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Abstract: We present canonical quantiles and depths for directional data
following a distribution which is elliptically symmetric about a direction μ
on the sphere Sd−1. Our approach extends the concept of Ley et al. [1],
which provides valuable geometric properties of the depth contours (such as
convexity and rotational equivariance) and a Bahadur-type representation
of the quantiles. Their concept is canonical for rotationally symmetric depth
contours. However, it also produces rotationally symmetric depth contours
when the underlying distribution is not rotationally symmetric. We solve
this lack of flexibility for distributions with elliptical depth contours. The
basic idea is to deform the elliptic contours by a diffeomorphic mapping
to rotationally symmetric contours, thus reverting to the canonical case in
Ley et al. [1]. Furthermore, an extension to skew-rotationally symmetric
distributions is presented. A Monte Carlo simulation study confirms our
results. We use our method to evaluate the ellipticity of depth contours
and for trimming of directional data. The analysis of fibre directions in
fibre-reinforced concrete underlines the practical relevance.
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1. Introduction

The classes of rotationally symmetric distributions and elliptically symmetric
distributions in R

d have been well investigated by Kelker [2], Cambanis et al.
[3] and Fang et al. [4]. A random vector V ∈ R

d has a rotationally symmetric
distribution if V

D= OV for all O ∈ SO(d) where D= refers to equality in dis-
tribution. Furthermore, every random vector V ∈ R

d following a rotationally
symmetric distribution can be represented as V D= RU , where U ∼ Unif(Sd−1)
is independent of the real-valued random variable R ∼ FR. U gives the direction
of V and R is the length of V . Rotationally symmetric distributions are often
regarded as the most natural non-uniform distributions in R

d. For instance,
the charge distribution of an electric field is rotationally symmetric around its
source. However, not all phenomena observed in practice can be represented by
symmetric models.

Elliptically symmetric distributions extend the class of rotationally symmet-
ric distributions. The distribution of a random vector W is elliptically symmetric
if and only if W D= RΣ1/2U with U ∼ Unif(Sd−1), real-valued R ∼ FR inde-
pendent of U , and Σ ∈ R

d×d a symmetric, positive definite matrix. A random
vector W with an elliptically symmetric distribution can be transformed into a
random vector V = RU with a rotationally symmetric distribution via

Σ−1/2W
D= RΣ−1/2Σ1/2U = RU = V. (1.1)

These concepts of symmetry transfer to the unit sphere Sd−1, i.e., the case
of directional data. Distributions on Sd−1 which are rotationally symmetric
about a direction μ ∈ Sd−1 are also often regarded as the natural non-uniform
distributions on Sd−1 [5]. In most cases, rotationally symmetric distributions
have tractable normalising constants. Note that the density of a rotationally
symmetric distribution is proportional to a function f(xTμ). Thus, a projection
onto μ enables a one-dimensional analysis of the distribution, for example, its
concentration around μ. The class of distributions with rotational symmetry
about μ ∈ Sd−1 is denoted by Rμ.
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In practice, symmetric models are often too restrictive. For instance, Leong
and Carlile [6] illustrated that rotational symmetry about a direction is a too
strong assumption for a directional data set from neurosciences. Kent [7] has
fitted his elliptical model to a data set of 34 measurements of the directions
of magnetisation for samples from the Great Whin Sill (Northumberland, Eng-
land). As in R

d, distributions that are elliptically symmetric about a direction
μ on Sd−1 are an extension of the rotationally symmetric distributions. The
contours are more flexible to form elliptical shapes.

Even more flexible are distributions that can also model skew symmetry in
data sets. Azzalini [8] investigated scalar skew-normal densities based on the
multiplicative perturbation of a symmetric density. Generalisations to multi-
variate skew-symmetric distributions [9, 10] adopted the idea of multiplicative
perturbation of a symmetric density. Ley et al. [11] adapted the construction
to spherical data. Furthermore, they gave a simple stochastic representation,
discussed the Fisher information structure of their model and derived efficient
inferential procedures.

Due to the curved shape of the sphere, the transition from distributions which
are rotationally symmetric about μ ∈ Sd−1 to distributions which are elliptically
symmetric about μ is not obvious. A remedy to this problem is to linearise Sd−1

at some base point μ by considering the tangent space TμSd−1 at μ. By using
the theory for R

d, a transformation between the two distributions can then be
defined in the tangent space.

Ley et al. [1] introduced a concept of quantiles and depth for directional data.
They showed that their quantiles are asymptotically normal and established a
Bahadur-type representation [12] for directional data X ∼ FX ∈ Rμ. A Monte
Carlo simulation study corroborated their theoretical results. Statistical tools,
like directional DD- and QQ-plots and a quantile-based goodness-of-fit test, were
defined and illustrated on a data set of cosmic rays. Their results are canoni-
cal for rotationally symmetric distributions. But their concept suffers from the
disadvantage of producing rotationally symmetric depth contours, even if the
underlying distribution has elliptical contours [13].

