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Abstract: This paper considers the problems of detecting a change point
and estimating the location in the correlation matrices of a sequence of high-
dimensional vectors, where the dimension is large enough to be comparable
to the sample size or even much larger. A new break test is proposed based
on signflip parallel analysis to detect the existence of change points. Fur-
thermore, a two-step approach combining a signflip permutation dimension
reduction step and a CUSUM statistic is proposed to estimate the change
point’s location and recover the support of changes. The consistency of the
estimator is constructed. Simulation examples and real data applications
illustrate the superior empirical performance of the proposed methods. Es-
pecially, the proposed methods outperform existing ones for non-Gaussian
data and the change point in the extreme tail of a sequence and become
more accurate as the dimension p increases. Supplementary materials for
this article are available online.
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1. Introduction

Change point detection is a classical statistical problem aiming to detect if
there is a change in the mean, covariance structure, and distribution along a
sequence of time-ordered observations. It has been an active field of research
in many scientific fields, such as quality control [21], financial market analysis
[28], genetics and medicine [7], psychopathology [22], signal processing [18] and
machine learning [5].

Driven by a wide range of modern scientific applications, change point infer-
ence in high-dimensional data is of significant current interest. A vast part of
the existing literature focuses on detecting changes in the mean [17, 8, 27] and in
the covariance structure [1, 11, 2, 10, 26]. The literature on detecting structural
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breaks in the correlation matrix is relatively scarce. The correlation coefficient
is a standard measure for linear dependency among variables, and correlation
analysis is reliable only when the data has no change in correlation during the
observation period. Moreover, in a multivariate setting, aside from changes in
univariate features, important events are often marked by abrupt correlation
changes [4].

Change point analysis of correlation has been well studied in the conven-
tional low-dimensional setting, i.e., the dimension is fixed while the sample size
becomes large. [28] constructed a bootstrap variance matrix estimator to detect
a change in the correlation matrix. [4] proposed a Gaussian kernel-based change
point detection method (KCP). Compared to CUSUM-type methods, KCP can
locate multiple change points simultaneously. Change point analysis in time se-
ries has been studied by [19] and [12] and the references therein. However, in
the high-dimensional setting, where the dimension can be much larger than the
sample size, the methods constructed under the low-dimensional setting either
perform poorly or are not even well defined. For example, the method proposed
by [28] is unstable when the dimension is not small relative to the sample size
due to the (near) singularity of the variance estimator. To avoid variance esti-
mation, [9] proposed a break test based on the self-normalization method, which
applies to high-dimensional data. However, there is no estimation method pro-
posed to locate the change point. [10] proposed a two-stage approach based on
bootstrap to estimate a change point in the high-dimensional covariance struc-
ture. This method can be applied to high-dimensional correlation matrices, as
correlation can be treated as a particular case of the covariance matrix. However,
this method is designed to estimate the location when the change point exists
in the middle of a sequence of data, which is restrictive in real applications.

This paper proposes a new test based on signflip parallel analysis to detect
the existence of changes in the correlation structure. Moreover, we construct a
two-step approach combining a signflip permutation dimension reduction step
and a CUSUM statistic to estimate the location of change point and simulta-
neously identify corresponding changing components in the correlation matrix.
The theoretical properties analysis is conducted, and the consistency of the pro-
posed estimator is established. In addition, by combing the Synthetic Minority
Oversampling Technique (SMOTE), the estimation accuracy is enhanced when
the change point exists in the extreme tail of a data sequence. We examine the
numerical performance of the proposed detection and estimation methods using
both simulated and real datasets. The numerical results show that the proposed
methods significantly outperform the existing ones for non-Gaussian data and
the change point existing in the extreme tail of a sequence. More importantly, as
the dimension p increases, the proposed methods become more accurate while
existing methods maybe not.

