbitrary amount
K of blocks. NSS-TD-JD (time-delayed joint diagonalization) is otherwise as
NSS-JD, but includes also block-wise autocovariance matrices (for a suitable
set of lags) in the joint diagonalization. Each method uses successively more
information on the source series than the previous. NSS-SD and NSS-JD basi-
cally just need ordered observations but do not need serial dependence while
NSS-TD-JD utilizes also information on the time dependency structure of the
series and is usually considered in a block stationary framework.
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In this work our focus is on the theoretical properties of the second method,
NSS-JD, which is presented in more detail in Section 2. Our reason for focusing
on NSS-JD is two-fold. On one hand, it is in most simulation studies, such as
in [7, 34], superior to NSS-SD and, on the other hand, it is more general than
NSS-TD-JD which requires block stationary structures.

Recent developments in non-stationary source separation include [39, 16, 34,
38, 20] which consider, for example, robust and Bayesian approaches or assume
that not all components are non-stationary. However, asymptotic considerations
for NSS are so far still missing. Possibly the most methodological approach is
given in [39] which develops NSS approaches embedded in a Gaussian maximum
likelihood framework and a Gaussian mutual information framework assuming
independent observations. For these approaches either a block stationary model
is assumed or some smooth function for the changing component variance needs
to be modeled. It is also noteworthy that the choice of the number of blocks
K is hardly ever discussed and in most papers mentioned above K is usually
chosen in such a way that it contains 50 or 100 observations. Simulations in [34]
indicate however that a sufficient number of blocks seems more relevant than
the number of observations within a block.

Taking the above considerations into account, the large-sample properties we
develop are non-standard in the sense that, due to stating very weak structural
assumptions on the source series, the limiting distributions of our estimators
are not static, but instead change with the sample size T . Another key property
of our framework is that we will not take the number of blocks K as fixed but
instead let K → ∞, proportional to T . Our method of proof uses a parametriza-
tion of the space of orthogonal matrices through matrix exponentials of skew-
symmetric matrices. This enables us to simplify the analysis of M -estimators
that are orthogonal matrices. This technique may prove useful also in other BSS
problems. The previous points mean that extra layers of complexity arise in the
theory, and as such, the derivation of our theoretical results is postponed to
Appendix C.

The structure of the paper is as follows. In Section 2 we go over the non-
stationary source separation model and recall NSS-JD, one of the standard
estimators of the unmixing matrix A−1 which acts as the transformation from
the observed signals Xt to the vector Zt of latent signals, recall model (1).
In Section 3 we give our main results regarding the consistency and limiting
normality of the estimator, along with the assumptions required for the results
to hold. We also discuss the strictness of the assumptions. In Section 4 we apply
the method to simulated data and demonstrate that the asymptotic results
are representative of the finite sample behavior. In Section 5 we close with a
discussion of possible extensions for future study. Finally, two examples are
developed in Appendix A, the covariance matrix of the limiting distribution
derived in Section 3 is presented in Appendix B and the technical proofs are
collected in Appendix C.
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2. Non-stationary source separation

In this section we review the non-stationary source separation model along with
NSS-JD, a method for non-stationary source estimation. As described in Sec-
tion 1, NSS-JD is based on dividing the total observed time series into blocks,
and throughout the paper we assume, for convenience, that the blocks are of
equal, fixed length, denoted in the following by s ≥ 2. Hence, T = Ks through-
out, and K → ∞ with s fixed in all the large-sample considerations. An ex-
tension to varying (but bounded) block lengths would be straightforward, but
tedious in notation.

2.1. NSS model

Recall from Section 1 that we observe the instantaneous linear mixing model,

Xt = AZt, t ∈ {1, . . . ,Ks}, (2)

where K ∈ N is a positive integer and A ∈ R
p×p is invertible. In Section 3

we will detail the exact assumptions for (2) that are required for our large-
sample results to hold, in particular, the independence and Gaussianity of the
source series. However, recall that no stationarity assumptions are made for Zt,
meaning that both the mean and variance functions of Zt are allowed to be
non-constant and arbitrary (but bounded). Additionally, we will also postpone
discussing the identifiability of the model parameters to Section 3.

Finally, note that we impose in (2), for convenience, the assumption that
the total observed time series length T = Ks is a multiple of the fixed block
length s, meaning that we have exactly K blocks. This assumption is completely
without loss of generality, as including a finite “tail” of observations, T = Ks+r,
r ∈ {0, . . . s− 1}, has no impact in the asymptotic regime K → ∞ we pursue in
Section 3.

2.2. NSS-JD estimate of the unmixing matrix

To estimate the unmixing matrix A−1 we use NSS-JD which is based on the
simultaneous diagonalization of block-wise covariance matrices. Let

ˆcovX,i = 1
s

s∑
j=1

(Xs(i−1)+j − X̄i)(Xs(i−1)+j − X̄i)′ (3)

denote the covariance matrix of the ith block of length s where the sample mean
vector of the ith block, i ∈ {1, . . . ,K} is denoted by X̄i = (1/s)

∑s
j=1 Xs(i−1)+j .

The subscript X in ˆcovX,i is used to differentiate from the analogous quantities
defined in Section 3 for the latent series Zt. Let further

ˆ̄covX,K = 1
K

K∑
i=1

ˆcovX,i (4)
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denote the average block-wise covariance matrix over all K blocks. Note that
in ˆ̄covX,K the centering is done block-wise, and thus ˆ̄covX,K is not equal to the
usual sample covariance matrix of the full series where the centering is with
respect to the global mean vector X̄ = (1/T )

∑T
i=1 Xi. This modification is

necessary as our theoretical results are based on exploiting finite dependence
within individual series, which global centering would break.

The NSS-JD estimate of the unmixing matrix is now found as

ŴX,K = ÛX,K ˆ̄cov−1/2
X,K . (5)

Here ˆ̄cov−1/2
X,K denotes the unique symmetric positive definite matrix satisfying

ˆ̄cov−1/2
X,K

ˆ̄covX,K ˆ̄cov−1/2
X,K = Ip, and ÛX,K is the joint diagonalizer of the block-wise

covariance matrices of the series whitened by the average block-wise covariance
matrix ˆ̄covX,K . By joint diagonalizer, we refer to a solution of the following
optimization problem,

ÛX,K ∈ argmaxU∈Op
g(U), (6)

where Op is the set of p× p orthogonal matrices, and

g(U) =
K∑
i=1

||diag
(
U ˆ̄cov−1/2

X,K ˆcovX,i ˆ̄cov−1/2
X,K U ′

)
||2, (7)

where diag(A) denotes the diagonal matrix having the same diagonal elements as
A and ||A|| is the Frobenius norm of A, for any square matrix A. The set notation
in (6) is justified as the maximizer of g can never be unique since any optimal U
can always have its rows permuted or their signs changed to produce a distinct
optimal solution. Calling (7) joint diagonalization is confirmed by the orthogonal
invariance of the Frobenius norm. I.e.: maximizing g is equivalent to minimizing
the sum of the squared off-diagonal elements of ˆ̄cov−1/2

X,K ˆcovX,i ˆ̄cov−1/2
X,K for i ∈

{1, . . . ,K}. See [17] for different algorithms for solving (6). In the simulations
of Section 4 we use the standard algorithm based on Jacobi rotations [11, 4].

Given the unmixing estimate ŴX,K , an estimate of the latent sources Zt is
given by ŴX,KXt. In Section 3 we show that this indeed provides a consistent
estimate of the sources, under a general set of assumptions. Note finally, that
the estimate produced by NSS-JD has the following invariance property [34, 30]:
Let L ∈ R

p×p be an arbitrary invertible matrix and let ŴLX,K , ÛLX,K etc. be
defined as above but with Xt replaced by LXt. Then, the set of source estimates
{ŴX,KXt}, where ÛX,K goes through all maximizers (6), is equal to the set of
source estimates {ŴLX,KLXt}, where ÛLX,K goes through all maximizers of
the equivalent of (6) for LXt. As such, changing the coordinate system of the
observations has no effect on the produced (set of) source estimates and we
may, without loss of generality, restrict to A = Ip later on in the simulations in
Section 4.
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3. Large-sample properties of NSS-JD

We divide the discussion of the large-sample properties of NSS-JD into two
parts, first going over the required assumptions and then stating the results on
consistency and limiting normality.

3.1. Assumptions

Assume that the observations obey the NSS model (2) and that we work in
the asymptotic regime that K → ∞. Thus the block length s is kept fixed
but the sample size increases by including more and more blocks in the joint
diagonalization.

The following list details the assumptions required for the consistency and
the limiting normality of the NSS-JD estimator to hold. Along the assumptions
we also discuss their intuitive meanings.

Condition 1. Denoting Zt = (Z(1)
t , . . . , Z

(p)
t )′, the latent sources Z(1)

t , . . . , Z
(p)
t

are independent Gaussian processes.

As is common in the literature, we make, for technical convenience, the as-
sumption of Gaussian sources. This in turn means that the latent sources, which
are uncorrelated by definition, are also independent. Remark 2 in Appendix C
summarizes how Gaussianity is exploited in the proofs.

Condition 2. There exists a fixed L ∈ N such that for any i, j ∈ {1, . . . ,K},
|i − j| ≥ L, and k ∈ {1, . . . , p}, the vector (Z(k)

s(i−1)+a)a=1,...,s and the vector
(Z(k)

s(j−1)+a)a=1,...,s are independent.

Condition 2 states that the latent series exhibit finite dependency. Note that
the length of the dependency can be arbitrary (as long as its finite) without
affecting the conclusions of subsequent Theorems 3.1 and 3.2 but we expect that,
the longer the memory, the larger the asymptotic variances of the estimators
are.

Condition 3. For any i ∈ {1, . . . ,K} and j ∈ {1, . . . , s}, the mean vector of
Zs(i−1)+j depends only on i.

The simplest way to fulfill Condition 3 is to simply assume a stationary mean
for the latent vectors Zt, which is standard in the NSS literature [10, 39, 37].
However, this is not necessary and if, e.g., the series are a priori known to have
block-wise constant means with some block length s0, the block length s can be
chosen to be equal to this, fulfilling Condition 3. This is for example natural to
assume in a group ICA framework [38].

Condition 4. We have

sup
t∈N

max
j=1,...,p

Var
(
Z

(j)
t

)
≤ C,

for some fixed C ∈ R.
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Condition 4 is a technical assumption that simply requires that the vari-
ance functions of the latent sources are bounded. This assumption is of course
much weaker than assuming the sources to be stationary. Note that, without
boundedness, even whitening would become asymptotically infeasible.

Denote the population block-wise covariance matrices in the following by

covZ,i = 1
s

s∑
j=1

E
[
(Zs(i−1)+j − Z̄i)(Zs(i−1)+j − Z̄i)′

]
(8)

with Z̄i = (1/s)
∑s

j=1 Zs(i−1)+j , for i ∈ {1, . . . ,K}, and their average by,

¯covZ,K = 1
K

K∑
i=1

covZ,i.

Condition 5. There exists a strictly increasing sequence (ik)k∈N, such that
ik ∈ N for all k ∈ N and such that, with NK = #{k ∈ N; ik ≤ K}, we have
lim inf NK/K > 0 as K → ∞. There exists a fixed δ > 0, such that

inf
k∈N

min
i,j=1,...,p

i �=j

∣∣∣[covZ,ik ]i,i − [covZ,ik ]j,j
∣∣∣ ≥ δ

and
inf
k∈N

min
i=1,...,p

[covZ,ik ]i,i ≥ δ.

Condition 5 is what guarantees that the latent sources are asymptotically
separable from each other, by requiring that within a positive fraction of blocks
the sources have different enough variance structures to be distinguishable from
each other. This condition can be interpreted as an extension of the requirement
that the eigenvalues of a matrix are distinct (in order to produce a unique set
of eigenvectors), to the case of growing number of matrices.

Let us finally introduce a convention on Zt to make the unmixing matrix
more identifiable. By Conditions 1 and 3, the matrix ¯covZ,K is diagonal and
has the average variances of the (empirically centered) sources as its diagonal
elements. Now, the scales of the sources in the model (2) are confounded with
the magnitudes of the columns of A (one may multiply any of the sources by
λ �= 0 and the corresponding columns of A by 1/λ without changing the model).
Thus, without loss of generality, we fix ¯covZ,K = Ip throughout the rest of the
paper. Under Condition 5, this makes the unmixing matrix, for large enough n,
identifiable up to row permutation and multiplication by ±1.

Next, we provide two illustrative examples where all the assumptions hold.

Example 1. Consider as illustrative example mixing a stationary and a non-
stationary source, where Conditions 1–5 hold. Let p = 2 and s = 5. Let Z(1)

t be
a zero-mean Gaussian process with, for t, t′ ∈ {1, . . . ,Ks},

Cov(Z(1)
t , Z

(1)
t′ ) = γ1

(
1 − |t− t′|

10

)+

,
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where x+ = max(0, x) for x ∈ R and with γ1 > 0. In words, Z(1)
t has (stationary)

triangular covariance function with support [−10, 10].
Define a non-linear time-wrapping function ψ : N → N as follows. We let

ψ(0) = 0 by convention and, for i ≥ 1,

ψ(i) =
{
ψ(i− 1) + 1 if �(i− 1)/10	 is even
ψ(i− 1) + 2 if �(i− 1)/10	 is odd,

where �·	 is the integer part. Then let Z
(2)
t be a zero-mean Gaussian process,

independent of Z(1)
t , with, for t, t′ ∈ {1, . . . ,Ks},

Cov(Z(2)
t , Z

(2)
t′ ) = γ2

(
1 − |ψ(t) − ψ(t′)|

10

)+

,

γ2 > 0. In words, Z
(2)
t is non-stationary and can be interpreted as a time

wrapping modification of a stationary process with same distribution as Z
(1)
t ,

with the wrapping ψ.
Then we can choose γ1 and γ2 such that ¯covZ,K = I2 and Conditions 1–5

hold, with L = 4 for Condition 2 and C = 1 for Condition 4. The proof is in
Appendix A.

