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1. Introduction

This paper aims to provide some basic theory for random fields defined contin-
uously over the product of hyperspheres, together with simulations and direct
applications in environmental science.

A wealth of applications from applied science motivates interest in this ge-
ometry. The recent contribution by Porcu and White (2022) contains several
examples where the statistical analysis of real-life datasets benefit from covari-
ance models defined over such products. Specifically, the authors emphasize two
situations. The former happens when detrending the random field to account
for cyclic patterns. The latter happens when one embeds spatial or space-time
domains into the product of circles; relevant applications in environmental, at-
mospheric, oceanographic, and earth sciences include datasets collected over a
large section of the Earth where the measured variable exhibits a strong sea-
sonality or is directionally dependent (e.g., the wind speed or the ocean current
velocity). Depending on the setting, one or the other approach can be used.

As noted by Emery et al. (2022), complex sources of seasonality are crucial
to space-time modeling, and this fact is witnessed by recent applications to
climate studies (see Emery et al., 2022, with the references therein). Captur-
ing seasonality through a covariance function using time embedded in a circle
requires distance calculations that depend on a seasonal period. However, the
assumption of a fixed period can be relaxed by integrating models on the prod-
uct of spheres with warping approaches. To this point, we refer to Porcu et al.
(2020), with the references therein, as well as to White and Porcu (2019b).
The idea of embedding time periodicities inside the covariance structure is not
new. In particular, Shirota and Gelfand (2017a) has applied such methodolo-
gies to model crime events using log-Gaussian Cox processes. Continuous-time
monitoring of ground-level ozone concentrations has instead been proposed by
White and Porcu (2019a). In either case, a random field with an index set of
S

1 × S
2 (product of the unit circle with the unit two-dimensional sphere) would

be a natural choice to represent phenomena in Time × Space or Direction

× Space (Mastrantonio et al., 2016).
We recognize alternative approaches to model space-time seasonality stochas-

tically, allowing for unknown seasons. Among those, some approaches are dis-
cussed in West and Harrison (2006). Held and Paul (2012) extend classical
time series approaches to model seasonality in spatiotemporal surveillance of
infectious diseases. Lanfredi et al. (2020) take an approach based on space-time
coherence to show that seasonality under the current climate can be synthesized
in the form of a progressive deformation process of the annual cycle, which starts
from the northernmost areas with maximum values in summer and ends in the
south, where maximum values are recorded in winter. The role of seasonality
in space-time prediction is instead discussed in Atkinson et al. (2003). Notable
approaches address seasonality to achieve a better understanding of space-time
variability can be found in Celleri et al. (2007).

A wealth of different approaches to seasonality in time series is available in
the literature. To mention a few of those, we cite West and Harrison (2006),
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Hylleberg (1992), and Franses (1991). Indeed, in some settings more traditional
time series approaches would be preferable, but, as demonstrated in Porcu and
White (2022), modelling the data using covariance functions over the product
of spheres outperforms more traditional time series methods in some cases in
terms of prediction. Moreover, the models presented herein can easily handle
uneven time sampling.

Unlike in Porcu and White (2022), we emphasize that our primary target
with this paper is not to outperform a set of well-established methods. In-
stead, in this paper, we focus on providing theoretical properties of random
fields defined over this new geometry. In particular, we emphasize the fact that
properties of a random field may be completely different in space and time. For
instance, the spatial and temporal regularities (which shall be rigorously defined
in subsequent sections) may differ substantially in real applications. Typically,
regularity is expressed in terms of function spaces (see Lang and Schwab, 2015;
Clarke et al., 2018; Cleanthous et al., 2020, 2021, for similar approaches in other
geometries). In turn, it is well known that covariance functions are crucial to
understanding continuity and regularity properties of Gaussian random fields
(see Kerkyacharian et al., 2018, and the references therein). Simply stated, the
geometric properties of a Gaussian random field are closely related to the be-
haviour of its stationary covariance function in the neighborhood of the origin.
For instance, mean square continuity and mean square differentiability have a
one-to-one correspondence with, respectively, continuity and differentiability of
the covariance function at the origin. In turn, the behaviour of a stationary
covariance function at the origin has a one-to-one correspondence with the be-
haviour of its spectrum away from the origin. Thus, in this paper, we present
regularity in terms of the spectral coefficients associated with a covariance func-
tion. Moreover, we explore the continuity properties of Gaussian random fields
over the product of spheres.

Using harmonic analysis, we discuss approximations of Gaussian random
fields and prove their theoretical convergence rates. We explore our theoreti-
cal results via simulations. Then, using two real datasets, we illustrate how a
truncated spectral representation of the covariance function can be used for
modelling. As a part of this, we describe how to incorporate seasonalities, di-
rectional quantities, or global characteristics into the second-order structure, as
well as assessing model performance as function of the truncation point of the
spectral representation.

We illustrate the use of Gaussian random fields on the product of spheres by
discussing data modeling using covariance approximations through truncated
series expansions. For our first illustration, we use hourly wind speed data that
exhibit seasonal and directional autocorrelation. To account for the seasonal and
directional covariance patterns, we model winds speeds using a Gaussian random
field with covariance defined over the product of two circles. In our second
example, we consider a global space-time cloud cover dataset with strong annual
seasonality. To account for spatial and seasonal trends, we use a covariance
model defined over the product of a sphere and a circle. For both datasets,
we discuss modeling and model fitting in a Bayesian framework. We discuss
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model performance as a function of the number of terms in the covariance
approximation and present results for both data analyses.

Here, we summarize the main contributions of this work:
(a) We study the regularity of Gaussian random fields on the product of

spheres, measured in terms of function spaces that count mixed-smoothness.
Precisely, we prove necessary and sufficient conditions on the summability of the
spectral coefficients so that the covariance kernel has certain (mixed) smoothness
(see Theorem 3.3 and Corollary 3.4).

(b) We obtain the Hölder continuity of the covariance kernels under the
summability of the spectral coefficients and Hölder bounds for the moments
of the differences of Gaussian random fields (Theorems 4.2 and 4.3).

(c) We derive fast approximations of Gaussian random fields, by truncation of
their Karhunen-Loéve expansions, by assuming a specific decay for the spectrum
(Theorem 5.1).

(d) The rates of convergence obtained in (c) are verified via simulation exam-
ples. In addition, simulated Gaussian random fields on the torus, for different
spectral coefficients, are shown.

(e) We discuss modeling data using Gaussian random fields on the product
of spheres through covariance approximations obtained by truncated spectral
representations. Our first example considers directionally-indexed wind speed
data with seasonal autocorrelation. In the second example, we present a global
space-time dataset with strong seasonality.

As is customary in scientific research, we have developed a theory that draws
inspiration from previous discoveries, particularly advancements in purely spher-
ical geometries. In the context of the product of spheres, we have adapted these
concepts while being mindful of the need to operate in product spaces, where
all mathematical components require adjustments. In particular, our approach
involves the manipulation of joint spectra and necessitates the utilization of bi-
variate mathematical techniques. Similar challenges to those encountered in the
transition from space to space-time processes are prevalent in this work. For
instance, the models examined throughout the manuscript are non-separable in
their coordinates, meaning that covariance cannot be factorized into individual
covariances, each defined on a single sphere. Additionally, notions of anisotropy
(i.e., different scales in each coordinate) and mixed smoothness may arise, and,
in general, the dynamics and statistical characteristics can vary across each
sphere forming the product space.

The structure of the paper is as follows: In Section 2, we provide the general
theory of isotropic random fields on the product of spheres. Sections 3 and 4
are dedicated to the (a) and (b) from above respectively. Items (c) and (d) are
the objective of Section 5, while (e) is explored in Section 6. Some final remarks
are presented in Section 7 and the proofs of all the above Theorems have been
placed in the Appendix.

Notation: Before we proceed, we fix here some necessary notation. We denote
by c positive constants that may vary at every occurrence. The dependence of a
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constant to some parameter p, would be indicated by cp. For two non-negative
functions f and g we denote by f ∼ g the existence of a global constant c ≥ 1
such that c−1g ≤ f ≤ cg. The sets of positive and non-negative integers are
denoted by N and N0 respectively. For every real number x we define

(x)+ := max(x, 0). (1.1)

2. Gaussian random fields on the product of spheres

Let d1, d2 be positive integers. We denote by T
d1,d2 the product of spheres

T
d1,d2 := S

d1 × S
d2 = {x = (x1, x2) : xi ∈ S

di , i = 1, 2},

where S
di := {xi ∈ R

di+1 : ‖xi‖d1+1 = 1} denotes the di-dimensional unit
sphere embedded in R

di+1 and ‖·‖di+1 is the Euclidean norm on R
di+1, i = 1, 2.

Note that the classical torus T is isomorphic with the product of two circles:
T � S

1 × S
1 = T

1,1, is included in our study.

We consider a Gaussian random field {Z(x), x ∈ T
d1,d2} on the product of

spheres, which is assumed to be (i) real-valued and (ii) of zero-mean.
Its covariance function KZ : Td1,d2 × T

d1,d2 → R, takes the form

KZ(x,y) := cov(Z(x), Z(y)) = E (Z(x)Z(y)) , x,y ∈ T
d1,d2 . (2.1)

Following Guella et al. (2015), we will say that a random field {Z(x), x ∈
T
d1,d2} as above, is isotropic when there exists a continuous mapping Kiso :

[−1, 1]2 → R, such that for every x = (x1, x2),y = (y1, y2) ∈ T
d1,d2 ,

KZ(x,y) = Kiso(〈x1, y1〉1, 〈x2, y2〉2), (2.2)

where 〈·, ·〉i denotes the classical dot product on R
di+1 i = 1, 2. Note that for

every xi, yi ∈ Sdi , the angular distance on Sdi is ρSdi (xi, yi) = arccos(〈xi, yi〉i),
i = 1, 2. That is the covariance between Z(x) and Z(y), depends only on the
spherical distances ρSdi (xi, yi), i = 1, 2.

Remark 2.1. We list a few remarks on the isotropy and covariance.
(a) It is well-known the covariance function is positive definite. Moreover,

the regularity of the Gaussian random field depends heavily on the corresponding
regularity of the covariance function; see Kerkyacharian et al. (2018).

(b) For any isotropic random field Z(x) on the product of spheres, the “margin-
al” random fields Z(·, x2) (for a fixed x2) and Z(x1, ·) (for a fixed x1) are
isotropic random fields on Sd1 and Sd2 , respectively.

(c) An isotropic random field is of constant variance; Var(Z(x)) = E(Z(x)2) =
Kiso(1, 1) ∈ [0,∞), for every x ∈ T

d1,d2 .