In this paper, we present a procedure solving the latter issue if the under-
lying distribution has elliptical contours. The paper is organised as follows. In
Section 2, we first introduce basics about the distributions under consideration,
extend the Mahalanobis transformation to Sd−1, and summarise the findings of
Ley at al. [1]. Section 3 contains our main contribution. The idea is to map the
unit vectors into the tangent space TμSd−1 where μ is the median direction of
the observed sample. The mapped vectors are elliptically symmetric around the
origin in TμSd−1. The multivariate Mahalanobis transformation [14, 15] is then
applied in TμSd−1 to obtain a rotationally symmetric sample in TμSd−1. Map-
ping it back to Sd−1, we obtain a sample of unit vectors which are rotationally
symmetric about μ. Thus, we can exploit the results from [1]. Furthermore, an
extension to skew-rotationally symmetric distributions is presented. The main
idea of this extension is to transform the skew contours in the tangent space
into elliptical contours such that we can reuse the results from Section 3. All
transformations are diffeomorphic such that we can trace back the results to the
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original unit vectors. Section 5 affirms our findings by a Monte Carlo study. Fur-
thermore, we apply our approach to a real-world data set from [16]: Directions
of short steel fibres crossing a crack in ultra-high performance fibre-reinforced
concrete (UHPFRC).

2. Basics

2.1. Rotational and elliptical symmetry about a direction on Sd−1

Definition 2.1 (Rotational symmetry about a direction). Let X ∈ Sd−1 be a
random vector and μ ∈ Sd−1. The distribution of X is rotationally symmetric
about μ on Sd−1 if and only if X D= OX for every O ∈ SO(d) fulfilling Oμ = μ.

Let Rμ be the class of distributions which are rotationally symmetric about
μ ∈ Sd−1. Projecting X onto a vector space orthogonal to μ yields rotationally
symmetric contours. Distributions FX ∈ Rμ are characterised by densities of
the form

fμ(x) = cdf(xTμ), x ∈ Sd−1, (2.1)

where f : [−1, 1] → R≥0 is absolutely continuous and cd a normalising constant
[1]. The distribution of XTμ is absolutely continuous w.r.t the Lebesgue measure
on [−1, 1] [17]. The density of XTμ reads

f̃(t) = ωd−1cd(1 − t2)
d−3
2 f(t), (2.2)

where ωd−1 is the surface area of Sd−2 [5]. A widely known distribution in Rμ

is the von Mises-Fisher distribution where f(t) = exp(κt).

Definition 2.2 (von Mises-Fisher distribution Md(μ, κ) [17]). The probability
density function of the von Mises–Fisher distribution is given by

fvMF,μ,κ(x) = cd exp (κxTμ), (2.3)

where κ ≥ 0 is a concentration parameter, μ ∈ Sd−1 the mean direction, and cd
the normalising constant.

The concentration around μ increases with κ. The von Mises-Fisher distri-
bution is unimodal for κ > 0. For κ = 0, we get the uniform distribution on the
sphere.

A generalisation of the von Mises-Fisher distribution is the Fisher-Bingham
distribution [17], where a general quadratic equation is added in the exponent
of the density in (2.1). An example is the Kent distribution [7].

Definition 2.3 (Kent distribution K(μ, κ,A)). The probability density function
of the Kent distribution is given by

fK,μ,A(x) = cd exp (κxTμ + xTAx), (2.4)
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where κ ≥ 0 is a concetration parameter, μ ∈ Sd−1 the mean direction, A ∈
Sym(d) with Aμ = 0d a shape parameter, and cd the normalising constant. The
concentration around μ increases with κ, while A ∈ Sym(d) controls the shape
of the density contours.

For large κ, the Kent distribution has a mode at μ and density contours
which are elliptical [18, p.177].

Let Fμ be the class of distributions on Sd−1 with a bounded density that
admit a unique modal direction μ. We further assume that μ coincides with the
Fisher spherical median [19], that is

μ = arg min
γ∈Sd−1

E(arccos(XT γ)). (2.5)

For i.i.d. random vectors X,X1, . . . , Xn ∈ Sd−1 with X ∼ F ∈ Fμ, we estimate
μ by the root-n consistent empirical Fisher spherical median [19]

μ̂ = arg min
γ∈S2

N∑
i=1

arccos(XT
i γ). (2.6)

Note that the definition of the class Rμ does not include that μ is the unique
modal direction. Here, we restrict attention to distributions in Rμ ∩ Fμ from
now on. E.g., Md(μ, κ) ∈ Rμ ∩ Fμ for κ > 0, and K(μ, κ,A) ∈ Fμ for κ > 0
under suitable conditions on A ∈ Sym(d) given in the next section.

