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Abstract: We investigate the power of some common change-point tests as
a function of the location of the change-point. The test statistics are maxima
of weighted U-statistics, with the CUSUM test and the Wilcoxon change-
point test as special examples. We study the power under local alternatives,
where we vary both the change-point’s location and the magnitude of the
change. We quantify in which way weighted versions of the tests exhibit
greater power when the change occurs near the beginning or the end of the
time interval, while losing power against changes located in the center.
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1. Introduction

In this paper, we compare the power of some standard change-point tests with
varying weight functions. We consider alternatives where a jump occurs in the
center of the observation period, as well as alternatives where a jump occurs
very early or very late. According to the change-point folklore, very early and
very late changes are better detected by tests with weights that increase near
the boundary of the observation period. In this paper, we aim to shed some
light on this problem, both by precise mathematical results and by simulations.
We will do so by considering local alternatives that express the phenomenon of
change-points near the border of the observation period. Our results indicate
that optimal weights depend on the rate at which the change-point converges
to the border of the observation time.

We investigate the model of at most one change, assuming that the data are
generated by the signal plus noise model

Xi = μi + ξi, i ≥ 1, (1)

where (μi)i≥1 is an unknown signal, and where (ξi)i≥1 is a mean zero i.i.d.
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process. Based on the observations X1, . . . , Xn, we want to test the hypothesis

H : μ1 = . . . = μn

that there is no change in the location during the observation period {1, . . . , n}
against the alternative that there is a change at some unknown point in time
k∗, i.e.,

A : μ1 = . . . = μk∗ �= μk∗+1 = . . . = μn, for some k∗ ∈ {1, . . . , n− 1}.

We will specifically consider alternatives where the location k∗ as well as the
height Δ = μk∗+1 − μk∗ of the change is allowed to vary with the sample size.
Thus, strictly speaking, our model is a triangular array where the signal is given
by (μn,i)1≤i≤n,n≥1. We study U-process based test statistics defined as

max
1≤k<n

1
n3/2

(
k
n (1 − k

n )
)γ k∑

i=1

n∑
j=k+1

h(Xi, Xj),

where 0 ≤ γ < 1
2 is a tuning parameter and where h : R

2 → R is a kernel
function. We consider kernels of the type

h(x, y) = g(y − x),

where g is an odd function. That type of kernel function covers many test statis-
tics including CUSUM and Wilcoxon. The parameter γ defines the strength of
the weight near the borders of the observation period. The greater γ is, the
higher are the weights at the border. The limit γ = 1

2 is exceptional because in
this case the test statistics asymptotic distribution is an extreme value distri-
bution. The choice γ = 0 yields the non-weighted version of the test.

The asymptotic distribution of the U-process based test statistic with kernel
h(x, y) has been studied by various authors, both for i.i.d. data and for data
with serial correlations. For i.i.d. data, the theory is summarized in the seminal
monograph by Csörgő and Horváth [4], where also dependent data are treated in
connection with the CUSUM test. For short-range dependent data and general
U -statistic based tests, Dehling et al. investigated the case γ = 0 in [6]. The
special weighted case γ = 1

2 was treated in our former paper [10].
Most research on change-point tests has been devoted to the distribution of

test statistics under the null hypothesis of no change. In the case of i.i.d. data,
the non-weighted U -statistics process for detecting a change in the distribution
under contiguous alternatives, where the location of the change-point is in the
center of the observation period, was studied by Szyszkowicz [18]. Also for i.i.d.
data, the power of non-weighted tests based on anti-symmetric U-statistics un-
der local alternatives, allowing both the location and the height of the jump
to vary with the sample size, including possible jumps near the boundary of
the observation period, was studied by Ferger [11]. For long-range dependent
processes the asymptotic distribution of the Wilcoxon test statistic under the
hypothesis as well as under the alternative was studied Dehling et al. in [8] and
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[9]. In Horváth’s, Rice’s, and Zhao’s paper from 2021 [15], the norms of weighted
functional CUSUM processes were studied, and the asymptotic distribution un-
der the null hypothesis of no change, as well as under local alternatives in the
presence of a change in the covariance, was derived. Additionally, Robbins et
al. [17] consider weighted versions of CUSUM tests for detecting early changes
and compares various tests through simulation studies. Horváth et al. [14] in-
vestigated the power of non-weighted CUSUM tests under local alternatives for
short-range dependent data. In that paper, they also investigated the power of
so-called Rényi change-point tests, which are CUSUM tests weighted even more
heavily towards the end of the observation period.

In the context of weighted and non-weighted U-statistics based processes,
Račkauskas and Wendler [16] focus on epidemic changes, while Berkes et al.
[1] address changes in the mean of the covariance structure of a linear process.
Additionally, Gombay [12] compares the power of U-statistic based change-point
tests for both online and offline scenarios, describing their large sample behavior
under local alternatives. However, these analyses do not encompass contiguous
alternatives with O(n−1/2) size changes. In a Monte Carlo simulation study, Xie
et al. [19] investigate how the location of the change-point influences the ability
of the Wilcoxon-based Pettitt test.

In this paper, we investigate changes where the change-point occurs on the
scale of nκ, considering various values of κ within the range (0, 1]. For κ =
1, changes occur in the center of the observation period, while 0 < κ < 1
corresponds to very early changes. We study both fixed size jumps and jumps
whose size decreases as the sample size increases. Additionally, we compare the
power functions of different tests and study their relationship with the envelope
power. The envelope power is defined as the maximal power achievable by testing
the hypothesis of no change against a fixed alternative (k,Δ), where k denotes
the location and Δ represents the height of the change.

To the best of our knowledge, there are no results in the literature where the
power of weighted change-point test statistics under local alternatives has been
studied analytically. New are specifically our results on the power of weighted
tests against local alternatives where the change-point occurs near the very
beginning of the time series, on a scale of nκ, where 0 < κ < 1. We identify
exactly the combinations of weights γ and scales κ that yield consistent tests,
and we analyze the limit distribution on the border.

2. Preliminary remarks and definitions

Before we present our main results in the next sections, we introduce some
notations. We consider the signal plus noise model (1) and test the hypothesis

H : μ1 = . . . = μn

against the alternative

A : μ1 = . . . = μk∗ �= μk∗+1 = . . . = μn, for some k∗ = k∗n ∈ {1, . . . , n− 1}.
The next sections attend to two different types of alternative:
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The section Small change after fixed proportion of time deals with local al-
ternatives in which the time of change is proportional to the sample size and
the jump height decreases as the sample size increases. We call this alternative
A1 and define more precisely

A1 : μ1 = . . . = μk∗
n
�= μk∗

n+1 = . . . = μn, with

k∗n = [τ∗n] and Δn = μk∗
n+1 − μk∗

n
= c√

n
,

where τ∗ ∈ (0, 1) and c is a constant.
In the section Early change with fixed height, we consider another type of

alternative in which the jump height is kept constant, while the time of change
moves closer to the border of the observation range. We model this alternative
as follows

A2 : μ1 = . . . = μk∗
n
�= μk∗

n+1 = . . . = μn, with

k∗n ≈ cnκ, meaning that k∗n
cnκ

→ 1, and Δn = μk∗
n+1 − μk∗

n
≡ Δ,

where c is a constant and where the parameter κ is defined as

κ = 1 − 2γ
2(1 − γ) , γ ∈ [0, 1

2 ).

Note that by definition κ ∈ (0, 1
2 ].

In short, we can write the corresponding model as

Xi =
{

μ + ξi for i ≤ k∗n

μ + Δn + ξi for i ≥ k∗n + 1,
(2)

where (ξi)≥1 is a mean zero i.i.d. process and where k∗n and Δn are chosen as
in A1 or A2.
Remark 1. The specific choice of κ in A2 leads to a non trivial limit distribution
under the alternative.

In order to test H vs. Ai, i ∈ {1, 2}, we use the test statistic

Gγ
n(k) := 1

n3/2
(
k
n (1 − k

n

))γ k∑
i=1

n∑
j=k+1

g(Xj −Xi), (3)

where γ ∈ [0, 1/2) and where g is an odd function, i.e., g(−x) = −g(x). Note
that the case γ = 0 refers to the non-weighted test statistic. We determine the
limiting distribution of the test statistic under the alternatives A1 and A2. In
that proceeding, slightly different terms appear depending on whether k ≤ k∗n
or k ≥ k∗n. For the sake of simplicity we combine these terms into one function.
We define φn : {1, . . . , n} → N by

φn(k) :=
{

k(n− k∗n) for k ≤ k∗n

k∗n(n− k) for k ≥ k∗n,
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and analogously the continuous version φτ∗ : [0, 1] → R by

φτ∗(λ) =
{

λ(1 − τ∗) for λ ≤ τ∗

τ∗(1 − λ) for λ ≥ τ∗.