The functions Kiso above can be expressed uniquely by the following series
expansion (Guella et al., 2015)

Kiso(t1, t2) =
∑

k=(k1,k2)∈N2
0

bkC
d1−1

2
k1

(t1)C
d2−1

2
k2

(t2), t1, t2 ∈ [−1, 1], (2.3)
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where the coefficients bk are non-negative and satisfy∑
k∈N2

0

bkC
d1−1

2
k1

(1)C
d2−1

2
k2

(1) < ∞, (2.4)

where we denoted by Cλ
k the Gegenbauer polynomial of degree k and order λ > 0

and by C0
k the Chebyshev polynomials (Szegő, 1939) and N0 := {0, 1, 2, . . . }.

Properties of orthogonal polynomials, necessary for our study, have been de-
ferred to the Appendix. At this point we just recall that Chebyshev and Gegen-
bauer polynomials maximize at 1. In particular, the Chebyshev polynomials
satisfy |C0

k(t)| ≤ C0
k(1) = 1, for every k ∈ N0 and t ∈ [−1, 1]. Also, for every

d ≥ 2, see equation (4.7.3) in (Szegő, 1939)∥∥C d−1
2

k

∥∥
∞=C

d−1
2

k (1)=
(
k + d− 2

k

)
∼ (k + 1)d−2, for every k ∈ N0. (2.5)

Consequently∥∥C d−1
2

k

∥∥
∞ = C

d−1
2

k (1) ∼ (k + 1)(d−2)+ , for every k ∈ N0, d ∈ N, (2.6)

where (d− 2)+ is as in (1.1).
Therefore the convergence in (2.3) is uniform on the cube [−1, 1]2, thanks to

the two-dimensional M -Weirstrass criterion. Finally, the convergence in (2.4)
takes the equivalent form∑

k∈N2
0

bk(k1 + 1)(d1−2)+(k2 + 1)(d2−2)+ < ∞. (2.7)

3. Regularity properties

Regularity properties of random objects are of fundamental importance in their
estimation and/or approximation. Regularity spaces have been employed for
decades in density estimation, regression, image compression, signal processing,
neural networks and many more. Our first target is to explore the regularity of
Gaussian random fields on the product of spheres, and this will be achieved by
studying their covariance function, in the spirit of Lang and Schwab (2015).

3.1. Sobolev spaces

In the framework of the product of spheres, the domain of the covariance kernels
is the square [−1, 1]2; see (2.3). Therefore we shall work with the following class
of weighted square integrable functions:

We define the weighted Lebesgue space L2
(d1,d2) := L2

(d1,d2)
(
[−1, 1]2

)
, d1, d2 ∈

N, as the class of all functions u : [−1, 1]2 → R such that

‖u‖2
L2

(d1,d2)
:=

∫ 1

−1

∫ 1

−1
|u(t1, t2)|2

(
1 − t21

) d1−2
2

(
1 − t22

) d2−2
2 dt1dt2 < ∞. (3.1)
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Every function u ∈ L2
(d1,d2) can be uniquely represented as

u =
∑
k∈N2

0

ukC
d1,d2
k (convergence in L2

(d1,d2)), (3.2)

where
Cd1,d2

k (t1, t2) := C
d1−1

2
k1

(t1)C
d2−1

2
k2

(t2), (3.3)

for every k = (k1, k2) ∈ N2
0 and t1, t2 ∈ [−1, 1] (more details may be found in

the Appendix). The sequence of coefficients {uk}k∈N2
0

is referred as the spectrum
or the Fourier coefficients of the function u.

Since our functions are defined on the product domain [−1, 1] × [−1, 1], the
two different variables may enjoy completely different regularities. This can be
easily understood since the phenomenon under study may behave completely
differently in space or direction and time. For this purpose we will study not
only classical Sobolev spaces, but also anisotropic Sobolev spaces and Sobolev
spaces with dominating mixed smoothness. We proceed to their definitions, which
involve partial derivatives and weighted Lebesgue norms as in (3.1).

Definition 3.1. Let u : [−1, 1]2 → R and some non-negative integers N , n and
m. We say that u belongs to the

(i) (Classical) Weighted Sobolev space WN := WN
(
[−1, 1]2

)
when

‖u‖2
WN := ‖u‖2

L2
(d1,d2)

+
∑

n1+n2=N

∥∥∂(n1,n2)u
∥∥2
L2

(d1+2n1,d2+2n2)
< ∞. (3.4)

(ii) Weighted Sobolev space with dominating mixed smoothness
DW (n,m) := DW (n,m)([−1, 1]2

)
when

‖u‖2
DW (n,m) := ‖u‖2

L2
(d1,d2)

+
∥∥∂n

1 u
∥∥2
L2

(d1+2n,d2)

+
∥∥∂m

2 u
∥∥2
L2

(d1,d2+2m)
+
∥∥∂(n,m)u

∥∥2
L2

(d1+2n,d2+2m)
< ∞. (3.5)

(iii) Anisotropic weighted Sobolev space W (n,m) := W (n,m)([−1, 1]2
)

when

‖u‖2
W (n,m) := ‖u‖2

L2
(d1,d2)

+
∥∥∂n

1 u
∥∥2
L2

(d1+2n,d2)
+

∥∥∂m
2 u

∥∥2
L2

(d1,d2+2m)
< ∞. (3.6)

Note that in the above definition, which is inspired by (Schmeisser and
Triebel, 1987) and (Xu, 2018), all the derivatives should be understood in
the weak (distributional) sense. For this notion and for further information on
Sobolev spaces, we refer the reader to the book Adams and Fournier (2003).

A classical property of Sobolev spaces (see Adams and Fournier, 2003; Schmeisser
and Triebel, 1987) is

‖u‖2
WN ∼

∑
n1+n2≤N

∥∥∂(n1,n2)u
∥∥2
L2

(d1+2n1,d2+2n2)
, (3.7)
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1

5

4 5 ∂
∂x1

∂
∂x2

Fig 3.1. W 5: All the derivatives of order ≤ 5, so all the vertices inside the triangle with edges
(0, 0), (0, 5) and (5, 0). DW (4,1): The vertices in the area of the orthogonal (0, 0), (0, 1), (4, 1)
and (4, 0). W (4,1): The vertices in the area of the triangle (0, 0), (0, 1) and (4, 0).

which gives the following inclusions between the three spaces:

Wn+m ⊂ DW (n,m) ⊂ W (n,m), for every n,m ∈ N0. (3.8)

What makes these spaces different is the way that they count the regularity of
a function. In Figure 3.1 we indicate the derivatives that are counted for the
spaces in a specific example.

3.2. Sequence spaces

We proceed by introducing the following sequence spaces which will be crucial
in our study. We will extensively use the following function

τ(d) :=
{
d− 3, d > 1
0, d = 1

, (3.9)

which naturally appears because the Chebyshev polynomials —that correspond
to the coordinate sphere S1 (i.e. the circle)— present different behaviour than
the Gegenbauer polynomials C

d−1
2

k , for d > 1; see Section 8.1.

Definition 3.2. Let n,m ∈ N0. Then �(n,m) := �
(n,m)
(d1,d2) is defined as the class

of all sequences bk : N2
0 → R such that.∑

k=(k1,k2)∈N2
0

b2k(k1 + 1)τ(d1)+2n(k2 + 1)τ(d2)+2m < ∞. (3.10)
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3.3. Equivalence of kernel regularity and summability of spectrum
coefficients

We are now ready to present the main result of this section. This is a necessary
and sufficient condition for a covariance kernel Kiso to belong in a regularity
space, in terms of the coefficients uk. This follows as a consequence of a very
broad result that we present first.

Theorem 3.3. Let u ∈ L2
(d1,d2) and N,n,m ∈ N0. Then, u belongs (either) to

the spaces WN , DW (n,m) or W (n,m) if and only if, respectively, the sequence
{uk} of Fourier coefficients in the expansion (3.2), belongs to
(i) the space

⋂N
ν=0 �

(ν,N−ν) and precisely

‖u‖2
WN ∼

N∑
ν=0

∑
k∈N2

0

u2
k(k1 + 1)2ν+τ(d1)(k2 + 1)2(N−ν)+τ(d2); (3.11)

(ii) the space �(n,m) and precisely

‖u‖2
DW (n,m) ∼

∑
k∈N2

0

u2
k(k1 + 1)2n+τ(d1)(k2 + 1)2m+τ(d2); (3.12)

(iii) the space �(n,0) ∩ �(0,m) and precisely

‖u‖2
W (n,m) ∼

∑
k∈N2

0

u2
k(k1 + 1)2n+τ(d1)(k2 + 1)τ(d2) (3.13)

+
∑
k∈N2

0

u2
k(k1 + 1)τ(d1)(k2 + 1)2m+τ(d2),

where the function τ is defined in (3.9).

The result above narrows as follows for kernels Kiso : [−1, 1]× [−1, 1] → R of
the form (2.3).

Corollary 3.4. Let {Z(x) : x ∈ Td1,d2} be an isotropic random field on Td1,d2 ,
with covariance kernel Kiso be as in (2.3) and n,m ∈ N0. Then, the function

(1 − t21)
n
2 (1 − t22)

m
2
∂n

∂tn1

∂m

∂tm2
Kiso(t1, t2), (t1, t2) ∈ [−1, 1]2,

belongs to L2
(d1,d2) if and only if the sequence

{bk(k1 + 1)(2n+τ(d1))/2(k2 + 1)(2m+τ(d2))/2}k∈N2
0
,

with bk determined from (2.3), belongs to �2(N2
0).

To streamline the presentation of the study, the proofs of Theorem 3.3 and
Corollary 3.4 are provided in Section 8.2, following all the necessary background
and some auxiliary lemmata.
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4. Hölder continuity

Hölder continuity asserts that short variations on the index domain, imply short
changes in the values of the function. In this section we study this property for
random fields on the product of spheres, in the spirit of Cleanthous et al. (2020)
and Lang and Schwab (2015). We start by obtaining such properties on the
covariance kernel and we transfer the property on the original random field.

As was the case for Sobolev spaces, we have different norms for measuring
the continuity. We use classical and mixed Hölder spaces.

Definition 4.1. Let u : [−1, 1]2 → R and δ, δ1, δ2 ∈ (0, 1]. We say that u belongs
to the

(i) (Classical) Hölder space Hδ := Hδ
(
[−1, 1]2

)
when

‖u‖Hδ := sup
t�=s

|u(t) − u(s)|
|t− s|δ < ∞, (4.1)

where |r| =
√
r2
1 + r2

2, for every r = (r1, r2) ∈ [−1, 1]2. A function u ∈ Hδ is
use to be referred as Hölder continuous of order δ.

(ii) Mixed Hölder space H(δ1,δ2) := H(δ1,δ2)([−1, 1]2) when

‖u‖H(δ1,δ2) := sup
t2∈[−1,1]

sup
t1 �=s1

|u(t1, t2) − u(s1, t2)|
|t1 − s1|δ1

+ sup
t1∈[−1,1]

sup
t2 �=s2

|u(t1, t2) − u(t1, s2)|
|t2 − s2|δ2

< ∞. (4.2)

We will say that the function u ∈ H(δ1,δ2) is Hölder continuous of order (δ1, δ2).

