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Abstract: Under model misspecification, it is known that Bayesian poste-
riors often do not properly quantify uncertainty about true or pseudo-true
parameters. Even more fundamentally, misspecification leads to a lack of
reproducibility in the sense that the same model will yield contradictory
posteriors on independent data sets from the true distribution. To define a
criterion for reproducible uncertainty quantification under misspecification,
we consider the probability that two credible sets constructed from inde-
pendent data sets have nonempty overlap, and we establish a lower bound
on this overlap probability that holds whenever the credible sets are valid
confidence sets. We prove that credible sets from the standard posterior
can strongly violate this bound, indicating that it is not internally coherent
under misspecification. To improve reproducibility in an easy-to-use and
widely applicable way, we propose to apply bagging to the Bayesian pos-
terior (“BayesBag”); that is, to use the average of posterior distributions
conditioned on bootstrapped datasets. We motivate BayesBag from first
principles based on Jeffrey conditionalization and show that the bagged
posterior typically satisfies the overlap lower bound. Further, we prove
a Bernstein–Von Mises theorem for the bagged posterior, establishing its
asymptotic normal distribution. We demonstrate the benefits of BayesBag
via simulation experiments and an application to crime rate prediction.
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1. Introduction

It is widely acknowledged that statistical models are usually not exactly correct
in practice [4, 5, 10, 32]. This model misspecification is known to lead to un-
reliable inferences, and in particular, Bayesian posteriors can be unstable and
poorly calibrated under misspecification [18, 26, 28]. Unfortunately, this leads to
a lack of reproducibility, even when using the same method on a replicate data
set from the same distribution [23, 48]. In this paper, we propose a criterion for
reproducible uncertainty quantification and a general technique for achieving it.
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Defining valid uncertainty quantification in misspecified models presents a
conceptual problem since there is no “”true parameter” that indexes a model
with distribution equal to the data-generating distribution. The usual solution
is to focus on a pseudo-true parameter, typically defined as the asymptotically
optimal parameter in terms of Kullback–Leibler (KL) divergence [19, 28, 36, 46].
However, depending on the objectives of the analysis, it might not be desirable to
concentrate at the KL-optimal parameter [3, 26, 35]. Thus, rather than adopting
a particular definition of pseudo-truth, we introduce a truth-agnostic approach
to assessing reproducibility. Specifically, we consider the probability that two
credible sets constructed from independent data sets have nonempty overlap. We
establish a simple lower bound on this overlap probability that holds whenever
the sets do have coverage probability of 1−α for the quantity of interest. Under
misspecification, we show that credible sets from the standard posterior can
strongly violate this bound—particularly when the dimension grows with the
number of observations—indicating that it exhibits poor reproducibility.

To improve the reproducibility of Bayesian inference under misspecification,
we propose to use BayesBag [7, 15, 44]. The idea of BayesBag is to apply bag-
ging [6] to the Bayesian posterior. More precisely, the bagged posterior π∗(θ | x)
is defined by taking bootstrapped copies x∗ := (x∗

1, . . . , x
∗
M ) of the original

dataset x := (x1, . . . , xN ) and averaging over the posteriors obtained by treat-
ing each bootstrap dataset as the observed data:

π∗(θ | x) := 1
NM

∑
x∗

π(θ | x∗), (1)

where π(θ | x∗) ∝ π0(θ)
∏M

m=1 pθ(x∗
m) is the standard posterior density given

data x∗ and the sum is over all NM possible bootstrap datasets of M samples
drawn with replacement from the original dataset. In this work, we focus on
parameter inference and prediction, complementing our work on BayesBag for
model selection [23]. In theory and experiments, we consider both the case of
fixed finite-dimensional parameters as well as cases where the parameter dimen-
sion grows with the sample size.

We motivate the bagged posterior from first principles using Jeffrey condi-
tionalization and show that bagged posterior credible sets typically satisfy our
lower bound on the overlap probability, indicating that the bagged posterior
quantifies uncertainty in a more reproducible way. These results illustrate how
the bagged posterior integrates the attractive features of Bayesian inference—
such as flexible hierarchical modeling, automatic integration over nuisance pa-
rameters, and the use of prior information—with the distributional robustness
of frequentist methods, nonparametrically accounting for sampling variability
and model misspecification. Simulation experiments validate our theory and
demonstrate the bagged posterior is particularly important for stability in high-
dimensional settings. An application to crime rate prediction using a Poisson
regression model with a horseshoe prior to induce approximate sparsity demon-
strate that BayesBag-based analysis can also lead to different conclusions—and
better predictions—than a standard Bayesian analysis.
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In practice, we suggest approximating π∗(θ | x) by generating B independent
bootstrap datasets x∗

(1), . . . , x
∗
(B), where x∗

(b) consists of M samples drawn with
replacement from x, yielding the approximation

π∗(θ | x) ≈ 1
B

B∑
b=1

π(θ | x∗
(b)). (2)

Since the bagged posterior is just the average of standard Bayesian posteriors,
one can use any algorithm for standard posterior inference to compute each of
the B posteriors, and then aggregate across them. While this requires B times
as much computation as a single posterior, it is trivial to parallelize the compu-
tation of the B posteriors. Since Eq. (2) is a simple Monte Carlo approximation,
the error of this approximation can easily be estimated in order to choose B
appropriately [23].

Despite its many attractive features, there has been little practical or the-
oretical investigation of bagged posteriors prior to Huggins and Miller [23]. In
the only previous work of which we are aware, Bühlmann [7] presented some
simulation results for a simple Gaussian location model, while Waddell, Kishino
and Ota [44] and Douady et al. [15] used bagged posteriors for phylogenetic
tree inference in papers focused primarily on speeding up model selection and
comparing Bayesian inference versus the bootstrap.

The article is organized as follows. In Section 2, we motivate the use of Bayes-
Bag for reproducible uncertainty quantification in terms of our overlap criterion
as well as a Jeffrey conditionalization derivation. In Section 3, we prove that
the standard posterior often fails to satisfy the overlap criterion, whereas the
bagged posterior typically satisfies it, focusing on Gaussian location models,
regular finite-dimensional models, and linear regression. In Section 4, we prove
a general Bernstein–Von Mises theorem establishing the asymptotic normal dis-
tribution of the bagged posterior, which is employed in the overlap theory of the
preceding section. Section 5 evaluates the performance of the bagged posterior
in simulation studies, and Section 6 illustrates with an application to crime rate
prediction using Poisson regression. We close with a discussion in Section 7.

2. Motivation

When misspecified, a Bayesian model can be so unstable that it contradicts itself.
Specifically, given two independent data sets from the same distribution, the
resulting two posteriors—for the same model—can place nearly all their mass on
disjoint sets. Figure 1a provides a simple illustration of the problem. Intuitively,
it seems clear that this must violate some principle of coherent uncertainty
quantification. But if there is no true parameter for which the model is correct,
then what is a posterior quantifying uncertainty about? In most previous work,
this question is dealt with by focusing on the pseudo-true parameter—that is,
the model parameter value that is closest in Kullback–Leibler divergence to the
true distribution [11, 21, 28, 45]. However, this choice—or any choice of pseudo-
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Fig 1. Standard and bagged posterior distributions of the mean for a Gaussian location model
assuming the data are i.i.d. N (μ, 1), when the data are actually i.i.d. N (0, 52). Posteriors
for six randomly generated data sets of size N = 100 are shown. (a) Many pairs of posterior
distributions have essentially no overlap with each other, and 5 out 6 do not contain the true
mean in their 95% central credible sets. (b) All pairs of bagged posterior distributions have
significant overlap and 6 out of 6 contain the true mean in their 95% central credible sets.

truth—is somewhat arbitrary and entails implicit assumptions about the goal
of the analysis, such as minimizing a certain loss function.

In this section, we instead formulate a criterion for reproducible uncertainty
quantification that does not require any assumptions of what is true in terms
of models or parameters. The basic idea is that two valid confidence sets con-
structed from independent data sets must intersect with a certain minimal prob-
ability. We prove a simple lower bound on this overlap probability that holds for
any valid confidence sets, for any definition of pseudo-truth, and for any data
distribution. We then use this criterion to motivate the use of BayesBag via
Jeffrey conditionalization. Figure 1b illustrates how the bagged posterior does
not suffer from the instability exhibited by the standard posterior.

2.1. Overlap criterion for reproducible uncertainty quantification

Suppose we have data X ∼ P◦ and we are interested in estimating an unknown
quantity η(P◦) ∈ Ω that is a functional of the unknown data-generating dis-
tribution P◦. Here, η(P◦) may or may not correspond to a parameter in some
model. Suppose x �→ Ax is a procedure for constructing sets AX ⊆ Ω intended
to contain η(P◦) with probability 1 − α.

Definition 2.1. We say x �→ Ax has coverage 1 − α with respect to P◦ if
P(η(P◦) ∈ AX) ≥ 1 − α when X ∼ P◦.

This definition is agnostic to making any assumptions of what is true in terms
of models or parameters.
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Proposition 2.2. Let X,Y ∼ P◦ independently. If x �→ Ax and y �→ By have,
respectively, coverage 1 − α and 1 − α′ with respect to P◦, then

P(AX ∩BY �= ∅) ≥ (1 − α)(1 − α′). (3)

This provides a lower bound on the probability that two credible sets with
valid coverage intersect. For example, if the coverage is 1 − α = 1 − α′ = 0.95,
then the lower bound on the probability of intersection is 0.9025. We refer
to P(AX ∩ BY �= ∅) as the overlap probability, and satisfying the bound is
referred to as the overlap criterion. Failing to satisfy this criterion indicates a
lack of stability and reproducibility across plausible datasets. While satisfying
this bound is a necessary condition for coherent uncertainty quantification, it
is not sufficient. For example, choosing AX = A, a constant, would satisfy the
bound but would clearly be an ineffective method for inference.