Example 2. As a second example of a non-stationary case where Conditions
1 – 5 hold, assume that the component series Z(k)

t , k = 1, . . . , p are independent
zero-mean MA(qk)-processes with Gaussian innovations, scaled such that the
condition ¯covZ,K = Ip holds. Assume further that εtk, the t’th innovation of
the kth series, has zero mean and an arbitrary variance function Var(εtk) =
fk(t) such that supt∈N maxk=1,...,p fk(t) ≤ C for some C ≥ 0. In this case
Conditions 1, 3 and 4 hold by definition.

The autocovariance function γ(h) of an MA(q)-process vanishes for all h > q,
meaning that also Condition 2 holds as soon as s(L− 1) ≥ maxk=1,...,p(qk).

For Condition 5 to hold, the k latent series Z(k)
t need to have different enough

non-stationarity structures, as quantified by the diagonal elements [covZ,i]k,k,
to be (asymptotically) distinguishable from each other. To demonstrate this,
in Appendix A we have computed the diagonal elements in a simple scenario.
Non-stationary MA-processes are used later in simulations in Section 4.

3.2. Consistency and limiting normality

After Conditions 1–5 and fixing the scales of the sources through ¯covZ,K = Ip,
the ordering and the signs of the sources can still be chosen freely. This is usually
thought to be acceptable in practice, as after the extraction of the sources,
subsequent univariate analyses can be used to assess their relative importance.
To accommodate this indeterminacy in the following results, let Gp denote the
set of all signed permutation matrices (p× p matrices with a single ±1 in each
row and column and rest of the elements zero).
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Theorem 3.1. Assume that Conditions 1–5 hold. Then, for any sequence ŴX,K

of NSS-JD estimates defined in (5) and (6), there exists a sequence ĜK ∈ Gp

such that

ĜKŴX,K
p→

K→∞
A−1.

Theorem 3.2. Assume that Conditions 1–5 hold. Then, for any sequence ŴX,K

of NSS-JD estimates defined in (5) and (6), there exists a sequence ĜK ∈ Gp

such that, with QŴX,K
the distribution of K1/2(ĜKŴX,K −A−1), we have

dw

(
QŴX,K

, N (0,ΣŴX,K
)
)

→
K→∞

0,

where dw denotes a metric generating the topology of weak convergence on the set
of Borel probability measures on Euclidean spaces, and the limiting covariance
matrix ΣŴX,K

is bounded as K → ∞. The exact form of ΣŴX,K
is given in

Appendix B.

In Theorems 3.1 and 3.2, the statement “for any sequence ŴX,K” refers to
the fact that the maximizer of (6) is not unique. As described in Section 1, the
lack of stationarity and structural assumptions implies that the approximating
distribution of ŴX,K does not need to be static but instead is allowed to evolve
with K. Hence, we express the result of Theorem 3.2 using the metric dw, instead
of the more standard convergence in distribution. See, e.g., the discussion in [13,
p. 393] for specific examples on the use of the metric dw. See also [3]. We refer
to Remark 1 in Appendix B for further discussion on this point.

We also remark that limiting normality of a random matrix means that its
(row or column) vectorization converges in distribution to a Gaussian vector.
Furthermore, the asymptotic covariance matrix ΣŴX,K

has dimension p2 × p2

and is convenient to express with quadruple indices, see Appendix B.
To conclude this section we point out that, as with the original NSS-JD, our

variant of NSS-JD is valid on the population level also for non-Gaussian data
and processes. By validity on the population level, we mean that the method
yields exactly A−1 (up to sign-change and permutation of the rows) when the
three matrices in (7) are replaced by their expectations, with no Gaussianity
assumptions, and under the following conditions. (i) The p component series in
Zt are independent of each other, (ii) the studied covariance matrices exist as
finite. The second of these conditions rules out very heavy-tailed processes but
the resulting model is still very wide.

In this case, under a version of Condition 5 for fixed K (see Proposition 2(1)
of [31]), the corresponding matrix ŴX,K in (5) equals the unmixing matrix,
up to sign-change and permutation of the rows. This essentially follows the
reasoning used in [34] or in [31] in a spatial statistics context. Put other way,
the assumption of Gaussianity in this work is made solely for the sake of deriving
the asymptotic behavior of the estimator on the sample-level.
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Fig 1. Example latent time series for Model 1 of length 1000 and Model 2 of length 2000.
The vertical gray lines depict the different choices for the block size of the estimator. Namely,
s = 10, 20 and 40 from top to bottom in the panels for Model 1 and s = 100 and 250 for the
first two panels of Model 2.

Fig 2. Example latent time series for Model 3 of length 1000 and Model 4 of length 2000.
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Fig 3. Results for the expectation of the limiting distribution of the quantity K(p−1)MDI(Ŵ )2
(theoretical curves) and simulations of the former quantity for all considered sample sizes,
block sizes and models.

4. Simulation studies

In this part of the paper we carry out an extensive simulation study to verify
the derived asymptotic results. The simulation study is carried out in R 4.0.3
[42] with the help of the package JADE [29].

We consider Gaussian time series following the NSS model (2) where the
dimension of the time series p equals 3 and the mixing matrix is chosen to
be the unit matrix, the latter choice is entirely without loss of generality due
to the affine equivariance property of the NSS estimator (details are given in
Section 2.2). This then implies that the observed series Xt exactly agree with
the latent series Zt. The lengths of the time series equal T = 2n1000 where
n = 0, 1, 2, 3, 4, 5 and the block sizes are s = 10, 20, 40, 100, 250. For the latent
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time series we choose a total of four models: Models 1 and 2 are models with
independent observations (no serial dependence but time varying variances)
and Models 3 and 4 are based on moving average processes with time varying
innovation variance.

Specifically, for Model 1 the latent time series is formed by concatenating
differently sized blocks until the overall length T is reached, the block lengths
are independent samples from the negative binomial distribution NB(6, 1/20).
In each block the variances will be different for each component of the latent
time series repeating itself every third block. For the first component the vari-
ances equal 1, 2 and 3, for the second component 3, 1 and 5 and for the third
component 4, 7 and 1. I.e., the first block of the first component of the latent
time series has variance 1, the second block has variance 2, the third block has
variance 3, the fourth block again variance 1 and so fourth. Model 2 is equal
to Model 1 where the only difference is given by the fact that the block sizes
are randomly sampled for each component of the latent time series individually,
again from NB(6, 1/20). Figure 1 depicts samples from these models, where the
different blocks are highlighted by different colors.

For Model 3 each component of the latent time series follows a moving average
process where the coefficients are (0.9,−0.8, 0.3,−0.5) for the first component,
(0.8, 0.2, 0.3) for the second component and (−0.6, 0.7, 0.1) for the third one.
For the innovations of the MA processes the latent time series is split into three
equally-sized blocks, the variances of the innovations are chosen to be the ones
of Model 1 for each of the three blocks. Thus, Model 3 can be viewed as a
block stationary model in the sense that in each block the time series is weakly
stationary. Model 4 follows the same principle as Model 3, only the MA processes
for the latent time series are chosen to be MA(40), MA(50) and MA(60) where
the coefficients for the processes are determined by one iid sample from the
uniform distribution U(−1, 1). Figure 2 illustrates samples from Model 3 and
Model 4. Note that for all of the four models the time series are scaled such that
they fulfill the unit covariance condition (i.e., ¯covZ,K = Ip, see Section 3.1).

For an unmixing matrix Ŵ estimated by the NSS method, an indicator for
the quality of the estimation can be based on the fact that ŴA ≈ Ip up to
the model indeterminacies of sign and permutation (the scale is already fixed).
One quantity that is based on the former consideration is the minimum distance
index (MDI) [18, 22]. The MDI is defined by

MDI(Ŵ ) = 1√
p− 1

inf
G∈Gp

‖GŴA− Ip‖F .

For a perfect separation it holds that ŴA = Ip (up to sign and permu-
tation) which leads to an MDI of zero (lower limit), as the signal separation
gets worse the MDI approaches its upper limit of one. Furthermore, for an es-
timator that follows a central limit theorem in the sense of Theorem 3.2, the
adapted MDI K(p− 1)MDI(Ŵ )2 converges in distribution to

∑m
i=1 δiχ

2
i , where

χ2
i , i = 1, . . . ,m, are independent chi-squared random variables with one degree

of freedom, and δi, i = 1, . . . ,m, are the m non-zero eigenvalues of some matrix
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dependent on the asymptotic covariance matrix of the estimator (details can be
found for example in [18]). This result leads to the fact that the expectation
of the limiting distribution of the MDI is given by the sum of all off-diagonal
elements of ΣŴX,K

from Theorem 3.2. Therefore, the asymptotic efficiency of
the NSS method can be conveniently characterized by two numbers, namely, the
expectation of the limiting distribution of the adapted MDI K(p− 1)MDI(Ŵ )2
(based on the limiting covariance matrix ΣŴX,K

) versus the average value of the
adapted MDI based on several simulation repetitions. Figure 3 illustrates these
two numbers for all combinations of sample sizes, block sizes and models. The
involved expectations in the expression of ΣŴX,K

in Appendix B for the theo-
retical curves are based on 100000 Monte Carlo simulations and the simulated
curves are based on 2000 repetitions. From the simulation results (Figure 3) we
conclude the following points:

• For Model 1 and Model 2 the experimental lines (dashed) and the theo-
retical ones (solid) agree perfectly. For block length s = 10, 20, 40, 100 the
performance is stable and increasing with larger block size. However, for
the largest block size s = 250 the performance is less stable and is also
worse than for s = 100.

• For Model 3 and Model 4 convergence of the finite sample performance
to the expected asymptotic level is much slower and only achieved for
s ≥ 100. However for all block lengths s considered, the performance is
stable and improves with increasing block length. Note also that in general
a better separation seems possible in Model 3 and Model 4 compared to
the other models.

Therefore we can conclude from our simulation study that the block length has
a significant effect. It seems important that within a block the effective sample
size is sufficient to estimate the covariance matrices with enough precision and
therefore in cases with no or little dependence short block lengths are acceptable
while with increasing dependence in the data the block lengths should be larger.
However, the blocks should also not be made too large as then, it seems that
there are not enough blocks to capture the non-stationarity features and thus
the performance starts to suffer. This behavior is seen in Model 1 and Model 2.
Moreover, it is worth noting that when the information within a block is suffi-
cient, the convergence to the asymptotic limit is reached already for quite low
sample sizes.

5. Conclusion

In this paper, we studied the large-sample properties of NSS-JD, a method of
non-stationary source separation, under the unconventional asymptotic frame-
work that the number of blocks grows without bounds, K → ∞, while the block
size is kept fixed. Both consistency and limiting normality were shown to hold
for the NSS-JD unmixing estimator under this framework.

Although Conditions 1–5 pose rather light restrictions on the source signals,
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extensions to at least two directions may prove feasible. First, while the as-
sumption of Gaussian signals is a standard one in NSS, in applications such as
finance more heavy-tailed distributions might prove a better choice. To accom-
modate this, the latent signals could be assumed to have block-wise elliptical
distributions, the family of elliptical distributions preserving some key proper-
ties of the Gaussian family used in proving Theorems 3.1 and 3.2. However, as
our estimator is based on covariance matrices of the blocks, even in this case the
latent distributions would still be required to have finite second moments, rul-
ing out the truly heavy-tailed distributions (unless also the covariance matrices
were replaced with some robust counterparts). Second, the finite dependency
imposed by Condition 2 could be replaced by assuming, e.g., exponentially de-
caying second-order dependence. In the spatial statistics literature, it is indeed
common to consider (stationary) covariance functions that are not compactly
supported but decrease exponentially fast to zero with the distance [1, 24, 2].
Some of the proof techniques used in these latter references could be beneficial
to alleviate the finite dependency condition in our setting.

Besides simply extending the method, an interesting follow-up to the current
work would be to combine NSS-JD with latent dimension estimation. Namely,
the BSS-model (1) is often combined with the assumption that the majority of
the sources are noise, and the objective is to estimate only the non-noise sources,
leading into a form of dimension reduction. In the NSS context, an appropriate
definition of “noise” would be to define all second-order stationary sources to be
noise, since they do not exhibit any changes in volatility over time. To separate
the noise sources from the signal sources, note that, for the block-wise covariance
matrices of the sources, the diagonal elements corresponding to the noise series
are constant in expectation over the blocks. Thus, the sample variances of the
eigenvalues over all blocks could be used to construct an asymptotic hypothesis
test for the null hypothesis that some particular index of sources is noise. Sim-
ilar strategies have been used for latent dimension estimation in unsupervised
dimension reduction of iid data [35, 23, 36], and second-order source separation
[25, 44]. Some first steps in this direction in an NSS context are made in [20, 41].
This is also closely connected to stationary subspace analysis (SSA) where the
goal is to separate the stationary subspace of a multivariate time series from its
non-stationary subspace [45].

Appendix A: Proofs for Examples 1 and 2

A.1. Example 1

We first point out that Z
(2)
t is indeed non-stationary because for instance

Cov
(
Z

(2)
1 , Z

(2)
2

)
= γ2

(
1 − |ψ(2) − ψ(1)|

10

)+

= γ2

(
1 − |1|

10

)+

= 9γ2

10
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while

Cov
(
Z

(2)
11 , Z

(2)
12

)
= γ2

(
1 − |ψ(12) − ψ(11)|

10

)+

= γ2

(
1 − |2|

10

)+

= 8γ2

10 .

Let us now check the conditions. Condition 1 holds by our definition of Zt.
Consider now Condition 2 with L = 4. Let i, j ∈ {1, . . . ,K}, |i − j| ≥ 4, let
a, b ∈ {1, . . . , s} and let k ∈ {1, 2}. Then

Cov
(
Z

(k)
s(i−1)+a, Z

(k)
s(j−1)+b

)
= γk

(
1 − |ψk(s(i− 1) + a) − ψk(s(j − 1) + b)|

10

)+

where ψk is the identity if k = 1 and ψ if k = 2. We have |ψk(u)−ψk(v)| ≥ |u−v|
for u, v ∈ N. Hence, if without loss of generality j > i,

|ψk(s(j − 1) + b) − ψk(s(i− 1) + a)| ≥ s(j − i) − 2s ≥ 2s = 10

and thus Cov
(
Z

(k)
s(i−1)+a, Z

(k)
s(j−1)+b

)
= 0. Thus Condition 2 holds with L = 4.