We present here the following result containing conditions on the spectrum,
sufficient for the kernel Kiso to be Hölder continuous. This time we need the
�1-summability of the spectrum. The proof can be found in Section 8.3.

Theorem 4.2. Let Z be an isotropic random field on T
d1,d2 and let Kiso be as

in (2.3). Let δ, δ1, δ2 ∈ (0, 1].
(i) If∑

k∈N2
0

bk(k1 + 1)(d1−2)+(k2 + 1)(d2−2)+
(
(k1 + 1)2 + (k2 + 1)2

)δ
< ∞, (4.3)

then Kiso ∈ Hδ.
(ii) If ∑

k∈N2
0

bk(k1 + 1)(d1−2)++2δ1(k2 + 1)(d2−2)+

+
∑
k∈N2

0

bk(k1 + 1)(d1−2)+(k2 + 1)(d2−2)++2δ2 < ∞,
(4.4)

then Kiso ∈ H(δ1,δ2).
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4.1. Moments of |Z(x) − Z(y)|

We use Theorem 4.2 to obtain Hölder bounds for the p-moments of the difference
|Z(x)−Z(y)|, in terms of the distance on the product of spheres, which is defined
as follows: for x = (x1, x2) and y = (y1, y2) in Td1,d2 , we set

ρ(x,y) :=
√
ρ2
Sd1 (x1, y1) + ρ2

Sd2 (x2, y2),

where ρSdi = arccos(〈xi, yi〉i) is the standard metric in Sdi , for i = 1, 2.
Of course, other choices (like the maximum or the sum of ρSdi ) are equivalent

metrics with ρ, as it holds for the Cartesian product of metric spaces in general
(Folland, 2009, page 13). We present here the next theorem, and its proof can
be found in Section 8.3:

Theorem 4.3. Let Z be an isotropic Gaussian random field on T
d1,d2 , with

covariance isotropic kernel function Kiso as in (2.3), and assume that the se-
quence {bk}k satisfies (4.3) for some δ ∈ (0, 1]. Then, for every p ∈ N, there
exists a constant c = cδ,p > 0 such that for every x,y ∈ T

d1,d2

E
(
|Z(x) − Z(y)|2p

)
≤ cρ(x,y)2pδ. (4.5)

5. Approximation of Gaussian random fields on T
d1,d2

In this section we study Gaussian random fields on the product of spheres with
a Karhunen-Loéve type expansion, with covariance satisfying (2.3). We also
provide an approximation method for such random fields and study its level of
accuracy. The theoretical findings are illustrated by simulations.

5.1. Harmonic analysis on the sphere S
d

We recall some standard background on analysis on the sphere; see for example
Marinucci and Peccati (2011) and Yadrenko (1983).

Let Δ be the Laplace-Beltrami operator defined over Sd. The spectrum of Δ
is discrete, real and non-positive, with eigenvalues given by λk = −k(k + d− 1)
for k ≥ 0 (Szegő, 1939). Let Hk be the eigenspace that corresponds to the
eigenvalue λk, then (see Yadrenko (1983))

L2(Sd) =
∞⊕
k=0

Hk.

Let {Sd
k,� : k ∈ N0, � = 1, 2, . . . , Dk(d)} be an orthonormal basis of Hk whose

dimension, Dk(d), equals Dk(1) = 2 and

Dk(d) = dimHk = (2k + d− 1)(k + d− 2)!
k!(d− 1)! , d ≥ 2. (5.1)
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From (5.1) it becomes apparent that there exists a constant cd ≥ 1 such that

c−1
d (k + 1)d−1 ≤ Dk(d) ≤ cd(k + 1)d−1. (5.2)

The last can be easily verified for d ≤ 2, since Dk(2) = 2k + 1. For d ≥ 3,
we have 2(k + 1) ≤ 2k + d− 1 ≤ (d− 1)(k + 1). Also (k+d−2)!

k! =
∏d−2

j=1(k + j)!,
therefore

(k + 1)d−2 ≤
d−2∏
j=1

(k + j)! ≤ (k + (d− 2))d−2 ≤ (d− 2)d−2(k + 1)d−2,

which completes the argument.
The functions Sd

k,� are the well-known spherical harmonics on S
d, and they

satisfy the following addition formula; Yadrenko (1983) page 72:

Dk(d)∑
�=1

Sd
k,�(x)Sd

k,�(y) = Dk(d)
ωd

ck(d; 〈x, y〉) (5.3)

where ωd = 2π(d+1)/2/Γ((d + 1)/2) is the total area of Sd, with

ck(d; r) =
C

d−1
2

k (r)

C
d−1
2

k (1)
, r ∈ [−1, 1].

5.2. Gaussian random fields on the product of spheres

We consider real valued, Gaussian random fields satisfying the following expan-
sion of Karhunen-Loéve type:

Z(x) =
∑
k∈N2

0

Dk1 (d1)∑
m1=1

Dk2 (d2)∑
m2=1

αk,mSd1
k1,m1

(x1)Sd2
k2,m2

(x2), (5.4)

for every x = (x1, x2) ∈ T
d1,d2 , where αk,m is a sequence of random variables

satisfying
E(αk,m) = 0, (5.5)

E(αk,mαk′,m′) = δk1,k′
1
δk2,k′

2
δm1,m′

1
δm2,m′

2
Bk, (5.6)

for some sequence (Bk)k∈N2
0

of non-negative numbers, which we refer to as the
angular power spectrum and∑

k∈N2
0

Bk
Dk1(d1)
ωd1

Dk2(d2)
ωd2

< ∞. (5.7)

Combining the addition formula (5.3) for the spherical harmonics together
with relations (5.5) and (5.6), we see that the random field is isotropic and
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KZ(x,y) = Kiso
(
〈x1, y1〉1, 〈x2, y2〉2

)
, for every x = (x1, x2), y = (y1, y2) ∈

T
d1,d2 , where

Kiso(t1, t2) =
∑
k∈N2

0

Bk
Dk1(d1)
ωd1

Dk2(d2)
ωd2

ck1(d1; t1)ck2(d2; t2). (5.8)

It is apparent by (2.3) and (5.8) that Bk and bk are related through the
identity

Bk = bk
ωd1

Dk1(d1)
ωd2

Dk2(d2)
C

d1−1
2

k1
(1)C

d2−1
2

k2
(1). (5.9)

We will study the approximation of random fields as in (5.4). For doing
this, let {Xk,m : k ∈ N

2
0, mi = 1, . . . , Dki(di), i = 1, 2} be the sequence of

independent, standard normally distributed random variables given by Xk,m =
αk,m√
Bk

. The random field (5.4) can be rewritten as

Z(x) =
∑
k∈N2

0

√
Bk

Dk1 (d1)∑
m1=1

Dk2 (d2)∑
m2=1

Xk,mSd1
k1,m1

(x1)Sd2
k2,m2

(x2).

We introduce now the following random fields which consist of a truncated
version of the above series, by summing only a certain finite number of their
first terms. For N ∈ N, we set

ZN (x) :=
∑

|k|≤N

√
Bk

Dk1 (d1)∑
m1=1

Dk2 (d2)∑
m2=1

Xk,mSd1
k1,m1

(x1)Sd2
k2,m2

(x2), (5.10)

which is the truncated version of the expansion (5.4) of the initial random
field Z.

The following theorem characterizes the rate of convergence of the error be-
tween Z and ZN in Lp and P-almost sure sense in terms of the angular power
spectrum. For this we need �∞-conditions (decay for the angular power spec-
trum).

Theorem 5.1. Let Z be a Gaussian random field on T
d1,d2 given by (5.4).

Assume that the angular power spectrum
(
Bk

)
k∈N2

0
decays as follows: there exist

ε > 0, c∗ > 0 and N0 ∈ N, such that

Bk ≤ c∗
(
1 + |k|2

)−ε− d1+d2
2 , for all |k| ≥ N0. (5.11)

Then the series of approximate random fields {ZN}N∈N converges to the random
field Z in the following senses:

(i) in L2(Ω, L2(Td1,d2)
)

and precisely there exists a constant c = c(d1, d2, p) >
0 such that the truncation’s error to be bounded by∥∥Z − ZN

∥∥
L2(Ω,L2(Td1,d2 )) ≤ c

√
c∗
ε
N−ε, for every N > N0; (5.12)
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(ii) in Lp
(
Ω, L2(Td1,d2)

)
for every p > 0 and precisely there exists a constant

c = c(d1, d2, p) > 0 such that the truncation’s error to be bounded by

∥∥Z − ZN
∥∥
Lp(Ω,L2(Td1,d2 )) ≤ c

√
c∗
ε
N−ε, for every N > N0. (5.13)

(iii) P-almost surely and the truncation’s error is asymptotically bounded by∥∥Z − ZN
∥∥
L2(Td1,d2 ) ≤ N−γ , P-a.s, for every γ < ε. (5.14)

For streamlining the presentation of the article, we postpone the proof until
the Appendix.

Remark 5.2. Some remarks on the above theorem are listed here.
(a) The relation between Bk and bk, by combining relations (5.9), (5.2) and

(2.6), is as follows:

Bk ∼ bk

2∏
i=1

(ki + 1)(di−2)+−di+1. (5.15)

For later use we mention that the sufficient condition on the decay of bk’s for
the case of T1,1 takes the form:

bk ≤ c
(
1 + |k|2

)−δ
, for some δ > 1. (5.16)

(b) Similar truncated approximations have been obtained on the sphere Lang
and Schwab (2015), Alegría et al. (2021), the ball Cleanthous (2023), compact
two-point homogeneous spaces Cleanthous et al. (2020), and their products with
real numbers Cleanthous et al. (2021). The corresponding series in the above
papers are series of some index k from 0 to ∞ and can be truncated by just
limiting k by some natural number N , which we later send to infinity. Here we
need to truncate a series of k ∈ N2

0. Therefore, we truncate in the above “polar”
way, stopping |k| ≤ N . The proof will of course follows the spirit of the existing
works, but technically it requires bi-variate treatments.

(c) The above (quasi-)norms Lp(Ω, L2(Td1,d2)) are the natural measures for
the expected risk, expressed in the case of product of spheres. For reasons of
completeness and brevity, we present them in the Appendix (8.41).