2.2. Jeffrey conditionalization for reproducibility leads to BayesBag

For reproducibility, one needs to represent uncertainty across data sets from
the true distribution. A natural way to do this is via Jeffrey conditionalization,
which turns out to lead to the bagged posterior. This interpretation elegantly
unifies the Bayesian and frequentist elements of the bagged posterior that might
otherwise seem challenging to interpret together in a principled way.

To explain, suppose we have a model p(x, y) of two variables x and y. In the
absence of any other data or knowledge, we would quantify our uncertainty in x
and y via the marginal distributions p(x) =

∫
p(x | y)p(y)dy and p(y) =

∫
p(y |

x)p(x)dx, respectively. Now, suppose we are informed that the true distribution
of x is p◦(x), but we are not given any samples of x or y. We would then quantify
our uncertainty in x via p◦(x), and a natural way to quantify our uncertainty
in y is via q(y) :=

∫
p(y | x)p◦(x)dx. The idea is that q(x, y) := p(y | x)p◦(x)

updates the model to have the correct distribution of x, while remaining as
close as possible to the original model p(x, y). This is referred to as Jeffrey
conditionalization [13, 24, 25].

Suppose x = x1:N := (x1, . . . , xN ) is the data and y = θ is a parameter, so
that p(x, y) = p(x1:N , θ) is the joint distribution of the data and the parameter.
If we are informed that the true distribution of the data is p◦N (x1:N ), then the
Jeffrey conditionalization approach is to quantify our uncertainty in θ by

q(θ) =
∫

p(θ | x1:N )p◦N (x1:N )dx1:N . (4)

Now, suppose we are not informed of the true distribution exactly, but we
are given data X1, . . . , XN i.i.d. ∼ p◦. Since the empirical distribution PN :=
N−1∑N

n=1 δXn is a consistent estimator of p◦, and p◦N (x1:N ) =
∏N

n=1 p◦(xn),
it is natural to plug in

∏N
n=1 PN to approximate p◦N in Eq. (4). Doing so, we

arrive at the bagged posterior π∗(θ | x) from Eq. (1), in the case of M = N :

q(θ) ≈
∫

p(θ | x1:N )
N∏

n=1
PN (dxn) = E

{
p(θ | X∗

1:N ) | X1:N
}

= π∗(θ | x),
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where X∗
1 , . . . , X

∗
N i.i.d. ∼ PN given X1:N . Thus, the bagged posterior represents

uncertainty in θ, integrating over data sets drawn from an approximation to the
true distribution. Hence, it is natural to expect the bagged posterior to improve
reproducibility across data sets.

2.3. BayesBag combines Bayesian and frequentist uncertainty

In Eq. (4), p(θ | x1:N ) represents Bayesian model-based uncertainty and inte-
grating with respect to p◦N (x1:N ) represents frequentist sampling uncertainty.
Remarkably, these two sources of uncertainty combine additively in the bagged
posterior whenever θ ∈ R

D.
To see this, let X∗ | x be a random bootstrap dataset given data x, and let

ϑ∗ | X∗ ∼ π(θ | X∗) be distributed according to the standard posterior given
data X∗. Marginalizing out X∗, we have ϑ∗ | x ∼ π∗(θ | x). Let ϑ | x ∼ π(θ | x)
and define μ(x) := E(ϑ | x) =

∫
θ π(θ | x)dθ to be the standard posterior mean

given x. By the law of total expectation, the mean of the bagged posterior is

E(ϑ∗ | x) = E
{
E(ϑ∗ | X∗) | x

}
= E{μ(X∗) | x} = 1

NM

∑
x∗

μ(x∗).

By the law of total covariance, the covariance matrix of the bagged posterior is

Cov(ϑ∗ | x) = E
{

Cov(ϑ∗ | X∗) | x
}

+ Cov
{
E(ϑ∗ | X∗) | x

}
= E{Σ(X∗) | x} + Cov{μ(X∗) | x},

where Σ(x) := Cov(ϑ | x) =
∫
{θ − μ(x)}{θ − μ(x)}�π(θ | x)dθ is the stan-

dard posterior covariance. In this decomposition of Cov(ϑ∗ | x), the first term
approximates the mean of the posterior covariance matrix under the sampling
distribution, and the second term approximates the covariance of the posterior
mean under the sampling distribution. Thus, the first term reflects Bayesian
model-based uncertainty averaged with respect to frequentist sampling variabil-
ity, and the second term reflects frequentist sampling-based uncertainty of a
Bayesian model-based point estimate.

3. Reproducibility using overlap probability

We now investigate if and when the standard and bagged posteriors satisfy the
overlap criterion for reproducible uncertainty quantification. We focus on Gaus-
sian location models, regular finite-dimensional models, and linear regression
as representative cases, and consider settings where the dimension is fixed or
growing with the sample size. We show that under misspecification, the bagged
posterior typically satisfies the overlap criterion whereas the standard posterior
does not. But, for correctly specified models, both the standard and bagged
posteriors usually satisfy the criterion.

First, however, as a check on the reasonableness of our criterion, we establish
that for any correctly specified Bayesian model, the overlap criterion is satisfied
in expectation with respect to the prior.
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Theorem 3.1. Consider any model for data X | ϑ and any prior π on ϑ.
Suppose x �→ Ax is a 100(1 − α)% posterior credible set for ϑ under this model
and prior, that is, P(ϑ ∈ Ax | x) ≥ 1 − α for all x. If ϑ ∼ π, and X | ϑ, X̃ | ϑ
are independent data from the assumed model, then E

{
P(AX ∩AX̃ �= ∅ | ϑ)

}
≥

(1 − α)2.

Theorem 3.1 is a direct analogue of the classical result that posterior credible
sets have correct frequentist coverage in expectation under the assumed prior.
All proofs are in Appendix D.

3.1. Gaussian location model

We first consider the simple Gaussian location model in which observations xn

are modeled as i.i.d. N (θ, V ) with fixed positive definite covariance matrix V ,
and assume a conjugate prior, θ ∼ N (0, V0). Given data x = (x1, . . . , xN ),
the posterior is θ | x ∼ N (RN x̄N , VN ), where x̄N := N−1∑N

n=1 xn, RN :=
(V −1

0 V/N + I)−1, and VN := (V −1
0 +NV −1)−1. For intuition, one can think of

RN ≈ I since ‖RN − I‖ = O(N−1). The bagged posterior mean and covariance
are

E(ϑ∗ | x) = E(RM X̄∗
M | x) = RM x̄N

Cov(ϑ∗ | x) = E(VM | x) + Cov(RM X̄∗
M | x) = VM + M−1RM Σ̂NRM ,

where Σ̂N := N−1∑N
n=1(xn − x̄N )(xn − x̄N )� is the sample covariance. In

particular, when M = N , these expressions simplify to E(ϑ∗ | x) = E(ϑ | x) and
Cov(ϑ∗ | x) = Cov(ϑ | x)+N−1RN Σ̂NRN . Unlike the standard posterior, which
simply assumes the data have covariance V , the bagged posterior accounts for
the true covariance of the data through the inclusion of the term involving Σ̂N .

3.1.1. Overlap probability for Gaussian location model with fixed dimension

Consider the Gaussian location model above. Fix α ∈ (0, 1) and u ∈ R
D \ {0},

and let Ax1:N be a 100(1 − α)% central credible interval for u�θ given data
x1:N . For BayesBag, let A∗

x1:N
denote the 100(1 − α)% central interval for the

normal distribution matching the mean and variance of the bagged posterior
distribution of u�θ given x1:N . For readability, we abbreviate p(overlap) :=
P(AX1:N ∩AY1:N �= ∅) and p∗(overlap) := P(A∗

X1:N
∩A∗

Y1:N
�= ∅).

Theorem 3.2. Suppose the true data distribution P◦ has positive definite co-
variance Σ◦. Let X1, X2, . . . i.i.d. ∼ P◦ and Y1, Y2, . . . i.i.d. ∼ P◦ indepen-
dently. Define W ∼ N (0, 1) and zα/2 ∈ R such that P(|W | > zα/2) = α. Then
as N → ∞, for the standard posterior,

p(overlap) −→ P

(
|W | ≤ zα/2

√
2
( u�V u

u�Σ◦u

)1/2
)

;
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and, assuming M = M(N) satisfies limN→∞ M/N = c > 0, for the bagged
posterior,

p∗(overlap) −→ P

(
|W | ≤ zα/2

√
2
(u�((V + Σ◦)/c)u

u�Σ◦u

)1/2
)
,

If the model is correct then V = Σ◦, so the standard and bagged pos-
teriors have the same asymptotic behavior when M = 2N , specifically, the
overlap probability converges to P(|W | ≤ zα/2

√
2). However, in misspecified

cases where u�V u < u�Σ◦u, the overlap probability for the standard poste-
rior can be arbitrarily small. On the other hand, the bagged posterior satisfies
limN→∞ p∗(overlap) ≥ P(|W | ≤ zα/2) = 1− α when 0 < c ≤ 2 since u�V u ≥ 0.
Thus, BayesBag is guaranteed to satisfy the overlap criterion necessary for re-
producible uncertainty quantification (Eq. (3)) when 0 < c ≤ 2, while standard
Bayes is not.

3.1.2. Overlap probability for Gaussian location model with growing dimension

To study the case of growing dimension D in the Gaussian location model, we
establish finite sample expressions for the overlap probability in the special case
of V = I and a flat prior (V −1

0 = 0), assuming Gaussian data.

Theorem 3.3. Consider the same setup as in Theorem 3.2. Suppose P◦ =
N (0,Σ◦), V = I, V −1

0 = 0, and ‖u‖ = 1. Then for the standard posterior,

p(overlap) = P

(
|W | ≤

zα/2
√

2
(u�Σ◦u)1/2

)
(5)

where W ∼ N (0, 1), and for the BayesBag posterior, when N ≥ 2,

p∗(overlap) ≥ P
(
|T2N−2| ≤ zα/2

√
(N − 1)/M

)
(6)

where T2N−2 is t-distributed with 2N − 2 degrees of freedom.