For later use, we denote a Wiener process by {W (λ), 0 ≤ λ ≤ 1} and a Brownian
bridge process by {W (0)(λ), 0 ≤ λ ≤ 1}.

3. Small changes after fixed proportion of a sample

In this section, we establish the asymptotic distribution of max1≤k<n G
γ
n(k)

under the alternative A1, i.e., where k∗n = [τ∗n] and Δn = c√
n
. For the special

CUSUM and Wilcoxon kernel functions, the results are stated in Corollary 3.1,
and 3.2.

Theorem 3.1. We consider model (2) under A1. Assume that g(ξ2 − ξ1) has
finite second moments. Moreover, assume that Var(h1(ξ1)) → 0, and that cg =
limn→∞

√
nu(Δn) exists. Then, for 0 ≤ γ < 1

2 , and as n → ∞,

max
1≤k<n

Gγ
n(k) D−→ sup

0≤λ≤1

1
(λ(1 − λ))γ [σW (0)(λ) + cgφτ∗(λ)],

where σ2 = IE(g2
1(ξ1)) > 0, and

g1(x) = IE[g(ξ − x)] − IE[g(ξ − η)],
u(Δn) = IE[g(ξ − η + Δn) − g(ξ − η)],
h1(x) = IE[g(ξ − x + Δn) − g(ξ − x)] − u(Δn),

where ξ and η are independent and have the same distribution as ξ1.

Remark 2. (i) h1 and u are obtained from Hoeffding’s decomposition, applied
to the kernel h(x, y) = g(y − x + Δn) − g(y − x). More details are given in the
proof of Theorem 3.1 in Section 7.
(ii) For c = 0 we obtain the limit under the null hypothesis of stationarity.
In order to calculate the asymptotic critical values, we need to determine the
quantiles of the distribution of

sup
0≤λ≤1

1
(λ(1 − λ))γ W

(0)(λ).

The upper α-quantiles, α ∈ (0.01, 0.05, 0.1), for various choices of γ, are tabu-
lated in Table 1.
(iii) We conjecture that the results of Theorem 1 and Theorems 2 and 3 below
would also hold for short-range dependent observations under suitable condi-
tions, similar to those in [6] or [10]. Under dependence, the variance param-
eter σ2 = Var(g1(ξ1)) would have to be replaced by the long-run variance
σ2
∞ = Var(g1(ξ1)) + 2

∑∞
k=1 Cov(g1(ξ1), g1(ξ1+k)).
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(iv) For γ = 1/2, Theorem 3.1 does not hold, as the limit is infinite almost
surely. Under the null hypothesis, and with γ = 1/2, one can apply a different
normalization to obtain the convergence to an extreme value distribution, see
Csörgő and Horváth’s paper from 1988 [3].

Table 1

Upper α-Quantiles of sup0≤λ≤1
1

(λ(1−λ))γ W (0)(λ) for different values of the parameter γ,
based on 10,000 repetitions.

γ
α 0.1 0.05 0.01

0 1.05 1.20 1.51
0.1 1.24 1.41 1.72
0.2 1.45 1.63 2.05
0.3 1.75 1.96 2.40
0.4 2.10 2.31 2.83

Theorem 3.1 covers both the CUSUM and Wilcoxon test statistic. Choosing
g(x) = x leads to the CUSUM test statistic and satisfies the assumptions.
We have u(Δn) = E[Δn] = Δn and cg = limn→∞

√
nΔn = c, as Δn = c√

n
.

Moreover,

h1(x) = IE[g(ξ−x+Δn)−g(ξ−x)]−u(Δn) = IE[ξ−x+Δn−(ξ−x)]−Δn = 0.

Thus, we can deduce the following corollary for the weighted CUSUM test statis-
tic.

Corollary 3.1. Under the assumptions of Theorem 3.1, it holds

max
1≤k<n

1
n3/2

(
k
n (1 − k

n

))γ k∑
i=1

n∑
j=k+1

(Xj −Xi)

D−→ sup
0≤λ≤1

1
(λ(1 − λ))γ

[
σW (0)(λ) + cφτ∗(λ)

]
,

where σ2 = Var(ξ1) < ∞.

To obtain the Wilcoxon test statistic, choose g(x) = 1{0≤x} − 1
2 . Then

u(Δn) = IE[1{η−Δn≤ξ} − 1{η≤ξ}] = IE[1{η−Δn<ξ≤η}] = IP(η − Δn < ξ ≤ η)

=
∫
R

(F (y) − F (y − Δn))dF (y) ≈ −Δn

∫
R

f2(y)dy,

where F is the distribution function and f the density function of ξ. This yields
cg = c

∫
R
f2(y)dy. Furthermore,

|h1(x)| = |IE[1{0≤ξ−x+Δn} − 1{0≤ξ−x}] − u(Δn)|
= |IP(x− Δn < ξ ≤ x) − u(Δn)| = |F (x) − F (x− Δn) − u(Δn)|
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=
∣∣Δn

F (x) − F (x− Δn)
Δn

− u(Δn)
∣∣ ≈ |Δnf(x) − u(Δn)|

=
∣∣Δn

(∫
R

f2(y)dy − f(x)
)∣∣ ≤ |cΔn|,

where c is a finite constant if the density is bounded. Thus, Var(h1(ξ1)) → 0.
As all required assumptions are satisfied, we derive the following corollary.

Corollary 3.2. Assume that ξ1 has bounded density. Under the assumptions of
Theorem 3.1 it holds

max
1≤k<n

1
n3/2

(
k
n (1 − k

n

))γ k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1
2

)

D−→ sup
0≤λ≤1

1
(λ(1 − λ))γ

[
1√
12

W (0)(λ) + cφτ∗(λ)
∫
R

f2(y)dy
]
.

4. Early change with fixed height

Next, we consider Alternative A2, where the jump height remains constant while
the time of change moves closer to the border of the observation range. We show
that the choice of γ influences the scales at which change-points can be detected.

We distinguish between the cases γ = 0 and γ ∈ (0, 1/2). First, we consider
the case γ = 0, i.e., the case where the norming sequence is 1

n3/2 and does not
depend on k. For γ = 0, we get κ = 1/2, which yields the alternative where the
change-point occurs at time k∗n ≈ c

√
n.

Theorem 4.1. We consider model (2) under A2. Assume that g(ξ2 − ξ1) has
finite second moments. Moreover, assume that Var(h1(ξ1)) < ∞. Then, for
γ = 0 and as n → ∞,

max
1≤k<n

|G0
n(k)| D−→ sup

0≤λ≤1

∣∣∣σW (0)(λ) + c(1 − λ)u(Δ)
∣∣∣,

where σ, u(Δn), and h1(ξ1) are defined as in Theorem 3.1, albeit with Δn ≡ Δ.

For the CUSUM kernel, we have u(Δ) = Δ and Var(h1(ξ1)) = 0. For the
Wilcoxon kernel, we get u(Δ) = IP(0 ≤ ξ2 − ξ1 ≤ Δ) and Var(h1(ξ1)) → 0.
Thus, we can deduce the following corollaries.

Corollary 4.1. Under the assumptions of Theorem 4.1, it holds

max
1≤k<n

1
n3/2

∣∣∣ k∑
i=1

n∑
j=k+1

(Xj −Xi)
∣∣∣ D−→ sup

0≤λ≤1
|σW (0)(λ) + c(1 − λ)Δ|,

where σ2 = Var(ξ1) < ∞.
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Corollary 4.2. Under the assumptions of Theorem 4.1, it holds

max
1≤k<n

1
n3/2

∣∣∣ k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1
2

)∣∣∣
D−→ sup

0≤λ≤1

∣∣∣ 1
12W

(0)(λ) + c(1 − λ)IP(0 ≤ ξ2 − ξ1 ≤ Δ)
∣∣∣.

Remark 3. (i) When c = 0, i.e., when k∗n/
√
n → 0, the distribution of the

test statistic under the alternative is asymptotically the same as under the null
hypothesis, and thus the test has no power to detect such alternatives. The test
has asymptotically only trivial power α, the same as the size.
(ii) The test is consistent if and only if limn→∞

k∗
n√
n

= ∞.

(iii) In this sense, kn ≈ c
√
n is the critical time for a change-point, when one

wants to obtain a consistent test. Depending on the value c > 0, the power might
asymptotically approach any value between α (the size) and 1. This holds, as
the distribution of sup |σW (0)(λ)| is continuous and for c → c′ we have

sup
0≤λ≤1

∣∣σW (0)(λ) + c(1 − λ)u(Δ)
∣∣ → sup

0≤λ≤1

∣∣σW (0)(λ) + c′(1 − λ)u(Δ)
∣∣

in D[0, 1]. Thus, for c → c′,

IP(c)
(

max
1≤k<n

|G0
n(k)| > qα

)
→ IP(c′)

(
max

1≤k<n
|G0

n(k)| > qα
)
,

where qα is the critical value depending on the asymptotical size α. For c = 0
we have IP(0)

(
max1≤k<n |G0

n(k)| > qα
)

= α and for c large enough, we have
IP(c)

(
max1≤k<n |G0

n(k)| > qα
)

= 1. As the mapping

c �→ IP(c)
(

max
1≤k<n

|G0
n(k)| > qα

)
is continuous, it takes any value between α and 1.