5.3. Simulations

We illustrate the theoretical developments using simulations. This section fo-
cuses on the special case of random fields Z(x) indexed by x = (x1, x2) ∈ T1,1.
Note that both x1 and x2 are fully characterized by angles ϑ1 and ϑ2 in [0, 2π),
respectively. Hence, here we are using an abuse of notation Z(ϑ), where ϑ =
(ϑ1, ϑ2). The Karhunen-Loève expansion of Z(ϑ) is given by a double Fourier
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series, which is the natural extension of the representation of a field on a circle
(see, e.g., Equation (14) in Yadrenko, 1983, page 74):

Z(ϑ) =
∑
k∈Z2

αk exp
{
ık�ϑ

}
, (5.17)

where ı is the complex unit and αk is a sequence of random coefficients. In order
to obtain a real-valued random field, we formulate the following conditions on
the coefficients: (C1) α0 is real valued; (C2) α−k = αk. We then write (5.17) in
the following manner:

Z(ϑ) = α0 +
∑

k1∈Z\{0}
αk1,0 exp{ık1ϑ1} +

∑
k2∈Z\{0}

α0,k2 exp{ık2ϑ2}

+
∑
k∈N2

αk exp
{
ık�ϑ

}
+

∑
−k∈N2

αk exp
{
ık�ϑ

}
+

∑
(−k1,k2)∈N2

αk exp
{
ık�ϑ

}
+

∑
(k1,−k2)∈N2

αk exp
{
ık�ϑ

}
Under conditions (C1)-(C2), and using the fact that ab + ab = 2Re(ab) =

2(Re(a)Re(b) − Im(a)Im(b)), for every a, b ∈ C, straightforward calculation
shows that Z(ϑ) can be explicitly written as

Z(ϑ) = X0 + 2
∞∑

k1=1

{
Xk1,0 cos(k1ϑ1) + Yk1,0 sin(k1ϑ1)

}

+ 2
∞∑

k2=1

{
X0,k2 cos(k2ϑ2) + Y0,k2 sin(k2ϑ2)

}

+ 2
∑
k∈N2

{
Xk1,k2 cos(k1ϑ1 + k2ϑ2) + Yk1,k2 sin(k1ϑ1 + k2ϑ2)

}

+ 2
∑
k∈N2

{
X̃k1,k2 cos(−k1ϑ1 + k2ϑ2) + Ỹk1,k2 sin(−k1ϑ1 + k2ϑ2)

}
, (5.18)

where Xk, Yk, X̃k and Ỹk are the following real-valued random variables:
Xk1,k2 = Re(αk1,k2), Yk1,k2 = −Im(αk1,k2), X̃k1,k2 = Re(α−k1,k2) and Ỹk1,k2=

− Im(α−k1,k2) and X0 = α0.
Assume that all these random variables are uncorrelated, with var(X0) =

b0, whereas for positive indices k1 and k2, var(Xk1,0) = var(Yk1,0) = bk1,0/4,
var(X0,k2) = var(Y0,k2) = b0,k2/4, and var(Xk) = var(Yk) = var(X̃k) = var(Ỹk)
= bk/8.

The absence of correlation among the coefficients, together with standard
trigonometric identities implies that the random field (5.18), has a covariance
function given by

cov{Z(ϑ), Z(ϑ′)} =
∑
k∈N2

0

bk cos(k1s) cos(k2t), (5.19)
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Fig 5.1. Simulated random fields on T1,1, over a grid of size 500 × 500, with N = 200, and
angular power spectrum bk = (τ2 + |k|2)−δ. We have considered four cases: (τ2, δ) = (10, 3),
(τ2, δ) = (100, 3), (τ2, δ) = (10, 2), and (τ2, δ) = (100, 2) (from top left to bottom right).

where s is the geodesic distance between ϑ1 and ϑ′
1, and t is the geodesic distance

between ϑ2 and ϑ′
2. It worth mentioning that our obtained expression (5.19)

consists of the bi-variate analogous of expression (12) in Yadrenko (1983), page
74.

A truncation of (5.18), as in (5.10), can be used to simulate random fields
with a prescribed angular power spectrum. Figure 5.1 shows simulated random
fields on T1,1, over a grid of size 500 × 500, with N = 200, using the angular
power spectrum bk = (τ2 + |k|2)−δ, for different values of τ2 > 0 and δ > 1.
Here, τ2 controls the range of the field, i.e., it regulates the distance at which
the spatial correlation is negligible, whereas δ is a parameter responsible for the
smoothness of the sample paths. We have only reported half of the surface of
T

1,1 in order to obtain a better visualization.
We turn to a numerical validation of the truncation error derived in the pre-

vious subsection. We simulate a random field over 100 uniformly sampled coor-
dinates, from the same angular power spectrum described above with τ2 = 10
and two values for δ = 2, 3. Note that the condition (5.11) of Theorem 5.1
is satisfied with ε = δ − 1. The “true” random field is taken as the trun-
cated expansion with N = 500 according to (5.10). We gradually truncate
the expansion at different values of N and measure the discrepancy between
the truncated and “true” fields, in a similar fashion to the works of Lang and
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Fig 5.2. Convergence rates in terms of N in a logarithmic scale, for δ = 2 (left) and δ = 3
(right). The empirical convergence rate is given by the black line, whereas the theoretical one
is given by the blue line. The red lines indicate the 100 independent repetitions that were
averaged to approximate the integral over the probability space and construct the black line.

Schwab (2015) and Clarke et al. (2018). The uniformly distributed coordinates
and 100 independent repetitions of this experiment allow us to approximate
the integrals involved in

∥∥Z − ZN
∥∥2
L2(Ω,L2(T1,1)) by means of a Monte Carlo

argument. Figure 5.2 shows the results. Specifically, we display the decay of
the empirical (mean squared) errors in terms of N , in a logarithmic scale, and
draw artificial lines with the expected theoretical slopes. According to (5.12),
log ‖Z −ZN‖2

L2(Ω,L2(Td1,d2 )) ≤ c− 2ε logN , i.e. decreases as a linear function of
logN , with slope −2ε = −2(δ − 1). Figure 5.2 clearly shows that the empirical
error matches with the theoretical one for δ ∈ {2, 3}, as expected.

6. Data illustrations and methods

In this section we illustrate modeling data using truncated expansion of (2.3).
We consider two datasets: wind speed data from a U.S. Climate Reference Net-
work (USCRN) monitoring station near Provo, UT, USA (Diamond et al., 2013)
and National Centers for Environmental Prediction/National Center for Atmo-
spheric Research (NCEP/NCAR) global cloud cover reanalysis data (Kalnay
et al., 1996). Our focus of this analysis is to (1) discuss a modeling framework
for these data, (2) discuss how directional, seasonal, and global data can be
viewed as quantities on the product of spheres, and (3) assess model perfor-
mance as a function of number of terms included in the truncation of (2.3).
For these examples, as in Porcu and White (2022), we use covariance models
over R× T

d1,d2 , where R accounts for temporally decaying autocovariance pat-
terns. The code and datasets supporting these results are available on https://
github.com/philawhite/Torus_code2.

https://github.com/philawhite/Torus_code2
https://github.com/philawhite/Torus_code2
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To make renewable energy sources more effective and economical, forecasting
wind speed has been given particular attention in the statistics literature (see,
e.g., Gneiting et al., 2006; Hering and Genton, 2010; Ezzat et al., 2019). In con-
trast to these forecasting models, we present a descriptive analysis of wind speed
using a Gaussian process model with covariance over R × T

1,1 to account for
temporal, seasonal, and directional autocorrelation. Using covariance functions
over the circle have been used to capture seasonality (see Shirota and Gelfand,
2017b; Mastrantonio et al., 2019; White and Porcu, 2019a). Similarly, directional
outcomes have been modeled using projections on the circle (Jona-Lasinio et al.,
2012; Wang and Gelfand, 2014). In addition to our covariance model, we use
maximum five-minute air temperature, maximum relative humidity, and total
solar radiation as predictors (covariates) to explain wind speed.

We also consider a random subset of global monthly-averaged cloud cover-
age data derived from the 2017 NCEP/NCAR reanalysis data (Kalnay et al.,
1996). Cloud coverage has been affected by climatic changes (see, e.g., Wylie
et al., 2005), where cloud coverage is the fraction of the sky covered with visible
clouds. Because cloud coverage is closely related to solar radiation levels (see,
e.g., Wang et al., 2018; Gandoman et al., 2018), rainfall (see Karbalaee et al.,
2017), and ecosystem stability (see Pounds et al., 1999), cloud coverage changes
have widespread effects. These cloud coverage data are irregularly-sampled, in
both space and time, and globally distributed, showing temporal, spatial, and
seasonal autocorrelation. However, unlike most seasonal data, we only observe a
single cycle. Together, these attributes motivate a covariance model over time,
the globe, and season (R × T

2,1). Cloud coverage is nonlinearly connected to
latitude and dependent on whether the location is over water or land. For these
reasons, we include a cubic basis spline for latitude (with knots at −30◦ and
30◦) and absolute latitude as covariates. We also include interactions between
these latitude functions and an indicator variable for whether the location is
land-bound or over water. Moreover, the relationships between these covariates
and cloud coverage are modeled dynamically.

For both datasets, we define y to be the outcome of interest, and we let X be
a design matrix, including a column of ones, where the rows of X are indexed
by the same quantities (e.g., time and location) as the outcome. Our model is

y ∼ N
(
Xβ,Σ + τ2I

)
, (6.1)

where β are regression coefficients, including an intercept term, and τ2 is a
variance term accounting for residual error. The ith row and jth column of
the covariance matrix Σ is defined using the product of (1) an exponential
correlation function of time difference |ti − tj | and (2) a truncated expansion
of (2.3), using Gegenbauer polynomials of order up to and including K1,K2 ∈ N,

e−φ|ti−tj |
K1∑

k1=0

K2∑
k2=0

bk1,k2C
d1−1

2
k1

(cos r1ij)C
d2−1

2
k2

(cos r2ij), (6.2)

where r1ij and r2ij are great circle distances over the appropriate domains. The
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parameters bk1,k2 , for k1 ∈ {0, ...,K1} and k2 ∈ {0, ...,K2}, account for the scale
of covariance over the product of spheres and time.

We use the following prior distributions on covariance parameters:

bk1,k2
iid∼ Half-Cauchy(0, 1), for k1, k2 ∈ {0, ...,K},

τ2 ∼ Half-Cauchy(0, 1),
φ ∼ Gamma(aφ, bφ),

(6.3)

where the Gamma(a,b) distribution has mean a/b. We choose Half-Cauchy prior
distributions because it is a well-behaved default prior distribution for variance
components that may be close to 0. Gelman (2006) and Polson and Scott (2012)
recommend a half-Cauchy prior distribution because its thick tail is approxi-
mately uniform in the tail, yet it is weakly informative near the origin. Thus,
this prior distribution avoids some of the poor behavior of the more standard
inverse-gamma prior distribution. Moreover, because the datasets have low sam-
ple variance, 0.5 and 1, respectively, the Half-Cauchy prior distributions are very
diffuse. We choose the prior distributions for φ based on the time scale and our
exploratory analyses. We use Normal prior distribution on regression coefficients
β. For both φ and β, our specifications are different in the two data analyses
and are discussed in more detail in their respective sections.