Condition 3 holds by assumption. Condition 4 clearly holds with C = 1
since the variances are all equal to one. Consider finally Condition 5 and the
choice of γ1, γ2. For k ∈ {1, 2} and i ∈ {1, . . . ,K}, we have, using (Z̄i)k =
(1/s)

∑s
j=1 Z

(k)
s(i−1)+j ,

[covZ,i]k,k =1
5

5∑
j=1

E

[(
Z

(k)
s(i−1)+j −

(
Z̄i

)
k

)2
]

=1
5

5∑
j=1

E

[(
Z

(k)
s(i−1)+j

)2
]

+ 1
25

5∑
j=1

5∑
j′=1

E

[
Z

(k)
s(i−1)+jZ

(k)
s(i−1)+j′

]

−2
5

5∑
j=1

E

⎡
⎣Z(k)

s(i−1)+j

1
5

5∑
j′=1

Z
(k)
s(i−1)+j′

⎤
⎦

=γk − γk
25

5∑
j=1

5∑
j′=1

(
1 − |ψk(s(i− 1) + j) − ψk(s(i− 1) + j′)|

10

)+
.

Hence we define

θ1 = 1 − 1
25

5∑
j=1

5∑
j′=1

(
1 − |j − j′|

10

)+

,

so that θ1 ∈ (0, 1), and we let γ1 = 1/θ1 yielding [covZ,i]1,1 = 1 for all i and
thus [ ¯covZ,K ]1,1 = 1.

Let i ∈ {1, . . . ,K} and j ∈ {1, . . . , s}. When �(i−1)/2	 is even, we can write
(i− 1)/2 = a + r with a ∈ N, a even, and r ∈ {0, 1/2}. We have

s(i− 1) + j − 1
10 = i− 1

2 + j − 1
10 = a + r + j − 1

10
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and thus � s(i−1)+j−1
10 	 is even and thus ψ(s(i− 1) + j) = ψ(s(i− 1)) + j. Hence

in this case [covZ,i]2,2 = θ1γ2. When �(i− 1)/2	 is odd, proceeding similarly we
obtain ψ(s(i− 1) + j) = ψ(s(i− 1)) + 2j and thus [covZ,i]2,2 = θ2γ2, defining

θ2 = 1 − 1
25

5∑
j=1

5∑
j′=1

(
1 − 2|j − j′|

10

)+

.

We have θ2 > θ1 and θ2 ∈ (0, 1). We can thus define

γ2 = K

zKθ1 + (K − zK)θ2

where zK is the number of indices i ∈ {1, . . . ,K} such that �(i− 1)/2	 is even.
Then indeed [ ¯covZ,K ]1,1 = 1.

Finally, observe that |zK − (K − zK)| ≤ 2 and that [covZ,i]2,2 takes two
distinct values that are alternatively repeated twice as i increases. Thus as K →
∞ these two distinct values converge to 2θ1/(θ1+θ2) ∈ (0, 1) and 2θ2/(θ1+θ2) >
1. Hence, one can check that Condition 5 holds.

A.2. Example 2

Assume that K is fixed, p = 2 and that both latent series are Gaussian MA(1)-
processes with zero mean. Assume further that the block size is s = 2 and that
the variance functions of the two innovation processes are such that f1(t) =
τ2
1 > 0 when t belongs to an odd-numbered block ({1, 2}, {5, 6}, . . .) and f1(t) =
τ2
2 > 0 when t belongs to an even-numbered block ({−1, 0}, {3, 4}, . . .), and vice

versa for f2.
In this case, Z(1)

t = γ1(εt1 + θ1ε(t−1)1) where θ1 ∈ R and γ1 > 0 is to be
chosen such that ¯covZ,K = I2. Now,

[covZ,1]1,1 =1
2Var

(
Z

(1)
1 − [Z̄1]1

)
+ 1

2Var
(
Z

(1)
2 − [Z̄1]1

)
=1

4Var
(
Z

(1)
1 − Z

(1)
2

)
=1

4γ
2
1Var (ε11 + θ1ε01 − ε21 − θ1ε11)

=1
4γ

2
1{(1 − θ1)2τ2

1 + τ2
1 + θ2

1τ
2
2 }.

Consequently,

[covZ,i]1,1 − [covZ,i]2,2

=1
4γ

2
1{(1 − θ1)2τ2

1 + τ2
1 + θ2

1τ
2
2 } −

1
4γ

2
2{(1 − θ2)2τ2

2 + τ2
2 + θ2

2τ
2
1 },

(9)



Large-sample properties of Gaussian NSS 2257

for all odd-numbered blocks i, where γ2, θ2 are parameters of Z(2)
t . Similarly, we

get that

[covZ,i]1,1 − [covZ,i]2,2

=1
4γ

2
1{(1 − θ1)2τ2

2 + τ2
2 + θ2

1τ
2
1 } −

1
4γ

2
2{(1 − θ2)2τ2

1 + τ2
1 + θ2

2τ
2
2 },

(10)

for all even-numbered blocks i. To determine γ1, γ2, assuming for simplicity that
K is even, we observe that the (1, 1)-element of ¯covZ,K equals,

1
8γ

2
1{(1 − θ1)2τ2

1 + τ2
1 + θ2

1τ
2
2 } + 1

8γ
2
1{(1 − θ1)2τ2

2 + τ2
2 + θ2

1τ
2
1 },

allowing us to select γ1 such that this value equals unity. The value of γ2 is chosen
analogously. Now, Condition 5 holds as long as at least one of the quantities on
the right-hand sides of (9) and (10) is non-zero. Numerical verification shows
that this is the case, e.g., when θ1 = 1/2, τ2

1 = 1, θ2 = 1, τ2
2 = 2.

Appendix B: Limiting covariance matrix of NSS-JD

In Appendix B we give the expression for the limiting covariance matrix ΣŴX,K

used in Theorem 3.2. The expression is based jointly on the results of Lem-
mas C.9 and C.13, Theorems C.14, C.15 and C.18 and Corollary C.17 given in
the Appendix C.

In the following, let Sk be the set of k × k skew-symmetric matrices (for
M ∈ Sk, M ′ = −M) and let

Uk = {V = (Vi,j)1≤i<j≤k;Vi,j ∈ R for 1 ≤ i < j ≤ k}.

We let S : Uk → Sk be defined, for V ∈ Uk, as S(V )i,i = 0, S(V )i,j = Vi,j and
S(V )j,i = −Vi,j for 1 ≤ i < j ≤ k.

Let ˆcovZ,i and ˆ̄covZ,K be defined as the corresponding quantities in (3)
and (4), but with the series Zt in place of Xt. Let us further write Ĉi = ˆcovZ,i,
T̂ = −(1/2)

( ˆ̄covZ,K − Ip
)

and Q̂i,jk = Ĉieje
′
kĈi where ej is the jth standard

basis vector of Rp. Define then, for 1 ≤ j < k ≤ p, the elements of ∇̄0 ∈ Up as,

[∇̄0]jk

= − 4 1
K

K∑
i=1

e′kQ̂i,kkej − 8e′kT̂
(

1
K

K∑
i=1

E

[
Q̂i,kkej

])

−4e′kT̂
(

1
K

K∑
i=1

E

[
Q̂i,jkek

])
− 4
(

1
K

K∑
i=1

E

[
e′kQ̂i,kk

])
T̂ ej

+4 1
K

K∑
i=1

e′jQ̂i,jjek + 8e′j T̂
(

1
K

K∑
i=1

E

[
Q̂i,jjek

])
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+4e′j T̂
(

1
K

K∑
i=1

E

[
Q̂i,kjej

])
+ 4
(

1
K

K∑
i=1

E

[
e′jQ̂i,jj

])
T̂ ek.

Further, let Σ∇ be the covariance matrix of K1/2∇̄0.
Let Ci = covZ,i from (8) and define, for i = 1, . . . ,K and a, b = 1, . . . , s,

D
(a,b)
Z,i to be the p× p diagonal matrix with diagonal elements given as[

D
(a,b)
Z,i

]
k,k

= E

[(
Z

(k)
s(i−1)+a − Z̄

(k)
i

)(
Z

(k)
s(i−1)+b − Z̄

(k)
i

)]
,

where Z̄
(k)
i = (1/s)

∑s
j=1 Z

(k)
s(i−1)+j is the kth element of the mean vector Z̄i

of the ith block. Using the previous, define, for any e, f = 1, . . . , p, e �= f , the
quantity,

He,f = 4
K

K∑
i=1

([Ci]e,e − [Ci]f,f )2

+ 8
K

K∑
i=1

1
s2

s∑
m,n=1

([
D

(m,n)
Z,i

]
e,e

−
[
D

(m,n)
Z,i

]
f,f

)2

.

Let then ΣÛ be the p2 × p2, quadruple-indexed covariance matrix, with its
(e, f), (g, h)th element, e, f, g, h = 1, . . . , p, defined as,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if e = f or g = h
1

He,fHg,h
[Σ∇](e,f),(g,h) if e < f , g < h

1
He,fHg,h

(
−[Σ∇](e,f),(h,g)

)
if e < f , g > h

1
He,fHg,h

(
−[Σ∇](f,e),(g,h)

)
if e > f , g < h

1
He,fHg,h

[Σ∇](f,e),(h,g) if e > f , g > h.

Let then Ē−1 be the linear transformation on Up defined, for 1 ≤ e < f ≤ p,
by,

(Ē−1[V ])e,f = H−1
e,fVe,f .

Construct the covariance matrix,

ΣŴZ,K
= ΣÛ + 1

4Σ ˆ̄covZ,K
− Σcross, (11)

where Σ ˆ̄covZ,K
is the p2 × p2 covariance matrix of K1/2( ˆ̄covZ,K − Ip) and Σcross

is the cross covariance matrix between S(Ē−1[
√
K∇̄0]) and K1/2( ˆ̄covZ,K − Ip).

Finally, the desired matrix ΣŴX,K
is then the p2 × p2 covariance matrix of the

random matrix
MA−1,

where M is a p× p random matrix with p2 × p2 covariance matrix ΣŴZ,K
given

in (11), and A−1 is the true unmixing matrix.
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Remark 1. The asymptotic normality in Theorem 3.2 does not take the most
standard form, since the limiting covariance matrix ΣŴX,K

is not fixed as
K → ∞ but is actually a sequence of covariance matrices indexed by K (the
wording “the limiting covariance matrix” is a slight abuse of language used for
convenience). In particular, ΣŴX,K

depends on ΣŴZ,K
in (11). This matrix it-

self depends on the covariance matrix of K1/2( ˆ̄covZ,K − Ip) with ˆ̄covZ,K defined
above and also in (12) and corresponding to ˆ̄covX,K in (4) with X replaced by
Z. This last matrix ˆ̄covZ,K is a sequence of p × p random matrices indexed by
K. Note that ΣŴX,K

is nevertheless deterministic, in particular it depends on
the (deterministic) covariance matrix of the random variable K1/2( ˆ̄covZ,K−Ip).

The statement in Theorem 3.2, with the fact that the limiting covariance
matrix depends on K is beneficial in that its generality is maximal. In particular,
it allows for the following three situations.

First, it can be the case that ΣŴX,K
converges as K → ∞ to a fixed covariance

matrix Σ∞. In this case, Theorem 3.2 can be simply restated as

K1/2(ĜKŴX,K −A−1) D−→
K→∞

N (0,Σ∞) ,

which is the most common statement of asymptotic normality. Under station-
arity assumptions on the sources Zt, or even under the assumption that their
values are iid over time, it is reasonable to expect that ΣŴX,K

will converge as
K → ∞ to a fixed covariance matrix Σ∞. Nevertheless, explicitly writing Σ∞
could be cumbersome, even in these simplified settings.

Second, it can be the case that ΣŴX,K
does not converge as K → ∞ but

that its sequence of smallest eigenvalues is lower bounded as K → ∞ by a
strictly positive constant. Note that we always know from Theorem 3.2 that the
sequence of largest eigenvalues is bounded. In this case, Theorem 3.2 can be
restated as

K1/2Σ−1/2
ŴX,K

(ĜKŴX,K −A−1) D−→
K→∞

N
(
0, Ip2

)
,

where Σ−1/2
ŴX,K

is the matrix square root of Σ−1
ŴX,K

. The situation where ΣŴX,K

does not converge as K → ∞ can occur if the sources are non-stationary. This
situation can also correspond to a triangular array of sources Zt = ZK,t =
(Z(1)

K,t, . . . , Z
(p)
K,t)′ indexed by both t and K, where even for fixed i, t, t′, the

quantity Cov(Z(i)
K,t, Z

(i)
K,t′) changes with K. Note that central limit theorems

for triangular arrays of random vectors are studied in general in the literature,
see for instance [33].

Finally, Theorem 3.2 even allows for the case where ΣŴX,K
does not converge

as K → ∞ and where its sequence of smallest eigenvalues is not lower bounded
as K → ∞.
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Appendix C: Proofs of Theorems 3.1 and 3.2

C.1. Organization of Appendix C

We first prove Theorems 3.1 and 3.2 in a simplified setting where the multivari-
ate time series Z is centered and where no centering is performed when com-
puting the matrices ˆcovX,i. This simplified setting is described in Section C.2.
Under this simplified setting, we first consider the case where the blind source
separation procedure is applied directly to Z, so that the target unmixing ma-
trix is Ip. This case is also described in Section C.2. Then, the consistency result
(Theorem 3.1) is proved in Theorem C.7 and the asymptotic normality result
(Theorem 3.2) is proved in Theorem C.15.