The remaining sections are organized as follows. In Section 2, we present the
first main result of the paper. A new break test is proposed based on signflip
parallel analysis to detect change points in the correlation structure of high-
dimensional data. In Section 3, we present the second main result of the paper.
After a dimension reduction step based on signflip permutation, a CUSUM
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statistic is used to estimate the location of the change point. At the same time,
the components of the correlation matrix leading to the change point are identi-
fied. The consistency of this estimator is established. In Section 4, an algorithm
combing the proposed estimation procedure and SMOTE is designed to locate
the change point in the extreme tail of a data sequence. We evaluate the finite
performance of two proposed methods compared to several existing methods
by a detailed simulation study in Section 5. Real data analyses are carried out
in Section 6. Some discussions are offered in the last conclusion section. Due
to the limited space, we relegated the proofs and some numerical results to
supplementary materials.

2. Detection of change point

Given a sequence of data y1, . . . ,yt0 ,yt0+1, . . . ,yT ∈ R
p, as a first step, one may

be interested in testing the existence of change points in the correlation struc-
ture. In this section, we aim to test for consistency of the correlation matrices
of observations {yt}1≤t≤T :

H0 : corr(y1) = · · · = corr(yT ), v.s. H1 : not H0. (1)

The null hypothesis H0 indicates the consistency of the correlation matrices
during the observation period. The alternative hypothesis allows for one or more
change points in the correlation structure. When there exists a change point,
the parameter t0 defines the true change point, that is, the first t0 samples
y1, . . . ,yt0 have a common correlation matrix R1 = (ρ1(i, j)), i, j = 1, . . . , p,
while the last (T − t0) samples yt0+1, . . . ,yT have another common correlation
matrix R2 = (ρ2(i, j)), i, j = 1, . . . , p, and R1 �= R2.

For t = 1, . . . , T , denote by yt = (yt1, . . . , ytp)′ the t-th observation, let
ȳ = 1

T

∑T
i=1 yi = (ȳ1, . . . , ȳp)′ be the sample mean, Sn = 1

T−1
∑T

i=1(yi −
ȳ)(yi−ȳ)′ the sample covariance matrix with diagonal elements diag(D). Define
xt = D−1/2(yt − ȳ) as the vector of standardized observations. Given a time
point t, define the sample correlation matrices

(
ρ̂t1(i, j)

)
p×p

:= R̂t
1 = 1

t

t∑
k=1

xkx
′
k, (2)

(
ρ̂Tt+1(i, j)

)
p×p

:= R̂T
t+1 = 1

T − t

T∑
k=t+1

xkx
′
k. (3)

In order to quantify the changes in correlations after and before t, a natural
approach is to compare the sample correlations {ρ̂t1(i, j)} and {ρ̂Tt+1(i, j)}, and
we consider the following p(p− 1)/2-dimensional vector

([
ρ̂t1(i, j) − ρ̂Tt+1(i, j)

]2)
1≤i<j≤p

:= vt (4)
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of the squared (componentwise) differences of the elements of the sample corre-
lations. For large p, it can be calculated efficiently by

vt =
(

1
t

t∑
k=1

vecho(xkx
′
k) −

1
T − t

T∑
k=t+1

vecho(xkx
′
k)
)

◦
(

1
t

t∑
k=1

vecho(xkx
′
k) −

1
T − t

T∑
k=t+1

vecho(xkx
′
k)
)
,

where vecho(·) indicates the half-vectorization p(p− 1)/2 vector by vectorizing
only the lower triangular part without the diagonal of the symmetric matrix,
and “ ◦ ” is the Hadamard product. If a change point exists at t0, then one can
verify that vt0 is an estimator of vecho(R1−R2)2, which measures the difference
between the two population correlation matrices. In particular, the expectation
of the component vt(i, j) of the vector vt corresponding to the position (i, j) in
the matrices R1 and R2 is (for simplicity, this expectation is calculated under
the assumption that original data {yt} have mean zero and variance one. For
notational convenience, write ρ1 = ρ1(i, j) and ρ2 = ρ2(i, j) here)

Evt(i, j)

=

⎧⎪⎪⎨
⎪⎪⎩

(ρ1 − ρ2)2 + 1
t0

(
β1 − ρ2

1
)

+ 1
T−t0

(
β2 − ρ2

2
)

if t = t0,
(T−t0)2
(T−t)2 (ρ1 − ρ2)2 +

(
1
t + t0−t

(T−t)2

) (
β1 − ρ2

1
)

+ T−t0
(T−t)2

(
β2 − ρ2

2
)

if t < t0,

t20
t2 (ρ1 − ρ2)2 + t0

t2

(
β1 − ρ2

1
)

+
(

t−t0
t2 + 1

T−t

) (
β2 − ρ2

2
)

if t > t0.