We fit models using Markov chain Monte Carlo (MCMC). We run the sampler
for 60,000 iterations, discarding the first 30,000 iterations. Because the posterior
conditional distribution for β is Normal, we sample its conditional distribution
directly. No other parameters have closed-form posterior conditional distribu-
tions. Therefore, we sample all bk1,k2 , τ2 and φ jointly on the log-scale using
multivariate Normal proposals for Metropolis-Hastings updates. We tune the
candidate covariance of the multivariate normal using previously accepted sam-
ples, an adaptive MCMC approach described in Haario et al. (2001). We also
tune the scaling factor of the covariance to obtain an acceptance rate between
0.1 and 0.6 (Roberts and Rosenthal, 2009). We initialize β using least-squares
estimates from a multiple regression model, bk1,k2 using least-squares fits to em-
pirical covariances, and φ based on our exploratory analyses. All code is available
at https://github.com/philawhite/Torus_code2.

6.1. Wind speed data analysis

This dataset consists of n = 2205 average hourly wind speed measurements
in m/s from March-May of 2019. The data are missing three measurements,
and, for the model we pose, there is no need to impute missing observations.
However, this approach could be used to infill missing values. We model the
log(·+ 1) of the observed values to stabilize the mean-variance relationship and
call this quantity log wind speed.

In the top row of Figure 6.1, we plot the average log wind speed over hour-
of-day and wind direction. These data show strong seasonality over the time
of day and clear nonlinear trends over wind direction. Even after accounting

https://github.com/philawhite/Torus_code2
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Fig 6.1. (Top-Left) Average log wind speed over hour of day and wind angle, (Top-Center)
Average log wind speed over wind angle, (Top-Right) Log wind speed averaged over hour of
day, (Bottom-Left) Residuals of log wind speed averaged hour of day and wind angle, (Bottom-
Center) Empirical binned semivariogram as a function of difference in wind direction angle,
(Bottom-Right) Residual autocorrelation as a function of lagged hours.

for temperature, relative humidity, and total solar radiation, there are strong
residual trends in wind direction and weak daily seasonality (See the bottom
row of Figure 6.1), motivating a covariance model over T1,1. Lastly, the decaying
temporal autocorrelation pattern in Figure 6.1 indicates the need to account for
autocorrelation decay, including R in the covariance function.

Representing time ti in units of hours from the beginning of January 2019,
the ith element of the observation vector y is the log-transformed wind speed
y(ti) ∈ R. We define the design matrix X using centered-and-scaled tempera-
ture, relative humidity, and total solar radiation, with rows x(ti) observed at
time ti. We let wind direction (in radians) be a(ti) ∈ (0, 2π), and define distances
for (6.2) as

r1ij = arccos
[
cos

(
π|ti − tj |

12

)]
,

r2ij = arccos [cos (a(ti) − a(tj))] ,

and consider expansions of (6.2) where K1 = K2 = K. For this dataset, we use
a weakly-informative prior distribution for the regression coefficients,

β ∼ N (0, 100I) .
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Fig 6.2. (Left) D̄, pD, and DIC as a function of the order of Gegenbauer polynomials, (Right)
Estimated model complexity pD compared to number of parameters.

Lastly, we choose a Gamma(2,72) prior distribution for φ because, from our
exploratory analysis, the autocorrelation of residuals persists for approximately
36 hours.

We explore the fit of the model in terms of order K of Gegenbauer polyno-
mials used (i.e., the truncation point). After fitting the model using MCMC,
we calculate the deviance information criterion (DIC), mean deviance (D̄), es-
timated model complexity (pd, i.e., the effective number of parameters), and
number of parameters (See Figure 6.2). We see clear improvements in fit D̄ up
to K = 5; however, there is little improvement increasing to K = 6, as we see
an increase (worsening) in DIC. Figure 6.2 shows that the effective number of
parameters pd tracks closely with the number of parameters.

For the model with the lowest DIC, K = 5, we analyze the output of the
model. First, we give posterior summaries for regression coefficients, the decay
parameter φ, and the estimated residual variance divided by the sample variable
in Table 1. Because the covariates were centered and scaled, we can interpret
the relative importance of the covariates by the magnitude of the corresponding
coefficients. All covariates have 95% credible intervals that exclude 0, and max-
imum temperature has the strongest estimated relationship with wind speed.
Aligning with our exploratory analyses, the estimated φ suggests that temporal
autocovariance in log wind speed persists for one or two days (24-48 hours).
Lastly, the ratio of estimated residual variance to sample variance is 0.03, sug-
gesting that this model explains the vast majority of the variability in the data.

We calculate the covariance over a grid of wind direction differences and time
differences for each posterior sample and take the posterior mean over this grid
(See Figure 6.3). This posterior covariance surface shows that the wind direction
and temporal decay are the most evident covariance patterns after accounting
for covariates. The seasonal autocorrelation is, however, apparent (See gray ver-
tical lines in Figure 6.3. When interpreted with respect to the estimated ratio
of residual variance and sample variance, as well as our exploratory analyses, it
is evident that the covariance model posed here effectively captures the autoco-
variance present in the data.
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Table 1

Posterior summaries for regression coefficients and estimated ratio of unexplained variance
to sample variance.

Mean Std. Dev. 2.5% 97.5%
Intercept 1.505 0.104 1.307 1.709

Maximum Temperature 0.380 0.031 0.317 0.440
Maximum Relative Humidity −0.103 0.019 −0.139 −0.069

Total Shortwave Radiation 0.055 0.017 0.020 0.087
Temporal Covariance Decay φ 0.023 0.003 0.018 0.029

τ2/(sample variance) 0.026 0.003 0.020 0.032

Fig 6.3. Posterior mean covariance as a function of wind direction and time differences.

6.2. NCEP/NCAR monthly-averaged cloud coverage analysis

We examine a dataset of 3,600 monthly-averaged cloud coverage observations
over 2017 coming from 1,727 unique locations. Most sites are unobserved for
most months. We center and scale the observed cloud coverages so that the
dataset has a mean of zero and variance of one.

As a preliminary analysis, we fit a model using absolute latitude and cubic
basis splines of latitude with knots at −30◦ and 30◦ for each month. In addition,
we include the interaction between these latitude functions and an indicator for
land or sea. We then assess spatial and temporal patterns in the residuals to mo-
tivate our covariance modeling approach. First, we calculate an empirical binned
semivariogram and plot the time-averaged (over all months) semivariogram in
Figure 6.4. In addition, we examine autocorrelation as a function of difference
in months for small spatial windows (See Figure 6.4). These plots show clear
spatial and seasonal autocorrelation patterns, as well as some temporal decay
over time.

The ith element of the observation vector y is the scaled monthly-averaged
cloud-coverage y(ti, si) ∈ R, where the associated time ti is in units of months
from the beginning of January 2017 and location is si. We define the required
distances for (6.2) as

r1ij = d(si, sj),
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Fig 6.4. (Left) Time-average semivariogram as a function of great-circle distance, averaged
over all months, (Right) Average temporal autocorrelation as a difference in months.

r2ij = arccos
[
cos

(
π|ti − tj |

6

)]
,

where d(si, sj) ∈ [0, π] is the great-circle distance. We consider expansions
of (6.2), varying K1 and fixing K2 = 3. We found no benefit to including higher
order seasonal terms (K2) in (6.2). Because we consider dynamic coefficients
for latitudinal trends (as discussed previously), we let X have a block-diagonal
structure, where the non-zero blocks consist of month-specific design matrices.
We use a prior distribution for regression coefficients that accounts for temporal
and between-predictor covariance structure:

β ∼ N (1 ⊗ μβ ,R ⊗ V) ,

where V ∼ Inverse-Wishart (I, p + 1), p = 14 is the number of covariates spec-
ifying the land and sea latitude functions, and ith row and jth row of R is
exp (−φβ |i− j|). We choose a Gamma(2,24) prior distribution for φ because
cloud coverage autocorrelation is high after 11 months (Figure 6.4). Lastly, we
use a Gamma(1,2) prior distribution for φβ to allow rapid or slow autocorrela-
tion decay in the regression coefficients.

We explore the fit of the model for various orders of the spatial autocovari-
ance K1 + 1 = 4, 8, 12, 15, 20, where, after fitting each model using MCMC, we
calculate DIC, D̄, and pd (See Figure 6.5). We see clear improvements in fit D̄
up to K1 = 19. Model fitting for more covariance terms K1 was not practically
feasible.

For the model with K1 = 19 and K2 = 3, we present summaries of the
estimated latitudinal trends and space-time covariance. We plot the posterior
mean effect of latitude for all month in Figure 6.6. For land-bound sites, the
estimated effect of latitude appears nearly quadratic but is asymmetric about 0◦.
The estimated effect of latitude over water appears more complicated and is also
asymmetric about 0◦. On average, land-bound observations have lower cloud
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Fig 6.5. D̄, pD, and DIC as a function of the order of Gegenbauer polynomials (K1). Here,
K1 = −1 indicates that this model was an independent errors model.

Fig 6.6. (Left) Latitude trends for cloud coverage for land and water. Each line represents
the posterior mean for one month. (Right) Posterior mean covariance as a function of time
difference and great circle difference.

coverage than observations over water, except close to the equator. Extreme
latitudes have low cloud coverage over land, while this pattern is much weaker
over water.

We calculate the covariance over a grid of great-circle distances and time
differences (in months) for each posterior sample. We use the posterior mean
over this grid and plot this in Figure 6.6. This posterior covariance surface shows
persistent spatial covariance patterns, as well as strong seasonal patterns. As
in Section 6.1, we calculate the estimated ratio of residual variance and sample
variance. We find the posterior mean of this ratio to be 0.135 with 95% credible
interval (0.125,0.145). This indicates that our model explains approximately
86%-87% of the variance in the data.
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7. Final remarks

The framework put forward in this paper is ideal for the study of periodic phe-
nomena in space and for directional data. For the theoretical point of view,
our study tried to be as general as possible by considering the product of two
arbitrary dimensional spheres. We hope that the setting will find its place in
future developments from the side of applications, theory or both. Open direc-
tions such as the study of multivariate random fields, SPDEs, Bayesian analysis’
problems and simulations could be performed in the current framework follow-
ing Lang and Schwab (2015), Alegría et al. (2021) and Clarke et al. (2018). The
process has already been started and some first multivariate study can be found
in Bachoc et al. (2022). The exploration of similar research in the context of
random fields on groups and connected compact two-point homogeneous spaces
is an intriguing subject worthy of attention. Relevant works by Malyarenko and
Olenko (1992), Malyarenko (2004) and Ma and Malyarenko (2020) can provide
valuable insights in this regard.

8. Appendix

We place here the proofs of our results, together with the necessary background
and other auxiliary properties.

8.1. Weighted Lebesgue spaces and orthogonal polynomials

We start with some functional analysis’ properties that guide our study.

Our first target is to construct an orthonormal basis for L2
(d1,d2)

(
[−1, 1]2

)
,

d1, d2 ∈ N, involving the Gegenbauer and Chebyshev polynomials C
di−1

2
ki

, i = 1, 2
aligned with the expression (2.3) established by (Guella et al., 2015).