2.2. Differential geometry

Differential geometry examines smooth manifolds using differential and integral
calculus as well as linear and multi-linear algebra. It originates in studying
spherical geometries related to astronomy and the geodesy of the earth. For an
introduction to differential geometry, see e.g. [20].

We saw in (1.1) that a linear transformation Σ transforms a random vec-
tor with a rotationally symmetric distribution into a random vector with an
elliptically symmetric distribution in R

d. We want to proceed analogously for
distributions on the sphere. However, in general, the linear transformation Σ
does not necessarily map Sd−1 onto itself. A remedy is provided by linearising
the sphere Sd−1 at a base point μ ∈ Sd−1.

The tangent space TμSd−1 to Sd−1 at base point μ ∈ Sd−1 is the collection
of all tangent vectors to Sd−1 at μ. It is a local Euclidean vector space with
local origin in μ. Given μ ∈ Sd−1 and a tangent vector v ∈ TμSd−1, there is a
unique geodesic from μ ∈ Sd−1 to some x ∈ Sd−1 given as a mapping

cμ,v : [0, 1] → Sd−1, (2.7)

starting at cμ,v(0) = μ with initial velocity ċμ,v(0) = v and ending in cμ,v(1) = x
[21].

In the following, we define mappings between the tangent space and the
sphere.
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Definition 2.4 (Riemannian exponential map). The Riemannian exponential
map

Expμ : TμSd−1 → Sd−1 (2.8)

maps a vector v ∈ TμSd−1 to Sd−1 along the geodesic cμ,v such that x =
Expμ(v) = cμ,v(1).

The exponential map is locally diffeomorphic onto V (μ) = Sd−1 \ {−μ},
where −μ is called cut point and the set {−μ} is called cut locus. Within V (μ)
the exponential map Expμ has an inverse, the Riemannian logarithmic map.

Definition 2.5 (Riemannian logarithmic map). The Riemannian logarithmic
map

Logμ : V (μ) → TμSd−1 (2.9)

maps a vector x ∈ Sd−1 into TμSd−1 with Expμ(Logμ(x)) = x.

The distance between μ and a point on the sphere is described by the Rie-
mannian distance function.

Definition 2.6 (Riemannian distance function). For any point x ∈ V (μ), the
Riemannian distance function is given by

dGD(μ, x) = ||Logμ(x)||2 = arccos (xTμ) ∈ [0, π). (2.10)

Consequently, Logμ(x) ∈ Bd−1(π) ⊂ TμSd−1 with Bd(r) the d-dimensional
open ball of radius r > 0 centred at the origin 0d.

2.2.1. Examples on S2

The locally diffeomorphic exponential map on S2 reads

Expμ : TμS2 → S2 \ {−μ},

v �→ μ cos (||v||2) + v

||v||2
sin (||v||2), (2.11)

while the logarithmic map is given by

Logμ : S2 \ {−μ} → TμS2,

x �→ dGD(x, μ)
sin (dGD(x, μ))z. (2.12)

Here, z = (Id − μμT )x is the tangential part of x and we use the convention
0

sin (0) = 1 [22, 23]. See Figure 1 for an illustration.
With μ = (0, 0, 1)T the logarithmic map in spherical coordinates φ ∈ [0, 2π)

and θ ∈ [0, π] reads

Logμ(x) =

⎛
⎝ cos (φ) sin (θ)

sin (φ) sin (θ)
0

⎞
⎠ θ

sin (θ) = θ

⎛
⎝ cos (φ)

sin (φ)
0

⎞
⎠ ∈ TμS2, (2.13)
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TμS2
B2(π)

μ

S2

Logμ(x)

x Expμ(v)

v

Fig 1. The tangent space TμS2 of the sphere S2 and related operators.

with dGD(x, μ) = arccos (cos(θ)) = θ. Thus, the length of any vector Logμ(x) ∈
TμS2 coincides with the co-latitude angle θ. For a random vector X with a dis-
tribution from Rμ∩Fμ, we have Φ ∼ Unif [0, 2π] and Φ and Θ are independent.
Hence, Logμ(X) has circular density contours in TμS2.

2.3. The Mahalanobis transformation on Sd−1

The idea of the Mahalanobis transformation in R
d is to linearly transform a real-

valued data matrix into a centred, standardised and uncorrelated data matrix,
see e.g. [15].

The Mahalanobis transformation can be generalised to the Riemannian man-
ifold Sd−1, see [14]. Here, the row vectors y1, . . . , yn ∈ Sd−1 \ {−μ} of an n× d-
data matrix Y are mapped onto TμSd−1.