Now, we consider the case γ ∈ (0, 1/2), i.e., where the norming sequence de-
pends on k. Under the alternative A2, we determine the asymptotic distribution
of the test statistic max1≤k≤n G

γ
n(k).

Theorem 4.2. We consider model (2) under A2. Assume that g(ξ2 − ξ1) has
finite second moments. Then, for 0 < γ < 1

2 and as n → ∞,

max
1≤k<n

|Gγ
n(k)| D−→ max

{
c1−γu(Δ), sup

0≤λ≤1

σ

(λ(1 − λ))γ
∣∣W (0)(λ)

∣∣} ,

where σ and u(Δ) are defined as in Theorem 3.1, albeit with Δn ≡ Δ.

For the special case of the CUSUM and Wilcoxon kernel we obtain the fol-
lowing corollaries.
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Corollary 4.3. Under the assumptions of Theorem 4.2, we obtain

max
1≤k<n

1
n3/2

(
k
n (1 − k

n

))γ ∣∣∣ k∑
i=1

n∑
j=k+1

(Xj −Xi)
∣∣∣

D−→ max
(
c1−γΔ, sup

0≤λ≤1

σ

(λ(1 − λ))γ |W
(0)(λ)|

)
,

where σ2 = Var(ξ1) < ∞.

Corollary 4.4. Under the assumptions of Theorem 4.2, we obtain

max
1≤k<n

1
n3/2

(
k
n (1 − k

n

))γ ∣∣∣ k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1
2

)

D−→ max
(
c1−γIP(0 ≤ ξ2 − ξ1 ≤ Δ), sup

0≤λ≤1

1
12

1
(λ(1 − λ))γ |W

(0)(λ)|
)
.

In the next theorem, we identify conditions on the limit behavior of k∗n/nκ

that guarantee consistency of the test statistic max1≤k<n |Gγ
n(k)|. We will see

that the special form of the limit distribution under the local alternative results
in a peculiar behavior of the asymptotic power.

Theorem 4.3. The change-point test with test statistic

max
1≤k<n

|Gγ
n(k)|

is consistent if lim infn→∞ k∗n/n
κ > (qα/u(Δ))1/(1−γ), where qα is the critical

value depending on the asymptotical size α. In contrast, the test has asymptoti-
cally only trivial power α if lim supn→∞ k∗n/n

κ < (qα/u(Δ))1/(1−γ).

Proof. First note that in order to achieve asymptotic size α, we have to choose
qα such that

IP
(

sup
0≤λ≤1

1
(λ(1 − λ))γ |W

(0)(λ)| > qα

)
= α.

We will show that for any subseries, where exists a subsubseries (nj)j∈N, such
that the probabilities for max1≤k<nj |Gγ

nj
(k)| > qα converge to 1 respectively

to α. Because the limit is the same for any subsubseries, we will then conclude
that the probabilities for max1≤k<n |Gγ

n(k)| > qα converge to 1 respectively
to α. If lim infn→∞ k∗n/n

κ > (qα/u(Δ))1/(1−γ), we can choose the subsubseries
such that k∗nj

≈ c · nj
κ with c > (qα/u(Δ))1/(1−γ), c < ∞, so c1−γu(Δ) > qα.

So from Theorem 4.2, we know that the limit distribution of our test statistic
is given by the distribution of

max
(
c1−γu(Δ), sup

0≤λ≤1

1
(λ(1 − λ))γ |W

(0)(λ)|
)
,

which exceeds the critical value qα with probability 1.
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To prove the other case, note that if lim supn→∞ k∗n/n
κ < (qα/u(Δ))1/(1−γ),

there exists a subsubseries with k∗nj
≈ c · nj

κ for a c < (qα/u(Δ))1/(1−γ), so
c1−γu(Δ) < qα and for the limit distribution, it holds that

IP
(

max
(
c1−γu(Δ), sup

0≤λ≤1

1
(λ(1 − λ))γ |W

(0)(λ)|
)

> qα

)
= α.

Remark 4. (i) It is interesting to note that for γ ∈ (0, 1/2), the asymptotic power
is either α or 1, unlike in the case γ = 0, where the asymptotic power can take
any value in the interval (α, 1). This implies that a change of height Δ occurring
a little too early, say at k∗n ≈ 0.99nκ(qα/Δ)1/(1−γ), will only be detected with
a probability close to α in a large sample using this weighting. Meanwhile,
a change with the same height occurring a little later, for example, at k∗n ≈
1.01nκ(qα/Δ)1/(1−γ), will be detected with high probability. In contrast, for γ =
0, a change at k∗n ≈ 0.99n1/2(qα/Δ) would still be detected with asymptotically
nontrivial power.
(ii) For γ = 1/2, in the model A2, even fewer observations before the change
are needed to consistently detect a change of a fixed height Δ. In our paper
from 2022, see [10], we have shown that k∗n/ log logn −→ 0 suffices. On the
other hand, a change of height Δn in the middle of the data will be detected
with probability going to 1 for γ = 1/2 when Δn

√
n/ log logn −→ ∞, while for

γ < 1/2 the weaker condition Δn
√
n −→ ∞ suffices.

4.1. Envelope power function

In this section, we calculate the envelope power function for the change-point
problem with normal data. We determine the test that maximizes the power in
any point (k,Δ), 1 ≤ k ≤ n − 1, Δ ∈ R in the alternative. For simplicity, we
focus on the case when Δ > 0, and we assume that the variance is known. By
the Neyman-Pearson fundamental lemma, the most powerful level α test for the
hypothesis of no change against the alternative of a change of size Δ at time k
rejects the hypothesis for large values of

Tk := 1√
σ2

(
1
k + 1

n−k

)
(

1
n− k

n∑
i=k+1

Xi −
1
k

k∑
i=1

Xi

)
,

specifically when Tk ≥ z1−α, where z1−α is the upper α-quantile of the standard
normal distribution. Under the alternative (k,Δ), the test statistic Tk has a
normal distribution with mean Δ

√
k(n−k)
nσ2 and variance 1. Hence, the power is

given by

IP(k,Δ)(Tk ≥ z1−α) = 1 − Φ
(
z1−α − Δ

√
k(n− k)

nσ2

)
,
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where Φ denotes the standard normal density function. This function defines
the envelope power function, i.e., the maximal power that can be attained by
any level α test for the hypothesis of stationarity.

5. Simulation study

5.1. Simulations under alternative A1

Initially, to compare the finite-sample case to the asymptotic results, Figures 1
and 2 display kernel density estimates for the CUSUM and Wilcoxon test statis-
tics at various values of γ for a sample size of n = 200, provided for data following
N(0, 1), t(5), and t(3) distributions. These plots also include density plots for the
corresponding asymptotic distributions of the test statistics. As the Wilcoxon
test is robust, the kernel density estimates are closer to the asymptotic distri-
bution function compared to the CUSUM test statistics. For the same reason,
the Wilcoxon test statistics don’t show any differences in the comparison of
the kernel density plots with the asymptotic density plots for the different dis-
tributed observations. However, for the CUSUM test statistic, the deviations
are more significant for heavy-tailed data, i.e., the deviations are largest for
t(3)-distributed data. No differences were observed across different values of γ.

Next, we conduct simulations to compare the power of the CUSUM and
Wilcoxon test statistics, as presented in Corollaries 3.1 and 3.2, across various
values of γ ∈ [0, 1/2). We examine the power under the first alternative A1 and
generate n = 1000 independent, standard normally distributed observations
with one change-point occurring after some fraction τ∗ ∈ (0, 1) of time. We
consider three different jump heights, namely Δ = 5√

n
, 7√

n
, 9√

n
. In Figure 3,

the size-corrected power functions, along with the envelope power function, are
plotted. Additionally, we include power curves for the test statistics with γ =
1/2. Note that, in this case, under the hypothesis of no change, we obtain another
limiting distribution, namely a Gumbel extreme value distribution, as shown
in, e.g., [4] or in [10] for dependent observations. Clearly, for change-points
occurring at the beginning or end, the power increases with higher values of γ.
However, if the change-point is around the middle of the time period, we observe
higher power with smaller values of γ. Regarding jump heights, it is clear that
the power improves for larger jumps at each time point. The disparity in power
for different γ diminishes with higher jumps and for changes occurring in the
middle of the time period. Specifically, for Δ = 9√

n
and a change in the middle,

the power is nearly equal for γ ∈ 0, 0.1, 0.2, 0.3, 0.4. This is in contrast to change-
points near the boundary of the time interval, where the difference in power for
various γ values becomes slightly greater with higher jumps.