(5)

where β1 := E(xkixkj)2 for k ≤ t, β2 := E(xkixkj)2 for k > t, and w.l.o.g, we
can assume β1 and β2 are uniformly bounded in this paper (see Assumption 1,
Lemma A.1, and the Proposition 2.7.1 of [25]). Thus, in each of the three cases
of (5), the first term is the main term with order O(1), while the other terms are
all o(1). Therefore, the expectation of vt(i, j) consistently achieves the largest
value at the true change point position t0 because the coefficients (T−t0)2

(T−t)2 and t20
t2

before (ρ1−ρ2)2 are smaller than 1 when t �= t0. Moreover, these coefficients are
unrelated to the position (i, j). Therefore, for any fixed t, larger values of vt(i, j)
indicate a significant difference between ρ1(i, j) and ρ2(i, j). In contrast, if there
is no change point in the sequence of correlation matrices, then all elements in
the vectors vt’s (1 ≤ t ≤ T ) are considerably small as Evt(i, j) = o(1) for all t.

In addition, instead of investigating all values of t separately, we use a
weighted summation

w = 1
T − 3

T−2∑
t=2

t(T − t)
T

vt (6)

to identify the largest components among the p(p − 1)/2 entries. The weights
t(T−t)

T are introduced to address the different sizes of the variance of vt for
different values of t. By examining the largest entries in the vector w, we can
detect whether change points exist in the correlation structure.
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We propose a threshold based on signflip parallel analysis, and the Algorithm
is as follows.

Algorithm 1 : Threshold via Signflip Permutation
Input : Data Matrix Y ∈ R

p×T (p variables and T series),number of trials q.
Output : Threshold τ1.

1 for m ← 1 to q do
2 Randomly signflip entries of Y : form Rm ◦ Y where

Rm(ij) i.i.d.∼
{

+1, with probability 1/2,
−1, with probability 1/2,

that is Rm ∈ R
p×T has i.i.d. Rademacher entries;

3 Calculate vectors {ṽ(m)
t }2≤t≤T−2 defined in (4);

4 Calculate the weighted sum w̃(m) in (6) from {ṽ(m)
t }2≤t≤T−2;

5 end
6 τ1 ← the largest element in W = (w̃(1), . . . , w̃(q)) that is, τ1 = max(W ).

Let w(i, j) denote the elements of the vector w corresponding to the position
(i, j) in the matrices R1 and R2. We identify all components which are larger
than the threshold τ1, to be precise, define

wτ1 = {(i, j) : w(i, j) > τ1, 1 ≤ i < j ≤ p}, (7)

as the index set of all corresponding components. Then, for the testing problem
in (1), the rejection region is

C = {w : card(wτ1) > 0}, (8)

where card(·) is the cardinality of a set. The change point detection approach
based on the rejection region C in Equation (8) will be referred to as the signflip
parallel analysis-based change point detection (SPAD) procedure.

Remark 2.1. To illustrate why the threshold τ1 selected by signflip permutation
is valid, we examine the expectation of the component ṽt(i, j) of the vector ṽt

for signflipped data Rm ◦ Y (under the same assumption as (5)). We obtain

Eṽt(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
t0
β1 + 1

T−t0
β2 t = t0,(

1
t + t0−t

(T−t)2

)
β1 + T−t0

(T−t)2β2 t < t0,

t0
t2β1 +

(
t−t0
t2 + 1

T−t

)
β2 t > t0.