These two results on Z imply similar results on X, thanks to an equivariance
property given in Lemma C.1. Thus, Corollary C.16 provides the consistency of
the spatial blind source separation procedure to A−1 (Theorem 3.1) and Corol-
lary C.17 provides the asymptotic normality (Theorem 3.2). In these two corol-
laries, the simplified setting of a zero mean and where no centering is performed
is still considered.

Finally, in Section C.6, we show that the results in this simplified setting
actually imply the results in the setting described in the main body of the paper
(non-zero means and centering when computing the matrices ˆcovX,i). This is
stated in Theorem C.18, that shows that the conclusions of Corollaries C.16
and C.17 still hold. Hence, Theorem C.18 and Corollaries C.16 and C.17 jointly
provide the proofs of Theorems 3.1 and 3.2.

In this appendix, we may repeat notation and conditions from the main body
of the paper, for a more self contained and easier to read document.

C.2. Setting and notation

For a r × r matrix M , we let diag(M) be the matrix obtained by setting all
the non-diagonal elements of M to zero. For i = 1, ..., r, we let M ′

i be the i-
th row of M . When N is also a r × r matrix, we let M � N be defined by
[M �N ]ij = MijNij for 1 ≤ i, j ≤ r.

Let ||M ||2 =
∑r

a,b=1 M
2
a,b. Let ρsup(M) be the largest singular value of M .

If M is symmetric, we let λinf (M) and λsup(M) be its smallest and largest
eigenvalues. If M is symmetric non-negative definite, we let M1/2 be the unique
symmetric non-negative definite matrix N satisfying N2 = M . We let Gr be
the set of r × r matrices G such that there exist a permutation σ on {1, ..., r}
and s1, ..., sr ∈ {−1, 1} such that, for any r × 1 vector v, for any i = 1, ..., r,
[Gv]i = sivσ(i). For a r-dimensional vector v, we let ||v||ll =

∑r
a=1 |va|l. We let

#E denote the cardinality of a finite set E. We let ea be the a-th base column
vector of Rk for some k ∈ N, where the value of k will be clear from context.

For any k ∈ N, let Mk be the set of k × k real matrices. We let Ok be the
set of k × k real orthogonal matrices (for M ∈ Ok, M ′M = Ik). We let Sk be
the set of k × k skew symmetric matrices (for M ∈ Sk, M ′ = −M). We let

Uk = {V = (Vi,j)1≤i<j≤k;Vi,j ∈ R for 1 ≤ i < j ≤ k}.
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We let S : Uk → Sk be defined by, for V ∈ Uk, S(V ) ∈ Sk is defined by
S(V )i,i = 0, S(V )i,j = Vi,j and S(V )j,i = −Vi,j for 1 ≤ i < j ≤ k. Let
exp : Mk → Mk be the matrix exponential function (see e.g. Chapter 2 in
[14]).

In this appendix, we consider the case where

E(Zt) = 0 for all t ∈ N.

We provide the extension to non-zero means in Section C.6.
Recall that s ∈ N, s > 1, is fixed. For i = 1, . . . ,K, let

ˆcovZ,i = 1
s

s∑
j=1

Zs(i−1)+jZ
′
s(i−1)+j

and let

covZ,i = 1
s

s∑
j=1

E

(
Zs(i−1)+jZ

′
s(i−1)+j

)
.

We provide extensions to the case where the vectors Zs(i−1)+j are empirically
centered in Section C.6. Recall that we let K → ∞ for all the asymptotic results
that are shown. Let

ˆ̄covZ,K = 1
K

K∑
i=1

ˆcovZ,i (12)

and

¯covZ,K = 1
K

K∑
i=1

covZ,i.

We let

ÛZ,K ∈ argmaxU∈Op

K∑
i=1

||diag
(
U ˆ̄cov−1/2

Z,K ˆcovZ,i ˆ̄cov−1/2
Z,K U ′

)
||2. (13)

We let
ŴZ,K = ÛZ,K

ˆ̄cov−1/2
Z,K .

We now recall
Xt = AZt (14)

for t ∈ N where A is a fixed invertible p× p matrix.
Throughout this appendix, we assume that ¯covZ,K = Ip, as is done in the

main body of the paper.
We now define ˆcovX,i, covX,i, ˆ̄covX,K , ¯covX,K , ÛX,K , and ŴX,K similarly

as above, but where the multivariate Gaussian process Z is replaced by the
multivariate Gaussian process X. The selection of ÛX,K in the set of maximizers
is arbitrary.

The next lemma provides an equivariance property that relates ŴX,K to
ŴZ,K .
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Lemma C.1. For any choice of ÛX,K and ŴX,K such that (13) holds (with
ˆ̄cov−1/2

Z,K and ˆcovZ,i replaced by ˆ̄cov−1/2
X,K and ˆcovX,i), there exists a choice of ÛZ,K

and ŴZ,K such that (13) holds and such that we have

ŴX,K = ŴZ,KA−1.

Proof. We have ˆ̄covX,K = A ˆ̄covZ,KA′. Hence, from Theorem 2.1 in [19] there
exists a unique orthogonal matrix V̂ such that

ˆ̄cov−1/2
X,K = V̂ ˆ̄cov−1/2

Z,K A−1

(remark that ˆ̄cov−1/2
X,K is symmetric by definition). Then, we have

K∑
i=1

||diag
(
Û ˆ̄cov−1/2

X,K ˆcovX,i ˆ̄cov−1/2
X,K Û ′

)
||2 (15)

=
K∑
i=1

||diag
(
Û V̂ ˆ̄cov−1/2

Z,K A−1A ˆcovZ,iA
′V̂ ˆ̄cov−1/2

Z,K A−1Û ′
)
||2

=
K∑
i=1

||diag
(
Û V̂ ˆ̄cov−1/2

Z,K ˆcovZ,iA
′[A−1]′ ˆ̄cov−1/2

Z,K V̂ ′Û ′
)
||2

=
K∑
i=1

||diag
(
Û V̂ ˆ̄cov−1/2

Z,K ˆcovZ,i ˆ̄cov−1/2
Z,K V̂ ′Û ′

)
||2, (16)

where the second-to-last relation follows from the fact that the matrix ˆ̄cov−1/2
X,K =

V̂ ˆ̄cov−1/2
Z,K A−1 is symmetric. Thus, for any ÛX,K maximizing (15), the corre-

sponding ÛZ,K := ÛX,K V̂ satisfies (13). Furthermore

ŴX,K =ÛZ,K V̂ ′ ˆ̄cov−1/2
X,K

=ÛZ,K V̂ ′V̂ ˆ̄cov−1/2
Z,K A−1

=ÛZ,K
ˆ̄cov−1/2

Z,K A−1

=ŴZ,KA−1.

C.3. Consistency

Lemma C.2. Let U be an orthogonal p × p matrix and let U ′
i be its i-th row.

Let, for i = 1, ...,K and a, b = 1, ..., s, D(a,b)
Z,i be the p×p diagonal matrix defined

by [
D

(a,b)
Z,i

]
k,k

= E

(
Z

(k)
(i−1)s+aZ

(k)
(i−1)s+b

)
.
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We have
K∑
i=1

p∑
j=1

E

[(
U ′
j ˆcovZ,iUj

)2] (17)

=
K∑
i=1

p∑
j=1

(
U ′
jcovZ,iUj

)2 + 2
s2

K∑
i=1

s∑
a,b=1

p∑
j=1

(
U ′
jD

(a,b)
Z,i Uj

)2
.

Proof. We have
K∑
i=1

p∑
j=1

E

[(
U ′
j ˆcovZ,iUj

)2] (18)

=
K∑
i=1

p∑
j=1

E

⎡
⎢⎣
⎛
⎝ p∑

l,m=1

(Uj)l ( ˆcovZ,i)l,m (Uj)m

⎞
⎠

2
⎤
⎥⎦ (19)

=
K∑
i=1

p∑
j=1

E[
p∑

l1,m1,l2,m2=1

(Uj)l1 ( ˆcovZ,i)l1,m1
(Uj)m1(Uj)l2 ( ˆcovZ,i)l2,m2

(Uj)m2 ].

(20)

We now use Isserliss’ theorem, which allows expressing higher-order joint mo-
ments of a multivariate Gaussian as a sum of products of its second moments,
see, e.g., [26, Theorem 1.1], to compute,

E

(
( ˆcovZ,i)l1,m1

( ˆcovZ,i)l2,m2

)

= 1
s2

s∑
a,b=1

E

(
Z

(l1)
(i−1)s+aZ

(m1)
(i−1)s+aZ

(l2)
(i−1)s+bZ

(m2)
(i−1)s+b

)

= 1
s2

s∑
a,b=1

E

(
Z

(l1)
(i−1)s+aZ

(m1)
(i−1)s+a

)
E

(
Z

(l2)
(i−1)s+bZ

(m2)
(i−1)s+b

)

+ 1
s2

s∑
a,b=1

E

(
Z

(l1)
(i−1)s+aZ

(l2)
(i−1)s+b

)
E

(
Z

(m1)
(i−1)s+aZ

(m2)
(i−1)s+b

)

+ 1
s2

s∑
a,b=1

E

(
Z

(l1)
(i−1)s+aZ

(m2)
(i−1)s+b

)
E

(
Z

(m1)
(i−1)s+aZ

(l2)
(i−1)s+b

)
.

Then, we obtain, using the independence of the collection of Gaussian processes
(Z(1)

t )t∈N, ..., (Z(p)
t )t∈N,

E

(
( ˆcovZ,i)l1,m1

( ˆcovZ,i)l2,m2

)
(21)

= (covZ,i)l1,m1
(covZ,i)l2,m2

(22)

+ 1l1=l21m1=m2

1
s2

s∑
a,b=1

E

(
Z

(l1)
(i−1)s+aZ

(l1)
(i−1)s+b

)
E

(
Z

(m1)
(i−1)s+aZ

(m1)
(i−1)s+b

)
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+ 1l1=m21m1=l2

1
s2

s∑
a,b=1

E

(
Z

(l1)
(i−1)s+aZ

(l1)
(i−1)s+b

)
E

(
Z

(m1)
(i−1)s+aZ

(m1)
(i−1)s+b

)
.

Hence, from (20), we obtain

K∑
i=1

p∑
j=1

E

[(
U ′
j ˆcovZ,iUj

)2] =

K∑
i=1

p∑
j=1

p∑
l1,m1,l2,m2=1

(Uj)l1 (covZ,i)l1,m1
(Uj)m1(Uj)l2 (covZ,i)l2,m2

(Uj)m2

(23)

+
K∑
i=1

p∑
j=1

p∑
l1,m1=1

(Uj)2l1(Uj)2m1

1
s2

s∑
a,b=1

E (Fl1,i,a,b)E (Fm1,i,a,b)

+
K∑
i=1

p∑
j=1

p∑
l1,m1=1

(Uj)2l1(Uj)2m1

1
s2

s∑
a,b=1

E (Fl1,i,a,b)E (Fm1,i,a,b) ,

where Fl,i,a,b := Z
(l1)
(i−1)s+aZ

(l1)
(i−1)s+b. In the above display, the triple sum in (23)

can be treated in the same (reverse) way as from (19) to (20). Hence, we obtain

K∑
i=1

p∑
j=1

E

[(
U ′
j ˆcovZ,iUj

)2] =

K∑
i=1

p∑
j=1

(
U ′
jcovZ,iUj

)2

+ 2
s2

K∑
i=1

p∑
j=1

p∑
l1,m1=1

(Uj)2l1(Uj)2m1

s∑
a,b=1

E (Fl1,i,a,b)E (Fm1,i,a,b)

=
K∑
i=1

p∑
j=1

(
U ′
jcovZ,iUj

)2

+ 2
s2

K∑
i=1

p∑
j=1

s∑
a,b=1

(
p∑

l1=1

(Uj)2l1E (Fl1,i,a,b)
)(

p∑
m1=1

(Uj)2m1
E (Fm1,i,a,b)

)

=
K∑
i=1

p∑
j=1

(
U ′
jcovZ,iUj

)2

+ 2
s2

K∑
i=1

s∑
a,b=1

p∑
j=1

(
p∑

l1=1
(Uj)2l1E (Fl1,i,a,b)

)2

,
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where we recall that Fl,i,a,b = Z
(l1)
(i−1)s+aZ

(l1)
(i−1)s+b. Thus,

K∑
i=1

p∑
j=1

E

[(
U ′
j ˆcovZ,iUj

)2]

=
K∑
i=1

p∑
j=1

(
U ′
jcovZ,iUj

)2 + 2
s2

K∑
i=1

s∑
a,b=1

p∑
j=1

(
U ′
jD

(a,b)
Z,i Uj

)2
.

Hence, the proof is concluded.

In this appendix, we let Cinf > 0 and 0 < Csup < +∞ denote generic
constants (not depending on K) which may change from place to place. We
restate Conditions 2 and 4, also using Condition 1.

Condition 6. There exists a fixed L ∈ N such that for any i, j ∈ {1, ...,K},
|i − j| ≥ L, the Gaussian vector (Z(k)

(i−1)s+a)a=1,...,s;k=1,...,p and the Gaussian
vector (Z(k)

(j−1)s+a)a=1,...,s;k=1,...,p are independent.

Condition 7. We have

sup
i∈N

max
j=1,...,p

E

([
Z

(j)
i

]2)
≤ Csup.

Lemma C.3. Assume that Conditions 6 and 7 hold. We have

max
i=1,...,K

ρsup(covZ,i) ≤ Csup, (24)

and for any r ∈ N,
max

i=1,...,K
E (ρsup( ˆcovZ,i)r) ≤ Csup (25)

and (
E

[
ρsup

( ˆ̄covZ,K − Ip
)r])1/r

≤ Csup
1√
K

. (26)

Proof. The matrix covZ,i is diagonal, and we have for k = 1, ..., p,

∣∣∣[covZ,i]k,k
∣∣∣ = 1

s

s∑
a=1

E

([
Z

(k)
(i−1)s+a

]2)
≤ Csup,

from Condition 7. Hence, (24) holds by equivalence of norms in fixed dimension
p. Denoting Ep,s := {1, ..., p}2 × {1, ..., s}, again by equivalence of norms we
obtain for i = 1, ...,K

E (ρsup( ˆcovZ,i)r)

≤CsupE

⎛
⎝
⎡
⎣ p∑
k,l=1

s∑
a=1

∣∣∣Z(k)
(i−1)s+aZ

(l)
(i−1)s+a

∣∣∣
⎤
⎦
r⎞
⎠
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=Csup

∑
(k1,l1,a1)∈Ep,s

...
(kr,lr,ar)∈Ep,s

E

(∣∣∣Z(k1)
(i−1)s+a1

Z
(l1)
(i−1)s+a1

...Z
(kr)
(i−1)s+ar

Z
(lr)
(i−1)s+ar

∣∣∣)

≤Csup,

since p and s are fixed, from Condition 7, from Theorem 1 in [21] and from the
Cauchy-Schwarz inequality.