The empirical covariance matrix reads

Σ̂TμSd−1 = Σ̂TμSd−1(Y) = 1
n

n∑
i=1

Logμ(yi)Logμ(yi)T . (2.14)

In analogy to the Mahalanobis transformation in R
d the transformed vector in

TμSd−1 reads

vi = Σ̂TμSd−1(Y)−1/2Logμ(yi). (2.15)

Note that the condition ||vi||2 < π, required for the application of the expo-
nential map, may not be fulfilled. To ensure this, we normalise Σ̂TμSd−1(Y)−1/2

by

Σ̂∗
TμSd−1(Y)−1/2 =

Σ̂TμSd−1(Y)−1/2

||Σ̂TμSd−1(Y)−1/2||2
, (2.16)
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Fig 2. The Mahalanobis transformation of y1, . . . , y500 ∈ S2. The realisations are i.i.d. Kent
distributed with μ = (0, 0, 1), κ = 12 and A = diag(β,−β, 0) with β = 5. The Z-direction
points out of the page.

where || · ||2 is the spectral norm. Note that using (2.16) in (2.15) could increase
the concentration of the points around μ.

The Mahalanobis transformation of y ∈ Sd−1 reads

x = Expμ

(
Σ̂∗

TμSd−1(Y)−1/2Logμ(y)
)
. (2.17)

For d = 3, the Mahalanobis transformation is illustrated in Figure 2.
We will use (2.17) to transform realisations y1, . . . , yn ∈ Sd−1 an elliptically

symmetric distribution. If the Mahalanobis-transformed vectors are rotationally
symmetric about μ, we will use the results of Ley at al. [1] for the rotationally
symmetric case. They are shortly summarised in the following section.

2.4. Quantiles for directional data and the angular Mahalanobis
depth

The concept of quantiles for directional data and the angular Mahalanobis depth
from Ley et al. [1] are summarised in the following.

2.4.1. Quantiles for directional data

The quantile check function, known from quantile regression [24], reads ρτ (z) =
z(τ − 1[z ≤ 0]), where z ∈ R, τ ∈ [0, 1] and 1[z ≤ 0] the indicator function. The
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Ccτμ

μ

•

Hcτμ

τ = 1

τ

τ = 0

cτ = 1

cτ

cτ = −1

Fig 3. The hyperplane Hcτμ divides the unit sphere S2 into an upper and a lower quantile
cap. The intersection of Hcτμ with S2 corresponds to the τ-depth contour denoted by Ccτμ.

projection quantile, i.e., the univariate τ -quantile of XTμ, is defined by [1, 25]

cτ = arg min
c∈[−1,1]

E[ρτ (XTμ− c)]. (2.18)

The partition of the sphere induced by the hyperplane

Hcτμ = {x ∈ R
d|cτ = xTμ} (2.19)

defines the τ -depth contour

Ccτμ = Hcτμ ∩ Sd−1. (2.20)

Figure 3 illustrates Hcτμ and Ccτμ for d = 3. Note that the 0.5-quantile c0.5 is
not related to the most central point. Its associated hyperplane Hc0.5μ divides
the probability mass into two equal halves. The empirical projection quantile
[1] reads

ĉτ = arg min
c∈[−1,1]

N∑
i=1

[ρτ (XT
i μ̂− c)]. (2.21)

Asymptotic properties The following Bahadur-type representation of ĉτ is
proven in [1] (with slightly differing notation).

Proposition 2.1 (Proposition 3.1 in [1]). Let F ∈ Fμ and let fproj denote the
common density of the projections XT

i μ, i = 1, . . . , n. Set Δcτ := fproj(cτ ).
Then there exists a d-vector Δμ,cτ such that

n1/2(ĉτ − cτ ) = n1/2

Δcτ

N∑
i=1

(τ − 1[XT
i μ ≤ cτ ])] −

ΔT
μ,cτ

Δcτ

n1/2(μ̂− μ) + oP (1)

(2.22)

as n → ∞ under the joint distribution of X1, . . . , Xn.
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Note that by (2.22), the rather complicated non-linear estimator ĉτ can be
represented as a sum of i.i.d. random variables and the scaled difference be-
tween μ and its estimator μ̂. However, the calculation of the d-vector Δμ,cτ =
d
dcE

(
(τ − 1[XT

i μ ≤ c])Xi

)
|c=cτ

(see the proof of Proposition 3.1 in [1]) is not
straightforward. In the rotationally symmetric case, the representation in Equa-
tion (2.22) simplifies.

Proposition 2.2 (Proposition 3.2 in [1]). Let F ∈ Rμ. Then

n1/2(ĉτ − cτ ) = n1/2

Δcτ

N∑
i=1

(τ − 1[XT
i μ ≤ cτ ])] + oP (1) (2.23)

as n → ∞ under the joint distribution of X1, . . . , Xn. Therefore, letting fproj
stand for the density of XT

i μ, we have that n1/2(ĉτ−cτ ) is asymptotically normal
with mean zero and variance (1−τ)τ

f2
proj(cτ ) .