Let d ∈ N. The space L2
(d) = L2

(d)[−1, 1] is defined as the set of functions
u : [−1, 1] → R which are square integrable with respect to the weight ωd(t) :=
(1 − t2) d−2

2 ; i.e.

‖u‖2
L2

(d)
:=

∫ 1

−1
|u(t)|2(1 − t2)

d−2
2 dt < ∞. (8.1)

L2
(d) is a Hilbert space associated with the inner product

〈u, v〉d :=
∫ 1

−1
u(t)v(t)(1 − t2)

d−2
2 dt, for every u, v ∈ L2

(d).

Let α > −1. Then, (see for example (Szegő, 1939)) the Jacobi polynomials
Pα
k := P

(α,α)
k , k ∈ N0, form an orthogonal basis for L2

(d) for α = d−2
2 .
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Jacobi and Gegenbauer polynomials are connected via the following identity,
which can be found in (Szegő, 1939); equation (4.7.1):

Cλ
k = Γ(λ + 1/2)Γ(k + 2λ)

Γ(2λ)Γ(k + λ + 1/2)P
λ− 1

2
k =: γk(λ)Pλ− 1

2
k , k ∈ N0, λ > 0, (8.2)

where Γ is the well-known Gamma function. It is very important to mention
that because Γ(2λ) → ∞, when λ → 0+, the above representation cannot be
valid for the case C0

k . In the case of our interest the exponent λ corresponds to
d−1
2 ; see (2.3). Thus λ = 0 exactly for d = 1, therefore we must distinguish the

studies of the cases d > 1 and d = 1.

We start with d > 1 and we keep using α = d−2
2 .

By (4.3.3) in (Szegő, 1939) we have∫ 1

−1
Pα
k (t)Pα

k′(t)(1 − t2)αdt = δkk′rk(α), (8.3)

where δkk′ is Kronecker’s delta and rk(α), is given by

rk(α) =
{

22α+1

2k+2α+1
Γ(k+α+1)2
k!Γ(k+2α+1) , k ≥ 1

22α+1 Γ(α+1)2
Γ(2α+2) , k = 0,

and has been estimated in Lemma 4.3 in (Cleanthous et al., 2020) by

rk(α) ∼ (k + 1)−1, for every k ∈ N0, α > −1/2. (8.4)

Using the following basic property of the Gamma function,

Γ(ν + 1 + r) ∼ ν!(ν + 1)r, for every ν ∈ N0 and r /∈ {−1,−2, . . . }, (8.5)

we receive the estimate below for the γk(λ) appearing in (8.2):

γk(λ) ∼ (k + 1)λ−1/2, for every k ∈ N0, λ > 0. (8.6)

With all the above in hand we establish the following orthonormal basis for
L2

(d), when d > 1 that involves the Gegenbauer polynomials:

{
P̃ d
k (t) := βk(d)C

d−1
2

k (t) : k ∈ N0
}
, (8.7)

where

βk(d) := rk

(d− 2
2

)−1/2
γk

(d− 1
2

)−1
∼ (k + 1)−

d−3
2 d ≥ 2, k ∈ N0, (8.8)

in the light of (8.4) and (8.6).

We now turn our attention to the case d = 1. Here we work with the Cheby-
shev polynomials, as can be found in Section 1.7 of (Szegő, 1939) (referred as
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Tchebichef polynomials). For every k ∈ N0 the Chebyshev polynomial of order
k is defined by

C0
k(t) := Tk(t) := cos(k arccos(t)), t ∈ [−1, 1], (8.9)

it is a polynomial of degree k and evidently |C0
k(t)| ≤ 1 = C0

k(1). In the spirit
of (8.3) we have (see e.g. page 60 of (Szegő, 1939), or use a change of variables)∫ 1

−1
C0

k(t)C0
k′(t)

dt√
1 − t2

= δkk′rk

(
− 1

2

)
, where rk

(
− 1

2

)
:=

{
π, k = 0
π
2 , k ≥ 1

.

(8.10)
Thus the sequence {C0

k}k∈N0 is an orthogonal basis for L2
(1) and can be normal-

ized to

P̃ 1
k (t) := rk

(
− 1

2

)−1/2
C0

k(t) =: βk(1)C0
k(t), with βk(1) ∼ 1. (8.11)

As a summary of (8.7), (8.8) and (8.11), for every d ∈ N, the sequence
{P̃ d

k := βk(d)C
d−1
2

k }k∈N0 forms an orthonormal basis for L2
(d) and

βk(d) ∼ (k + 1)−τ(d)/2, where τ(d) :=
{
d− 3, d ≥ 2
0, d = 1

. (8.12)

We are now ready to pass to the product domain [−1, 1] × [−1, 1].
For every d1, d2 ∈ N, L2

(d1,d2) introduced in (3.1) is a Hilbert spaces and the
associated inner product is given by

〈u, v〉d1,d2 :=
∫ 1

−1

∫ 1

−1
u(t1, t2)v(t1, t2)

(
1 − t21

) d1−2
2

(
1 − t22

) d2−2
2 dt1dt2, (8.13)

for every u, v ∈ L2
(d1,d2).

Then —see for example (Reed and Simon, 1980), page 51— the sequence{
P̃ d1,d2

k := P̃ d1
k1

⊗ P̃ d2
k2

: k = (k1, k2) ∈ N
2
0
}
, (8.14)

where ⊗ is the tensor product, is an orthonormal basis for the product space
L2

(d1,d2)([−1, 1] × [−1, 1]). Moreover the elements of the basis in (8.14) can be
expressed in terms of Gegenbauer/Chebyshev polynomials, as we want, thanks
to (8.7) and (8.11):

P̃ d1,d2
k (t1, t2) =

2∏
i=1

βki(di)C
di−1

2
ki

(ti), (t1, t2) ∈ [−1, 1]2,k = (k1, k2) ∈ N
2
0.

(8.15)

Hence, every u ∈ L2
(d1,d2) can be represented in the form

u =
∑
k∈N2

0

ũkP̃
d1,d2
k (convergence in L2

(d1,d2)), (8.16)
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where the sequence of the coefficients {ũk} is given by ũk = 〈u, P̃ d1,d2
k 〉d1,d2 .

The last combined with (8.15) implies that every function u belonging to the
space L2

(d1,d2) can be represented through the expansion

u =
∑
k∈N2

0

ukC
d1−1

2
k1

⊗ C
d2−1

2
k2

(convergence in L2
(d1,d2)), (8.17)

where

uk =
2∏

i=1
βki(di)2

×
∫ 1

−1

∫ 1

−1
u(t1, t2)C

d1−1
2

k1
(t1)C

d2−1
2

k2
(t2)

(
1 − t21

) d1−2
2

(
1 − t22

) d2−2
2 dt1dt2.

(8.18)

8.2. Proofs of the results in Section 3

We aim to prove Theorem 3.3. We start by proving the next auxiliary lemmata
which we find that could be of some independent interest.

Lemma 8.1. (α) For every n ∈ N and λ > 0,

dn

dtnC
λ
k (t) = δ(n, λ)Cλ+n

k−n (t), (8.19)

for every k ≥ n and t ∈ [−1, 1] where δ(n, λ) := 2nλ(λ + 1) · · · (λ + n− 1).
(β) For every n ∈ N, the n-th derivative of the Chebyshev polynomial C0

k can
be expressed as

dn

dtnC
0
k(t) = ζ(k, n)Cn

k−n(t), (8.20)

for every k ≥ n and t ∈ [−1, 1] where

ζ(k, n) := 2 · 4 · · · (2k)
1 · 3 · · · (2k − 1)

k

2γk−1(1)−1 ·
{
δ(n− 1, 1), n > 1
1, n = 1

∼ (k+1). (8.21)

Proof. (α) This claim can be confirmed by recursive applications of the equation
(4.7.14) in (Szegő, 1939):

d
dtC

λ
k (t) = 2λCλ+1

k−1 (t). (8.22)

(β) Chebyshev and Jacobi polynomials are connected via the following equa-
tion in page 60 of (Szegő, 1939):

C0
k(t) = 2 · 4 · · · (2k)

1 · 3 · · · (2k − 1)P
− 1

2
k (t) =: εkP

− 1
2

k (t), k ≥ 1. (8.23)
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The sequence εk satisfies the behaviour below, as we can evidently verify by
induction:

√
k + 1 <

√
3k + 1 ≤ εk ≤

√
4k + 1 < 2

√
k + 1, k ∈ N. (8.24)

On the other hand, by (4.21.7) in (Szegő, 1939) and (8.2) we extract

(
C0

k(t)
)′ = εk

(
P

− 1
2

k (t)
)′

= εk
k

2P
1
2
k−1(t) = εk

k

2γk−1(1)−1C1
k−1(t) (8.25)

= ζ(k, 1)C1
k−1(t), (8.26)

which is of course (8.21) for n = 1.
Let now n > 1. We apply (8.26) and the claim (α) of this Lemma to obtain

dn

dtnC
0
k(t) = ζ(k, 1) dn−1

dtn−1C
1
k−1(t) = ζ(k, 1)δ(n− 1, 1)Cn

k−n(t), (8.27)

as in (8.20), with the estimates in (8.21) to be confirmed by (8.6) and (8.24).

The next ingredient of the proof can be summarized in the following lemma.

Lemma 8.2. Let d ∈ N, n ∈ N0 and k, k′ ∈ N0 such that k, k′ ≥ n. Then

Id,nk,k′ :=
∫ 1

−1
C

d−1
2 +n

k−n (t)C
d−1
2 +n

k′−n (t)
(
1 − t2

) d−2
2 +ndt

∼ δkk′(k + 1)τ(2n+d) (8.28)

and

Ĩd,nk,k′ :=
∫ 1

−1

dn

dtnC
d−1
2

k (t) dn

dtnC
d−1
2

k′ (t)
(
1 − t2

) d−2
2 +ndt

∼ δkk′(k + 1)2n+τ(d), (8.29)

where the function τ(d) is as in (3.9).

Proof. We start proving (8.28). By (8.7) and (8.11) we can express

C
d−1
2 +n

k−n = βk−n(d + 2n)−1P̃ d+2n
k−n .

Then by combining (8.7), (8.11) and (8.12) we obtain

Id,nk,k′ = βk−n(d + 2n)−1βk′−n(d + 2n)−1〈P̃ d+2n
k−n , P̃ d+2n

k′−n 〉d+2n

= βk−n(d + 2n)−1βk′−n(d + 2n)−1δk−n,k′−n = δkk′βk−n(d + 2n)−2

∼ δkk′(k + 1)τ(d+2n).

For the proof of (8.29) we split the following three cases.
(α) For d = 1 and n = 0; by (8.10) Ĩ1,0

k,k′ ∼ δkk′ ; confirming (8.29).
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(β) For d = 1 and n ∈ N; by (β) of Lemma 8.1 and (8.28) we have

Ĩ1,n
k,k′ := ζ(k, n)ζ(k′, n)I1,n

k,k′ ∼ δkk′(k + 1)2(k + 1)τ(2n+1)

= δkk′(k + 1)2+2n+1−3 = δkk′(k + 1)2n+τ(1).