Let us turn to (26). We have

ρsup
( ˆ̄covZ,K − Ip

)r ≤ Csup

p∑
k,l=1

∣∣∣[ ˆ̄covZ,K

]
k,l

− [Ip]k,l
∣∣∣r .

Then, for any k, l ∈ {1, ..., p}, is is sufficient to show that

E

(∣∣∣[ ˆ̄covZ,K

]
k,l

− [Ip]k,l
∣∣∣r) ≤ Csup

Kr/2 . (27)

This is true for r = 2, since then
[ ˆ̄covZ,K

]
k,l

− [Ip]k,l is of the form

1
K

K∑
i=1

ai, (28)

where the ai are centered random variables with bounded variances and where
ai and aj are independent for |i − j| ≥ L. Thus the mean value of the square
of (28) is of order O(1/K) as K → ∞. Hence, (27) also holds for r = 1. We
have, using |t1 + · · ·+ tL|r ≤ Lr|t1|r + · · ·+Lr|tL|r for t1, . . . , tL ∈ R, and letting
i mod L be the remainder of the Euclidean division of i by L,

E

(∣∣∣[ ˆ̄covZ,K

]
k,l

− [Ip]k,l
∣∣∣r) = 1

Kr
E

(∣∣∣∣∣
K∑
i=1

[ ˆcovZ,i − covZ,i]k,l

∣∣∣∣∣
r)

≤ Lr

Kr

L−1∑
a=0

E

⎛
⎜⎝
∣∣∣∣∣∣∣

K∑
i=1

i mod L=a

[ ˆcovZ,i − covZ,i]k,l

∣∣∣∣∣∣∣
r⎞
⎟⎠

≤L
Lr

Kr
Csup max(K,Kr/2),

because in each of the L inner sums above, the summands are independent,
from the Rosenthal inequality [40] and from (24) and (25). Thus the proof is
concluded.

Lemma C.4. Assume that conditions 6 and 7 hold. Then, we have, for any
fixed p× p orthogonal matrix U , with rows U ′

1, . . . , U
′
p,

K∑
i=1

p∑
j=1

(
U ′
j ˆcovZ,iUj

)2 − K∑
i=1

p∑
j=1

(
U ′
j

ˆ̄cov−1/2
Z,K ˆcovZ,i ˆ̄cov−1/2

Z,K Uj

)2
= op(K).
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Proof. We have∣∣∣∣∣∣
K∑
i=1

p∑
j=1

(
U ′
j ˆcovZ,iUj

)2 − K∑
i=1

p∑
j=1

(
U ′
j

ˆ̄cov−1/2
Z,K ˆcovZ,i ˆ̄cov−1/2

Z,K Uj

)2
∣∣∣∣∣∣

=
∣∣∣ K∑
i=1

p∑
j=1

([
U ′
j ˆcovZ,iUj

]
+
[
U ′
j

ˆ̄cov−1/2
Z,K ˆcovZ,i

ˆ̄cov−1/2
Z,K Uj

])
[
U ′
j

{
ˆ̄cov−1/2

Z,K ˆcovZ,i ˆ̄cov−1/2
Z,K − ˆcovZ,i

}
Uj

] ∣∣∣
=

K∑
i=1

p∑
j=1

ai,jbi,j ,

say. Let 0 < ε < 1. We have from (26) that P (Eε,K) → 1 as K → ∞, where
Eε,K is the event λinf ( ˆ̄covZ,K) ≥ ε.

We have, under the event Eε,K ,

max
i=1,...,K
j=1,...,p

|ai,j | ≤ max
i=1,...,K

ρsup( ˆcovZ,i) + max
i=1,...,K

1
ε
ρsup( ˆcovZ,i).

Then, since p and s are fixed, from the Cauchy-Schwarz inequality and from
Condition 7, we obtain

max
i=1,...,K

ρsup( ˆcovZ,i) ≤Csup max
i=1,...,K
a=1,...,s
k=1,...,p

[
Z

(k)
(i−1)s+a

]2

≤Csup max
i=1,...,K
a=1,...,s
k=1,...,p

1

E

([
Z

(k)
(i−1)s+a

]2)
[
Z

(k)
(i−1)s+a

]2

=Op(log(K))

from Equation A.3 in [6]. Hence, since P (Eε,K) → 1 as K → ∞, we obtain

max
i=1,...,K
j=1,...,p

|ai,j | = Op(log(K)). (29)

We have
K∑
i=1

p∑
j=1

|bi,j | =
K∑
i=1

p∑
j=1

∣∣∣U ′
j

{
ˆ̄cov−1/2

Z,K ˆcovZ,i ˆ̄cov−1/2
Z,K − ˆcovZ,i

}
Uj

∣∣∣
≤

K∑
i=1

p∑
j=1

ρsup

(
ˆ̄cov−1/2

Z,K ˆcovZ,i ˆ̄cov−1/2
Z,K − ˆcovZ,i

)

≤
K∑
i=1

p∑
j=1

ρsup

(
ˆ̄cov−1/2

Z,K ˆcovZ,i

[
ˆ̄cov−1/2

Z,K − Ip

])
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+
K∑
i=1

p∑
j=1

ρsup

([
ˆ̄cov−1/2

Z,K − Ip

]
ˆcovZ,i

)

≤ρsup

(
ˆ̄cov−1/2

Z,K − Ip

) K∑
i=1

p∑
j=1

ρsup ( ˆcovZ,i) ρsup
(

ˆ̄cov−1/2
Z,K

)

+ ρsup

(
ˆ̄cov−1/2

Z,K − Ip

) K∑
i=1

p∑
j=1

ρsup ( ˆcovZ,i) .

In the above display, the two last sums are of order Op(K), from (25) and from
the fact that P (Eε,K) → 1 as K → ∞. Furthermore

ρsup

(
ˆ̄cov−1/2

Z,K − Ip

)
≤ρsup

(
ˆ̄cov−1/2

Z,K

)
ρsup

(
ˆ̄cov1/2

Z,K − Ip

)
=Op(1)ρsup

(
ˆ̄cov1/2

Z,K − Ip

)
.

On the event Eε,K , it is well known that there exits a finite constant Csup,ε such
that

ρsup

(
ˆ̄cov1/2

Z,K − Ip

)
≤ Csup,ερsup

( ˆ̄covZ,K − Ip
)
.

Hence, from (26), we obtain
K∑
i=1

p∑
j=1

|bi,j | = Op(
√
K).

Hence, from (29), the proof is concluded.

Lemma C.5. Assume that conditions 6 and 7 hold. Then, we have, for any
fixed p× p orthogonal matrix U , with rows U ′

1, . . . , U
′
p,

K∑
i=1

p∑
j=1

(
U ′
j ˆcovZ,iUj

)2 − K∑
i=1

p∑
j=1

E

((
U ′
j ˆcovZ,iUj

)2) = op(K).

Proof. Since the quantity to bound (in absolute value) is of the form
K∑
i=1

ai, (30)

where the ai are centered random variables where ai and aj are independent for
|i− j| ≥ L, it is sufficient to show that

max
i=1,...,K

max
j=1,...,p

E

((
U ′
j ˆcovZ,iUj

)4) = O(1)

as K → ∞. We have

E

((
U ′
j ˆcovZ,iUj

)4) ≤ E

(
ρsup ( ˆcovZ,i)4

)
,

so the proof is concluded because of (25).
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Lemma C.6. Assume that conditions 6 and 7 hold. Recall that Op is the set of
p× p orthogonal matrices. For U ∈ Op we let U ′

j be the j-th row of U . We have

sup
U∈Op

∣∣∣∣∣∣
K∑
i=1

p∑
j=1

(
U ′
j

ˆ̄cov−1/2
Z,K ˆcovZ,i ˆ̄cov−1/2

Z,K Uj

)2
−

K∑
i=1

p∑
j=1

(
U ′
jcovZ,iUj

)2

− 2
s2

K∑
i=1

s∑
a,b=1

p∑
j=1

(
U ′
jD

(a,b)
Z,i Uj

)2
∣∣∣∣∣∣

= op(K).

Proof. From Lemmas C.2, C.4 and C.5, we have, for any fixed U ∈ Op that∣∣∣∣∣∣
K∑
i=1

p∑
j=1

(
U ′
j

ˆ̄cov−1/2
Z,K ˆcovZ,i

ˆ̄cov−1/2
Z,K Uj

)2
−

K∑
i=1

p∑
j=1

(
U ′
jcovZ,iUj

)2

− 2
s2

K∑
i=1

s∑
a,b=1

p∑
j=1

(
U ′
jD

(a,b)
Z,i Uj

)2
∣∣∣∣∣∣

= op(K).

Hence, because Op is compact, it is sufficient to show that, letting ∇Uj [f(Uj)]
denote the gradient of a function f : Rp → R evaluated at Uj ∈ R

p, we have for
j = 1, ..., p,

sup
||Uj ||=1

∣∣∣∣∣
∣∣∣∣∣
K∑
i=1

∇Uj

[(
U ′
j

ˆ̄cov−1/2
Z,K ˆcovZ,i

ˆ̄cov−1/2
Z,K Uj

)2
]∣∣∣∣∣
∣∣∣∣∣ = Op(K),

sup
||Uj ||=1

∣∣∣∣∣
∣∣∣∣∣
K∑
i=1

∇Uj

[(
U ′
jcovZ,iUj

)2]∣∣∣∣∣
∣∣∣∣∣ = O(K)

and

sup
||Uj ||=1

∣∣∣∣∣∣
∣∣∣∣∣∣
2
s2

K∑
i=1

s∑
a,b=1

∇Uj

[(
U ′
jD

(a,b)
Z,i Uj

)2
]∣∣∣∣∣∣
∣∣∣∣∣∣ = O(K).

From (25) and (26), in order to prove the three above displays, it is sufficient
to show that for a sequence (Mj)j∈N of random symmetric p × p matrices and
for a random matrix N satisfying

max
i∈N

E

[
(ρsup(Mi))2

]
≤ Csup

and
ρsup(N) = Op(1),

we have

sup
||Uj ||=1

∣∣∣∣∣
∣∣∣∣∣
K∑
i=1

∇Uj

[(
U ′
jNMiNUj

)2]∣∣∣∣∣
∣∣∣∣∣ = Op(K).
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We have

sup
||Uj ||=1

∣∣∣∣∣
∣∣∣∣∣
K∑
i=1

∇Uj

[(
U ′
jNMiNUj

)2]∣∣∣∣∣
∣∣∣∣∣ = sup

||Uj ||=1

∣∣∣∣∣
∣∣∣∣∣
K∑
i=1

4
(
U ′
jNMiNUj

)
NMiNUj

∣∣∣∣∣
∣∣∣∣∣

≤CsupOp(1)
K∑
i=1

ρsup(Mi)2,

so the proof is concluded.

The next condition is a restatement of Condition 5.

Condition 8. There exists a strictly increasing sequence (ik)k∈N, such that
ik ∈ N for all k ∈ N and such that, with NK = #{k = 1, ...,K; ik ≤ K}, we
have lim inf NK/K > 0 as K → ∞. There exists δ > 0, such that

inf
k∈N

min
i,j=1,...,p

i �=j

∣∣∣[covZ,ik ]i,i − [covZ,ik ]j,j
∣∣∣ ≥ δ

and
inf
k∈N

min
i=1,...,p

[covZ,ik ]i,i ≥ δ.

Theorem C.7. Assume that conditions 6, 7 and 8 hold. Then for any sequence
ÛZ,K in (13), there exists a sequence ĜK ∈ Gp such that

ĜKÛZ,K
p→

K→∞
Ip

and
ĜKŴZ,K

p→
K→∞

Ip.

Proof. Let U0 be the set of p× p orthogonal matrices U , with rows U ′
1, . . . , U

′
p,

satisfying

for all i = 1, ..., p
∑

k=1,...,p

[Ui]k ≥ 0 and

⎛
⎝ p∑

j=1
j[Ui]2j

⎞
⎠

i=1,...,p

is ascending in i.

Consider a sequence ÛZ,K in (13). Then, there exists a sequence ĜK ∈ Gp

such that

ĜKÛZ,K ∈ argmaxU∈U0

K∑
i=1

∣∣∣∣∣∣diag
(
U ˆ̄cov−1/2

Z,K ˆcovZ,i ˆ̄cov−1/2
Z,K U ′

)∣∣∣∣∣∣2 .
We use the following shorthand, for U ∈ Op with rows U ′

1, . . . , U
′
p:

Δ̂K(U) = 1
K

K∑
i=1

p∑
j=1

(
U ′
j

ˆ̄cov−1/2
Z,K ˆcovZ,i ˆ̄cov−1/2

Z,K Uj

)2
,
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DK(U) = 1
K

K∑
i=1

p∑
j=1

(
U ′
jcovZ,iUj

)2 + 2
Ks2

K∑
i=1

s∑
a,b=1

p∑
j=1

(
U ′
jD

(a,b)
Z,i Uj

)2
.