Note that the right-hand side of Eq. (5) does not depend on N , and the right-
hand side of Eq. (6) does not depend on D. Eq. (5) can be arbitrarily small as
D grows, since u�Σ◦u can be arbitrarily large. For instance, this will often be
the case when Σ◦ has order D2 nonnegligible entries. Thus, as the dimension D
grows, the standard posterior can severely violate the overlap criterion. Mean-
while, if M/N → 1 as N → ∞, then the lower bound in Eq. (6) converges to
P(|W | ≤ zα/2) = 1−α > (1−α)2 since T2N−2

D→ N (0, 1) as N → ∞. Therefore,
for all N sufficiently large, for all D, BayesBag satisfies the overlap criterion.

3.2. Regular finite-dimensional models

Asymptotically, sufficiently regular finite-dimensional models behave like the
Gaussian location model. We have N1/2(ϑ − θ̂N ) | X1:N

D→ N (0, J−1
θ◦

) by
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the Bernstein–Von Mises theorem, and N1/2(θ̂N − θ◦)
D→ N (0, J−1

θ◦
Iθ◦J

−1
θ◦

)
by classical theory, where θ̂N is the maximum likelihood estimator, θ◦ is the
Kullback–Leibler optimal parameter, and Jθ◦ , Iθ◦ are information matrices;
see Section 4 for details. In Section 4, we prove that for the bagged posterior,
N1/2(ϑ∗−θ̂N ) | X1:N

D→ N (0, J−1
θ◦

/c+J−1
θ◦

Iθ◦J
−1
θ◦

/c) where c := limN→∞ M/N .
Fix u ∈ R

D \ {0} and α ∈ (0, 1). Let p∞(overlap) and p∗∞(overlap) denote
the asymptotic overlap probabilities of 100(1−α)% central credible intervals for
u�θ under these asymptotic normal distributions for the standard and bagged
posteriors, respectively, assuming Jθ◦ and Iθ◦ are positive definite.

Theorem 3.4. Let W ∼ N (0, 1). For the standard posterior,

p∞(overlap) = P

(
|W | ≤ zα/2

√
2
(

u�J−1
θ◦

u

u�J−1
θ◦

Iθ◦J
−1
θ◦

u

)1/2)
,

and for the bagged posterior,

p∗∞(overlap) = P

(
|W | ≤ zα/2

√
2
(
u�(J−1

θ◦
/c + J−1

θ◦
Iθ◦J

−1
θ◦

/c)u
u�J−1

θ◦
Iθ◦J

−1
θ◦

u

)1/2)
≥ P(|W | ≤ zα/2

√
2/c).

In general, the ratio (u�J−1
θ◦

u)/(u�J−1
θ◦

Iθ◦J
−1
θ◦

u) can be arbitrarily large
or small. In particular, p∞(overlap) can be arbitrarily small, implying that
the asymptotic standard posterior can strongly violate the overlap criterion
in Eq. (3). On the other hand, as long as c ≤ 2, we have p∗∞(overlap) ≥ 1 − α,
implying that the asymptotic bagged posterior satisfies the overlap criterion.

3.3. Linear regression model

Consider data consisting of regressors Zn ∈ RD and outcomes Yn ∈ R (n =
1, . . . , N), and let Z ∈ R

N×D denote the complete design matrix, and Y ∈ R
N

the vector of outcomes. We analyze the linear regression model

Y | Z, β ∼ N (Zβ, σ2I),

where β ∈ R
D is the vector of coefficients, σ2 > 0 is the outcome variance,

To simplify the analysis, assume Z�Z is invertible, σ2 is fixed but possibly
unknown, and β is given a flat prior. For any u ∈ R

D \ {0}, the resulting
posterior on u�β is

u�β | Z, Y ∼ N (v�Y, σ2‖v‖2)

where v := Z(Z�Z)−1u. Now, suppose the true distribution is Y | Z ∼ N (μ†,Σ†)
where μ† and Σ† are functions of Z, say, μ† = m(Z) and Σ† = K(Z). Note that
the model is correctly specified when m(Z) = Zβ and K(Z) = σ2I.
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Consider two replicate experiments with data Y | Z ∼ N (m(Z),K(Z)) and
Ỹ | Z̃ ∼ N (m(Z̃),K(Z̃)), respectively, where Z�Z and Z̃�Z̃ are invertible
and the model variances are σ2 and σ̃2. Letting A = v�Y ± zα/2σ‖v‖ and
Ã = ṽ�Ỹ ± zα/2σ̃‖ṽ‖ be the corresponding 100(1−α)% central credible sets for
u�β, the overlap probability is p(overlap | Z, Z̃) = P(A ∩ Ã �= ∅ | Z, Z̃).

Theorem 3.5. Consider the linear regression model above and let W ∼ N (0, 1).

1. If m(Z) = Zβ† and K(Z) = σ2
†I, then

p(overlap | Z, Z̃) = P

(
|W | ≤

zα/2(σ‖v‖ + σ̃‖ṽ‖)
σ†(‖v‖2 + ‖ṽ‖2)1/2

)
. (7)

2. If Z = Z̃, but we make no assumptions on the form of m(Z) or K(Z),
then

p(overlap | Z, Z̃) = P

(
|W | ≤

zα/2 (σ + σ̃)‖v‖√
2(v�K(Z)v)1/2

)
. (8)

3. If K(Z) = σ2
†I, but we make no assumptions on the form of m(Z), then

p(overlap | Z, Z̃) ≤ P

(∣∣∣W + v�m(Z) − ṽ�m(Z̃)
σ† (‖v‖2 + ‖ṽ‖2)1/2

∣∣∣ ≤ zα/2
√
σ2 + σ̃2

σ†

)
.

(9)

Eq. (7) shows that if the linear regression model is correctly specified, then
the standard posterior satisfies the overlap criterion (Eq. (3)), since σ = σ̃ = σ†
and therefore p(overlap | Z, Z̃) ≥ P(|W | ≤ zα/2) = 1 − α > (1 − α)2, by the
fact that ‖v‖+ ‖ṽ‖ ≥ (‖v‖2 + ‖ṽ‖2)1/2. If the model is correct but the variance
is unknown, and consistent estimators of σ2

† are plugged in for σ2 and σ̃2, then
the overlap criterion is satisfied for all N sufficiently large.

However, when either the covariance K(Z) or the mean function m(Z) is
misspecified, the standard posterior can violate the overlap criterion. Consider
the case where Z = Z̃, that is, the design matrix is the same across replicates;
we refer to this as a fixed design setting. Eq. (8) shows that p(overlap | Z, Z̃)
does not depend on m(Z), so misspecification of the mean function has no
effect on the overlap probability in this case. Nonetheless, Eq. (8) shows that
p(overlap | Z, Z̃) can be arbitrarily small when the covariance is misspecified,
because the ratio (σ + σ̃)‖v‖/(v�K(Z)v)1/2 can be arbitrarily small. Clearly,
this ratio will be small if σ2 and σ̃2 are blindly set too low, but it can also
be small if these variances are estimated from the data. For instance, if the
true distribution exhibits heteroskedasticity (that is, K(Z) has a nonconstant
diagonal), then p(overlap | Z, Z̃) can violate the overlap criterion even when σ2

and σ̃2 are estimated; see Section 5.
Finally, consider the case where Z and Z̃ are not necessarily equal and we

make no assumptions on m(Z). To avoid trivial failure modes in which the choice
of Z and Z̃ leads to a nonnegligible differential bias v�m(Z) − ṽ�m(Z̃) as N
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grows, assume a random design setting where the rows of Z and Z̃ are inde-
pendent and identically distributed. Then even if K(Z) = σ2

†I, so that there is
no heteroskedasticity and no correlation among outcomes, the overlap criterion
can still be violated. As before, p(overlap | Z, Z̃) can be arbitrarily small if σ2

and σ̃2 are blindly set too low, but it can also be small if these variances are
estimated. By Eq. (9), p(overlap | Z, Z̃) will be small if the magnitude of

v�m(Z) − ṽ�m(Z̃)
(‖v‖2 + ‖ṽ‖2)1/2

= u�Z+f(Z)β† − u�Z̃+f(Z̃)β†(
u�(Z�Z)−1u + u�(Z̃�Z̃)−1u

)1/2 (10)

is large relative to
√
σ2 + σ̃2, where Z+ = (Z�Z)−1Z� is the pseudoinverse. A

trivial way this can occur is if the entries of β† are large. More interestingly,
however, Eq. (10) can be large if the dimension D grows with N , even if each
entry of β† has fixed magnitude. Specifically, in Section 5 we present experiments
demonstrating this when β† consists of the first D entries of a fixed sequence
β†,1, β†,2, . . . such that

∑D
d=1 β

2
†,d → ∞ as D → ∞.

4. Asymptotic normality of the bagged posterior

In this section, we establish a Bernstein–Von Mises theorem for the bagged
posterior under sufficiently regular finite-dimensional models (Theorem 4.1). In
particular, we show that while the standard posterior may be arbitrarily under-
or over-confident when the model is misspecified, the bagged posterior avoids
overconfident uncertainty quantification by accounting for sampling variability.

More formally, consider a model {Pθ : θ ∈ Θ} for independent and identically
distributed (i.i.d.) data x1, . . . , xN , where xn ∈ X and Θ ⊂ R

D is open. Suppose
pθ is the density of Pθ with respect to some reference measure. The standard
Bayesian posterior distribution given x1:N is

Π(dθ | x1:N ) :=
∏N

n=1 pθ(xn)
p(x1:N ) Π0(dθ),

where Π0(dθ) is the prior distribution and p(x1:N ) :=
∫
{
∏N

n=1 pθ(xn)}Π0(dθ) is
the marginal likelihood. We often use the shorthand notation ΠN := Π(· | x1:N ).