In Figure 4, the plots depict the difference between the power of the most
powerful level α = 0.05 test and the power of the CUSUM and Wilcoxon test
statistics. Basically, we see the same behavior as in Figure 3. For larger jumps,
the difference increases at the boundary and decreases in the middle of the time
period. Specifically, with Δ = 9√

n
and changes in the middle, the differences in
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Fig. 1. Kernel estimate density plots for the CUSUM test statistic for different values
of γ compared to the density plots of the asymptotic distributions. The simulations are
based on 5000 runs, with sample size n = 200, change-point time τ∗ = 0.1, and jump
height Δn = 7√

200 .

power are close to zero. In other words, the CUSUM and Wilcoxon tests nearly
achieve the optimal power for all γ. We observe that for a change in the middle,
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test statistic asympt. distribution γ 0 0.1 0.2 0.3 0.4
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Fig. 2. Kernel estimate density plots for the Wilcoxon test statistic for different values
of γ compared to the density plots of the asymptotic distributions. The simulations are
based on 5000 runs, with sample size n = 200, change-point time τ∗ = 0.1, and jump
height Δ = 7√

200 .

the most significant power loss occurs with γ = 0.5. Conversely, for a change at
the border, the most substantial power loss is observed with γ = 0.
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Fig. 3. Size-corrected power for the CUSUM (left) and Wilcoxon (right) test statistics
for different values of γ. The black line represents the envelope power function. The
simulations are based on n = 1000 standard normally distributed observations and
5000 runs.



2222 H. Dehling et al.

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00
change-point time

po
we

r-
di

ffe
re

nc
e

γ
0

0.1

0.2

0.3

0.4

0.5

Δ = 5√
n

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00
change-point time

po
we

r-
di

ffe
re

nc
e

Δ = 7√
n

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00
change-point time

po
we

r-
di

ffe
re

nc
e

Δ = 9√
n

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00
change-point time

po
we

r-
di

ffe
re

nc
e

γ
0

0.1

0.2

0.3

0.4

0.5

Δ = 5√
n

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00
change-point time

po
we

r-
di

ffe
re

nc
e

Δ = 7√
n

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00
change-point time

po
we

r-
di

ffe
re

nc
e

Δ = 9√
n

Fig. 4. Difference between the envelope power and the size-corrected power for the
CUSUM (left) and Wilcoxon (right) test statistics for different values of γ. The sim-
ulations are based on n = 1000 standard normally distributed observations and 5000
runs.
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A comparison of the overall-power is summarized in Table 2 for the CUSUM
test statistics, and in Table 3 for the Wilcoxon test statistics. We evaluated
the power obtained with the CUSUM and Wilcoxon tests in comparison to the
most powerful level α = 0.05 test. In order to compare the overall-power, i.e.,
the power for all τ∗ ∈ (0, 1), we considered the area under the curves in Fig-
ure 3, with the assumption that the area under the black curve (representing
the envelope power function) corresponds to 100% power. As before, we consid-
ered different jump heights Δ = 5√

n
, 7√

n
, 9√

n
. As an example, let us look at the

overall-power in Table 2 for Δ = 5√
n
. The most powerful test yields 100% power,

whereas the CUSUM test with γ = 0.3 yields 74.75% power, slightly more com-
pared to all other γ values. For Δ = 9√

n
, the CUSUM test with γ = 0.4 yields

the highest overall-power.

Table 2

Overall-power for the CUSUM test statistics compared to the envelope power for different
values of the parameter γ and different shift heights Δn. The simulations are based on

n = 1000 independent, standard normally distributed observations and 5000 runs.

Δn

γ 0 0.1 0.2 0.3 0.4 0.5

5√
n

72.30% 72.71% 74.13% 74.75% 71.53% 50.34%
7√
n

78.97% 79.86% 81.45% 82.65% 81.85% 68.47%
9√
n

83.98% 85.14% 86.87% 88.52% 89.22% 82.97%

Table 3

Overall-power for the Wilcoxon test statistics compared to the envelope power for different
values of the parameter γ and different shift heights Δn. The simulations are based on

n = 1000 independent, standard normally distributed observations and 5000 runs.

Δn

γ 0 0.1 0.2 0.3 0.4 0.5

5√
n

72.80% 72.20% 71.54% 72.36% 70.55% 46.76%
7√
n

78.98% 79.28% 79.65% 81.04% 80.92% 65.14%
9√
n

83.95% 84.74% 85.67% 87.38% 88.48% 80.69%

5.2. Simulations under alternative A2

In Figure 5, we simulate the situation under alternative A2, where a change-
point occurs at some point in time k∗n ≈ cnκ with a constant change-point height
Δn ≡ Δ. The simulations are based on n = 5000 (plots in Figure 5 at the top)
and n = 20000 (plots in Figure 5 at the bottom) standard normally distributed
observations with a fixed shift height Δ = 1 at time k∗n = [cn2/7], 0 < c <
4.3866. In other words, we consider jumps that occur very early, namely after
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k∗n = 1, 2, . . . , 50 observations in the smaller sample with n = 5000 and after
k∗n = 1, 2, . . . , 74 in the larger sample with n = 20000, which corresponds to
the first 1% and 0.37% of the observations, respectively. We compare the power
functions for the weighted CUSUM and weighted Wilcoxon tests for different
values of γ. In our simulations, we chose κ = 2/7, which corresponds to γ = 0.3.
However, we also applied test statistics with smaller γ values (γ = 0.1, 0.2) and
larger γ values (γ = 0.4). What we observe in our plots is that for smaller γ
values, the power converges to the level α = 0.5, and for larger γ values, the
power converges to 1.
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Fig. 5. Size corrected power for the weighted CUSUM (left) and weighted Wilcoxon
(right) tests for n = 5000 (top) and n = 20000 (bottom) standard normally distributed
observations with a change of size Δ = 1 at time k∗

n = [cn2/7], where c = τ c̃ =
τ 50

50002/7 , 0 ≤ τ ≤ 1. The simulations are based on 500 runs.

6. Data example

We analyze the daily absolute log returns of closing Wirecard stock prices
(currency in EUR), downloaded from https://de.finance.yahoo.com/quote/
WDI.DU/history?p=WDI.DU on June 14, 2021, as an application to real-life data.
We consider the time period from February 10, 2020, to June 26, 2020, which

https://de.finance.yahoo.com/quote/WDI.DU/history?p=WDI.DU
https://de.finance.yahoo.com/quote/WDI.DU/history?p=WDI.DU
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spans 19 weeks and comprises 95 observations (trading occurring from Monday
to Friday). This dataset was analyzed in our previous paper [10], where both
the non-weighted (γ = 0) and weighted (γ = 1/2) Wilcoxon test statistics were
applied. In [10], the weighted Wilcoxon test statistic detected a change-point on
June 18, 2020, the day when Wirecard reported that approximately 1.9 billion
euros were missing from certain trust accounts. In contrast, the non-weighted
Wilcoxon test (γ = 0) did not detect any change.

We apply the Wilcoxon test statistic with γ ∈ (0.1, 0.2, 0.3, 0.4) to the same
dataset. As mentioned in Remark 2 (iii), for dependent observations, the vari-
ance parameter must be replaced by the long-run variance, which must be esti-
mated. We use the same estimator as in [10], a subsampling estimator introduced
by Dehling et al. [7]. Similar to the procedure in [10], we split the data into three
disjoint subsequences of similar length and use the median of the resulting three
separate estimations to achieve consistency under the alternative. The values of
the Wilcoxon test statistics and the corresponding asymptotic critical values
are summarized in Table 4. The test statistics with γ = 0.1 and γ = 0.2 do not
exceed the corresponding critical values, whereas the test statistics with γ = 0.3
and γ = 0.4 do. For both values of γ, the test statistics take their maximum at
observation 88 (out of a total of 95 observations), consistent with the findings
in [10].

Table 4

Value of Wilcoxon test statistics with different values of γ, applied to the Wirecard stock
price data with 95 observations, together with the corresponding asymptotic critical values

(considering a significance level of 5%).

Wilcoxon test statistic critical value

γ = 0.1 1.30 1.41
γ = 0.2 1.62 1.63
γ = 0.3 2.09 1.96
γ = 0.4 2.71 2.31

Furthermore, we investigate the minimum number of observations required
for the test statistics to detect a change-point at the border. We systematically
add or remove observations at the end of the time interval. For the Wilcoxon
test statistic with γ = 0.4, 91 observations are sufficient for the test statistic to
exceed the critical value at observation 88. With γ = 0.3, 93 observations are
required, while for γ = 0.2, 96 observations are needed for the test statistic to
detect a change-point, although the test statistic takes its maximum at obser-
vation 87. For γ = 0.1 and γ = 0, a minimum of 98 observations is necessary.
However, in this case, the test statistics reach their maximum slightly earlier,
at observation 85. Figure 6 visually represents these findings, plotting the abso-
lute log-returns of the Wirecard stock prices. The dashed line indicates the time
when the test statistic reaches its maximum, while the solid line represents the
number of observations needed for the test statistic to exceed the critical value.
The different colors correspond to the various values of gamma for the weighted
Wilcoxon test statistic.
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Fig. 6. Absolute log returns of the Wirecard stock price (Febraury 10, 2020 – July 01,
2020). The dashed lines show the time of the detected change-point and the correspond-
ing solid line the number of observations needed.