(γ) For d > 1 and n ∈ N0; by (α) of Lemma 8.1 and (8.28) we obtain

Ĩd,nk,k′ := δ
(
n,

d− 1
2

)2
Id,nk,k′ ∼ δkk′(k + 1)τ(2n+d)

= δkk′(k + 1)2n+d−3 = δkk′(k + 1)2n+τ(d).

We proceed to prove Theorem 3.3.

Proof. We start by estimating the L2
(d1+2n1,d2+2n2)-norm of the distribution

∂(n1,n2)u. By (3.2) we derive

∂(n1,n2)u =
∑
k∈N2

0

uk
(
C

d1−1
2

k1

)(n1)(
C

d2−1
2

k2

)(n2)
.

Then, (8.13) and (8.15) imply∥∥∂(n1,n2)u
∥∥2
L2

(d1+2n1,d2+2n2)
=

〈
∂(n1,n2)u, ∂(n1,n2)u

〉
d1+2n1,d2+2n2

=
∞∑

k1,k′
1=n1

∞∑
k2,k′

2=n2

ukuk′Ik,k′ , (8.30)

where

Ik,k′ :=
〈(

C
d1−1

2
k1

)(n1)(
C

d2−1
2

k2

)(n2)
,
(
C

d1−1
2

k′
1

)(n1)(
C

d2−1
2

k′
2

)(n2)
〉
d1+2n1,d2+2n2

.

By (8.19) and (8.29) we get the expression

Ik,k′ =
2∏

i=1

∫ 1

−1

(
C

di−1
2

ki
(ti)

)(ni)(
C

di−1
2

k′
i

(ti)
)(ni)(1 − t2i )

di−2
2 +nidti

=
2∏

i=1
Ĩdi,ni

ki,k′
i
∼

2∏
i=1

δki,k′
i
(ki + 1)2ni+τ(di). (8.31)

We now replace (8.31) in (8.30) and we conclude

∥∥∂(n1,n2)u
∥∥2
L2

(d1+2n1,d2+2n2)
∼

∞∑
k1=n1

∞∑
k2=n2

u2
k(k1 + 1)2n1+τ(di)(k2 + 1)2n2+τ(d2).

(8.32)
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We will first prove Assertion (ii). Equations (3.5) and (8.32) imply

‖u‖2
DW (n,m) ∼

∞∑
k1=0

∞∑
k2=0

u2
k(k1 + 1)τ(d1)(k2 + 1)τ(d2)

+
∞∑

k1=n

∞∑
k2=0

u2
k(k1 + 1)2n+τ(d1)(k2 + 1)τ(d2)

+
∞∑

k1=0

∞∑
k2=m

u2
k(k1 + 1)τ(d1)(k2 + 1)2m+τ(d2)

+
∞∑

k1=n

∞∑
k2=m

u2
k(k1 + 1)2n+τ(d1)(k2 + 1)2m+τ(d2)

=: s1 + · · · + s4.

Thus,

‖u‖2
DW (n,m) ≤ 4

∞∑
k1=0

∞∑
k2=0

u2
k(k1 + 1)2n+τ(d1)(k2 + 1)2m+τ(d2) =: 4s0

and this proves the sufficient part of the assertion, since the right hand side is
bounded when {uk} ∈ �(n,m).

We now prove the necessity. We decompose s0 as follows:

s0 =
( n−1∑

k1=0

m−1∑
k2=0

+
∞∑

k1=n

m−1∑
k2=0

+
n−1∑
k1=0

∞∑
k2=m

+
∞∑

k1=n

∞∑
k2=m

)
× u2

k(k1 + 1)2n+τ(d1)(k2 + 1)2m+τ(d2)

=: s5 + · · · + s8.

By (8.32) we derive the following:

s5 ≤ n2nm2m
∞∑

k1=0

∞∑
k2=0

u2
k(k1 + 1)τ(d1)(k2 + 1)τ(d2) ≤ c‖u‖2

L2
(d1,d2)

.

s6 ≤ m2m
∞∑

k1=n

∞∑
k2=0

u2
k(k1 + 1)2n+τ(d1)(k2 + 1)τ(d2) ≤ c

∥∥∂n
1 u

∥∥2
L2

(d1+2n,d2)

and similarly s7 ≤ c‖∂m
2 u‖2

L2
(d1,d2+2m)

. Directly from (8.32) it holds that

s8 ≤ c‖∂(n,m)u‖2
L2

(d1+2n,d2+2m)
.

The above inequalities, in concert with (3.5) complete the proof of claim (ii).

(i) We start by noting the following connection between Sobolev-type spaces:

WN =
N⋂

ν=0
DW (ν,N−ν).
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Thus, a L2 function u belongs to WN if and only if it belongs to the intersection
of W (ν,N−ν), for every ν = 0, . . . , N , which equivalently means that its Fourier
coefficients belong to

⋂N
ν=0 �

(ν,N−ν), in the light of claim (ii).
(iii) By (3.5) and (8.32) it is true that

‖u‖2
W (n,m) ∼

∞∑
k1=0

∞∑
k2=0

u2
k(k1 + 1)τ(d1)(k2 + 1)τ(d2)

+
∞∑

k1=n

∞∑
k2=0

u2
k(k1 + 1)2n+τ(d1)(k2 + 1)τ(d2)

+
∞∑

k1=0

∞∑
k2=m

u2
k(k1 + 1)τ(d1)(k2 + 1)2m+τ(d2)

= s1 + s2 + s3.

Thus,

‖u‖2
W (n,m)

≤ c

∞∑
k1,k2=0

u2
k

(
(k1 + 1)2n+τ(d1)(k2 + 1)τ(d2) + (k1 + 1)τ(d1)(k2 + 1)2m+τ(d2)

)
=: c(τ1 + τ2).

Therefore, if {uk} belongs to the intersection �(n,0) ∩ �(0,m), then u ∈ W (n,m).
On the other hand, let u ∈ W (n,m). Then

τ1 =
∞∑

k1,k2=0
u2
k(k1 + 1)2n+τ(d1)(k2 + 1)τ(d2)

=
( n−1∑

k1=0

+
∞∑

k1=n

) ∞∑
k2=0

u2
k(k1 + 1)2n+τ(d1)(k2 + 1)τ(d2)

≤ n2n‖u‖2
L2

(d1,d2)
+

∥∥∂n
1 u

∥∥2
L2

(d1+2n,d2)

and similarly τ2 ≤ m2m‖u‖2
L2

(d1,d2)
+ ‖∂m

2 u
∥∥2
L2

(d1,d2+2m)
.

All the above imply τ1 + τ2 ≤ c‖u‖2
W (n,m) and the proof is complete.

Proof of Corollary 3.4.

Proof. The result follows directly by Theorem 3.3, provided that Kiso is on
L2

(d1,d2). To show it, we make use of (8.15) and (2.3) to derive

Kiso =
∑

k=(k1,k2)∈N2
0

bk

2∏
i=1

βki(di)−1P̃ d1,d2
k .
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Since {P̃ d1,d2
k } is an orthonormal basis for L2

(d1,d2), Parseval’s theorem asserts
that

‖Kiso‖2
L2

(d1,d2)
=

∑
k=(k1,k2)∈N2

0

b2k

2∏
i=1

βki(di)−2 ∼
∞∑

k1,k2=0

b2k

2∏
i=1

(ki + 1)τ(di),

thanks to (8.12).
By (2.7), there exists a constant c0 ∈ (0,∞) such that

bk(k1 + 1)(d1−2)+(k2 + 1)(d2−2)+ ≤ c0.

Then for every k ∈ N2
0,

b2k

2∏
i=1

(ki + 1)τ(di) ≤ c0bk

2∏
i=1

(ki + 1)τ(di)−(di−2)+ ≤ c0bk

2∏
i=1

(ki + 1)(di−2)+ .

Combining all the above together with (2.7) we justify that

‖Kiso‖2
L2

(d1,d2)
≤ c

∞∑
k1,k2=0

bk(k1 + 1)(d1−2)+(k2 + 1)(di−2)+ < ∞,

i.e. Kiso ∈ L2
(d1,d2).

8.3. Proofs of the results in Section 4

8.3.1. Proof of Theorem 4.2

Proof. (i) By (2.3) and for t = (t1, t2), s = (s1, s2) we derive

Kiso(t) −Kiso(s) =
∞∑

k1,k2=0
bk1,k2Δk1,k2(t, s), (8.33)

where

Δk1,k2(t, s) := C
d1−1

2
k1

(t1)C
d2−1

2
k2

(t2) − C
d1−1

2
k1

(s1)C
d2−1

2
k2

(s2)
=: g(t) − g(s).

We apply Taylor’s expansion to the function of two variables g(t) = g(t1, t2)
(see e.g. Marsden and Tromba (2011)) and we derive

Δk1,k2(t, s) = R(1,0)(t1 − s1) + R(0,1)(t2 − s2),

where Rα is given by

Rα := Rαg(t, s) :=
∫ 1

0
∂αg

(
s + r(t− s)

)
dr,
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for α = (1, 0) either α = (0, 1).
Let us estimate R(1,0). We distinguish the cases d1 > 1 and d1 = 1.
When d1 > 1: By (8.19) and (2.6) we derive

∣∣∂(1,0)g(t)
∣∣ =

∣∣∣(C d1−1
2

k1
(t1)

)′
C

d2−1
2

k2
(t2)

∣∣∣ = c
∣∣∣C d1+1

2
k1−1 (t1)C

d2−1
2

k2
(t2)

∣∣∣
≤ c(k1 + 1)d1(k2 + 1)(d2−2)+ ,

then of course |R(1,0)| ≤ c(k1 + 1)d1(k2 + 1)(d2−2)+ .
When d1 = 1: By (β) of Lemma 8.1 and (2.6)

∣∣∂(1,0)g(t)
∣∣ =

∣∣∣(C0
k1

(t1)
)′
C

d2−1
2

k2
(t2)

∣∣∣ = ζ(k1, 1)
∣∣∣C1

k1−1(t1)C
d2−1

2
k2

(t2)
∣∣∣

≤ c(k1 + 1)2(k2 + 1)(d2−2)+ ,

and consequently |R(1,0)| ≤ c(k1 + 1)2(k2 + 1)(d2−2)+ .
Jointing the above we have proved that for every d1, d2 ∈ N

|R(1,0)| ≤ c(k1 + 1)(d1−2)++2(k2 + 1)(d2−2)+ .