(9)

Compared to the expectation of vt(i, j) in (5), the elements in the vectors ṽt’s
are considerably small for all t both under the null and alternative hypothesis, as
the expectation is not related to the difference between ρ1(i, j) and ρ2(i, j), and
Eṽt(i, j) = o(1). In addition, we illustrate the phenomenon in Figure 1 through
a simulation study. Independent samples are drawn from Gaussian distribution
with p = 100 and T = 100. Under H0, the correlation matrices are R1 = R2 =
Ip, and under H1, R1 = Ip, and R2(i, j) = 0.5 for all 1 ≤ i �= j ≤ p. With
increasing order, we plot the distributions of the elements of w for original data
and the elements of w̃ for signflipped data. In Figure 1(a), it is obvious that
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Fig 1. The distributions of increasing-order elements of w and w̃, (a) under H0, (b) un-
der H1.

the two distributions are almost coincident under H0, except that the maximum
value of w̃ may be larger than that of w. In contrast, under H1, the distribution
of the elements of w is always above that of w̃, as shown in Figure 1(b). More
importantly, the distributions of the elements of w̃ are very similar under both
H0 and H1. Thus, the signflip step breaks the changing structure in the original
data. See [14] for more signflip parallel analysis properties.

3. Estimation of change point location

In many applications, if the null hypothesis H0 : corr(y1) = · · · = corr(yT ) is
rejected, it is often of significant interest to further estimate the change point’s
location and investigate at which components the correlation matrices R1 and
R2 differ from each other, that is recovering the support of R1 − R2. Suppose
the change point location in the sequence is t0 = βT, 0 < β < 1, under the alter-
native with one change point, we aim to estimate the change point fraction β.

When the null hypothesis H0 in (1) is rejected, the cardinality of wτ1 is
nonzero, and its element {wτ1(i, j)} indicates a significant difference between
ρ1(i, j) and ρ2(i, j). Thus, based on the components corresponding to wτ1 , we
can estimate the location of the change point. In order to keep more sufficiently
significant changes, we use a new threshold τ2, which is slightly smaller than τ1.
τ2 is generated the same way as τ1 by Algorithm 1 except for Line 6, τ2 is the
α-quantile (95%, 90%) of all elements of W , that is,

τ2 = α - quantile of vec(W ), (10)

where vec(·) is the vectorization of a matrix. Then, we reduce the p(p − 1)/2-
dimensional vector w to a vector of dimension d,

wτ2 = {(i, j) : w(i, j) > τ2, 1 ≤ i < j ≤ p}, (11)

and correspondingly, we obtain zi, a d-dimensional subvector of vecho(xix
′
i) by

keeping the d components of the index set wτ2 .
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For the estimation of the change point, we consider the CUSUM statistic

UT (t) = 1
T 4

t∑
i,k=1

T∑
j,l=t+1

(zi − zj)′(zk − zl) = 1
T 4 ||(T − t)t(ρ̃t1 − ρ̃Tt+1)||22, (12)

where || · ||2 represents the Euclidean norm, and ρ̃t1 and ρ̃Tt+1 represent the
vectors containing the elements of the correlation matrice estimators R̂t

1 and
R̂T

t+1 corresponding to positions identified in the dimension reduction index set
wτ2 , respectively. Then the estimator of the change point fraction β is defined
by

β̂ = arg max
1≤t≤T

UT (t)/T. (13)

This estimator β̂ will be referred to as the signflip parallel analysis-based CUSUM
estimator (SPACE). The dimension reduction index set wτ2 denotes the support
of R1 −R2, that is, the positions at which the two correlation matrices differ.

To illustrate the effectiveness of dimension reduction in (11) and derive the
asymptotic consistency of the proposed estimator β̂ in (13), we need the follow-
ing assumptions on observations.

Assumption 1. Denote xt = (xt1, . . . , xtp)′, t = 1, . . . , T . For any 1 ≤ i ≤ p,
xti is a sub-Gaussian random variable, that is, there are positive constants C1,
C2 (independent of the indices t and i) such that for every ε > 0,

P (|xti > ε|) ≤ C1e
−C2ε

2
.

Assumption 2. The smallest nonzero entry of the matrix R1 −R2 satisfies

|ρ1(i, j) − ρ2(i, j)| > C3

√
τ2
T

· max
{

T 2

(T − t0)2
,
T 2

t20

}
, 1 ≤ i ≤ j ≤ p, (14)

where τ2 is given in (10).