7. Proofs

7.1. Proof of Theorem 3.1

We recall some definitions and assumptions. We assume that (ξi)i≥1 is an i.i.d.
process, and that the observations are given by

Xi =
{

μ + ξi for i ≤ k∗n

μ + Δn + ξi for i ≥ k∗n + 1,
(4)

where μ is an unknown constant, and where k∗n = [nτ∗], for some τ∗ ∈ [0, 1],
and Δn = c√

n
. We consider a kernel of the type g(y − x), where g is an odd

function, i.e., g(−x) = −g(x). We consider the process

Gγ
n(k) = 1(

k
n

(
1 − k

n

))γ 1
n3/2

k∑
i=1

n∑
j=k+1

g(Xj −Xi).

By (4), we obtain the following decomposition

Gγ
n(k) = 1(

k
n

(
1 − k

n

))γ 1
n3/2

k∑
i=1

n∑
j=k+1

g(ξj − ξi)

+ 1(
k
n

(
1 − k

n

))γ 1
n3/2

k∑
i=1

n∑
j=k+1

(
g(Xj −Xi) − g(ξj − ξi)

)

= 1(
k
n

(
1 − k

n

))γ (In(k) + Jn(k)
)
,

where the processes In(k) and Jn(k) are defined as
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In(k) = 1
n3/2

k∑
i=1

n∑
j=k+1

g(ξj − ξi)

Jn(k) = 1
n3/2

k∑
i=1

n∑
j=k+1

(
g(Xj −Xi) − g(ξj − ξi)

)
.

We now analyze these two processes separately. Regarding In(k), we obtain
from the weighted functional central limit theorem for two-sample U-statistics
that ( 1

(λ(1 − λ))γ In([nλ])
)

0≤λ≤1

D−→
( σ

(λ(1 − λ))γ W
(0)(λ)

)
0≤λ≤1,

(5)

see Theorem 2.11 in [4]. We will analyze the limit behavior of Jn(k) in two steps
which we formulate as separate lemmas.

Lemma 7.1. Under the conditions of Theorem 3.1

max
1≤k<n

1(
k
n (1 − k

n )
)γ ∣∣Jn(k) − IE(Jn(k))

∣∣ P−→ 0. (6)

Lemma 7.2. Under the conditions of Theorem 3.1

max
1≤k<n

1(
k
n (1 − k

n )
)γ ∣∣IE(Jn(k)) − cgφτ∗(k

n
)
∣∣ −→ 0, (7)

where cg = limn→∞
√
nu(Δn).

Proof of Lemma 7.1. Observe that by definition of the process (Xi)i≥1, we get

g(Xj −Xi) =
{

g(ξj − ξi) for 1 ≤ i, j ≤ k∗n or k∗n + 1 ≤ i, j ≤ n

g(ξj − ξi + Δn) for 1 ≤ i ≤ k∗n, k∗n + 1 ≤ j ≤ n.
(8)

Thus we obtain

Jn(k) =

⎧⎨
⎩

1
n3/2

∑k
i=1

∑n
j=k∗

n+1[g(ξj − ξi + Δn) − g(ξj − ξi)] for k ≤ k∗n

1
n3/2

∑k∗
n

i=1
∑n

j=k+1[g(ξj − ξi + Δn) − g(ξj − ξi)] for k ≥ k∗n + 1.
(9)

By the Hoeffding decomposition, applied to the kernel

h(x, y) = g(y − x + Δn) − g(y − x),

we obtain

u(Δn) = IE(h(ξ, η)) = IE[g(η − ξ + Δn) − g(η − ξ)]
h1(x) = IE(h(x, η)) − u(Δn) = IE[g(η − x + Δn) − g(η − x)] − u(Δn)
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h2(y) = IE(h(ξ, y)) − u(Δn) = IE[g(y − ξ + Δn) − g(y − ξ)] − u(Δn)
ψ(x, y) = h(x, y) − u(Δn) − h1(x) − h2(y),

where ξ and η are two independent random variables with the same distribution
as ξ1. Note that by definition,

h(ξi, ξj) = u(Δn) + h1(ξi) + h2(ξj) + ψ(ξi, ξj)

and that all the terms on the r.h.s. are mutually uncorrelated. Then we get for
k ≤ k∗n

Jn(k) − IE(Jn(k))

= 1
n3/2

k∑
i=1

n∑
j=k∗

n+1
[h1(ξi) + h2(ξj)] + 1

n3/2

k∑
i=1

n∑
j=k∗

n+1
ψ(ξi, ξj)

=n− k∗n
n3/2

k∑
i=1

h1(ξi) + k

n3/2

n∑
i=k∗

n

h2(ξi) + 1
n3/2

k∑
i=1

n∑
j=k∗

n+1

ψ(ξi, ξj) (10)

We will now analyze the three terms of (10) separately. Regarding the first term,
using k∗n = [nτ∗], we obtain

max
1≤k≤k∗

n

1(
k
n (1− k

n )
)γ n−k∗n

n3/2

∣∣ k∑
i=1

h1(ξi)
∣∣ ≤ (1 − τ∗)−γnγ− 1

2 max
1≤k≤k∗

n

1
kγ

∣∣ k∑
i=1

h1(ξi)
∣∣.

Note that (kγ)1≤k≤k∗
n

is an increasing sequence, so that we may apply the Hájek-
Rényi inequality, see [13], to obtain

IP
(

max
1≤k≤k∗

n

1(
k
n (1 − k

n )
)γ n− k∗n

n3/2

∣∣ k∑
i=1

h1(ξi)
∣∣ ≥ ε

)

≤ IP
(

max
1≤k≤k∗

n

1
kγ

∣∣ k∑
i=1

h1(ξi)
∣∣ ≥ ε(1 − τ∗)γn1/2−γ

)

≤ 1
ε2(1 − τ∗)2γn1−2γ

k∗
n∑

j=1

1
j2γ Var(h1(ξ))

≤ C Var(h1(ξ)).

This converges to zero for n → ∞, as Var(h1(ξ)) → 0.
Regarding the second term of (10), we obtain

max
1≤k≤k∗

n

1(
k
n (1 − k

n )
)γ k

n3/2

∣∣ n∑
i=k∗

n+1

h1(ξi)
∣∣ ≤ k1−γnγ

(1 − τ∗)γn3/2

∣∣ n∑
i=k∗

n+1

h1(ξi)
∣∣

≤ (τ∗)1−γ

(1 − τ∗)γ
1

n1/2

∣∣ n∑
i=k∗

n+1

h1(ξi)
∣∣.
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Hence, using Chebychev’s inequality, we obtain

IP( max
1≤k≤k∗

n

1(
k
n (1 − k

n )
)γ k

n3/2

∣∣ n∑
i=k∗

n+1

h1(ξi)
∣∣ ≥ ε)

≤ IP(
∣∣ n∑
i=k∗

n+1
h1(ξi)

∣∣ ≥ Cεn1/2)

≤ 1
C2ε2n

Var(
n∑

i=k∗
n+1

h2(ξi)) ≤ C Var(h2(ξ1)),

where Var(h2(ξ1)) → 0.
Regarding the third term of (10), the process

( k∑
i=1

n∑
j=k∗

n+1
ψ(ξi, ξj)

)
1≤k≤k∗

n

is a martingale with respect to the filtration Fk = σ(ξ1, . . . , . . . ξk, ξk∗
n+1, . . . , ξn).

Clearly,
∑k

i=1
∑n

j=k∗
n+1 ψ(ξi, ξj) is adapted to Fk. Moreover, for m > k,

IE
( m∑

i=1

n∑
j=k∗

n+1

ψ(ξi, ξj)
∣∣∣Fk

)

= IE
( k∑

i=1

n∑
j=k∗

n+1
ψ(ξi, ξj)

∣∣∣Fk

)
+ IE

( m∑
i=k+1

n∑
j=k∗

n+1
ψ(ξi, ξj)

∣∣∣Fk

)

=
k∑

i=1

n∑
j=k∗

n+1

ψ(ξi, ξj),

as
∑k

i=1
∑n

j=k∗
n+1 ψ(ξi, ξj) is Fk-measurable and

IE
( m∑

i=k+1

n∑
j=k∗

n+1

ψ(ξi, ξj)
∣∣∣Fk

)
=

m∑
i=k+1

n∑
j=k∗

n+1

IE(ψ(ξi, ξj)|Fk)

=
m∑

i=k+1

n∑
j=k∗

n+1

IE(ψ(ξi, ξj)|ξj) = 0,

where the last equality holds, as ψ is degenerate, i.e., IE(ψ(ξ1, x)) = 0. Further-
more, we get ( k

n (1 − k
n ))γ ≥ n−γ(1 − k∗

n

n ) ≥ (1 − τ∗)n−γ , and hence
1(

k
n (1 − k

n )
)γ
n3/2

≤ Cnγ−3/2.