In a similar way it turns out that |R(0,1)| ≤ c(k1 +1)(d1−2)+(k2 +1)(d2−2)++2.
Summarizing the above we have the following upper bound for |Δk1,k2(t, s)|:

|Δk1,k2(t, s)| ≤ c|t−s|(k1+1)(d1−2)+(k2+1)(d2−2)+
(
(k1+1)2+(k2+1)2

)
. (8.34)

On the other hand, obviously by (2.6) we infer

|Δk1,k2(t, s)| ≤ 2
∥∥∥C d1−1

2
k1

∥∥∥
∞

∥∥∥C d2−1
2

k2

∥∥∥
∞

≤ c(k1+1)(d1−2)+(k2+1)(d2−2)+ . (8.35)

Let δ ∈ (0, 1]. We interpolate (8.34) and (8.35) as follows

|Δk1,k2(t, s)| = |Δk1,k2(t, s)|δ|Δk1,k2(t, s)|1−δ

≤ c|t− s|δ(k1 + 1)(d1−2)+(k2 + 1)(d2−2)+
(
(k1 + 1)2 + (k2 + 1)2

)δ
.

The last replaced in (8.33) implies that

∥∥Kiso
∥∥
Hδ ≤ c

∞∑
k1,k2=0

bk1,k2(k1 +1)(d1−2)+(k2 +1)(d2−2)+
(
(k1 +1)2 +(k2 +1)2

)δ
,

which is finite thanks to (4.3).

(ii) Let us now consider the mixed case. By (2.3) we have the expression

Kiso(t1, t2) −Kiso(s1, t2) = σ2
∞∑

k1,k2=0

bk1,k2C
d2−1

2
k2

(t2)Δ̃k1(t1, s1), (8.36)
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where

Δ̃k1(t1, s1) := C
d1−1

2
k1

(t1) − C
d1−1

2
k1

(s1).

By (2.6) |C
d2−1

2
k2

(t2)| ≤ c(k2 + 1)(d2−2)+ and ‖Δ̃k1‖∞ ≤ c(k1 + 1)(d1−2)+ .
On the other hand∣∣Δ̃k1(t1, s1)

∣∣ =
∣∣∣ ∫ t1

s1

(
C

d1−1
2

k1

)′
(t)dt

∣∣∣ ≤ |t1 − s1|
∥∥∥(C d1−1

2
k1

)′∥∥∥
∞
. (8.37)

Repeating the arguments used for proving the claim (i), by using (α) or (β)
of Lemma 8.1 for d1 > 1 and d1 = 1 respectively and applying (2.6) we get∥∥∥(C d1−1

2
k1

)′∥∥∥
∞

≤ c(k1 + 1)(d1−2)++2. (8.38)

Let δ1 ∈ (0, 1]. By interpolation and using (8.37), (8.38) and (8.36) we arrive
at ∣∣Kiso(t1, t2) −Kiso(s1, t2)

∣∣
≤ c|t1 − s1|δ1

∞∑
k1,k2=0

bk1,k2(k1 + 1)(d1−2)++2δ1(k2 + 1)(d2−2)+ .

The analogous estimate for the difference |Kiso(t1, t2)−Kiso(t1, s2)| and δ2 ∈
(0, 1] can be extracted similarly. Then by (4.2) we conclude that Kiso ∈ H(δ1,δ2),
thanks to the assumption (4.4) and the proof is complete.

8.3.2. Proof of Theorem 4.3

We proceed to the proof of theorem 4.3:

Proof. Let x = (x1, x2),y = (y1, y2) ∈ T
d1,d2 . Then Wxy := Z(x) − Z(y) is a

centred Gaussian random variable. Then σ2 := Var(Wxy) = E(|Z(x) − Z(y)|2)
and Wxy = σX, for X standard normally distributed. Consequently for every
p ∈ N

E(|Z(x) − Z(y)|2p) = E
(
|Wxy|2p

)
= E

(
|σX|2p

)
= σ2p

E
(
|X|2p

)
= σ2pc2p, (8.39)

where c2p the (known) 2p-th moment of the standard normal X.
We can easily derive that the variance of Wxy equals,

σ2 = Var(Wxy) = VarZ(x) + VarZ(y) − 2cov(Z(x), Z(y))

= 2
(
Kiso(1, 1) −Kiso

(
〈x1, y1〉1, 〈x2, y2〉2

))
,

thanks to the Remark 2.1 and (2.3).



Gaussian random fields on the product of spheres 1429

Let now δ ∈ (0, 1]. As {bk} satisfy (4.3), Theorem 4.2 asserts that Kiso belongs
to Hδ, that is∣∣Kiso(1, 1)−Kiso(〈x1, y1〉, 〈x2, y2〉)

∣∣ ≤ cδ|(1, 1) − (〈x1, y1〉, 〈x2, y2〉)|δ

= cδ
√

(1 − 〈x1, y1〉)2 + (1 − 〈x2, y2〉)2
δ

= cδ

√(
1 − cos ρSd1 (x1, y1)

)2 +
(
1 − cos ρSd2 (x2, y2)

)2δ
≤ cδ

√
(ρSd1 (x1, y1))4 + (ρSd2 (x2, y2))4

δ

≤ cδ
(
ρSd1 (x1, y1))2 + (ρSd2 (x2, y2))2

)δ
= cδρ(x,y)2δ, (8.40)

where for the second inequality we used that 1 − cos θ ≤ θ2 and for the third
that

√
α2 + β2 ≤ α + β, for every α, β ≥ 0.

Combining (8.39) with (8.40) we get

E
(
|Z(x) − Z(y)|2p

)
≤ c2p2pcpδρ(x,y)2pδ,

and the proof is complete.

Remark 8.3. From the above prove, it is apparent that the assumption of
Z being Gaussian is necessary for getting Hölder bounds for the moments of
|Z(x)−Z(y)|. Note that such an assumption was not necessary for the previous
results.

8.4. Proof of Theorem 5.1

Before we prove the aforementioned result, we state the (quasi-)norms used to
count the estimated risk.

Let (Ω,F,P) be a probability space and p > 0. We say that a (random)
function f : Td1,d2 × Ω → R belongs to the space Lp

(
Ω, L2(Td1,d2)

)
when

‖f‖Lp(Ω,L2(Td1,d2 )) :=
(
E
(
‖f‖p

L2(Td1,d2 )
))1/p

(8.41)

=
(∫

Ω

(∫
Td1,d2

|f(x, ω)|2dx
)p/2

dP(ω)
)1/p

< ∞.

Note further that

‖f‖Lp(Ω,L2(Td1,d2 )) ≤ ‖f‖Lq(Ω,L2(Td1,d2 )), for every 0 < p < q < ∞. (8.42)

To verify the last we just use Hölder’s inequality for the exponent r = q
p > 1 on

the probability space (Ω,F,P). Indeed

‖f‖p
Lp(Ω,L2(Td1,d2 )) =

∫
Ω
‖f(·, ω)‖p

L2(Td1,d2 )dP(ω)
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≤
(∫

Ω
‖f(·, ω)‖q

L2(Td1,d2 )dP(ω)
)p/q(∫

Ω
1dP(ω)

)1−p/q

= ‖f‖p
Lq(Ω,L2(Td1,d2 )).

Proof. Since Xk,m is a sequence of independent, standard normally distributed
random variables and

{
Sdi

ki,mi
: ki ∈ N0, 1 ≤ mi ≤ Dki(di)

}
, is an orthonormal

basis for L2(Sdi), i = 1, 2, we apply Fubini-Tonelli theorem to derive∥∥Z − ZN
∥∥2
L2(Ω,L2(Td1,d2 ))

=
∑

|k|>N

Bk

Dk1 (d1)∑
m1=1

Dk2 (d2)∑
m2=1

‖Sd1
k1,m1

‖2
L2(Sd1 )‖S

d2
k2,m2

‖2
L2(Sd2 )E

(
X2

k,m
)

≤ cd1cd2c∗
∑

|k|>N

(
1 + |k|2

)−ε− d1+d2
2 (1 + k1)d1−1(1 + k2)d2−1

≤ cc∗
∑

|k|>N

(
1 + |k|2

)−ε−1
,

where for the first inequality we used (5.2) together with assumption (5.11) and
for the second one the trivial inequalities 1+ki ≤

√
2(1+k2

i )1/2 ≤ c(1+ |k|2)1/2,
i = 1, 2.

The last series, for the given range of the value of ε, can be bounded from
above by the double integral

IN :=
∫∫

|x|≥N−1

(
1 + |x|2

)−ε−1dx.

We change to polar coordinates and we infer

IN = π

∫ ∞

N−1

(
1 + ρ2)−ε−12ρdρ = π

∫ ∞

(N−1)2
(1 + �)−ε−1d�,

using a second change to the variable � = ρ2.
Since now ε > 0, the last non proper integral equals∫ ∞

(N−1)2
(1 + �)−ε−1d� =

(
1 + (N − 1)2

)−ε

ε
≤ cN−2ε

ε
,

which completes the proof of (5.12).

To show (5.13), we begin with the case p < 2. Applying the inequality (8.42)
we derive

∥∥Z − ZN
∥∥
Lp(Ω,L2(Td1,d2 )) ≤

∥∥Z − ZN
∥∥
L2(Ω,L2(Td1,d2 )) ≤ c

√
c∗
ε
N−ε.
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We consider now p > 2. We can choose ν = νp ∈ N such that 2(ν − 1) < p ≤
2ν. The inequality (8.42) yields∥∥Z − ZN

∥∥
Lp(Ω,L2(Td1,d2 )) ≤

∥∥Z − ZN
∥∥
L2ν(Ω,L2(Td1,d2 )). (8.43)

By Corollary 2.17 in Da Prato and Zabczyk (1992) there exists a constant
c = cν > 0 such that∥∥Z − ZN

∥∥
L2ν(Ω,L2(Td1,d2 )) ≤ cν

∥∥Z − ZN
∥∥
L2(Ω,L2(Td1,d2 )). (8.44)

The combination of (8.43), (8.44) and (5.12) leads to (5.13).

For the last claim, we have to prove that

P
(∥∥Z − ZN

∥∥
L2(Td1,d2 ) ≥ N−γ , for infinity many N ∈ N

)
= 0. (8.45)

This will be a consequence of the Borel-Cantelli lemma. It suffices to prove that

∞∑
N=1

P
(∥∥Z − ZN

∥∥
L2(Td1,d2 ) ≥ N−γ

)
< ∞. (8.46)

By (the general) Chebyshev’s inequality, as in page 193 of Folland (2009)
applied in the measure space (Ω,F,P), and (5.13) we derive

P
(∥∥Z − ZN

∥∥
L2(Td1,d2 ) ≥ N−γ

)
≤ Nγp

E
(∥∥Z − ZN

∥∥p
L2(Td1,d2 )

)
≤ cpp

(cc∗
ε

)p/2
N−(ε−γ)p, (8.47)

for every p > 0 and every N ≥ N0.
We choose now p > 1/(ε− γ), this is allowed since γ < ε. For this choice we

obtain
∞∑

N=N0

N−(ε−γ)p < ∞,

which together with (8.47) leads to (8.46) and completes the proof.
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