The statement of Lemma C.6 can now be expressed as

sup
U∈Op

∣∣∣Δ̂K(U) −DK(U)
∣∣∣ = op(1). (31)

Let ε > 0. For any U ∈ U0, with rows U ′
1, . . . , U

′
p, such that ||U − Ip|| ≥ ε, we

have, with ej the j − th basis column vector of Rp,

DK(Ip) −DK(U) =

1
K

K∑
i=1

p∑
j=1

(
e′jcovZ,iej

)2 − 1
K

K∑
i=1

p∑
j=1

(
U ′
jcovZ,iUj

)2

+ 2
Ks2

K∑
i=1

s∑
a,b=1

p∑
j=1

(
e′jD

(a,b)
Z,i ej

)2
− 2

Ks2

K∑
i=1

s∑
a,b=1

p∑
j=1

(
U ′
jD

(a,b)
Z,i Uj

)2
.

Since the matrices covZ,i and D
(a,b)
Z,i are diagonal, we obtain, with the notation

of Condition 8,

DK(Ip) −DK(U)

≥ 1
K

∑
k=1,...,K
ik≤K

p∑
j=1

(
e′jcovZ,ikej

)2 − 1
K

∑
k=1,...,K
ik≤K

p∑
j=1

(
U ′
jcovZ,ikUj

)2
.

Then, by compacity, from Condition 8 and from Theorem 3 in [4], we can
show that

inf
k∈N

inf
U∈U0

||U−Ip||≥ε
U has rows U ′

1,...,U
′
p

⎛
⎝ p∑

j=1

(
e′jcovZ,ikej

)2 − p∑
j=1

(
U ′
jcovZ,ikUj

)2⎞⎠ ≥ Cinf .

Hence we obtain from Condition 8

inf
U∈U0

||U−Ip||≥ε

DK(Ip) −DK(U) ≥ NKCinf

K
≥ Cinf . (32)

We now have

P (‖ĜKÛZ,K − Ip‖ ≥ ε) ≤P

⎛
⎜⎝ sup

U∈Uo
||U−Ip||≥ε

Δ̂K(U) − Δ̂K(Ip) ≥ 0

⎞
⎟⎠

[from (31):] =P

⎛
⎜⎝op(1) + sup

U∈Uo
||U−Ip||≥ε

DK(U) −DK(Ip) ≥ 0

⎞
⎟⎠
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[from (32):] ≤P (op(1) − Cinf ≥ 0)
→

K→∞
0.

This concludes the proof of the first equation of the theorem. The second equa-
tion follows because, from Lemma C.3, the matrix ˆ̄cov−1/2

Z,K converges to Ip.

C.4. Asymptotic normality

Lemma C.8. Assume that conditions 6, 7 and 8 hold. Then for any sequence
ÛZ,K in (13), there exists a sequence ĜK ∈ Gp and a sequence V̂Z,K ∈ Up such
that

V̂Z,K
p→

K→∞
0

and, with probability going to 1 as K → ∞,

exp(S(V̂Z,K)) = ĜKÛZ,K

and
∇V̂Z,K

= 0,

where ∇V0 ∈ Up is the gradient evaluated at V0 ∈ Up of the function V →
Δ̂K(exp(S(V ))), with Δ̂K as in the proof of Theorem C.7.

Proof. From Theorem C.7, for any sequence ÛZ,K in (13), there exists a sequence
ĜK ∈ Gp such that

ĜKÛZ,K
p→

K→∞
Ip.

Also, from (13),
ĜKÛZ,K ∈ argmaxU∈Up

Δ̂K(U).

From Chapter 2 in [14], there exists ε > 0 such that, with B0,ε = {M ∈
Mp; ||M || ≤ ε}, the exponential function is bijective from B0,ε to E, for some
set E containing a neighborhood of Ip, with reciprocal function the matrix log-
arithm function log. Hence, any U ∈ Op ∩ E can be written as exp(S) with
S = log(U). We have exp(S) exp(S)′ = Ip so that, using Proposition 2.3 in [14]
we obtain

exp(S′) = exp(S)′ = exp(S)−1 = exp(−S),

so that, applying the logarithm, S′ = −S. Hence, when ĜÛZ,K ∈ E, we can
write ĜÛZ,K = exp(S(V̂Z,K)) for V̂Z,K ∈ Up. [We can define V̂Z,K arbitrarily on
the event where ĜÛZ,K �∈ E and the probability of this event goes to zero as
K → ∞.]

By continuity of the logarithm function around Ip (see Chapter 2 in [14]),
we thus have V̂Z,K → 0 in probability as n → ∞. Also, we have on the event
ĜÛZ,K ∈ E, since exp(S(V )) ∈ Op for V ∈ Up,

V̂Z,K ∈ argmaxV ∈Up
Δ̂K(exp(S(V ))),
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and so
∇V̂Z,K

= 0.

Lemma C.9. Assume that conditions 6, 7 and 8 hold. Let us write Ĉi = ˆcovZ,i,
Ci = covZ,i and ˆ̄Ci = ˆ̄cov−1/2

Z,K ˆcovZ,i ˆ̄cov−1/2
Z,K . Let

T̂ = −1
2
( ˆ̄covZ,K − Ip

)
.

Then, for 1 ≤ j < k ≤ p, recalling that ∇0 is the gradient of the function
V → Δ̂K(exp(S(V ))) evaluated at 0, we have

[∇0]j,k = [∇̄0]j,k + Op(1/K),

with

[∇̄0]j,k

= − 4 1
K

K∑
i=1

e′kĈieke
′
kĈiej − 8e′kT̂

(
1
K

K∑
i=1

E

[
Ĉieke

′
kĈiej

])

− 4e′kT̂
(

1
K

K∑
i=1

E

[(
e′kĈiek

)
Ĉiej

])
− 4
(

1
K

K∑
i=1

E

[
e′kĈieke

′
kĈi

])
T̂ ej

+ 4 1
K

K∑
i=1

e′jĈieje
′
jĈiek + 8e′j T̂

(
1
K

K∑
i=1

E

[
Ĉieje

′
jĈiek

])

+ 4e′j T̂
(

1
K

K∑
i=1

E

[(
e′jĈiej

)
Ĉiek

])
+ 4
(

1
K

K∑
i=1

E

[
e′jĈieje

′
jĈi

])
T̂ ek.

Proof. In order the compute the gradient of the function V → Δ̂K(exp(S(V )))
at zero we use exp(X) = Ip + X + o(||X||) when X ∈ Mp → 0. We have, when
V ∈ Up → 0, recalling that M ′

j denotes the row j of a square matrix M ,

Δ̂K(exp(S(V ))) = 1
K

K∑
i=1

p∑
j=1

(
exp(S(V ))′j ˆ̄cov−1/2

Z,K ˆcovZ,i ˆ̄cov−1/2
Z,K exp(S(V ))j

)2

= 1
K

K∑
i=1

p∑
j=1

(
(Ip + S(V ) + a(V ))′j

ˆ̄Ci(Ip + S(V ) + a(V ))j
)2

= 1
K

K∑
i=1

p∑
j=1

(
e′j

ˆ̄Ciej + 2e′j
ˆ̄CiS(V )j + b(V )

)2

= 1
K

K∑
i=1

p∑
j=1

(
e′j

ˆ̄Cieje
′
j
ˆ̄Ciej + 4e′j

ˆ̄Cieje
′
j
ˆ̄CiS(V )j + c(V )

)
,
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where ||a(V )|| = o(||S(V )||), ||b(V )|| = o(||S(V )||) and ||c(V )|| = o(||S(V )||) as
V → 0. Hence we have

Δ̂K(exp(S(V )))

= 1
K

K∑
i=1

p∑
j=1

e′j
ˆ̄Cieje

′
j
ˆ̄Ciej + 1

K

K∑
i=1

p∑
j=1

4e′j
ˆ̄Ciej

(
p∑

k=1

[ ˆ̄Ci

]
j,k

S(V )j,k

)
+ o(||V ||)

= 1
K

K∑
i=1

p∑
j=1

e′j
ˆ̄Cieje

′
j
ˆ̄Ciej + 1

K

K∑
i=1

p−1∑
j=1

p∑
k=j+1

4e′j
ˆ̄Ciej

[ ˆ̄Ci

]
j,k

Vj,k

+ 1
K

K∑
i=1

p−1∑
k=1

p∑
j=k+1

4e′j
ˆ̄Ciej

[ ˆ̄Ci

]
j,k

(−Vk,j) + o(||V ||)

= 1
K

K∑
i=1

p∑
j=1

e′j
ˆ̄Cieje

′
j
ˆ̄Ciej

+ 1
K

K∑
i=1

p−1∑
j=1

p∑
k=j+1

Vj,k4
(
−e′k

ˆ̄Cieke
′
k

ˆ̄Ciej + e′j
ˆ̄Cieje

′
j
ˆ̄Ciek

)
+ o(||V ||).

Hence, it follows that for 1 ≤ j < k ≤ p,

[∇0]j,k = 4 1
K

K∑
i=1

(
−e′k

ˆ̄Cieke
′
k

ˆ̄Ciej + e′j
ˆ̄Cieje

′
j
ˆ̄Ciek

)
.

Let
T = ˆ̄cov−1/2

Z,K − Ip.

As shown in the proof of Lemma C.4, and from (26), we have T = Op(1/K1/2).
We have

1
K

K∑
i=1

e′k
ˆ̄Cieke

′
k

ˆ̄Ciej =

1
K

K∑
i=1

e′k(Ip + T )Ĉi(Ip + T )eke′k(Ip + T )Ĉi(Ip + T )ej .

In the above display, after expanding the terms (Ip + T ), each of the obtained
sums containing two times T or more is a Op(1/K), as can be shown from
Lemma C.3. Hence we obtain

1
K

K∑
i=1

e′k
ˆ̄Cieke

′
k

ˆ̄Ciej =

1
K

K∑
i=1

e′kĈieke
′
kĈiej + 2 1

K

K∑
i=1

e′kTĈieke
′
kĈiej
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+ 1
K

K∑
i=1

e′kĈieke
′
kTĈiej + 1

K

K∑
i=1

e′kĈieke
′
kĈiTej + Op(1/K).

We finally obtain

1
K

K∑
i=1

e′k
ˆ̄Cieke

′
k

ˆ̄Ciej =

1
K

K∑
i=1

e′kĈieke
′
kĈiej + 2e′kT

(
1
K

K∑
i=1

Ĉieke
′
kĈiej

)

+ e′kT

(
1
K

K∑
i=1

(
e′kĈiek

)
Ĉiej

)
+
(

1
K

K∑
i=1

e′kĈieke
′
kĈi

)
Tej + Op(1/K).

In the three last sums under parenthesis of the above displays, any two of the
summands are independent when the corresponding difference of indices is larger
or equal to L. Furthermore, the norms of these summands have bounded mo-
ments from Lemma C.3. Also, recall that T = Op(K−1/2). Hence, we obtain

1
K

K∑
i=1

e′k
ˆ̄Cieke

′
k

ˆ̄Ciej =

1
K

K∑
i=1

e′kĈieke
′
kĈiej + 2e′kT

(
1
K

K∑
i=1

E

[
Ĉieke

′
kĈiej

])

+ e′kT

(
1
K

K∑
i=1

E

[(
e′kĈiek

)
Ĉiej

])
+
(

1
K

K∑
i=1

E

[
e′kĈieke

′
kĈi

])
Tej

+ Op(1/K).

Hence, we finally have

[∇0]j,k

= − 4 1
K

K∑
i=1

e′kĈieke
′
kĈiej − 8e′kT

(
1
K

K∑
i=1

E

[
Ĉieke

′
kĈiej

])

− 4e′kT
(

1
K

K∑
i=1

E

[(
e′kĈiek

)
Ĉiej

])
− 4
(

1
K

K∑
i=1

E

[
e′kĈieke

′
kĈi

])
Tej

+ 4 1
K

K∑
i=1

e′jĈieje
′
jĈiek + 8e′jT

(
1
K

K∑
i=1

E

[
Ĉieje

′
jĈiek

])

+ 4e′jT
(

1
K

K∑
i=1

E

[(
e′jĈiej

)
Ĉiek

])
+ 4
(

1
K

K∑
i=1

E

[
e′jĈieje

′
jĈi

])
Tek

+ Op(1/K).
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From the expression of the derivative of the inverse matrix square root around
the identity, we obtain

T = T̂ + Op(1/K).

This concludes the proof.

Let dw denote a metric generating the topology of weak convergence on the
set of Borel probability measures on Euclidean spaces; for specific examples see,
e.g., the discussion in [13] p. 393.

Lemma C.10. Assume that conditions 6, 7 and 8 hold. Let Σ∇ be the co-
variance matrix of K1/2∇̄0. Let QK be the distribution of K1/2∇̄0. Then, as
K → ∞ we have dw(QK ,N (0,Σ∇)) → 0 as K → ∞. Furthermore, the matrix
Σ∇ is bounded as K → ∞.

Proof. We can write, for 1 ≤ j < k ≤ p,

[∇̄0]j,k = 1
K

K∑
i=1

V
(j,k)
i + e′kT̂

1
K

K∑
i=1

W
(j,k)
i + e′j T̂

1
K

K∑
i=1

X
(j,k)
i ,

where V
(j,k)
i ∈ R is random and W

(j,k)
i and X

(j,k)
i are fixed p × 1 vectors.

Furthermore, since, with the notation of Lemma C.9,

ˆ̄covZ,K − Ip = 1
K

K∑
i=1

(
Ĉi − E[Ĉi]

)
,

we have

[∇̄0]j,k = 1
K

K∑
i=1

(
V

(j,k)
i − 1

2e
′
k

(
Ĉi − E[Ĉi]

)[ 1
K

K∑
a=1

W (j,k)
a

]

− 1
2e

′
j

(
Ĉi − E[Ĉi]

)[ 1
K

K∑
a=1

X(j,k)
a

])
.

(33)

The collection of vectors {(V (j,k)
i )1≤j<k≤p}i∈N is such that ((V (j,k)

i )j,k, Ĉi) and
((V (j,k)

i′ )j,k, Ĉi′) are independent for |i−i′| ≥ L. Furthermore, from Lemma C.3,

sup
i∈N,1≤j<k≤p

E(|V (j,k)
i |r) ≤ Csup for any fixed r > 0 ,

sup
i∈N,1≤j<k≤p

||W (j,k)
i || ≤ Csup

and
sup

i∈N,1≤j<k≤p
||X(j,k)

i || ≤ Csup.