Assume the observed data X1, . . . , XN is generated i.i.d. from some un-
known distribution P◦. Suppose there is a unique parameter θ◦ that mini-
mizes the Kullback–Leibler divergence from P◦ to the model, or equivalently,
θ◦ = arg maxθ∈Θ E{log pθ(X1)}. Under regularity conditions, the maximum like-
lihood estimator θ̂N := arg maxθ

∏N
n=1 pθ(Xn) is asymptotically normal in the

sense that

N1/2(θ̂N − θ◦)
D→ N (0, J−1

θ◦
Iθ◦J

−1
θ◦

), (11)

where Jθ := −E{∇2
θ log pθ(X1)}, Iθ := Cov{∇θ log pθ(X1)}, and J−1

θ◦
Iθ◦J

−1
θ◦

is
known as the sandwich covariance [47]. Under mild conditions, the Bernstein–
Von Mises theorem (42, Ch. 10 and 28) guarantees that for ϑ ∼ ΠN ,

N1/2(ϑ− θ̂N ) | X1:N
D→ N (0, J−1

θ◦
). (12)
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Hence, the standard posterior is correctly calibrated, asymptotically, if the co-
variance matrices of the Gaussian distributions in Eqs. (11) and (12) coincide—
that is, if J−1

θ◦
Iθ◦J

−1
θ◦

= J−1
θ◦

, which is implied by Iθ◦ = Jθ◦ . In particular, if
Iθ◦ = Jθ◦ , then Bayesian credible sets are (asymptotically) valid confidence sets
in the frequentist sense: sets of posterior probability 1 − α contain the true
parameter with P∞

◦ -probability 1 − α, under mild conditions.
If the model is well-specified, that is, if P◦ = Pθ† for some parameter θ† ∈ Θ

(and thus θ◦ = θ† by the uniqueness assumption), then Iθ◦ = Jθ◦ under very
mild conditions. On the other hand, if the model is misspecified—that is, if
P◦ �= Pθ for all θ ∈ Θ—then although Eq. (12) still holds, typically Iθ◦ �= Jθ◦ . If
Iθ◦ �= Jθ◦ , then the standard posterior is not correctly calibrated, and in fact,
asymptotic Bayesian credible sets may be arbitrarily over- or under-confident.

Our Bernstein–von Mises theorem shows that the bagged posterior does not
suffer from the overconfidence of the standard posterior. Let X∗

1:M denote a
bootstrapped copy of X1:N with M observations; that is, each observation Xn

is replicated Kn times in X∗
1:M , where K1:N ∼ Multi(M, 1/N) is a multinomial-

distributed count vector of length N . We formally define the bagged posterior
Π∗(· | X1:N ) as

Π∗(A | X1:N ) := E{Π(A | X∗
1:M ) | X1:N}

for all measurable A ⊆ Θ; this is equivalent to the informal definition in Eq. (1).
To avoid notational clutter, we suppress the dependence of Π∗(· | X1:N ) on M .
We use the shorthand notation Π∗

N := Π∗(· | X1:N ) and we let ϑ∗ | X1:N ∼ Π∗
N

denote a random variable distributed according to the bagged posterior. We
assume ΠN and Π∗

N have densities πN and π∗
N , respectively, with respect to

Lebesgue measure. Note that π∗
N exists if πN exists.

For a measure ν and function f , we use the shorthand ν(f) :=
∫
fdν. Let

X1:∞ denote the infinite sequence (X1, X2, . . . ), and abbreviate �θ := log pθ.

Theorem 4.1. Suppose X1, X2, . . . i.i.d. ∼ P◦ and assume that:

(i) (θ, x) �→ �θ(x) is measurable and θ �→ �θ(X1) is differentiable at θ◦ with
probability 1;

(ii) there is an open neighborhood U of θ◦ and a function mθ◦ : X → R such
that for some δ > 0 P◦(m2+δ

θ◦
) < ∞ and for all θ, θ′ ∈ U , |�θ − �θ′ | ≤

mθ◦ ‖θ − θ′‖ a.s.[P◦];
(iii) −P◦(�θ − �θ◦) = 1

2 (θ − θ◦)�Jθ◦(θ − θ◦) + o(‖θ − θ◦‖2) as θ → θ◦;
(iv) Jθ◦ is an invertible matrix;
(v) conditionally on X1:∞, for almost every X1:∞, for every sequence of con-

stants CN → ∞,

E
[
Π({θ ∈ Θ : ‖θ − θ◦‖ > CN/M1/2} | X∗

1:M )
∣∣ X1:N

]
→ 0;

and
(vi) c := limN→∞ M/N ∈ (0,∞).
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Then, letting ϑ∗ ∼ Π∗
N , we have that conditionally on X1:∞, for almost every

X1:∞,

N1/2(ϑ∗ − θ◦) − ΔN | X1:N
D→ N (0, J−1

θ◦
/c + J−1

θ◦
Iθ◦J

−1
θ◦

/c),

where ΔN := N1/2J−1
θ◦

(PN − P◦)∇θ�θ◦ and PN := N−1∑N
n=1 δXn .

The result also holds in the regression setting with random regressors where
the data take the form Xn = (Yn, Zn) and the models pθ(y | z) are conditional,
so �θ(x) := log pθ(y | z).

The proof of Theorem 4.1 is in Appendix D. Theorem C.1 is a simpler ver-
sion of the same result for the univariate Gaussian location model, for which the
statement and our proof technique are more transparent. Our technical assump-
tions are essentially the same as those used by Kleijn and van der Vaart [28] to
prove the Bernstein–Von Mises theorem under misspecification for the standard
posterior. Of particular note, Kleijn and van der Vaart [28] require that (and
give conditions under which) for every sequence of constants CN → ∞,

E
[
Π({θ ∈ Θ : ‖θ − θ◦‖ > CN/N1/2} | X1:N )

]
→ 0.

We conjecture that under reasonable regularity assumptions, this expected pos-
terior concentration condition implies our condition (v).

To interpret this result, it is helpful to compare it to the behavior of the
standard posterior. Under the conditions of Theorem 4.1, if ϑ ∼ ΠN , then
N1/2(ϑ − θ◦) − ΔN | X1:N

D→ N (0, J−1
θ◦

) in probability by Kleijn and van der
Vaart [28, Theorem 2.1 and Lemma 2.1]. Thus, the bagged posterior and the
standard posterior for N1/2(θ − θ◦) have the same asymptotic mean, ΔN , but
the bagged posterior has asymptotic covariance J−1

θ◦
/c+J−1

θ◦
Iθ◦J

−1
θ◦

/c instead of
J−1
θ◦

. Hence, asymptotically, the bagged posterior is never overconfident if c = 1
(for instance, if M = N) and by Theorem 3.4, we expect 100(1 − α)% credible
sets of the bagged posteriors to have overlap probability of at least 1− α when
0 < c ≤ 2.

5. Simulations

In this section, we validate our theoretical results through a simulation study
with a linear regression model, which is ideal for investigating the properties of
BayesBag since all computations of posterior quantities can be done in closed
form. The setup is similar to the linear regression model from Section 3.3 except
we place proper priors on the regression coefficients and the outcome variance σ2.
The data consist of regressors Zn ∈ R

D and outcomes Yn ∈ R (n = 1, . . . , N),
and the parameter is θ = (θ0, . . . , θD) = (log σ2, β1, . . . , βD) ∈ R

D+1. Using
conjugate priors, the assumed model is

σ2 ∼ Γ−1(a0, b0)

βd | σ2 i.i.d.∼ N (0, σ2/λ) d = 1, . . . , D,
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Yn | Zn, β, σ
2 indep∼ N (Z�

n β, σ2) n = 1, . . . , N,

where a0 = 2, b0 = 1, and λ = 1 are fixed hyperparameters.

Data generating distribution. We simulated data for a random design sce-
nario by generating Zn

i.i.d.∼ G, εn
i.i.d.∼ N (0, 1), and

Yn = f(Zn)�β† + εn (13)

for n = 1, . . . , N , where β†d = 4/
√
d for d = 1, . . . , D and we used two settings

for each of f and G.

• Regression function f . By default, we used a linear function f(z) = z
to simulate data for the well-specified setting. Alternatively, we used the
nonlinear function f(z) = (z3

1 , . . . , z
3
D)� for a misspecified setting.

• Regressor distribution G. By default, we used G = N (0, I) to sim-
ulate data; we refer to this as the uncorrelated setting. Alternatively, we
used a correlated-κ setting, where, for h = 10, Z ∼ G was defined by
generating ξ ∼ χ2(h) and then Z | ξ ∼ N (0,Σ) where Σdd′ = exp{−(d −
d′)2/κ2}/(ξdξd′) and ξd =

√
ξ/(h− 2)1(d is odd). The motivation for the

correlated-κ sampling procedure is to generate correlated regressors that
have different tail behaviors while still having the same first two moments,
since regressors are typically standardized to have mean 0 and variance 1.
Note that, marginally, Z1, Z3, . . . are each rescaled t-distributed random
variables with h degrees of freedom such that Var(Z1) = 1, and Z2, Z4, . . .
are standard normal.

Overlap probabilities. The primary objective in these experiments is to
validate that the BayesBag posterior does not violate the probability of over-
lap lower bounds while the Bayesian posterior sometimes does. Thus, for each
data-generating distribution of interest, we estimate overlap probabilities by
generating R pairs of datasets {(Z(r,1)

1:N , Y
(r,1)
1:N , Z

(r,2)
1:N , Y

(r,2)
1:N )}Rr=1 plus an addi-

tional 100 test points Ztest
1 , . . . , Ztest

100 ∼ G. If the 1−α posterior credible intervals
for (Ztest

i )�β conditioned on (Z(r,1)
1:N , Y

(r,1)
1:N ) and (Z(r,2)

1:N , Y
(r,2)
1:N ) overlap, set the

overlap indicator variable O
(r)
α (Ztest

i ) = 1. Otherwise set O
(r)
α (Ztest

i ) = 0. For
each i ∈ {1, . . . , 100}, we estimate the probability of overlap for Ztest

i as

P

(
overlap of (Ztest

i )�β at level 1 − α
)
≈ R−1

R∑
r=1

O(r)
α (Ztest

i ).