Thus, we finally obtain from Doob’s maximal inequality

IP
(

max
1≤k≤k∗

n

1(
k
n (1 − k

n )
)γ
n3/2

∣∣ k∑
i=1

n∑
j=k∗

n+1

ψ(ξi, ξj)
∣∣ ≥ ε

)
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≤ IP
(

max
1≤k≤k∗

n

Cnγ−3/2∣∣ k∑
i=1

n∑
j=k∗

n+1

ψ(ξi, ξj)
∣∣ ≥ ε

)

≤ IP
(

max
1≤k≤k∗

n

∣∣ k∑
i=1

n∑
j=k∗

n+1

ψ(ξi, ξj)
∣∣ ≥ Cεn3/2−γ

)

≤ 1
Cε2n3−2γ Var

( k∑
i=1

n∑
j=k∗

n+1
ψ(ξi, ξj)

)

≤ Cn2γ−3k∗n(n− k∗n)Var(ψ(ξ1, ξ2)) ≤ Cn2γ−1Var(ψ(ξ1, ξ2))

Since γ < 1/2, the right hand side converges to zero as n → ∞. Hence we have
shown that max1≤k≤k∗

n

1
( k
n (1− k

n ))γ |Jn(k) − IEJn(k)| → 0. In an analogous way,
we can establish that maxk∗

n≤k<n
1

( k
n (1− k

n ))γ |Jn(k) − IEJn(k)| → 0.

Proof of Lemma 7.2. Observe that

IE(Jn(k)) =
{

k(n− k∗n) 1
n3/2u(Δn) for k ≤ k∗n

k∗n(n− k) 1
n3/2u(Δn) for k ≥ k∗n.

(11)

By the definition of φn(k) and φτ∗(λ), we obtain

IE(Jn(k)) = φn(k) 1
n3/2u(Δn) = φτ∗(k

n
)
√
nu(Δn).

Then we have

max
1≤k<n

1(
k
n (1 − k

n )
)γ ∣∣IE(Jn(k)) − cg φτ∗(k

n
)
∣∣

= max
1≤k<n

1(
k
n (1 − k

n )
)γ ∣∣√n u(Δn)φτ∗(k

n
) − cg φτ∗(k

n
)
∣∣

≤ max
1≤k<n

1(
φτ∗( k

n )
)γ ∣∣√n u(Δn)φτ∗(k

n
) − cg φτ∗(k

n
)
∣∣

= max
1≤k<n

(
φτ∗(k

n
)
)1−γ ∣∣√n u(Δn) − cg

∣∣
=
(
φτ∗(τ∗)

)1−γ ∣∣√n u(Δn) − cg
∣∣.

This converges to zero for n → ∞, as cg = limn→∞
√
nu(Δn).

Now from Lemma 7.1 and Lemma 7.2, we can deduce the limit behavior of
Jn(k). Together with (5), we can conclude the statement of the theorem.

7.2. Proof of Theorem 4.1

Let In(k), Jn(k) and u(Δ) be defined as in the proof of Theorem 3.1. Set

Zn := max
1≤k<n

|In(k) + Jn(k)|,
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Zn,m := max
{

max
k≤n/m

|Jn(k)|, max
k>n/m

|In(k) + Jn(k)|
}
,

Z(m) := max
{
|cu(Δ)|, sup

λ>1/m
|σW (0)(λ) + c(1 − λ)u(Δ)|

}
,

Z := sup
0≤λ≤1

|σW (0)(λ) + c(1 − λ)u(Δ)|.

The idea is to show

Zn,m
D−→ Z(m), as n → ∞, (12)

Z(m)
D−→ Z, as m → ∞, (13)

lim
m→∞

lim sup
n→∞

IP(|Zn,m − Zn| ≥ ε) = 0, (14)

and to deduce the convergence Zn
D−→ Z, for n → ∞, from Billingsley’s triangle

theorem (Theorem 3.2 in [2]).
First, we show (12). From Lemma 7.3, we know that max1≤k<n |Jn(k) −

IE(Jn(k))| P−→ 0. Thus, in order to show maxk≤n/m |Jn(k)| → |cu(Δ)|, it suffices
to show that maxk≤n/m |IE(Jn(k))| → |cu(Δ)|. As indicated in the proof of
Lemma 7.2, we have

ψn(k) := IE(Jn(k)) = φn(k)
n3/2 u(Δ) =

⎧⎨
⎩

k(n−c
√
n)

n3/2 u(Δ) for k ≤ k∗n = c
√
n

c
√
n(n−k)
n3/2 u(Δ) for k ≥ k∗n = c

√
n.

As ψn(k) is monotonically increasing for k ≤ k∗n and monotonically decreasing
for k ≥ k∗n, it takes its maximum value at k = k∗n = c

√
n. We obtain

ψn(k∗n) = c
√
n(n− c

√
n)

n3/2 u(Δ) = c
(
1 − 1√

n

)
u(Δ) −→ cu(Δ), as n → ∞.

Thus, as n
m > c

√
n for n large enough, we obtain

max
k≤n/m

|IE(Jn(k))| = |ψn(k∗n)| −→ cu(Δ), as n → ∞.

Moreover, we have

sup
λ>1/m

∣∣IE(Jn(λn)) − c(1 − λ)u(Δ)
∣∣

= sup
λ>1/m

∣∣∣c√n(n− λn)
n3/2 u(Δ) − c(1 − λ)u(Δ)

∣∣∣ = 0.

Together with the functional central limit theorem for two-sample U-statistics,
i.e., (

In([λn])
)

0≤λ≤1

D−→
(
σW (0)([λn])

)
0≤λ≤1

,
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we can deduce weak convergence of the process (In([λn]) + Jn([λn]))(λ∈[1/m,1])
to (σW (0)(λ) + c(1 − λ)u(Δ))λ∈[1/m,1]. Thus we can conclude (12). From the
continuity of (σW (0)(λ) + c(1 − λ)u(Δ))0≤λ≤1 and as

max{|cu(Δ)|, sup
0≤λ≤1

|σW (0)(λ) + c(1 − λ)u(Δ)|}

= sup
0≤λ≤1

|σW (0)(λ) + c(1 − λ)u(Δ)|,

we can deduce (13). For (14), note that |Zn,m − Zn| ≤ maxk≤n/m |In(k)| and

max
k≤n/m

|In(k)| D−→ sup
λ<1/m

|σW 0(λ)|.

Thus, we obtain

lim
m→∞

lim sup
n→∞

IP(|Zn,m − Zn| ≥ ε) ≤ lim
m→∞

lim sup
n→∞

IP
(

max
k≤n/m

|In(k)| ≥ ε
)

≤ lim
m→∞

IP
(

sup
λ<1/m

|σW (0)(λ)| ≥ ε
)

= 0

in the final step.

7.3. Proof of Theorem 4.2

Define

Iγn(k) := 1(
k
n (1 − k

n )
)γ In(k),

Jγ
n(k) := 1(

k
n (1 − k

n )
)γ Jn(k),

where In(k) and Jn(k) are defined as in the proof of Theorem 3.1. Then we have
Gγ

n(k) = Iγn(k) + Jγ
n(k). We proceed analogously to the proof of Theorem 4.1

and define

Zγ
n := max

1≤k<n
|Iγn(k) + Jγ

n(k)|,

Zγ
n,m := max

{
max

k≤n/m
|Jγ

n(k)|, max
k>n/m

|Iγn(k) + Jγ
n(k)|

}
,

Zγ
(m) := max

{
c1−γu(Δ), sup

1/m≤λ≤1

σ

(λ(1 − λ))γ
∣∣W (0)(λ)

∣∣}

Zγ := max
{
c1−γu(Δ), sup

0≤λ≤1

σ

(λ(1 − λ))γ
∣∣W (0)(λ)

∣∣} .