The reason for the simplification in Equation (2.22) is that ΔT
μ,cτn

1/2(μ̂ −
μ) ∈ oP (1) for F ∈ Rμ. The absence of μ̂ in Equation (2.23) means that any
root-n consistent estimator (e.g., the empirical Fisher spherical median μ̂ or the
spherical mean

∑n
i=1 Xi/||

∑n
i=1 Xi||2) can substitute μ without changing the

asymptotic distribution, independently of the dimension d. Furthermore, (2.22)
is a Bahadur-type representation for univariate sample quantiles [12]. Hence, the
directional quantiles of [1] have similar asymptotic properties as the quantiles
in R. Therefore, the directional quantiles of [1] can be regarded as canonical for
F ∈ Rμ.

2.4.2. The angular Mahalanobis depth

The angular Mahalanobis depth (AMHD) is defined by [1]

AMHDF (x) = 1
1 + 1/DF (x)

∈ [0, 1/2] (2.24)

where

DF (x) = arg min
τ∈[0,1]

{cτ ≥ xTμ}. (2.25)

It provides a centre-outward ordering by assigning each x ∈ Sd−1 its depth
value. The angular Mahalanobis depth is leaned on the classical Mahalanobis
depth

MHDF (x) = 1
1 + (x− μ(F ))T (Σ(F ))−1(x− μ(F )) , x ∈ R

d. (2.26)

μ(F ) and Σ(F ) are location and scatter functionals under F , respectively.
The spherical centre μ corresponds to the centre μ(F ). MHDF is suited for
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elliptically symmetric distributions on R
d since Σ(F ) contains all necessary in-

formation about the principal axes. In contrast, AMHDF is not suited for
distributions which are elliptically symmetric about μ ∈ Sd−1 since information
about the shape of the distribution is lost due to the projection XTμ in the
definition of DF (x).

3. Quantiles for directional data from elliptically symmetric
distributions and the elliptical Mahalanobis depth

Here, we present canonical quantiles and a depth for directional distributions
which are elliptically symmetric about μ ∈ Sd−1. The idea is to transform
the elliptical contours in the tangent space to rotationally symmetric contours
analogously to (1.1), such that we are again in the canonical case of Ley et al.
[1].

In the following, we consider random vectors Y, Y1, . . . , Yn ∈ Sd−1 i.i.d. fol-
lowing a distribution which is elliptically symmetric about μ. Let

(Σ∗)−1/2 = Σ−1/2

||Σ−1/2||2
(3.1)

and

(Σ∗)1/2 = ||Σ−1/2||2 · Σ1/2. (3.2)

Then, ||(Σ∗)−1/2Logμ(Y )||2 < π such that we can define

G(Y ) = Expμ

(
(Σ∗)−1/2Logμ(Y )

)
. (3.3)

G(Y ) is locally diffeomorphic since Expμ and Logμ are locally diffeomorphic,
and (Σ∗)−1/2 is invertible. Its inverse is

G−1(Y ) = Expμ

(
(Σ∗)1/2Logμ(Y )

)
. (3.4)

3.1. Quantiles for directional data from elliptically symmetric
distributions

We define the elliptical projection quantile by

cGτ = arg min
c∈[−1,1]

E[ρτ (G(Y )Tμ− c)]. (3.5)

The partition of the sphere induced by the hyperplane HcGτ μ = {x ∈ R
d|cGτ =

G(Y )Tμ} defines the τ -depth contour CcGτ μ as in (2.20). Note that cGτ = cτ if
Σ∗ = Id−1 since then G(Y ) = Y .

An elliptical depth contour is obtained from CcGτ μ by inverting the transfor-
mation via the tangent space shown in Figure 2, that is

CE
cGτ μ =

{
G−1(Y )|Y ∈ CcGτ μ

}
. (3.6)
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Fig 4. Illustration of minor cEτ , major cEτ and the intrinsic small semi-axis arccos
(
minor cEτ

)
and the intrinsic large semi-axis arccos

(
major cEτ

)
of CE

cGτ μ
for some τ and d = 3.

Note that CE
cGτ μ can be elliptically shaped which is not the case for CcGτ μ.

To define an equivalent to the semi-axes lengths of an ellipse, we set

minor cEτ = max
x∈CE

cGτ μ

xTμ and major cEτ = min
x∈CE

cGτ μ

xTμ. (3.7)

The intrinsic semi-minor axis of CE
cGτ μ is arccos

(
minor cEτ

)
and the intrinsic semi-

major axis of CE
cGτ μ is arccos

(
major cEτ

)
. minor cEτ and major cEτ contain the main

information about the concentration and shape of the distribution of Y around
μ. A large difference between minor cEτ and major cEτ indicates a strong deviation
from a rotationally symmetric distribution, whereas minor cEτ = major cEτ in the
rotationally symmetric case. See Figure 4 for an illustration for d = 3. Note that
major cEτ ≤ cτ ≤ minor cEτ by construction.