Thus, the quantity in (33) is a component of an average of random vectors, with
bounded moments, and such that two of these vectors are independent if their
index difference is larger or equal to L. Hence the matrix Σ∇ is bounded. Thus,
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one can first assume that the sequence of matrices Σ∇ converges as K → ∞,
up to taking a subsequence. Then, one can apply a central limit theorem for
weakly dependent variables (for instance Theorem 2.1 in [33]) to (33).

This proves that, with Q′
K be the distribution of

√
K

([
1
K

K∑
i=1

(
V

(j,k)
i − E[V (j,k)

i ]
)

+ e′kT̂
1
K

K∑
i=1

W
(j,k)
i + e′j T̂

1
K

K∑
i=1

X
(j,k)
i

]
1≤j<k≤p

⎞
⎠ ,

we have dw(Q′
K ,N (0,Σ∇)) → 0 as K → ∞. Hence, we can conclude the proof

by showing that E[V (j,k)
i ] = 0 for 1 ≤ j < k ≤ p. We have, for 1 ≤ j < k ≤ p,

E[e′kĈieke
′
kĈiej ] =

p∑
a,b,c,d=1

(ek)a(ek)b(ek)c(ej)dE[(Ĉi)a,b(Ĉi)c,d].

Since (ek)l is zero for l �= k, we obtain from (21)

E[e′kĈieke
′
kĈiej ] =E[(Ĉi)k,k(Ĉi)k,j ]

= (covZ,i)k,k (covZ,i)k,j

+ 1k=k1k=j
1
s2

s∑
a,b=1

(D(a,b)
Z,i )k,k(D(a,b)

Z,i )k,k

+ 1k=j1k=k
1
s2

s∑
a,b=1

(D(a,b)
Z,i )k,kE(D(a,b)

Z,i )k,k

=0,

since 1 ≤ j < k ≤ p. Similarly, we show

E[e′jĈieje
′
jĈiek] = 0

for 1 ≤ j < k ≤ p. Hence the proof is concluded.

Lemma C.11. Assume that conditions 6, 7 and 8 hold. Let us write, for 1 ≤
e < f ≤ p and 1 ≤ g < h ≤ p,

Ee,f,g,h = ∂2

∂Ve,f∂Vg,h
Δ̂K(exp(S(V )))

∣∣∣
V =0

,

that is, Ee,f,g,h is the element (e, f)×(g, h) of the Hessian matrix of the function
V → Δ̂K(exp(S(V ))) at V = 0. Then, for 1 ≤ e < f ≤ p and 1 ≤ g < h ≤ p,
we have

Ee,f,g,h =op(1) − 41(e,f)=(g,h)
1
K

K∑
i=1

([Ci]e,e − [Ci]f,f )2
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− 81(e,f)=(g,h)
1
K

K∑
i=1

1
s2

s∑
m,n=1

([
D

(m,n)
Z,i

]
e,e

−
[
D

(m,n)
Z,i

]
f,f

)2

.

Proof. In order to calculate the Hessian matrix at V = 0, we use a Taylor
expansion as V ∈ Up → 0. We have, with ||a(V )|| = O(||V ||3) and ||b(V )|| =
O(||V ||3) as V → 0,

Δ̂K(exp(S))

= 1
K

K∑
i=1

p∑
j=1

([
Ip + S + 1

2S
2 + a(V )

]′
j

ˆ̄Ci

[
Ip + S + 1

2S
2 + a(V )

]
j

)2

= 1
K

K∑
i=1

p∑
j=1

(
e′j

ˆ̄Ciej + 2S′
j
ˆ̄Ciej + 21

2[S2]′j
ˆ̄Ciej + [S]′j

ˆ̄Ci[S]j + b(V )
)2

,

where we have used the abbreviation S ≡ S(V ). In the following, we gather the
second order terms:

1
K

K∑
i=1

p∑
j=1

(
2e′j

ˆ̄Ciej [S2]′j
ˆ̄Ciej + 2e′j

ˆ̄Ciej [S]′j
ˆ̄Ci[S]j + 4[S]′j

ˆ̄Cieje
′
j
ˆ̄Ci[S]j

)

= 1
K

K∑
i=1

p∑
j=1

⎛
⎝2e′j

ˆ̄Ciej

⎛
⎝ p∑

k,a=1

Sj,kSk,a[ ˆ̄Ci]a,j

⎞
⎠

+ 2e′j
ˆ̄Ciej

⎛
⎝ p∑

k,a=1

Sj,kSj,a[ ˆ̄Ci]k,a

⎞
⎠+ 4

⎛
⎝ p∑

a,b=1

[ ˆ̄Ci]j,aSj,aSj,b[ ˆ̄Ci]b,j

⎞
⎠
⎞
⎠

= 1
K

K∑
i=1

p∑
j=1

p∑
k,a=1

(
−2[ ˆ̄Ci]j,j [ ˆ̄Ci]a,jSa,kSj,k + 2[ ˆ̄Ci]k,k[ ˆ̄Ci]a,jSa,kSj,k

+ 4[ ˆ̄Ci]k,a[ ˆ̄Ci]j,kSa,kSj,k

)

= 1
K

K∑
i=1

p∑
j,k,a=1

(
−2[ ˆ̄Ci]j,j [ ˆ̄Ci]a,j + 2[ ˆ̄Ci]k,k[ ˆ̄Ci]a,j + 4[ ˆ̄Ci]k,a[ ˆ̄Ci]j,k

)
Sa,kSj,k.

From the above display, it follows that, for 1 ≤ e < f ≤ p and 1 ≤ g < h ≤ p,

Ee,f,g,h =

1
K

K∑
i=1

p∑
j=1

p∑
k,a=1

(
−4[ ˆ̄Ci]j,j [ ˆ̄Ci]a,j + 4[ ˆ̄Ci]k,k[ ˆ̄Ci]a,j + 8[ ˆ̄Ci]k,a[ ˆ̄Ci]j,k

)
(
1(a,k)=(e,f) − 1(a,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
.

As in the proof of Lemma C.9, we can show that we have

Ee,f,g,h = op(1)+
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1
K

K∑
i=1

p∑
j=1

p∑
k,a=1

(
−4[Ĉi]j,j [Ĉi]a,j + 4[Ĉi]k,k[Ĉi]a,j + 8[Ĉi]k,a[Ĉi]j,k

)
(
1(a,k)=(e,f) − 1(a,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
.

Then, since Ĉi and Ĉj are independent for |i− j| ≥ L and from (25), we obtain

Ee,f,g,h = op(1)+

1
K

K∑
i=1

p∑
j,k,a=1

(
−4E

[
[Ĉi]j,j [Ĉi]a,j

]
+ 4E

[
[Ĉi]k,k[Ĉi]a,j

]
+ 8E

[
[Ĉi]k,a[Ĉi]j,k

])
(
1(a,k)=(e,f) − 1(a,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
= op(1) + S1 + S2 + S3,

say. We have, from (21), and recalling that 1 ≤ e < f ≤ p and 1 ≤ g < h ≤ p,

S1 = 1
K

K∑
i=1

p∑
j=1

p∑
k,a=1

(
−4E

[
[Ĉi]j,j [Ĉi]a,j

])
(
1(a,k)=(e,f) − 1(a,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
= 1
K

K∑
i=1

p∑
j=1

p∑
k,a=1

(−4)
(

1a=j [Ci]2j,j + 21a=j
1
s2

s∑
m,n=1

[
D

(m,n)
Z,i

]2
j,j

)
(
1(a,k)=(e,f) − 1(a,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
=1(e,f)=(g,h)

1
K

K∑
i=1

(
−4[Ci]2e,e − 8 1

s2

s∑
m,n=1

[
D

(m,n)
Z,i

]2
e,e

−4[Ci]2f,f − 8 1
s2

s∑
m,n=1

[
D

(m,n)
Z,i

]2
f,f

)
.

Then, we have

S2 = 1
K

K∑
i=1

p∑
j=1

p∑
k,a=1

(
4E
[
[Ĉi]k,k[Ĉi]a,j

])
(
1(a,k)=(e,f) − 1(a,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
= 1
K

K∑
i=1

p∑
j=1

p∑
k,a=1

4
(

1a=j [Ci]k,k[Ci]a,j + 21k=a1k=j
1
s2

s∑
m,n=1

[
D

(m,n)
Z,i

]2
k,k

)
(
1(a,k)=(e,f) − 1(a,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
= 1
K

K∑
i=1

p∑
j=1

p∑
k=1

4 ([Ci]k,k[Ci]j,j)

(
1(j,k)=(e,f) − 1(j,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
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=1(e,f)=(g,h)8
1
K

K∑
i=1

[Ci]e,e[Ci]f,f .

We have

S3 = 1
K

K∑
i=1

p∑
j=1

p∑
k,a=1

(
8E
[
[Ĉi]k,a[Ĉi]j,k

])
(
1(a,k)=(e,f) − 1(a,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
= 1
K

K∑
i=1

p∑
j=1

p∑
k,a=1

8 ([Ci]k,a[Ci]j,k

+ 1k=j1a=k
1
s2

s∑
m,n=1

[
D

(m,n)
Z,i

]
k,k

[
D

(m,n)
Z,i

]
j,j

+1k=k1a=j
1
s2

s∑
m,n=1

[
D

(m,n)
Z,i

]
k,k

[
D

(m,n)
Z,i

]
a,a

)
(
1(a,k)=(e,f) − 1(a,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
= 1
K

K∑
i=1

p∑
j=1

p∑
k=1

8
(

1
s2

s∑
m,n=1

[
D

(m,n)
Z,i

]
k,k

[
D

(m,n)
Z,i

]
j,j

)
(
1(j,k)=(e,f) − 1(j,k)=(f,e)

) (
1(j,k)=(g,h) − 1(j,k)=(h,g)

)
=1(e,f)=(g,h)16 1

K

K∑
i=1

1
s2

s∑
m,n=1

[
D

(m,n)
Z,i

]
e,e

[
D

(m,n)
Z,i

]
f,f

.

Putting together the expressions of S1, S2 and S3, we obtain, for 1 ≤ e <
f ≤ p and 1 ≤ g < h ≤ p,

Ee,f,g,h =op(1) − 41(e,f)=(g,h)
1
K

K∑
i=1

([Ci]e,e − [Ci]f,f )2

− 81(e,f)=(g,h)
1
K

K∑
i=1

1
s2

s∑
m,n=1

([
D

(m,n)
Z,i

]
e,e

−
[
D

(m,n)
Z,i

]
f,f

)2
.

Lemma C.12. Assume that conditions 6, 7 and 8 hold. Let us write, for 1 ≤
e < f ≤ p, 1 ≤ g < h ≤ p and 1 ≤ k < l ≤ p and for V ∈ Up,

Fe,f,g,h,k,l(V ) = ∂3

∂Ve,f∂Vg,h∂Vk,l
Δ̂K(exp(S(V )))

∣∣∣
V
,

that is, Fe,f,g,h,k,l(V ) is one of the third order partial derivatives of the function
V → Δ̂K(exp(S(V ))), evaluated at V ∈ Up. Then, there exists ε > 0 such that

max
1≤e<f≤p
1≤g<h≤p
1≤k<l≤p

sup
||S(V )||≤ε

|Fe,f,g,h,k,l(V )| = Op(1).
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Proof. We have, with the notation of Lemma C.9 and using the shorthand
S ≡ S(V ),

Δ̂K(exp(S))

= 1
K

K∑
i=1

p∑
j=1

(
exp(S)′j ˆ̄cov−1/2

Z,K ˆcovZ,i
ˆ̄cov−1/2

Z,K exp(S)j
)2

= 1
K

K∑
i=1

p∑
j=1

p∑
a,b,c,d=1

exp(S)j,a
[ ˆ̄Ci

]
a,b

exp(S)j,b exp(S)j,c
[ ˆ̄Ci

]
c,d

exp(S)j,d.

Hence, it is sufficient to show that, for any j, a, b, c, d = 1, ..., p and any 1 ≤ e <
f ≤ p, 1 ≤ g < h ≤ p and 1 ≤ k < l ≤ p,

sup
||S||≤ε

∣∣∣∣∣ 1
K

K∑
i=1

∂3

∂Ve,f∂Vg,h∂Vk,l

(
exp(S)j,a

[ ˆ̄Ci

]
a,b

exp(S)j,b

exp(S)j,c
[ ˆ̄Ci

]
c,d

exp(S)j,d
)∣∣∣∣

V

∣∣∣∣
= Op(1).

We let

m(V ) = exp(S(V ))j,a exp(S(V ))j,b exp(S(V ))j,c exp(S(V ))j,d.

From e.g. Proposition 3.2.1 in [15], the function m is infinitely differentiable and
so it is sufficient to show

sup
||S(V )||≤ε

∣∣∣∣ ∂3

∂Ve,f∂Vg,h∂Vk,l
m(V )|V

∣∣∣∣
∣∣∣∣∣ 1
K

K∑
i=1

[ ˆ̄Ci

]
a,b

[ ˆ̄Ci

]
c,d

∣∣∣∣∣ = Op(1).

The last display holds true because of Lemma C.3.

Lemma C.13. Assume that Condition 8 holds. With the notation of
Lemma C.11, let, for any e, f = 1, ..., p, e �= f ,

He,f

= 4
K

K∑
i=1

([Ci]e,e − [Ci]f,f )2 + 8
Ks2

K∑
i=1

s∑
m,n=1

([
D

(m,n)
Z,i

]
e,e

−
[
D

(m,n)
Z,i

]
f,f

)2

.

Then we have, for any e, f = 1, ..., p, e �= f ,

lim inf
K→∞

He,f > 0.