Assumption 3. For some positive constant c, we have

p2T 2e−c
√
τ2 = o(1).

In the following theorem, we prove that all the entries with no difference are
not included in wτ2 .

Theorem 3.1. Define N = {(i, j) : 1 ≤ i < j ≤ p; ρ1(i, j) = ρ2(i, j)} as the set
of indices corresponding to identical elements in the correlation matrices R1
and R2. Then under Assumption 1,

P

⎧⎨
⎩

⋃
(i,j)∈N

{w(i, j) > τ2}

⎫⎬
⎭ = P(N ∩wτ2 �= ∅) (15)

≤ c1p
2T
(
e−c2T

1/4√τ2 + e−c3 min(T 1/4√τ2,τ2)
)
,
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where c1, c2 and c3 are some constants. In addition, under Assumption 3 we
have

P

⎧⎨
⎩

⋃
(i,j)∈N

{w(i, j) > τ2}

⎫⎬
⎭→ 0. (16)

In the next theorem, we prove that all the entries with a difference larger
than C3

√
τ2
T · max

{
T 2

(T−t0)2 ,
T 2

t20

}
are kept in wτ2 .

Theorem 3.2. Define P = {(i, j) : 1 ≤ i < j ≤ p; |ρ1(i, j) − ρ2(i, j)| > λ} as
the set of components which differ by more than λ, where
λ = C3

√
τ2
T · max

{
T 2

(T−t0)2 ,
T 2

t20

}
as given in Assumption 2. Then under As-

sumption 1 and Assumption 2, we have

P

⎧⎨
⎩

⋂
(i,j)∈P

{w(i, j) > τ2}

⎫⎬
⎭ = P (P ⊂ wτ2) ≥ 1 − c4p

2Te−c5
√
τ2T , (17)

where c4 and c5 are some constants. In addition, under Assumption 3 we have

P

⎧⎨
⎩

⋂
(i,j)∈P

{w(i, j) > τ2}

⎫⎬
⎭→ 1. (18)

Theorem 3.2 shows that under Assumptions 2 and 3, the vector wτ2 recovers
the true support of R1 −R2 exactly with probability tending to 1.

In the next result, we establish the asymptotic consistency of the estimator β̂.
Here they symbol p→ denotes convergence in probability.

Theorem 3.3. Under Assumptions 1 and 2, we have

P

{∣∣∣∣∣ β̂β − 1

∣∣∣∣∣ ≥ ε

}
≤ c6p

2T 2e−c7
√
τ2 ,

where c6 and c7 are some constants. In addition, under Assumption 3 we have

β̂
p→ β.

Remark 3.1. The number of trails q in the Algorithm. In a parallel analysis,
the number of trials should be as large as possible to retain a stable and accu-
rate result, such as 50 and 100 trials [15, 16, 24]. However, many repetitions
lead to time-consuming computation, especially for high-dimensional data. We
investigate a suitable number of parallel trails by conducting simulations on the
effect of the number of trials q in both change point detection and estimation.

Figure 2 presents the success rate of the proposed detection method, SPAD,
against the number of parallel trails q under the H0 without a change point. The
success rate grows fast when q is still small. Therefore, we recommend a number
of trials of around 30 in the change point detection procedure.
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Fig 2. Success rate vs. the number of trails q under H0.

Fig 3. Mean value of the SPACE β̂ vs. number of trails q.

Figure 3 presents the mean values of SPACE’s estimated change point fraction
against the number of parallel trails q for the four cases in Section 5.2 and
different combinations of p and T . Each mean value is calculated from 200
repetitions. The mean values of estimates are all close to the true value and
vary slightly with q. Therefore, the number of trails around 10 to 20 is enough
to estimate the change point location.