For all experiments we use R = 100. Figure 2 shows that for nonlinear-uncorrelated
data, BayesBag never violates the overlap lower bounds while Bayes always or
often violates the lower bounds, depending on the value of 1 − α (larger 1 − α
leads to more violations). Figures 8 to 10 in Appendix B.1 show similar results
for nonlinear-correlated-κ data, although the problem with Bayes is less severe
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Fig 2. Histograms of the probability of overlap of 1 − α credible sets for (Ztest
i )�β (i =

1, . . . , 100) for the linear regression model with nonlinear-uncorrelated data. Vertical dotted
lines indicate the overlap lower bounds (1 − α)2.

as the correlation increases. Moreover, as shown in Fig. 3, the problem becomes
more severe as N and D jointly increase, but improves or stays the same if D
is fixed and N increases. These results emphasize how the misspecified high-
dimensional regime is particularly problematic for the reproducibility of the
standard posterior. We find similar results in the case of a fixed design matrix
with heteroskedastic noise (see Appendix B.2).

Predictive performance. To complement our overlap probability analysis,
we also computed the mean log predictive densities at the same test points. Fig-
ure 4 shows that while in well-specified linear settings the standard posterior can
slightly outperform BayesBag (by roughly 0.2 nats or less), in the misspecified
nonlinear settings BayesBag can be far superior (by 0.2 to nearly 10 nats).
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Fig 3. Proportion of test points Ztest
i for which the Bayes overlap probability satisfies the

lower bound. For BayesBag, the proportion is 1 in all cases.

Fig 4. 99% confidence intervals for difference in the mean log predictive densities of the
standard and BayesBag posteriors (paired t intervals), with values greater than zero indicating
superior performance by BayesBag. Note the different scales for linear versus nonlinear.

6. Application

We next consider an application to community-level crime data from the United
States using a Poisson regression model with log link function and the spike-and-
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slab prior proposed by Piironen and Vehtari [38]. The data consist of N = 1994
observations containing 100 community-level covariates such as demographic
summaries and local law enforcement statistics such as the number of police of-
ficers per capita. The goal is to predict the number of violent crimes per 100,000
persons in the population. We chose M = N and used B = 50 bootstrap sam-
ples to approximate the bagged posterior. Nearly identical results were obtained
with B = 25, indicating that B = 50 was sufficiently large.

To compute overlap probabilities, we held out 20% of the observations as test
points and randomly split the remaining observations into two equally sized data
sets, from which we computed two posteriors to compare. We generated R = 50
replicate experiments in this way, and followed the procedure in Section 5 to
approximate the overlap probability for each replicate.

Figure 5 validates our theoretical results: the standard posterior is unsta-
ble across datasets, with overlap probabilities below (1 − α)2 for 1 − α ∈
{0.8, 0.9, 0.95} in the vast majority of replicates. The bagged posteriors, on
the other hand, have overlap greater than (1 − α)2 in all replicates. Moreover,
BayesBag has superior predictive performance: the mean log predictive densities
for the standard and bagged posteriors are, respectively, −5.4 and −4.3 with a
99% confidence interval for difference of (1.043, 1.093) (paired t interval).

To explore how using the bagged rather than the standard posterior might
result in different conclusions, we compared the posterior marginals of the re-
gression coefficients, with some representative results shown in Figs. 6 and 7.
In all cases, the bagged posteriors were more diffuse, as would be expected. In
several cases, however, the BayesBag results are qualitatively different from the
standard posterior results. The standard posterior for the coefficient of Upper
Quartile Rent is symmetric and concentrated below zero while for the bagged
posterior it has a sharp peak at zero and is skewed left (Fig. 6). Similarly,
the standard posteriors are symmetric for the coefficients of covariates related
to percent of different racial and ethnic groups (Fig. 7). Meanwhile, the bagged
posterior for the coefficients of Percent Asian and Percent Hispanic are mul-
timodal and have significantly more mass centered at zero. These examples illus-
trate how the bagged and standard posteriors may yield substantively different
results in practice—BayesBag is not merely inflating the posterior uncertainty.

7. Discussion

We conclude by first situating BayesBag in the wider literature on robust
Bayesian inference, and then, with that additional context in place, highlighting
the strengths of our approach and suggest fruitful directions for future develop-
ment.

7.1. Bayesian bagging

Despite the similar sounding names, BayesBag is very different than Bayesian
bagging [9, 31]. Bayesian bagging consists of applying the Bayesian bootstrap
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Fig 5. For crime data using a sparse Poisson regression model, shown are histograms of the
overlap probability for Z�β where Z is drawn from a held-out test set. For most replicates, the
overlap probabilities for the standard posteriors are below (1−α)2 for 1−α ∈ {0.8, 0.9, 0.95}.
Meanwhile, for all replicates, the overlap probabilities for the bagged posteriors are greater
than (1 − α)2.

Fig 6. The standard and bagged posterior marginals for three coefficients related to rental
cost for the data and model from Section 6.
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Fig 7. The standard and bagged posterior marginals for three coefficients related to race for
the data and model from Section 6.

to a point estimator of a classification or regression model, such as ordinary
least squares. In other words, it is a slight variant of traditional bagging where,
instead of multinomial weights, one uses continuous weights drawn uniformly
from the probability simplex. In contrast, BayesBag uses traditional bagging on
the posterior of an arbitrary Bayesian model. In short, Bayesian bagging per-
forms bagging using Bayes, whereas BayesBag performs Bayes using bagging.
Relatedly, in the same way that bagging expands the model space for a classi-
fication or regression method [14], BayesBag expands the posterior space for a
Bayesian model.

7.2. Bayesian uncertainty quantification with the bootstrap

The bootstrap has previously been employed to perform uncertainty quantifi-
cation in Bayesian settings. See Laird and Louis [30] and references therein
for uses of the bootstrap to adjust for underestimated uncertainties when using
empirical Bayesian methods. Similar in spirit to the present work, Efron [17] de-
velops a variety of methods for obtaining frequentist uncertainty quantification
of Bayesian point estimates, including some that rely on bootstrapping.
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7.3. Robust Bayesian inference

Two common themes emerge when surveying existing methods for robust Bayesian
inference. First, many methods require choosing a free parameter, and the pro-
posals for choosing free parameters tend to be either (a) heuristic, (b) strongly
dependent on being in the asymptotic regime, or (c) computationally prohibitive
for most real-world problems. Second, those methods without a free parameter
lose key parts of what makes the Bayesian approach attractive. For example,
they strongly rely on asymptotic assumptions, make a Gaussian assumption, or
do not incorporate a prior distribution.

The power posterior is perhaps the most widely studied method for making
the posterior robust to model misspecification [19, 20, 22, 33, 35, 41]. For a
likelihood function L(θ), prior distribution Π0, and any ζ ≥ 0, the ζ-power
posterior is defined as Π(ζ)(dθ) ∝ L(θ)ζΠ0(dθ). Hence, Π(1) is equal to the
standard posterior and Π(0) is equal to the prior. Typically, ζ is set to a value
between these two extremes, as there is significant theoretical support for the
use of power posteriors with ζ ∈ (0, 1) [2, 19, 35, 39, 46]. However, there are two
significant methodological challenges. First, computing the power posterior often
requires new computational methods or additional approximations, particularly
in latent variable models [1, 35]. Second, choosing an appropriate value of ζ can
be difficult. Grünwald [19] proposes SafeBayes, a theoretically sound method
which is evaluated empirically in Grünwald and van Ommen [20] and de Heide
et al. [12]. However, SafeBayes is computationally prohibitive except with simple
models and very small datasets. In addition, the underlying theory relies on
strong assumptions on the model class. Many other methods for choosing ζ
have been suggested, but they are either heuristic or rely on strong asymptotic
assumptions such as the accuracy of the plug-in estimator for the sandwich
covariance [22, 33, 35, 39, 41].

More in the spirit of BayesBag are a number of bootstrapped point estima-
tion approaches [8, 33, 34, 37, 40]. However, unlike BayesBag, these methods
compute a collection of maximum a posteriori (MAP) or maximum likelihood
(ML) estimates. The weighted likelihood bootstrap of Newton and Raftery [37]
and a generalization proposed by Lyddon, Holmes and Walker [33] do not in-
corporate a prior, and therefore lose many of the benefits of Bayesian inference.
The related approach of Lyddon, Walker and Holmes [34], which includes the
weighted likelihood bootstrap and standard Bayesian inference as limiting cases,
draws the bootstrap samples partially from the posterior and partially from
the empirical distribution. Unfortunately, there is no accompanying theory to
guide how much the empirical distribution and posterior distribution should be
weighted relative to each other—nor rigorous robustness guarantees. Moreover,
bootstrapped point estimation methods can behave poorly when the MAP and
ML estimates are not well-behaved—for example, due to the likelihood being
peaked (or even tending to infinity) in a region of low posterior probability.

Müller [36] suggests replacing the standard posterior by a Gaussian distribu-
tion with covariance proportional to a plug-in estimate of the sandwich covari-
ance. A benefit of our approach is that it does not rely on a Gaussian approx-
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imation and does not require estimation of the sandwich covariance, making it
suitable for small-sample settings. While our theory does focus on Gaussian or
asymptotically Gaussian posteriors, in practice BayesBag is applicable in non-
asymptotic regimes where the posterior is highly non-Gaussian, as shown by the
application in Section 6.

7.4. The benefits of BayesBag

In view of previous work, the BayesBag approach has a number of attractive fea-
tures that make it flexible, easy-to-use, and widely applicable. From a method-
ological perspective, BayesBag is general-purpose. It relies only on carrying out
standard posterior inference, it is applicable to a wide range of models, and it can
make full use of modern probabilistic programming tools—the only added re-
quirement is the design of a bootstrapping scheme. Although this paper focuses
on using BayesBag with independent observations, future work can draw on the
large literature devoted to adapting the bootstrap to more complex models such
as those involving time-series and spatial data. BayesBag is also general-purpose
in the sense that it is useful no matter whether the ultimate goal of Bayesian
inference is parameter estimation, prediction, or model selection; see Huggins
and Miller [23] for how to use BayesBag for model selection.