To prove that Zγ
n

D−→ Zγ , for n → ∞, we show

Zγ
n,m

D−→ Zγ
(m), as n → ∞, (15)
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Zγ
(m)

D−→ Zγ , as m → ∞, (16)

lim
m→∞

lim sup
n→∞

P (|Zγ
n,m − Zγ

n | ≥ ε) = 0. (17)

First, we show (15). From Lemma 7.3 we know that max1≤k<n |IE(Jγ
n(k)) −

Jγ
n(k)| → 0, for n → ∞. Thus, in order to show maxk≤n/m |Jγ

n(k)| → c1−γu(Δ),
it suffices to show that maxk≤n/m |IE(Jγ

n(k))| → c1−γu(Δ). With k∗n = cnκ we
obtain

IE(Jn(k)) = φn(k)
n3/2 u(Δ) =

⎧⎨
⎩

k(n−cnκ)
n3/2 u(Δ) for k ≤ k∗n = cnκ

cnκ(n−k)
n3/2 u(Δ) for k ≥ k∗n = cnκ.

Define ψγ
n(k) := IE(Jγ

n(k)) = 1
( k
n (1− k

n ))γ IE(Jn(k)) = n2γ

kγ(n−k)γ IE(Jn(k)). Then we
have

ψγ
n(k) =

⎧⎨
⎩

k1−γ

(n−k)γ n2γ−1/2(1 − cnκ−1)u(Δ) for k ≤ k∗n = cnκ

(n−k)1−γ

kγ cn2γ+κ−3/2u(Δ) for k ≥ k∗n = cnκ.
(18)

ψγ
n(k) is monotonically increasing for k ≤ k∗n and monotonically decreasing for

k ≥ k∗n, i.e., it takes its maximum at k = k∗n ≈ cnκ and

ψγ
n(cnκ) = (1 − cnκ−1)1−γ c1−γ nγ+κ−κγ−1/2u(Δ)

= (1 − cnκ−1)1−γ c1−γu(Δ) −→ c1−γu(Δ),

as γ + κ− κγ − 1/2 = 0 and κ− 1 < 0. For n so large that n
m > cnκ = k∗n, we

obtain with the definition of ψγ
n(k) = IE(Jγ

n(k)) in (18), for n → ∞,

max
k<n/m

∣∣ψγ
n(k)

∣∣ =
∣∣ψγ

n(k∗n)
∣∣ −→ c1−γu(Δ), (19)

max
k≥n/m

∣∣ψγ
n(k)

∣∣ = ψn

( n

m

)
=

(n− n
m )1−γ

( n
m )γ cn2γ+κ−3/2u(Δ) (20)

= c
(
1 − 1

m

)1−γ
mγnκ− 1

2u(Δ) −→ 0. (21)

From Theorem 3 in [5] we can deduce

max
k>n/m

∣∣Iγn(k)
∣∣ D−→ sup

1/m≤λ≤1

1
(λ(1 − λ))γ |W

(0)(λ)|, as n → ∞.

Together with (19), (21), and Lemma 7.3, this implies (15). Additionally, (16)
follows from the continuity of the process (W (0)(λ)/(λ(1−λ))γ)0≤λ≤1. It remains
to show (17). For this, note that∣∣Zγ

n,m − Zγ
n

∣∣ ≤ max
k≥n/m

∣∣Iγn(k)
∣∣ + max

k≤n/m

∣∣Jγ
n(k)

∣∣.
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The convergence to zero of the first summand is guaranteed by (21). Using
Theorem 3 in [5], there is a sequence of Brownian bridges W (n), such that

P
(∣∣∣ max

l≤n/m

∣∣Iγn(l)
∣∣− sup

λ≤1/m

1
(λ(1 − λ))γ |W

(n)(λ)|
∣∣∣ > ε

2

)

≤P
(

sup
λ≤1/m

∣∣∣Iγn([nλ]) − 1
(λ(1 − λ))γ W

(n)(λ)
∣∣∣ > ε

2

)
−→ 0, as n → ∞.

So we can conclude that

lim sup
n→∞

P
(
|Zγ

n,m − Zγ
n | > ε

)

≤ lim sup
n→∞

IP
(

sup
λ≤1/m

1
(λ(1 − λ))γ |W

(n)(λ)| > ε

2

)
m→∞−−−−→ 0,

because W (n) has the same distribution as W (1) and

sup
λ≤1/m

1
(λ(1 − λ))γ |W

(1)(λ)|) m→∞−−−−→ 0

almost surely.

Lemma 7.3. Under the conditions of Theorem 4.1 and 4.2 it holds for 0 ≤ γ <
1/2

max
1≤k<n

1(
k
n (1 − k

n )
)γ |Jn(k) − IE(Jn(k))| P−→ 0, as n → ∞,

where Jn(k) is defined as in the proof of Lemma 7.1.

Proof of Lemma 7.3. As in the proof of Lemma 7.1, we decompose the kernel
h(x, y) = g(y− x+ Δ)− g(y− x) via Hoeffding’s decomposition. Then we have
for k ≤ k∗n

1(
k
n (1 − k

n )
)γ (Jn(k) − IE(Jn(k))

)

= 1(
k
n (1− k

n )
)γ (n−k∗n

n3/2

k∑
i=1

h1(ξi)+
k

n3/2

n∑
i=k∗

n+1
h2(ξi)+

1
n3/2

k∑
i=1

n∑
j=k∗

n+1
Ψ(ξi, ξj)

)
.

We show that the maximum of each term on the right hand side converges in
probability to zero, as n goes to infinity. Recall that k∗n ≈ cnκ, κ = 1−2γ

2(1−γ) and
0 < γ < 1

2 , i.e., 0 < κ < 1
2 .

Regarding the first term, we get

max
1≤k≤k∗

n

1(
k
n (1 − k

n )
)γ n− k∗n

n3/2

∣∣ k∑
i=1

h1(ξi)
∣∣
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= max
1≤k≤k∗

n

1(
1 − k

n

)γ nγ

kγ
(n− cnκ)

n3/2

∣∣ k∑
i=1

h1(ξi)
∣∣

= max
1≤k≤k∗

n

nγ(
1 − k

n

)γ (1 − cnκ−1)√
n

1
kγ

∣∣ k∑
i=1

h1(ξi)
∣∣

≤ nγ(
1 − k∗

n

n

)γ (1 − cnκ−1)√
n

max
1≤k≤k∗

n

1
kγ

∣∣ k∑
i=1

h1(ξi)
∣∣

=(1 − cnκ−1)1−γ nγ−1/2 max
1≤k≤k∗

n

1
kγ

∣∣ k∑
i=1

h1(ξi)
∣∣.

As ((1/k)γ)1≤k≤k∗
n

is decreasing, we may apply the Hájek-Rényi Inequlity and
obtain

IP
(

max
1≤k≤k∗

n

1(
k
n (1 − k

n )
)γ n− k∗n

n3/2

∣∣ k∑
i=1

h1(ξi)
∣∣ ≥ ε

)

≤IP
(

max
1≤k≤k∗

n

1
kγ

∣∣ k∑
i=1

h1(ξi)
∣∣ ≥ ε(1 − cnκ−1)γ−1 n1/2−γ

)

≤ 1
ε2(1 − cnκ−1)2γ−2 n1−2γ

k∗
n∑

i=1

1
i2γ

Var(h1(ξi)).

As the (ξi)i≥1 are identically distributed and as
∑k∗

n
i=1

1
i2γ ≤

∫ k∗
n

0
1

x2γ dx, we have

k∗
n∑

i=1

1
i2γ

Var(h1(ξi)) ≤ Var(h1(ξ1))
∫ k∗

n

0

1
x2γ dx

= Var(h1(ξ1))(k∗n)−2γ+1 = Var(h1(ξ1))(cnκ)−2γ+1,

where Var(h1(ξ1)) is constant. Thus,

IP
(

max
1≤k≤k∗

n

1(
k
n (1 − k

n )
)γ n− k∗n

n3/2

∣∣ k∑
i=1

h1(ξi)
∣∣ ≥ ε

)

≤ (cnκ)−2γ+1

ε2(1 − cnκ−1)2γ−2 n1−2γ Var(h1(ξ1))

=c−2γ+1

ε2
1

(1 − cnκ−1)2γ−2 n2γκ−κ−2γ+1 Var(h1(ξ1)) −→ 0, as n → ∞,

since by our choice of κ we have κ − 1 < 0 and 2γκ−κ−2γ+1= 1
2(γ−1) +1>0

for 0 < γ < 1/2. For the second term we have

max
1≤k≤k∗

n

1(
k
n (1 − k

n )
)γ k

n3/2

∣∣ n∑
i=k∗

n+1

h2(ξi)
∣∣ ≤ (k∗n)1−γnγ(

1 − k∗
n

n

)γ
n3/2

∣∣ n∑
i=k∗

n+1

h2(ξi)
∣∣
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= (cnκ)1−γnγ

(1 − cnκ−1)γn3/2

∣∣ n∑
i=k∗

n+1
h2(ξi)

∣∣ = (cnκ)1−γ

(1 − cnκ−1)γn3/2−γ

∣∣ n∑
i=k∗

n+1
h2(ξi)

∣∣.
With Chebychev’s inequality, we obtain

IP
(

max
1≤k≤k∗

n

1(
k
n (1 − k

n )
)γ k

n3/2

∣∣ n∑
i=k∗

n+1

h2(ξi)
∣∣ ≥ ε

)

≤IP
(∣∣ n∑

i=k∗
n+1

h2(ξi)
∣∣ ≥ ε

(1 − cnκ−1)γn3/2−γ

(cnκ)1−γ

)

≤ 1
ε2

(cnκ)2−2γ

(1 − cnκ−1)2γn3−2γ Var
( n∑

i=k∗
n+1

h2(ξi)
)

= 1
ε2

(cnκ)2−2γ(n− k∗n)
(1 − cnκ−1)2γn3−2γ Var(h2(ξ1)) = 1

ε2
(cnκ)2−2γ n(1 − cnκ−1)

(1 − cnκ−1)2γn3−2γ Var(h2(ξ1))

= 1
ε2

(cnκ)2−2γ

n2−2γ (1 − cnκ−1)1−2γVar(h2(ξ1))

= 1
ε2 (cnκ−1)2−2γ(1 − cnκ−1)1−2γVar(h2(ξ1)).