The empirical elliptical projection quantile reads

ĉGτ = arg min
c∈[−1,1]

N∑
i=1

[ρτ (Ĝ(Yi)T μ̂− c)] (3.8)

with

Ĝ(Y ) = Expμ((Σ̂∗)−1/2(Logμ(Y ))) (3.9)

and (Σ̂∗)−1/2 given in (2.16). The empirical versions of (3.6) and (3.7) are
denoted by CE

ĉGτ μ, minor ĉEτ and major ĉEτ , respectively.
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3.2. The elliptical Mahalanobis depth

The elliptical Mahalanobis depth (EMHD) is defined by

EMHDF (y) = 1
1 + 1/DG

F (y)
= DG

F (y)
1 + DG

F (y)
∈ [0, 1/2] , (3.10)

where

DG
F (y) = arg min

τ∈[0,1]
{cGτ ≥ G(y)Tμ}. (3.11)

As the angular Mahalanobis depth, the elliptical Mahalanobis depth is leaned
on the Classical Mahalanobis depth MHDF given in Equation (2.26). Our ap-
proach additionally yields a connection to Σ(F ) via Σ̂∗ which contains all nec-
essary information about the principal axes. Furthermore, EMHDF contains
AMHDF as a special case: They are equal if the depth contours are rotationally
symmetric.

4. An extension to skew-rotationally symmetric distributions

Skew-rotationally symmetric (SRS) distributions are a class of probability distri-
butions that are characterised by having a preferred direction while also being
asymmetric (skewed) in their depth contours [11, 26]. Ley et al. [11] give a
stochastic representation of a SRS vector X.

Consider a random vector Y with a distribution from Rμ. The tangent-normal
decomposition of a unit vector in R

d allows to write

Y = (Y Tμ)μ + (Id − μμT )Y.

Now the Pythagorean theorem implies ||(Id−μμT )Y ||2 = 1− (Y Tμ)2 such that

Y = (Y Tμ)μ + (1 − (Y Tμ)2)1/2Sμ(Y ),

where Sμ(Y ) is a unit vector orthogonal to μ. Due to the rotational symmetry
of the distribution of Y , we get Sμ(Y ) = ΓμUμ(Y ) where Γμ ∈ R

d×d−1 a semi-
orthogonal matrix such that ΓμΓT

μ = Id − μμT and ΓT
μΓμ = Id−1 and Uμ(Y ) is

uniformly distributed in Sd−2.
Additionally, we require a skewness parameter δ ∈ R

d−1 and a monotone
increasing, continuous skewing function Π : R → [0, 1] satisfying Π(−y)+Π(y) =
1. The construction is given in the following proposition.

Proposition 4.1 (Lemma 2 in [11]). Generate Y ∼ F ∈ Rμ rotationally sym-
metric. Then the uniformly distributed vector Uμ(Y ) is transformed into

Uμ,Π(Y ) =
{
Uμ(Y ) ifU ≤ Π[{1 − (Y Tμ)2}1/2δTUμ(Y )]
−Uμ(Y ) ifU ≥ Π[{1 − (Y Tμ)2}1/2δTUμ(Y )]

(4.1)
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where the random variable U is uniformly distributed on (0, 1) and independent
of Y . The SRS vector X is obtained as

X = (Y Tμ)μ + [1 − (Y Tμ)2]1/2ΓμUμ,Π(Y ). (4.2)

By construction, Z = [1 − (Y Tμ)2]1/2ΓμUμ,Π(Y ) ∈ TμSd−1 has skewed con-
tours. Examples of skewing functions Π are cumulative distribution functions
(cdf) of centred univariate random variables that are symmetric about 0. If we
choose such a symmetric cdf for Π, Z can be decomposed into a symmetric part
Zsym and skewed part Zskew.

For dimension d = 3, coordinates can be chosen such that Zskew ∈ R where
a 1-dimensional transformation, e.g., the Box-Cox transformation BC [27] with
parameters λ and c, leads from skew to symmetric contours. Replacing Zskew by
BC(Zskew)) in the representation Z results in a distribution with elliptical con-
tours. Thus, we can use our results from Section 3. Since all transformations are
invertible, we can derive τ -depth contours for the skew-rotationally symmetric
distributions. For an illustration, see Figure 5.

5. Applications

To confirm our findings, we perform a Monte Carlo simulation study. We gen-
erated four independent samples

yl,i, l = 1, 2, 3, 4, i = 1, . . . , 200,

of Kent distributions with μ = (0, 0, 1)T , A = diag(β,−β, 0), and κ = 5, β = 2
(l = 1), κ = 7, β = 3 (l = 2), κ = 10, β = 4 (l = 3), and κ = 12, β = 5 (l = 4).

The Mahalanobis-transformed yl,i are denoted by xl,i. The longitude of yl,i
is denoted by φyl,i

, and the longitudes of xl,i are φxl,i
.