4. Change point in the extreme tail

Most existing literature aims to detect and estimate the change point in the
middle of a data sequence. However, the change point hardly arises near the
center and may appear in the tail. Therefore, in this section, we propose com-
bining the SMOTE with SPACE to deal with the challenging situation where
the change point arises in the extreme tail of a data sequence.
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SMOTE is a viral oversampling method proposed by [6] and designed to deal
with imbalanced data in classification problems by generating synthetic samples
from the minority class. Specifically, for each sample y in the minority class,
the nearest five neighbors with the smallest Euclidean distance are identified.
One of them is randomly chosen as y∗

t , based on which a new synthetic SMOTE
sample is produced as ys = yt + u · (y∗

t −yt), where u is randomly chosen from
a standard uniform distribution [3].

To estimate the change point in the extreme tail effectively, the proposed
SPACE can be enhanced by combining the SMOTE, and the Algorithm is as
follows.

Algorithm 2 : SMOTE + SPACE
Input : Data Matrix Y ∈ R

p×T (p variables and T series), small positive ε.
Output : the estimator of the change point fraction.

1 β0 ← SPACE result from the original data.
2 Let [γT + 1, T ] be the minority class, get (1 − γ)T SMOTE variables,γ ≥ 0.9.
3 β1 ← SPACE result from the inflated data.
4 eps = abs(β0 − β1).
5 while eps > ε do
6 β0 = β1;
7 Repeat the above steps 2–4;
10 end
11 β1 ← the estimator of the change point fraction.

Similarly, by combining the SMOTE, the proposed SPAD method can also be
enhanced to detect the existence of change points when they are in the extreme
tail of the sequence of data, see Algorithm 3 in the Supplement Materials and
corresponding simulations.

5. Finite sample properties

In this section, we conduct extensive simulations to examine the proposed SPAD
method’s success rate and the proposed SPACE’s accuracy and compare them
with several existing methods. We consider different dimensions p ranging from
5 to 500 and sample sizes T = 100 and T = 200. All the numerical results below
are calculated from 200 replications.

5.1. Detection of change point

We first illustrate the performance of the SPAD method under both H0 and H1.
Under H0, independent samples are drawn from multivariate Gaussian dis-

tributions with correlation matrice R1 = R2 = Ip. The threshold τ1 is obtained
from q = 30 parallel trials. We compare SPAD with a method proposed by [10],
which is designed to detect a change point in a sequence of covariance matrices.
For the reader’s convenience, we recall the method of [10].
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• The detection method of [10] is based on the following vector.

D = 1
T − 3

T−2∑
t=2

t(T − t)
T

{
1

t(t− 1)
∑∑
i �=j≤t

vech(ẏiẏ
′
i) ◦ vech(ẏj ẏ

′
j)(19)

+ 1
(T − t)(T − t− 1)

∑∑
i �=j>t

vech(ẏiẏ
′
i) ◦ vech(ẏj ẏ

′
j)

− 2
t(T − t)

∑
i≤t

∑
j>t

vech(ẏiẏ
′
i) ◦ vech(ẏj ẏ

′
j)
}
,

where ẏi = yi − ȳ is the demeaned vector of data, and vech(·) indicates
the half-vectorization p(p+1)/2 vector by vectorizing the lower triangular
part of the symmetric matrix. With a threshold τ0 log(log T ), where τ0
is chosen by the bootstrap procedure stated in Section 2.3 of [10], no
component in D is larger than the threshold implies no change point exists
in the sequence of covariance matrices.

Table 1

The success rate of detecting no change point under H0.
p 20 50 100 200 300 500

SPAD 0.980 0.970 0.985 0.985 0.970 0.990
Dette (2020) 0.850 0.945 0.960 0.965 0.970 0.980

Table 1 presents the success rate of detecting no change point. Both meth-
ods have very high accuracies, and SPAD performs slightly better than Dette’s
method.

Under H1, independent Gaussian samples are considered in five different
settings:

• Case 1: β = 0.5, R1 = Ip, and R2(i, j) = 0.5 for all 1 ≤ i �= j ≤ p;
• Case 2: β = 0.5, R1 = Ip, and R2(i, j) = 0.5 for all 1 ≤ i �= j ≤ [p/2],

where [p/2] is the integer part of p/2;
• Case 3: β = 0.75, R1 = Ip, and R2(i, j) = 0.5 for all 1 ≤ i �= j ≤ p;
• Case 4: β1 = 1/3, β2 = 2/3, R1 = Ip, and R2(i, j) = 0.5 for all 1 ≤ i �=
j ≤ p, R3 = R1 = Ip;

• Case 5: β1 = 1/3, β2 = 2/3, R1 = Ip, R2(i, j) = 0.5 for all 1 ≤ i �= j ≤ p,
and R3(i, j) = 0.9 for all 1 ≤ i �= j ≤ p.