This converges to zero for n → ∞, as Var(h2(ξi)) is constant and as (κ− 1)(2−
2γ) = −1 < 0. For the third term, we use analogous arguments as in the proof
of Lemma 7.1. Here we have ( k

n (1 − k
n ))γ ≥ n−γ(1 − k∗

n

n )γ = (1 − cnκ−1)γn−γ ,
and hence

1(
k
n (1 − k

n )
)γ
n3/2

≤ nγ−3/2

(1 − cnκ−1)γ .

We apply Doob’s maximal inequality and obtain

IP
(

max
1≤k≤k∗

n

1(
k
n (1 − k

n )
)γ
n3/2

∣∣ k∑
i=1

n∑
j=k∗

n

Ψ(ξi, ξj)
∣∣ ≥ ε

)

≤IP
(

max
1≤k≤k∗

n

nγ−3/2

(1 − cnκ−1)γ
∣∣ k∑
i=1

n∑
j=k∗

n

Ψ(ξi, ξj)
∣∣ ≥ ε

)

≤IP
(

max
1≤k≤k∗

n

∣∣ k∑
i=1

n∑
j=k∗

n

Ψ(ξi, ξj)
∣∣ ≥ ε

(1 − cnκ−1)γ

nγ−3/2

)

≤ n2γ−3

ε2(1 − cnκ−1)2γ Var
( k∗

n∑
i=1

n∑
j=k∗

n

Ψ(ξi, ξj)
)

= n2γ−3

ε2(1 − cnκ−1)2γ k
∗
n(n− k∗n)Var(Ψ(ξ1, ξ2))

=n2γ−3 cnκ+1(1 − cnκ−1)
ε2(1 − cnκ−1)2γ Var(Ψ(ξ1, ξ2))
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= c

ε2 (1 − cnκ−1)1−2γ n2γ+κ−2Var(Ψ(ξ1, ξ2)) −→ 0,

for n → ∞, as 2γ + κ− 2 < 0 and κ− 1 < 0. Altogether we have shown that

max
1≤k≤k∗

n

1
( k
n (1 − k

n ))γ
|Jn(k) − IEJn(k)| → 0.

In an analogous way, we show that maxk∗
n≤k<n

1
( k
n (1− k

n ))γ |Jn(k)− IEJn(k)| →

0. For k∗n ≤ k ≤ n− 1, we have Jn(k) = 1
n3/2

∑k∗
n

i=1
∑n

j=k+1 h(ξi, ξj) and

1(
k
n (1 − k

n )
)γ (Jn(k) − IE(Jn(k))

)

= 1(
k
n (1 − k

n )
)γ

n3/2

(
(n− k)

k∗
n∑

i=1
h1(ξi) + k∗n

n∑
i=k+1

h2(ξi) +
k∗
n∑

i=1

n∑
j=k+1

Ψ(ξi, ξj)
)
.

Regarding the coefficient of the first term, we obtain for k∗n ≤ k ≤ n− 1

1(
k
n (1 − k

n )
)γ

n3/2
(n− k) = nγ

kγ
nγ

(n− k)γ
1

n3/2 (n− k) = n2γ−3/2

kγ
(n− k)1−γ

≤ n2γ−3/2

(k∗n)γ n1−γ = n2γ−3/2

(cnκ)γ n1−γ = 1
cγ

nγ−κγ−1/2.

Thus, together with Chebyshev’s inequality we obtain

IP
(

max
k∗
n≤k<n

1(
k
n (1 − k

n )
)γ

n3/2
(n− k)

∣∣∣ k∗
n∑

i=1
h1(ξi)

∣∣∣ ≥ ε
)

≤ IP
( 1
cγ

nγ−κγ−1/2
∣∣∣ k∗

n∑
i=1

h1(ξi)
∣∣∣ ≥ ε

)
≤ 1

ε2
1
c2γ

n2γ−2κγ−1Var
(∣∣∣ k∗

n∑
i=1

h1(ξi)
∣∣∣)

= 1
ε2

1
c2γ

n2γ−2κγ−1k∗nVar(h1(ξ1)) = 1
ε2

1
c2γ−1n

2γ−2κγ−1+κVar(h1(ξ1)).

This converges to zero for n → ∞, as 2γ − 2κγ − 1 + κ < 0 for γ < 1/2 and
κ < 1. Regarding the second and third term, note that for k∗n ≤ k ≤ n− 1(k

n

(
1 − k

n

))γ

≥
(k∗n
n

· 1
n

)γ

= cγnκγ−2γ

and hence
1(

k
n (1 − k

n )
)γ

n3/2
≤ 1

cγnκγ−2γ n3/2 = 1
cγ

n2γ−κγ−3/2. (22)

Then we get with Kolmogorov’s maximal inequality

IP
(

max
k∗
n≤k<n

1(
k
n (1 − k

n )
)γ

n3/2
k∗n

∣∣∣ n∑
i=k+1

h2(ξi)
∣∣∣ ≥ ε

)
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≤ IP
(

max
k∗
n≤k<n

1
cγ

n2γ−κγ−3/2k∗n

∣∣∣ n∑
i=k+1

h2(ξi)
∣∣∣ ≥ ε

)

= IP
(

max
k∗
n≤k<n

c1−γn2γ−κγ−3/2+κ
∣∣∣ n∑
i=k+1

h2(ξi)
∣∣∣ ≥ ε

)

= IP
(

max
1≤k≤n−k∗

n

c1−γn2γ−κγ−3/2+κ
∣∣∣ k∑
i=1

h2(ξi)
∣∣∣ ≥ ε

)

≤ 1
ε2 c

2−2γ n4γ−2κγ−3+2κVar
(∣∣∣ n−k∗

n∑
i=1

h2(ξi)
∣∣∣)

= 1
ε2 c

2−2γ n4γ−2κγ−3+2κ(n− k∗n)Var(h2(ξ1))

= 1
ε2 c

2−2γ(1 − cnκ−1)n4γ−2κγ−2+2κVar(h2(ξ1)).

This converges to zero for n → ∞, as 4γ − 2κγ − 2 + 2κ < 0 for γ < 1/2.
Regarding the last term, we use (22) and Doob’s maximal inequality to obtain

IP
(

max
k∗
n≤k<n

1(
k
n (1 − k

n )
)γ

n3/2

∣∣∣ k∗
n∑

i=1

n∑
j=k+1

Ψ(ξi, ξj)
∣∣∣ ≥ ε

)

≤IP
(

max
k∗
n≤k<n

1
cγ

n2γ−κγ−3/2
∣∣∣ k∗

n∑
i=1

n∑
j=k+1

Ψ(ξi, ξj)
∣∣∣ ≥ ε

)

=IP
(

max
1≤k<n−k∗

n

1
cγ

n2γ−κγ−3/2
∣∣∣ k∗

n∑
i=1

k∑
j=1

Ψ(ξi, ξk∗
n+j)

∣∣∣ ≥ ε
)

≤ 1
ε2c2γ

n4γ−2κγ−3Var
∣∣∣ k∗

n∑
i=1

n−k∗
n∑

j=1
Ψ(ξi, ξk∗

n+j)
∣∣∣

= 1
ε2c2γ

n4γ−2κγ−3k∗n(n− k∗n)Var(Ψ(ξ1, ξk∗
n+1))

= 1
ε2c2γ

n4γ−2κγ−3cnκ(n− cnκ)Var(Ψ(ξ1, ξk∗
n+1))

= 1
ε2c2γ−1 (1 − cnκ−1)n4γ−2κγ−2+κVar(Ψ(ξ1, ξk∗

n+1)).

This goes to zero for n → ∞, as 4γ − 2κγ − 2 + κ < 0 for γ < 1/2.
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