The histograms of the longitudes shown in Figure 6 indicate that the transfor-
mation leads to uniformly distributed longitudes. This supports that the xl,i are
rotationally symmetric about μ. To confirm this visual impression, we test the
hypothesis of uniform longitudes. We use Watson’s test [28, p. 156] implemented
in the R-package Directional [29]. Watson’s test applied on φyi gave p-values
less than 0.004 for all designs l = 1, 2, 3, 4. The p-values for the Mahalanobis-
transformed angles φxi were 0.7086 (l = 1), 0.5132 (l = 2), 0.3436 (l = 3),
0.5268 (l = 4) which supports an assumption of uniform longitudes.

For illustration, the empirical quartiles ĉτ , τ = 0.25, 0.5, and 0.75 as well
as minor ĉEτ and major ĉEτ for l = 4 are given in Table 1. Figure 7 shows the
corresponding depth contours.

5.1. Trimming of directional data

The angular Mahalanobis depth AMHDF is canonical for trimming of direc-
tional data from F ∈ Rμ. The trimming corresponds to deleting the points
on Sd−1 below the τ -depth contour Ccτμ given in (2.20) with τ ∈ [0, 1]. If the
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Fig 5. 5a: Contour plot of n = 1000 skew-FvML-distributed [11] realisations with mean
direction μ = (0, 0, 1)T , concentration κ = 7 and skewness parameter δ = (8, 8)T . The
skewing function Π is the standard Gaussian cdf. 5b: Contour plot of the transformed skew-
FvML density given in 5a. The elliptical contours result from the Box-Cox transformation of
Zskew,i in TμS2 as illustrated in 5c. 5c: The vectors of 5a (skewed) and 5b (elliptic) mapped
to the tangent space TμS2. The used Box-Cox transformation BC(Zskew,i), i = 1, . . . , n,
had parameters c = 1 and λ = −1.6. 5d: The histograms of BC(Zskew,i) and Zskew,i. 5e:
Empirical τ-depth contour, τ = 0.5. The blue circle corresponds to the empirical τ-depth
contour Cĉτμ. The green contour corresponds to the empirical τ-depth contour resulting from
the construction given in Section 4.
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Fig 6. Histograms of the longitudes φyl,i and φxl,i , l = 1, 2, 3, 4. The red line corresponds to
the density of the uniform distribution on [−π, π].

Table 1

The empirical quartiles minor ĉEτ ,major ĉEτ and ĉτ of y4,i, i = 1, . . . , n. The sample is shown
in Figure 7.

τ 0.25 0.5 0.75
ĉτ 0.8110 0.9090 0.9660

minor ĉEτ 0.9370 0.9677 0.9870
major ĉEτ 0.6847 0.8347 0.9245

Fig 7. Realisations y4,i, i = 1, . . . , n, are given as points on S2 with empirical τ-depth
contours, τ = 0.25, 0.5, 0.75. The blue circle corresponds to the empirical τ-depth contour
Cĉτμ. The green ellipse corresponds to the empirical τ-depth contour CE

ĉGτ μ
. The Z-direction

points out of the page.
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Fig 8. Realisations y4,i, i = 1, . . . , n, are given as points on S2. The blue circle corresponds
to Cĉτμ (left) and the green ellipse corresponds to CE

ĉGτ μ
with τ = 0.25 of y4,i, i = 1, . . . , n.

Trimmed points are purple. The Z-direction points out of the page.

underlying distribution has elliptical contours, trimming results in circular con-
tours when using AMHDF . In contrast, trimming based on EMHDF , which
deletes points below CE

cGτ μ, preserves the elliptical shape of the contours. See
Figure 8 for an illustration.

5.2. Analysis of fibre directions in ultra-high performance
fibre-reinforced concrete

Ultra-high performance fibre-reinforced concrete (UHPFRC) is a relatively new
material in civil engineering. If cracks appear in the concrete due to loading,
fibres crossing the crack counteract the crack propagation. As fibres have no
directional sense, our data are restricted to the upper hemisphere of S2. We
analyse a data set from [16] which consists of n = 598 measurements of fibre
directions. The fibres crossed a crack in a UHPFRC-specimen subject to a bend-
ing test. The crack has a planar shape with normal direction corresponding to
the Z-axis used in the analysis. The fibre directions are denoted by yi, their
Mahalanobis transforms are xi, i = 1, . . . , n. Furthermore, we denote by φyi the
longitudes of yi and by φxi the longitudes of xi.

5.2.1. Visual inspection, rotational symmetry, and quartiles

As a first step, we inspect the data visually. Figure 9 shows the original and
Mahalanobis-transformed fibre directions together with estimates of their den-
sities. The distribution of the yi is uni-modal with empirical Fisher spheri-
cal median μ̂ = (0.029, 0.039, 0.998)T which was computed by the function
mediandir() from the R-package Directional [29].