Proof. The lemma is a direct consequence of Condition 8.
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Theorem C.14. Assume that conditions 6, 7 and 8 hold. Let Σ∇ be as in
Lemma C.10. Let ΣÛ be the p2×p2 covariance matrix defined by, for e, f, g, h =
1, ..., p,

[ΣÛ ](e,f),(g,h) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if e = f or g = h
1

He,fHg,h
[Σ∇](e,f),(g,h) if e < f , g < h

1
He,fHg,h

(
−[Σ∇](e,f),(h,g)

)
if e < f , g > h

1
He,fHg,h

(
−[Σ∇](f,e),(g,h)

)
if e > f , g < h

1
He,fHg,h

[Σ∇](f,e),(h,g) if e > f , g > h.

Then for any sequence ÛZ,K in (13), there exists a sequence ĜK ∈ Gp such that,
with QÛ the distribution of

√
K(ĜKÛZ,K − Ip), we have

dw
(
QÛ ,N (0,ΣÛ )

)
→

K→∞
0.

Furthermore, the matrix ΣÛ is bounded as K → ∞.

Proof. Because of Lemma C.13 and of the fact that the matrix Σ∇ is bounded,
the matrix ΣÛ is bounded. With the notation of Lemma C.8, we have

∇V̂Z,K
= 0,

with probability going to one as K → ∞, where V̂Z,K → 0 in probability as
K → ∞. We consider the event ∇V̂Z,K

= 0 in the rest of the proof. We will
use a Taylor expansion argument that is classical in M-estimation, but that is
here somehow technical to write because we manipulate matrices. There exist
p(p− 1)/2 elements of Up of the form

{ṼZ,K,i,j , 1 ≤ i < j < p},

such that each of these elements belongs to the segment with endpoints 0 and
V̂Z,K , and such that

0 = ∇0 + E
[
V̂Z,K

]
+ 1

2F [V̂Z,K ], (34)

where E is the linear application on Up defined by

[E(V )]a,b =
∑

e,f=1,...,p
e<f

Ea,b,e,fVe,f ,

for 1 ≤ a < b ≤ p with E as in Lemma C.11 and where F is the quadratic
application from Up to Up such that, for 1 ≤ i < j ≤ p, we have

(F [V ])i,j =
∑

e,f=1,...,p
e<f

∑
e′,f ′=1,...,p

e′<f ′

Fe,f,e′,f ′,i,j(ṼZ,K,i,j)Ve,fVe′,f ′ ,
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with F as in Lemma C.12. Remark that, from Lemma C.11 and with the nota-
tion of Lemma C.13, we have E = −Ē + op(1) where Ē is the linear application
on U0 defined by, for 1 ≤ e < f ≤ p

(Ē [V ])e,f = He,fVe,f .

Furthermore, from Lemma C.13, Ē is invertible for K large enough and we have
from (34) that

[
Ē−1 + R1

]
[∇0] = V̂Z,K − 1

2
[
Ē−1 + R1

] [
F [V̂Z,K ]

]
,

where R1 = op(1). Furthermore, we can let

R2 = −1
2
[
Ē−1 + R1

] [
F [V̂Z,K ]

]
and from Lemma C.12 and because V̂Z,K → 0, we obtain R2 = Op(||V̂Z,K ||2).
Hence, we obtain

√
KV̂Z,K +

√
KR2 =

[
Ē−1 + R1

] [√
K∇0

]
. (35)

We have K1/2∇0 = K1/2∇̄0 + op(1) = Op(1) from Lemma C.9. Indeed,
Lemma C.10 implies that K1/2∇̄0 = Op(1). Coming back to (35), this implies

√
KV̂Z,K = Ē−1

[√
K∇̄0

]
+ op(1).

Then from Lemma C.8, there exists ĜK ∈ Gp such that
√
KĜKÛZ,K =

√
K exp

(
S
(
Ē−1 [∇̄0

]
+ op(K−1/2)

))
.

Because the differential of exp around 0 is identity, we obtain
√
K
(
ĜKÛZ,K − Ip

)
= S

(
Ē−1

[√
K∇̄0

])
+ op(1). (36)

Thus, the proof is concluded from the central limit theorem on
√
K∇̄0 obtained

in Lemma C.10.

Theorem C.15. Assume that conditions 6, 7 and 8 hold. Let Σ ˆ̄covZ,K
be the

p2 × p2 covariance matrix of K1/2( ˆ̄covZ,K − Ip). Let Σcross be the p2 × p2 cross
covariance matrix between S

(
Ē−1

[√
K∇̄0

])
and K1/2( ˆ̄covZ,K − Ip). Let

ΣŴZ,K
= ΣÛ + 1

4Σ ˆ̄covZ,K
− Σcross.

Then for any sequence ÛZ,K in (13), there exists a sequence ĜK ∈ Gp such that,
with QŴZ,K

the distribution of K1/2(ĜKŴZ,K − Ip), we have

dw

(
QŴZ,K

,N (0,ΣŴZ,K
)
)

→
K→∞

0.

Furthermore, the matrix ΣŴZ,K
is bounded as K → ∞.



2284 F. Bachoc et al.

Proof. The matrix ΣÛ is bounded from Theorem C.14. The matrix Σ ˆ̄covZ,K

is bounded because ˆ̄covZ,K is an average of random matrices with bounded
moments from Lemma C.3 and such that two of them are independent if their
index difference is larger or equal to L. Hence, the matrix ΣŴZ,K

is bounded.
Let ĜK ∈ Gp be such that (36) holds. We consider the event where (36) holds

for the rest of the proof, which probability goes to 1 as K → ∞. We have
√
K(ĜKŴZ,K − Ip) =

√
K(ĜKÛZ,K ˆ̄cov−1/2

Z,K − Ip)

=
√
KĜKÛZ,K( ˆ̄cov−1/2

Z,K − Ip) +
√
K(ĜKÛZ,K − Ip).

From (36), Lemma C.3 and Theorem C.7, this yields

√
K(ĜKŴZ,K − Ip) = −1

2
√
K( ˆ̄covZ,K − Ip) +

√
K(ĜKÛZ,K − Ip) + op(1).

From (36), this yields

√
K(ĜKŴZ,K − Ip) = −1

2
√
K( ˆ̄covZ,K − Ip) + S

(
Ē−1

[√
K∇̄0

])
+ op(1).

(37)

Then, the quantity in (37) is a linear function with bounded coefficients of the
pair (√

K( ˆ̄covZ,K − Ip)√
K∇̄0

)
.

We can show that this vector (in dimension p2 + p(p − 1)/2) is asymptotically
Gaussian, exactly as in the proof of Lemma C.10. Indeed, with the notation
of this lemma, the term ( ˆ̄covZ,K − Ip) will contribute to the quantities V

(j,k)
i

(which definition can be extended also to the case j ≥ k). Then the quantity
in (37) is also asymptotically Gaussian. Furthermore the mean vectors of the
first two summands on the right hand side of (37) are zero from the proof of
Lemma C.10 and since ˆ̄covZ,K has mean Ip. The covariance matrix of the sum
of these two summands is given by ΣŴZ,K

, which concludes the proof.

Remark 2. Let us summarize how the Gaussianity assumption (Condition 1)
is used throughout the proofs above. An important use of Gaussianity is the
application of Isserliss’ theorem in the proof of Lemma C.2. This lemma allows to
show that in expectation, when blind source separation is applied directly to Zt,
then the identity indeed maximizes the expectation (17), which is asymptotically
close to the expectation of the maximized function in (13). One can see the use
of Lemma C.2 in the proof of Theorem C.7 on consistency, through Lemma C.6.

In the proof of Lemma C.3, we apply Theorem 1 in [21], that enables to
control higher moments under Gaussianity. Lemma C.3 is applied at several
locations, in particular in the proof of Lemma C.6 (consistency) and in the
proof of Lemmas C.9 and C.12 (related to asymptotic normality).
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Finally, we also exploit bounds on Gaussian tails for concentration, using
Equation A.3 in [6] in the proof of Lemma C.4, and for a central limit theorem,
using Theorem 2.1 in [33] in the proof of Lemma C.10.

C.5. Extension of the results from Z to X

We recall that we have the definitions

ÛX,K ∈ argmaxU∈Op

K∑
i=1

||diag
(
U ˆ̄cov−1/2

X,K ˆcovX,i
ˆ̄cov−1/2

X,K U ′
)
||2. (38)

We recall
ŴX,K = ÛX,K ˆ̄cov−1/2

X,K .

Corollary C.16. Assume that conditions 6, 7 and 8 hold. Then for any se-
quence ÛX,K in (38), there exists a sequence ĜK ∈ Gp such that

ĜKŴX,K
p→

K→∞
A−1.

Proof. Let ÛX,K in (38). Then, from Lemma C.1, there exists ÛZ,K in (13) such
that

ŴX,K = ŴZ,KA−1.

Furthermore, let ĜK ∈ Gp be such that the conclusion of Theorem C.7 holds.
We have

ĜKŴX,K =
(
ĜKŴZ,K

)
A−1

p→ IpA
−1

as K → ∞.

Corollary C.17. Assume that conditions 6, 7 and 8 hold. Let ΣŴX,K
be the

p2 × p2 covariance matrix of the random matrix

MA−1,

where M is a p× p random matrix with p2 × p2 covariance matrix ΣŴZ,K
, with

the notation of Theorem C.15. Then for any sequence ÛX,K in (38), there exists
a sequence ĜK ∈ Gp such that, with QŴX,K

the distribution of K1/2(ĜKŴX,K−
A−1), we have

dw

(
QŴX,K

,N (0,ΣŴX,K
)
)

→
K→∞

0.

Furthermore, the matrix ΣŴX,K
is bounded as K → ∞.
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Proof. The matrix ΣŴX,K
is bounded because A−1 is fixed and the matrix

ΣŴZ,K
is bounded. Let ÛX,K in (38). Then, from Lemma C.1, there exists ÛZ,K

in (13) such that
ŴX,K = ŴZ,KA−1.

Furthermore, let ĜK ∈ Gp be such that the conclusion of Theorem C.15 holds.
We have

√
K
(
ĜKŴX,K −A−1

)
=

√
K
(
ĜKŴZ,KA−1 −A−1

)
=

√
K
(
ĜKŴZ,K − Ip

)
A−1.

This last quantity follows the asymptotic Gaussian distribution given in the
statement of the corollary, which concludes the proof.

C.6. Extension to non-zero mean and to empirical centering

In this section, we consider that Z has a non-zero mean function, that is constant
within the time blocks (Condition 3).

Condition 9. For any i ∈ {1, . . . ,K} and j ∈ {1, . . . , s}, the mean vector of
Z(i−1)s+j depends only on i and is written mi.

In this section, we let, for i = 1, . . . ,K,

Z̄i = 1
s

s∑
j=1

Z(i−1)s+j .

We also let Z̄i = (Z̄(1)
i , . . . , Z̄

(p)
i )′. We let for i ∈ {1, . . . ,K},

ˆcovZ,i = 1
s

s∑
j=1

(Zs(i−1)+j − Z̄i)(Zs(i−1)+j − Z̄i)′ (39)

and

covZ,i = E ( ˆcovZ,i) = 1
s

s∑
j=1

Cov(Zs(i−1)+j − Z̄i),

from Condition 9. We also let

¯covZ,K = 1
K

K∑
i=1

covZ,i

and

ˆ̄covZ,K = 1
K

K∑
i=1

ˆcovZ,i.
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We recall that we assume ¯covZ,K = Ip, which can always be done by multiplying
each component Z(k) by a constant. This is necessary to obtain the identifiability
of A−1 up to permutations and sign changes of the rows.

We define ˆcovX,i, covX,i, ¯covX,K and ˆ̄covX,K similarly as ˆcovZ,i, covZ,i,
¯covZ,K and ˆ̄covZ,K but with Z replaced by X. Then, ÛZ,K , ŴZ,K , ÛX,K and
ŴX,K are defined as in Section C.2, but with the new definitions of ˆcovX,i,
ˆ̄covX,K , ˆcovZ,i and ˆ̄covZ,K given here.

We still assume that Condition 6 holds. We assume that the following con-
dition holds, which is a minor change to Condition 7.

Condition 10. We have

sup
i∈N

max
j=1,...,p

Var
(
Z

(j)
i

)
≤ Csup.

We also update some notation from Lemma C.2. We let for i = 1, ...,K and
a, b = 1, ..., s, D(a,b)

Z,i be the p× p diagonal matrix defined by
[
D

(a,b)
Z,i

]
k,k

= E

(
(Z(k)

(i−1)s+a − Z̄
(k)
i )(Z(k)

(i−1)s+b − Z̄
(k)
i )
)
.

We assume that Condition 8 holds, with the new definition of covZ,i. We let
H be defined as in Lemma C.13 but with respect to the new definition of covZ,i

and D
(a,b)
Z,i .

Under these assumptions, the consistency and the central limit theorem for
ŴZ,K and ŴX,K can be extended from the zero-mean and no-centering case, to
the case of Condition 9 and of (39).

Theorem C.18. Under the conditions of Section C.6, the same conclusions as
in Theorems C.7 and C.15 and in Corollaries C.16 and C.17 hold, where the
definitions of ΣŴZ,K

and ΣŴX,K
are updated according to the new definitions of

ˆcovZ,i, covZ,i and D
(a,b)
Z,i .

Proof. We consider the multivariate time series Y and W , defined by, for i ∈
{1, . . . ,K} and j ∈ {1, . . . , s}

Y(i−1)s+j = Z(i−1)s+j − Z̄i

and
W = AY.

We remark that for i ∈ {1, . . . ,K} and j ∈ {1, . . . , s} we have

W(i−1)s+j = X(i−1)s+j − X̄i,

where we let

X̄i = 1
s

s∑
j=1

X(i−1)s+j .
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These multivariate time series have mean zero from Condition 9 and they are
Gaussian. One can check that they satisfy the conditions of Theorems C.7
and C.15. Furthermore, we have

ˆcovZ,i = 1
s

s∑
j=1

Ys(i−1)+jY
′
s(i−1)+j

and

covZ,i = 1
s

s∑
j=1

E

(
Ys(i−1)+jY

′
s(i−1)+j

)
.

Hence, the conclusion of Theorems C.7 and C.15 and of Corollaries C.16 and C.17
applied to Y and W imply Theorem C.18.
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