Table 2 presents the success rate of detecting change points under the five cases.
Overall, the SPAD method prominently outperforms Dette’s method in all cases.
Significantly, as the dimension p becomes larger, the accuracy of SPAD increases
while the accuracy of Dette’s method decreases. When the change point exists
in the middle of the sequence (Cases 1 & 2), a larger magnitude of changes in
the correlation matrices leads to higher detection accuracy, as expected. The
detection accuracies of both methods are also affected by the location of the
change point. Compared to Case 1, the change point location in Case 3 is close
to the tail, so the detection accuracies of both methods are lower. When there is
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Table 2

The success rate of detection change point under H1.
p 20 50 100 200 300 500

Case 1 SPAD 0.770 0.860 0.810 0.865 0.910 0.895
Dette (2020) 0.745 0.555 0.540 0.415 0.360 0.225

Case 2 SPAD 0.525 0.660 0.695 0.700 0.785 0.795
Dette (2020) 0.535 0.465 0.360 0.305 0.255 0.170

Case 3 SPAD 0.495 0.560 0.500 0.575 0.635 0.670
Dette (2020) 0.530 0.365 0.280 0.250 0.215 0.115

Case 4 SPAD 0.070 0.045 0.050 0.055 0.070 0.055
Dette (2020) 0.165 0.075 0.030 0.035 0.020 0.025

Case 5 SPAD 0.965 0.955 0.980 0.980 0.990 0.980
Dette (2020) 0.875 0.770 0.715 0.625 0.560 0.455

more than one change point in the sequence (Cases 4 & 5), the performances of
both methods are influenced by the change direction of correlations. In Case 4,
the correlation matrix changes from an identity matrix to an equal correlation
matrix and then changes back to the identity matrix. It is hard for both methods
to detect the change points. In Case 5, the correlations increase from 0 to 0.5
and then to 0.9. Both methods can detect the existence of change points. Our
SPAD method performs much better and reaches very high accuracies.

5.2. Estimation of change point

We investigate the finite sample properties of the proposed SPACE under dif-
ferent settings and compare it with two alternative methods proposed by [10]
and [4], which are recalled as follows. For the threshold τ2 in SPACE, we set
α = 95% in Equation (10).

• The estimator of [10] is defined as follows. First, a critical value τ is con-
structed from the bootstrap approach stated in Section 2.3 of [10], based
on which an index set is obtained from the vector D in (19)

Dτ = {(i, j) : D(i, j) > τ, 1 ≤ i ≤ j ≤ p}.

Then Dette’s estimator is

β̂D = 1
T

arg max
1≤t≤T

1
T 4

t∑ t∑
(i �=s)=1

T∑ T∑
(j �=l)=t+1

(ỹi − ỹj)′(ỹs − ỹl), (20)

where ỹi is a subvector of vech(ẏiẏ
′
i) by keeping the corresponding com-

ponents of the index set Dτ .
• The estimator of [4] is kernel-based. The similarities of all pairs of (yt,yt′)

are measured using Gaussian kernel,

g(yt,yt′) = exp
(
−||yt − yt′ ||2

2h2

)
, t, t′ = 1, . . . , T,
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where h is the bandwidth parameter, equals the median Euclidean distance
between all observations. Then the KCP-raw estimator is

β̂C = 1
T

arg min
1≤t≤T

1
T

(v1,t + v2,t), (21)

where v1,t = (t− 1)− 1
t−1

t∑
i=2

t∑
j=2

g(yt,yt′) measures the homogeneousness

of phase before the time point t and v2,t = (T−t)− 1
T−t

T∑
i=t+1

T∑
j=t+1

g(yt,yt′)

measures the homogeneousness of phase after the time point t.