Another appeal of BayesBag as a methodology is that the only hyperparameter—
the bootstrap dataset size M—is straightforward to set. Specifically, M = N
is a natural, theoretically well-justified choice that, while slightly conservative,
yields reproducible inferences.

In terms of computation, when using the approximation in Eq. (2), there is an
additional cost due to the need to compute the posterior for each bootstrapped
dataset. However, it is trivial to compute the bootstrapped posteriors in parallel.
As described in Appendix A.1, validating that the number of bootstrap datasets
B is sufficiently large only requires computing simple Monte Carlo error bounds.
Moreover, defaulting to B = 50 or 100 appears to be an empirically sound
choice across a range of problems. Nonetheless, speeding up BayesBag with more
specialized computational methods could be worthwhile in some applications.
For example, in Appendix A.2, we suggest one simple approach to speeding up
Markov chain Monte Carlo (MCMC) runs when using BayesBag. Pierre Jacob
has proposed using more advanced unbiased MCMC techniques for potentially
even greater computational efficiency.1

Another benefit of BayesBag is that it incorporates robustness features of
frequentist methods into Bayesian inference without sacrificing the core benefits
of the Bayesian approach such as flexible modeling, straightforward integration
over nuisance parameters, and the use of prior information. Further, our Jeffrey
conditionalization interpretation establishes solid epistemological foundations
for using BayesBag. Thus, it provides an appealing and philosophically coherent

1https://statisfaction.wordpress.com/2019/10/02/bayesbag-and-how-to-
approximate-it/

https://statisfaction.wordpress.com/2019/10/02/bayesbag-and-how-to-approximate-it/
https://statisfaction.wordpress.com/2019/10/02/bayesbag-and-how-to-approximate-it/
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synthesis of Bayesian and frequentist approaches without introducing difficult-
to-choose tuning parameters and without sacrificing the most useful parts of
Bayesian inference.

Appendix A: Computation

A.1. Choosing the number of bootstrap datasets for BayesBag

If we wish to use Eq. (2) to approximate the bagged posterior, then we must
select the number of bootstrap datasets B. Assume that we can approximate
π(θ | x∗

(b)) to high accuracy. Then evaluating the accuracy of the BayesBag ap-
proximation given by Eq. (2) reduces to the well-studied problem of estimating
the accuracy of a simple Monte Carlo approximation [e.g., 29]. In practice, we
have found it sufficient to take B = 50 or 100 since the quantities we wish to
estimate seem to be fairly low-variance. Thus, we suggest starting with B = 50,
estimating the Monte Carlo error of any quantities of interest such as parameter
means and variances, and then increasing B if the estimated error is unaccept-
ably large. On the other hand, in some scenarios it may be desirable to reduce
computational expense by balancing the number of bootstrap samples B versus
the accuracy of the approximation to π(θ | x∗

(b)) (e.g., in terms of the length of
Markov chain Monte Carlo runs). We discuss this computational trade-off next.

A.2. A BayesBag sampling algorithm

When the posterior can be computed in closed form, using BayesBag is straight-
forward. If, however, approximate sampling methods such as Markov chain
Monte Carlo are necessary, the computational cost could become substantial.
In such cases we propose the basic scheme described in Algorithm 1, although
more advanced approaches could also be developed. In short, the idea is to run
a single long chain (or set of chains) on the standard posterior, then use the
sampler hyperparameters and posterior samples to initialize shorter chains that
sample from many different bootstrap datasets.

If the approximation of π(θ | x∗
(b)) is not very accurate (e.g., because it re-

quires a time-consuming Markov chain Monte Carlo run), then we face a tradeoff
between the error due to approximating each π(θ | x∗

(b)) and the Monte Carlo
error due to the BayesBag approximation given in Eq. (2). When using Markov
chain Monte Carlo, we recommend assessing on how accurate different length
Markov chains are likely to be by running long chains for the standard posterior,
then using this information to decide on the best trade off between the length of
the Markov chains and number of bootstrap datasets. Such an approach should
not result in much wasted computation since it is usually desirable to obtain a
high-quality approximation to the standard posterior anyway.
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Algorithm 1 Basic BayesBag Sampler
Require: A Markov chain Monte Carlo procedure MCMC(x, T , θinit, βinit) that returns

adapted sampler hyperparameters and T approximate samples from Π(· | x), with the
sampler initialized at θinit with hyperparameters βinit

Require: Data x, “large” sample number T , “small” sample number T ∗, number of bootstrap
samples M , number of bootstrap datasets B, initial hyperparameters βinit

1: β, θ1:T ← MCMC(x, T , βinit)
2: for b = 1, . . . , B do
3: Generate a new bootstrap dataset x∗

(b) of size M from x

4: Sample θ∗(b)init uniformly from θ1:T
5: β(b), θ

∗
(b)1:T∗ ← MCMC(x∗

(b), T
∗, θ∗(b)init, β)

6: end for
7: θ∗1:BT∗ ← concatenate(θ∗(1)1:T∗ , . . . , θ

∗
(B)1:T∗)

8: return posterior samples θ1:T and BayesBag samples θ∗1:BT∗

Appendix B: Additional experimental results

B.1. Additional linear regression simulations

Figures 8 to 10 show similar results for nonlinear-correlated-κ data to what Fig. 2
shows for nonlinear-uncorrelated data, although the problem with Bayes is less
severe as the correlation increases.

B.2. Fixed design linear regression simulations

To simulate data for a fixed design scenario, we set zn0 = 1 to include an inter-
cept, set covariates zn1 and zn2 to be a uniform grid on [−2, 2] × [−2, 2], and
generate the remaining covariates as i.i.d. N (0, 1). We use the (well-specified)
linear regression function f(z) = z and to introduce misspecification, we gen-
erate the outcomes as in Eq. (13) but with heteroskedastic noise given by
εn | zn

indep∼ N (0, 1 + z2
n1 + z2

n2). Figure 11 shows that standard Bayes ex-
hibits poor overlap behavior, similar to the case of nonlinear-correlated-2 data
(Fig. 8), whereas BayesBag has overlap probability very close to 1 at every test
point. BayesBag also has superior predictive performance, with 99% confidence
intervals for the difference in mean log predictive densities of (0.49, 0.69) and
(1.00, 1.38) for, respectively, N = D = 256 and 400.

Appendix C: BayesBag Bernstein–Von Mises theorem for Gaussian
location model

Theorem C.1. Let X1, X2, . . . ∈ R i.i.d. such that for some δ > 0, E(|X1|2+δ) <
∞. Consider the Gaussian location model from Section 3.1. Let ϑ∗ | X1:N ∼ Π∗

N

and suppose c := limN→∞ M/N ∈ (0,∞) for M = M(N). Then for almost ev-
ery (X1, X2, . . .),

N1/2{ϑ∗ − E(ϑ∗ | X1:N )
}
| X1:N

D→ N (0, V/c + Var(X1)/c).
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Fig 8. Histograms of the probability of overlap of 1 − α credible sets for (Ztest
i )�β (i =

1, . . . , 100) for linear regression with nonlinear-correlated-2 data.

In other words, with probability 1, the bagged posterior converges weakly to
N (0, V/c + Var(X1)/c) after centering at its mean and scaling by N1/2.

Proof of Theorem C.1. We use the classical characteristic function approach
to proving central limit theorems. For μ ∈ R and σ2 > 0, the characteristic
function of N (μ, σ2) is

ψN (μ,σ2)(t) = exp(iμt− σ2t2/2), t ∈ R. (14)

For L ∈ N and p1, . . . , pK ≥ 0 with
∑K

k=1 pk = 1, the characteristic function of
the multinomial distribution Multi(L, p) is

ψMulti(L,p)(t) =
(

K∑
k=1

pke
itk

)L

, t ∈ R
K . (15)

Let Π̃(· | X∗
1:M ) := N (N1/2RM (X̄∗

M−X̄N ), NVM ), noting that this is the distri-
bution of N1/2{ϑ∗−E(ϑ∗ | X1:N )} | X∗

1:M . Similarly, let Π̃∗(· | X1:N ) denote the
distribution of N1/2{ϑ∗−E(ϑ∗ | X1:N )} | X1:N . Let YNn := N1/2RM (Xn−X̄N )
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Fig 9. Histograms of the probability of overlap of 1 − α credible sets for (Ztest
i )�β (i =

1, . . . , 100) for linear regression with nonlinear-correlated-4 data.

and let K1:N ∼ Multi(M, 1/N). Using Eqs. (14) and (15), we have

ψΠ̃∗(·|X1:N )(t) = E{ψΠ̃(·|X∗
1:M )(t) | X1:N}

= E
[
exp

{
itM−1∑N

n=1KnYNn −NVM t2/2
}
| X1:N

]
=
{

1
N

N∑
n=1

exp(itM−1YNn)
}M

exp(−NVM t2/2). (16)

Let V̂N := N−1∑N
n=1(Xn − X̄N )2. By Durrett [16, Lemma 3.3.19], eis = 1 +

is − s2/2 + R(s) where R(s) ≤ min(|s|3, 2|s|2). Since N−1∑N
n=1 YNn = 0, the

first factor of Eq. (16) can be expanded as{
1
N

N∑
n=1

(
1 + itM−1YNn − 1

2 t
2M−2Y 2

Nn + R(tM−1YNn)
)}M

=
{

1 − 1
2 t

2NR2
M

M2 V̂N + 1
N

N∑
n=1

R(tM−1YNn)
}M

. (17)
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Fig 10. Histograms of the probability of overlap of 1 − α credible sets for (Ztest
i )�β (i =

1, . . . , 100) for linear regression with nonlinear-correlated-8 data.