Quantiles and depth for dir. data from ellip. and skew-rot. sym. dist. 2059

Fig 9. Fibre directions yi in UHPFRC before (a) and after (b) Mahalanobis transformation.
The Z-direction points out of the page. Histograms of the longitudes φyi (c) and φxi (d). The
red line corresponds to the density of the uniform distribution on [−π, π].

Figure 9d indicates that the Mahalanobis-transformed fibre directions have
uniformly distributed longitudes. Using Watson’s test applied on φyi gave a p-
value of less than 10−4 such that rotational symmetry is rejected at any mean-
ingful nominal level. The p-value for φxi is 0.2660 such that the assumption of
rotational symmetry about μ̂ is not rejected.

In Figure 10, we illustrate the empirical τ -depth contours Cĉτμ given in (2.20)
and CE

ĉGτ μ given in (3.6) for τ = 0.25, 0.5, 0.75. The values minor ĉEτ ,major ĉEτ ,
and ĉτ are summarised in Table 2. We see that major ĉEτ � ĉEτ � minor ĉEτ for
all τ = 0.25, 0.5, 0.75. Thus, the shape of the underlying density seems to be
slightly better fitted by an which is elliptically symmetric distribution than by
a rotationally symmetric distribution.
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Fig 10. The empirical projection quartiles of the fibre directions yi. The blue circle corresponds
to the empirical τ-depth contour Cĉτμ. The green ellipse corresponds to CE

ĉGτ μ
. The Z-direction

points out of the page.

Table 2

The empirical projection quartiles minor ĉEτ ,major ĉEτ and ĉτ of the fibre directions yi.
τ 0.25 0.5 0.75
ĉτ 0.8489 0.9349 0.9729

minor ĉEτ 0.8785 0.9507 0.9808
major ĉEτ 0.7986 0.9128 0.9629

5.2.2. Goodness-of-fit test and trimming

In the next step, we fit a rotationally symmetric directional distribution to
the Mahalanobis transformed data xi. We use a von Mises-Fisher distribution
F0 = M3(μ, κ). Maximum likelihood estimation by using the function vmf.mle()
implemented in the R-package Directional yields κ̂ = 6.97. As the estimated
mean direction is very close to the Z axis, we consider μ = (0, 0, 1)T and
κ = 6, 7, 8. We then perform the goodness-of-fit test given in [1] based on the
projection quartiles (ĉ0.25, ĉ0.5, ĉ0.75). The null hypothesis H0 : F = F0 against
H1 : F �= F0 is rejected for all three κ values (p < 10−4).

To analyze the reason for rejection, we convert the unit vectors xi in spherical
coordinates (θi, φi). A closer investigation of the co-latitude angle θi reveals
that 1 − cos (θi) has a heavy tail (see Figure 11a). Under the hypothesis of
a von Mises-Fisher distribution, we would expect 1 − cos (Θ) ∼ Exp(κ) for
large κ, see [18, Eq. (4.29)]. Trimming the directions xi below the τ -depth
contour Ccτμ, τ = 0.15, removes the heavy tail in the trimmed sample xtrim

i ,
see Figure 11b. We repeat the goodness-of-fit test with F0 = M3(μ, κ) with the
trimmed data xtrim

i . We chose μ = (0, 0, 1)T and κ = 8, 9, 10 because we expect
a higher concentration parameter due to trimming. The asymptotic p-values are
0.0130 (κ = 8), 0.2854 (κ = 9) and 0.1288 (κ = 10). Thus, κ = 9 provides the
best fit to the trimmed data.

In fact, the strong deviation of fibre directions from the tensile axis of almost
15% of the fibres may have favoured the cracking at this position.
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Fig 11. Histograms of 1 − cos (θi), i = 1, . . . , n, before (a) and after (b) truncation by trim-
ming. The red line corresponds to the theoretical density of Exp(κ), κ = 7.

6. Conclusion

We extended the concept of quantiles and depth for directional data from Ley
et al. [1]. Their concept provides useful geometric properties of the depth con-
tours (such as convexity and rotational equivariance) and a Bahadur-type rep-
resentation of the quantiles. However, a disadvantage is that rotationally sym-
metric depth contours are always produced, even if the underlying distribution
is not rotationally symmetric [13]. Our extension solves this lack of flexibility
for distributions with elliptical depth contours. The main idea was to transform
the elliptical contours in the tangent space to rotationally symmetric contours,
apply the results of Ley et al. [1] to those, and then transform back. In view of
similarities with the classical Mahalanobis depth, our depth was called ellipti-
cal Mahalanobis depth (EMHDF ). An extension to skew-rotationally symmet-
ric distributions was presented. Our results were confirmed by a Monte Carlo
simulation study. Furthermore, we introduced tools to evaluate the ellipticity
of depth contours and demonstrated that our approach is the obvious choice
for trimming directional data from an elliptically symmetric distribution. We
applied our quantiles and depth to analyse fibre directions in fibre-reinforced
concrete.
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