The remainder term
∑N

n=1 R(tM−1YNn) is bounded by

t2R2
MN

M2 max
n∈{1,...,N}

min(N1/2|t||Xn − X̄N |/M, 2)
N∑

n=1
(Xn − X̄N )2

and by Lemma C.2, lim supN→∞ maxn=1,...,N Xn/N
1/2 a.s.→ 0. By the strong law

of large numbers

lim sup
N→∞

1
N

N∑
n=1

|Xn − X̄N |2
a.s.
< ∞.

Combining these bounds with the that fact that M/N → c and RM → 1, we
conclude that for all t ∈ R,

∑N
n=1 R(tM−1YNn) → 0 as N → ∞.

Further, note that V̂N
a.s.→ Var(X1) as N → ∞. Now, we use the fact that if

aN → a and cN → c, then (1 + aN/N)NcN → exp(a)c. Thus, almost surely, for
all t, Eq. (17) converges to exp(−1

2 t
2 Var(X1)/c). Combining this with Eq. (16),

and noting that NVM → V/c, we have that almost surely, for all t ∈ R,

ψΠ̃∗(·|X1:N )(t) → exp(−1
2 t

2(Var(X1)/c + V/c)).
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Fig 11. Histograms of the probability of overlap of 1 − α credible sets for (Ztest
i )�β (i =

1, . . . , 100) for linear regression with linear mean function f , fixed design, and heteroskedastic
error.

The result follows by Lévy’s continuity theorem [27, Theorem 5.3].

Lemma C.2. Suppose X1, X2, . . . ∈ R i.i.d. such that for some δ > 0, E(|X1|2+δ)
< ∞. Then maxn∈{1,...,N} |Xn − X̄N |/N1/2 a.s.→ 0 as N → ∞.

Proof. Define Yn := |Xn|/n1/2. By Markov’s inequality, for all ε > 0,

P(Yn ≥ ε) ≤ E(|X1|2+δ)
n1+δ/2ε2+δ

.

Hence,
∑∞

n=1 P(Yn ≥ ε) < ∞, so by the Borel–Cantelli lemma, lim supn Yn ≤
ε almost surely. Since ε > 0 is arbitrary, this implies that lim supn Yn = 0
almost surely. Now, let ε′ > 0 and define N∗ (depending on Y1, Y2, . . .) such
that supn>N∗ Yn ≤ ε′. Letting M = maxn≤N∗ Yn, we have that almost surely,

max
n≤N

|Xn − X̄N |/N1/2 ≤ max
n≤N

2|Xn|/N1/2

≤ max
n≤N∗

2|Xn|/N1/2 + max
N∗<n≤N

2|Xn|/N1/2
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≤ 2MN
1/2
∗ /N1/2 + max

N∗<n≤N
2Yn

≤ 3ε′

for all N sufficiently large. Therefore, since ε′ > 0 is arbitrary,

lim sup
N→∞

max
n≤N

|Xn − X̄N |/N1/2 = 0

almost surely.

Appendix D: Proofs

Proof of Proposition 2.2. Denote η◦ = η(P◦). Since X and Y are indepen-
dent, it follows that 1(η◦ ∈ AX) and 1(η◦ ∈ BY ) are independent. Thus,

P(AX ∩BY �= ∅) ≥ P(η◦ ∈ AX ∩BY )
= P(η◦ ∈ AX , η◦ ∈ BY )
= P(η◦ ∈ AX)P(η◦ ∈ BY )
≥ (1 − α)(1 − α′).

Proof of Theorem 3.1. Since X and X̃ are independent and identically dis-
tributed given ϑ,

E
(
P(AX ∩AX̃ �= ∅ | ϑ)

)
≥ E

(
P(ϑ ∈ AX , ϑ ∈ AX̃ | ϑ)

)
= E

(
P(ϑ ∈ AX | ϑ)P(ϑ ∈ AX̃ | ϑ)

)
= E

(
P(ϑ ∈ AX | ϑ)2

)
≥ E

(
P(ϑ ∈ AX | ϑ)

)2
= E

(
P(ϑ ∈ AX | X)

)2
≥ (1 − α)2,

where in the last step we use that P(ϑ ∈ Ax | x) ≥ 1 − α for all x.

Proof of Theorem 3.2. To handle both the standard Bayes and BayesBag
cases simultaneously, consider a multivariate normal posterior on θ with mean
RM X̄N ∈ R

D and covariance matrix VM + bM−1RM Σ̂NRM ; then standard
Bayes is the case of M = N and b = 0, while BayesBag is the case of b = 1. The
posterior of u�θ is then

N (u�RM X̄N , σ2
X1:N

)

where σ2
X1:N

:= u�VMu + bM−1u�RM Σ̂NRMu. Thus, a 100(1 − α)% credible
interval for u�θ is given by

Ab
X1:N

= u�RM X̄N ± zα/2 σX1:N .
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Letting X1:N and Y1:N be independent data sets drawn i.i.d. from P◦, we have

P(Ab
X1:N

∩Ab
Y1:N

�= ∅) = P

(∣∣u�RM X̄N − u�RM ȲN

∣∣ ≤ zα/2(σX1:N + σY1:N )
)
.

(18)

By the central limit theorem, N1/2(X̄N − ȲN ) D→ N (0, 2Σ◦). By assumption,
M/N → c > 0 as N → ∞, which implies that M → ∞. Recalling that RM =
(V −1

0 V/M + I)−1 and VM = (V −1
0 +MV −1)−1, we have RM → I and NVM →

V/c as N → ∞. Thus, by the strong law of large numbers, N1/2σX1:N →
(u�V u/c+ bu�Σ◦u/c)1/2 almost surely as N → ∞, and likewise for N1/2σY1:N .
Therefore, by Slutsky’s theorem, as N → ∞,

P(Ab
X1:N

∩Ab
Y1:N

�= ∅) −→ P

(∣∣N (0, 2u�Σ◦u)
∣∣ ≤ zα/22(u�V u/c + bu�Σ◦u/c)1/2

)
= P

(
|W | ≤ zα/2

√
2
(u�((V + bΣ◦)/c)u

u�Σ◦u

)1/2
)

where W ∼ N (0, 1). This proves the theorem.

Proof of Theorem 3.3. Since Xn, Yn ∼ N (0,Σ◦) i.i.d., we have u�X̄N −
u�ȲN ∼ N (0, 2u�Σ◦u/N). Thus, for the standard posterior, by setting V = I,
V −1

0 = 0, ‖u‖ = 1, M = N , and b = 0 in Eq. (18), we have

P(AX1:N ∩AY1:N �= ∅) = P

(∣∣u�X̄N − u�ȲN

∣∣ ≤ zα/2 2/
√
N
)

= P

(∣∣(2u�Σ◦u/N)1/2W
∣∣ ≤ zα/2 2/

√
N
)

= P
(
|W | ≤ zα/2

√
2/(u�Σ◦u)1/2

)
since RM = I and σ2

X1:N
= 1/N . This proves the first part.

For the bagged posterior, define X ′
n = u�Xn and Y ′

n = u�Yn. Letting s2
X′

denote the sample variance of X ′
n, we have

σ2
X1:N

= M−1 + M−1u�Σ̂Nu ≥ M−1N−1
N∑

n=1
(X ′

n − X̄ ′
N )2 = M−1s2

X′

and likewise for σ2
Y1:N

, since V = I, V −1
0 = 0, ‖u‖ = 1, and b = 1. Thus,

σX1:N + σY1:N ≥ (σ2
X1:N

+ σ2
Y1:N

)1/2 ≥ M−1/2(s2
X′ + s2

Y ′)1/2.

Hence, by Eq. (18),

P(A∗
X1:N

∩A∗
Y1:N

�= ∅) = P

(∣∣u�X̄N − u�ȲN

∣∣ ≤ zα/2(σX1:N + σY1:N )
)

(19)

≥ P

(∣∣X̄ ′
N − Ȳ ′

N

∣∣ ≤ zα/2 M
−1/2(s2

X′ + s2
Y ′)1/2

)
.

Letting s2 = u�Σ◦u, we have that
√
NX̄ ′

N/s = N−1/2∑N
n=1 X

′
n/s ∼ N (0, 1)

and Ns2
X′/s2 ∼ χ2

N−1 independently, by Cochran’s theorem. Since X ′
n and Y ′

n
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are independent,
√
N/(2s2)(X̄ ′

N − Ȳ ′
N ) ∼ N (0, 1) and (N/s2)(s2

X′ + s2
Y ′) ∼

χ2
2N−2 independently. Hence,

√
N − 1 X̄ ′

N − Ȳ ′
N

(s2
X′ + s2

Y ′)1/2
D= N (0, 1)√

χ2
2N−2/(2N − 2)

D= T2N−2. (20)

Combining Eqs. (19) and (20) yields

P(A∗
X1:N

∩A∗
Y1:N

�= ∅) ≥ P

(
|X̄ ′

N − Ȳ ′
N |

(s2
X′ + s2

Y ′)1/2
≤ zα/2 M

−1/2
)

= P
(
|T2N−2| ≤ zα/2

√
(N − 1)/M

)
,

as claimed.

Proof of Theorem 3.4. The proof is similar to the Gaussian location model,
but simpler in some ways since we are already in the asymptotic regime. First,
consider the standard posterior. Denote V = J−1

θ◦
and Σ = J−1

θ◦
Iθ◦J

−1
θ◦

. Since
N1/2(ϑ − θ̂N ) | X1:N

D→ N (0, V ) by assumption, a 100(1 − α)% credible inter-
val for u�θ based on the asymptotic normal distribution is AX1:N = u�θ̂N ±
zα/2(u�V u/N)1/2. Likewise, N1/2(θ̂N − θ◦)

D→ N (0,Σ) by assumption. Thus,
letting θ̂X and θ̂X̃ be the maximum likelihood estimators based on indepen-
dent data sets X1:N and X̃1:N , we have N1/2(u�θ̂X − u�θ̂X̃) D→ N (0, 2u�Σu)
by the continuity theorem. Thus, letting W ∼ N (0, 1), the asymptotic overlap
probability for the standard posterior is

p∞(overlap) = lim
N→∞

P

(∣∣u�θ̂X − u�θ̂X̃
∣∣ ≤ 2zα/2(u�V u/N)1/2

)
= lim

N→∞
P

(∣∣N1/2(u�θ̂X − u�θ̂X̃)
∣∣ ≤ 2zα/2(u�V u)1/2

)
= P

(∣∣(2u�Σu)1/2W
∣∣ ≤ 2zα/2(u�V u)1/2

)
= P

(
|W | ≤

√
2zα/2

(u�V u

u�Σu

)1/2)
,

as claimed. For the bagged posterior, we have N1/2(ϑ∗−θ̂N ) | X1:N
D→ N (0, V/c+

Σ/c) by assumption. Hence, the proof is the same but with V/c + Σ/c in place
of V . The claimed inequality for the bagged posterior holds because u�V u ≥ 0,
due to the fact that V is positive semi-definite.

Proof of Theorem 3.5. Let μ† = m(Z), μ̃† = m(Z̃), Σ† = K(Z), and Σ̃† =
K(Z̃). We have

p(overlap | Z, Z̃) = P(A ∩ Ã �= ∅ | Z, Z̃)

= P

(
|v�Y − ṽ�Ỹ | ≤ zα/2(σ‖v‖ + σ̃‖ṽ‖)

∣∣∣ Z, Z̃) (21)
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= P

(∣∣∣W + v�μ† − ṽ�μ̃†

(v�Σ†v + ṽ�Σ̃†ṽ)1/2
∣∣∣ ≤ zα/2(σ‖v‖ + σ̃‖ṽ‖)

(v�Σ†v + ṽ�Σ̃†ṽ)1/2

)
.

where W ∼ N (0, 1). If m(Z) = Zβ† and K(Z) = σ2
†I, then

v�μ† − ṽ�μ̃† = u�Z+Zβ† − u�Z̃+Z̃β† = u�β† − u�β† = 0 (22)

where Z+ := (Z�Z)−1Z� denotes the Moore–Penrose pseudoinverse of Z.
Therefore, by Eqs. (21) and (22),

p(overlap | Z, Z̃) = P

(
|W | ≤

zα/2(σ‖v‖ + σ̃‖ṽ‖)
σ†(‖v‖2 + ‖ṽ‖2)1/2

)
,

which proves Eq. (7).
Suppose Z = Z̃, but we make no assumptions on the form of m(Z) or K(Z).

Then v = ṽ, μ† = μ̃†, and Σ† = Σ̃†. Therefore, by Eq. (21),

p(overlap | Z, Z̃) = P

(
|W | ≤

zα/2(σ + σ̃)‖v‖√
2(v�Σ†v)1/2

)
,

proving Eq. (8).
Suppose K(Z) = σ2

†I, but we make no assumptions on the form of m(Z).
Then by the Cauchy–Schwarz inequality,

σ‖v‖ + σ̃‖ṽ‖ ≤
√

σ2 + σ̃2(‖v‖2 + ‖ṽ‖2)1/2 =
√
σ2 + σ̃2

σ†
(v�Σ†v + ṽ�Σ̃†ṽ)1/2,

so by Eq. (21),

p(overlap | Z, Z̃) ≤ P

(∣∣∣W + v�μ† − ṽ�μ̃†
σ† (‖v‖2 + ‖ṽ‖2)1/2

∣∣∣ ≤ zα/2
√
σ2 + σ̃2

σ†

)
,

which proves Eq. (9).

The characteristic function of a distribution η on R
K is denoted ψη(t) :=∫

exp(it�x)η(dx) for t ∈ R
K . We use P→ to denote convergence in probability

and P+→ to denote convergence in outer probability.

Proof of Theorem 4.1. We use the shorthand notation �θ := log pθ, and de-
note the gradient and Hessian by �̇θ := ∇θ�θ and �̈θ := ∇2

θ�θ, respectively. To
de-clutter the notation, we abbreviate J◦ := Jθ◦ , I◦ := Iθ◦ , and �̇◦ := �̇θ◦ . Define

P
∗
N := M−1

N∑
n=1

KnδXn ,

Δ∗
N := N1/2J−1

◦ (P∗
N − PN )�̇θ◦ ,
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the empirical process GN = N1/2(PN−P◦), and the bootstrap empirical process
G

∗
N = M1/2(P∗

N −PN ). The conditions of van der Vaart [42, Lemma 19.31] hold
by assumption, so for any sequence h1, h2, . . . ∈ RD bounded in probability,

GN{N1/2λN − h�
N �̇◦} P→ 0,

where λN = �θ◦+hN/N1/2 − �θ◦ . By van der Vaart and Wellner [43, Theorem
3.6.3], for almost every X1:∞, conditional on X1:∞, G∗

N and GN both converge
weakly to the same limiting process. For the remainder of the proof we condition
on X1:∞, so all statements will hold for almost every X1:∞. It follows that

G
∗
N{N1/2λN − h�

N �̇◦}
P+→ 0, (23)

where we recall that P+→ denotes convergence in outer probability. By the proof
of Kleijn and van der Vaart [28, Lemma 2.1],

|NPNλN −GNh�
N �̇◦ − 1

2h
�
NJ◦hN | P+→ 0

and, following the same reasoning, we can expand the lefthand side of Eq. (23)
and multiply though by c1/2 to get

c1/2(NM)1/2P∗
NλN − c1/2G∗

Nh�
N �̇◦ − c1/2(NM)1/2PNλN

P+→ 0

and hence

MP
∗
NλN − (c1/2G∗

N + cGN )h�
N �̇◦ − 1

2h
�
N (cJ◦)hN

P+→ 0.

Since cGNh�
N �̇◦ = h�

N (cJ◦)ΔN and c1/2G∗
Nh�

N �̇◦(cN/M)1/2 = h�
N (cJ◦)Δ∗

N by
the definitions of ΔN and Δ∗

N , it follows that for every compact K ⊂ Θ,

sup
h∈K

∣∣∣MP
∗
N (�θ◦+h/N1/2 − �θ◦) − h�(cJ◦)(ΔN + Δ∗

N ) − 1
2h

�(cJ◦)h
∣∣∣ P+→ 0.

We apply Kleijn and van der Vaart [28, Theorem 2.1] to conclude that, letting
ϑ∗′|X∗

1:M ∼ Π(· | X∗
1:M ), the total variation distance between the distribution

of N1/2(ϑ∗′ − θ◦) | X∗
1:M and N (ΔN + Δ∗

N , J−1
◦ /c) converges to zero in outer

probability. Compared to the notation of Kleijn and van der Vaart [28, The-
orem 2.1], we have X∗

1:M in place of X(n), PM
N in place of P

(n)
0 , cJ◦ in place

of Vθ∗ , and ΔN + Δ∗
N in place of Δn,θ∗ . Hence, uniformly in t ∈ RD, the ab-

solute difference in their characteristic functions must also converge to zero in
outer probability. Let εN (t) (and similarly ε̄N (t)) denote a function that sat-
isfies lim supN→∞ supt∈R

εN (t) = 0. We can therefore write the characteristic
function of N1/2(ϑ∗ − θ◦) − ΔN | X1:N evaluated at t ∈ R

D as

E
[
exp

{
iΔ∗�

N t− t�J−1
◦ t/(2c)

}
| X1:N

]
+ εN (t)

= E

[
exp

{
iN1/2

P
∗
N �̇�◦ J

−1
◦ t

} ∣∣ X1:N

]
exp

{
−iN1/2

PN �̇�◦ J
−1
◦ t

}
× exp

{
−t�J−1

◦ t/(2c)
}

+ εN (t).
(24)
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Letting δ�̇◦(Xn) := �̇◦(Xn)−PN �̇◦, we can further expand the first line of Eq. (24)
to get

E

[
exp

{
iN1/2M−1

N∑
n=1

Kn�̇◦(Xn)�J−1
◦ t

} ∣∣∣∣ X1:N

]
exp

{
−iN1/2

PN �̇�◦ J
−1
◦ t

}

=
[

1
N

N∑
n=1

exp
{
iN1/2�̇◦(Xn)�J−1

◦ t

M

}]M
exp

{
−iN1/2

PN �̇�◦ J
−1
◦ t

}

=
[

1
N

N∑
n=1

exp
{
iN1/2δ�̇◦(Xn)�J−1

◦ t

M

}]M

=
[

1
N

N∑
n=1

{
1 + iN1/2δ�̇◦(Xn)�J−1

◦ t

M
− N(δ�̇◦(Xn)�J−1

◦ t)2

2M2 + Rn

}]M

=
{

1 − Nt�J−1
◦ PN (δ�̇◦δ�̇�◦ )J−1

◦ t

2M2 + Rn

}M

, (25)

where (recalling the notation from the proof of Theorem C.1)

Rn := R
(
iN1/2δ�̇◦(Xn)�J−1

◦ t

M

)
.

Arguing as in the proof of Theorem C.1 and using assumption (ii), we conclude
that

lim
N→∞

N∑
n=1

Rn = 0.

Note that M/N → c, and PN (δ�̇◦δ�̇�◦ ) a.s.→ I◦ as N → ∞. Now, we use the
fact that if aN → a and cN → c, then (1 + aN/N)NcN → exp(a)c. Combining
all these observations with Eqs. (24) and (25), we have that, for all t ∈ R

D, the
characteristic function of N1/2(ϑ∗ − θ◦) | X1:N evaluated at t is

exp
{
iΔ�

N t− t�J−1
◦ t/(2c) − t�J−1

◦ I◦J
−1
◦ t/(2c)

}
+ εN (t) + ε̄N (t).

The result follows from Lévy’s continuity theorem [27, Theorem 5.3].
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