In the data generating process, {yt}1≤t≤T are generated from two distribu-
tions: (i) Multivariate normal, N(0,Σk), k = 1, 2; and (ii) Student-t, t5; with
covariance matrix Σk = D̃RkD̃, where D̃ = diag(σ1, . . . , σp), R1 and R2 are the
correlation matrices before and after the change point, respectively. We con-
sider homoscedastic senario so σj = 1, j = 1, . . . , p. Four different choices for
correlation matrices R1 and R2 are considered.

• Case 6: R1 = Ip, and R2(i, j) = 0.5 for all 1 ≤ i �= j ≤ p;
• Case 7: R1 = Ip, and R2(i, j) = 0.5 for all 1 ≤ i �= j ≤ [p/2];
• Case 8: R1 = Ip, and R2(i, j) = 0.5 for all 1 ≤ i �= j ≤ [p/3], R2(i, j) = 0.2

for all [p/3] + 1 ≤ i �= j ≤ [2p/3], R2(i, j) = 0.8 for all [2p/3] + 1 ≤ i �=
j ≤ p;

• Case 9: R1(i, j) = 0.5 for all 1 ≤ i �= j ≤ p, and R2(i, i+1) = R2(i, i−1) =
−0.5 for all 1 ≤ i ≤ p.

Table 3 shows the mean change point fraction, SD, and MSE of three esti-
mators for all four cases when data are drawn from Gaussian distribution. The
true change point exists in the middle of the sequence. The SPACE and Dette’s
estimators perform better than the KCP-raw estimator in all cases. For Cases
6 and 8, Dette’s estimator is slightly better than SPACE in terms of mean,
while SPACE is better than Dette’s estimator in terms of SD and MSE, which
implies SPACE is more stable. Moreover, SPACE performs the best in Case 7
and Dette’s estimator performs the best in Case 9. As expected, the KCP-raw
estimator is only close to the true value when p = 5, but performs poorly when
p is large. Meanwhile, the KCP-raw estimator has the largest SD and MSE.

Table 4 shows the mean change point fraction, SD, and MSE of three es-
timators for all four cases when data are drawn from Student-t distribution.
SPACE performs best in all cases. With the results in Table 3 (where data are
Gaussian), Table 4 shows the robustness of SPACE concerning population dis-
tributions. In contrast, Dette’s estimator is not robust to non-Gaussian data as
the mean values are far from the true value except for the cases when p = 5.

Table 5 and Table 6 present the mean change point fraction, SD, and MSE of
three estimators under four cases for normal and student-t distributed samples,
respectively, when the change point is close to the tail, β = 0.7. For normal
samples, the proposed SPACE performs the best for Cases 6, 7, and 8 and is
very close to the true value with the smallest SD and MSE. Dette’s estimator
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Table 3

Normal. Mean, standard deviation (SD), and mean squared error (MSE) of three estimators
when the change point exists in the middle β = 0.5, T = 100.

p
SPACE Dette’s KCP-raw

MEAN SD MSE MEAN SD MSE MEAN SD MSE

Case 6

5 0.5243 0.0671 0.0051 0.5047 0.0959 0.0092 0.5550 0.2790 0.0805
50 0.5231 0.0290 0.0014 0.5059 0.0720 0.0052 0.6379 0.1941 0.0565
100 0.5231 0.0327 0.0016 0.5036 0.0646 0.0042 0.6208 0.1597 0.0400
300 0.5248 0.0344 0.0018 0.4948 0.1041 0.0108 0.6208 0.1508 0.0372
500 0.5217 0.0312 0.0014 0.4833 0.1202 0.0147 0.6180 0.1554 0.0380

Case 7

5 0.5163 0.1136 0.0131 0.4152 0.2186 0.0548 0.5581 0.3367 0.1162
50 0.5227 0.0294 0.0014 0.4815 0.1263 0.0162 0.6204 0.2847 0.0952
100 0.5236 0.0326 0.0016 0.4786 0.1189 0.0145 0.6647 0.2280 0.0788
300 0.5244 0.0349 0.0018 0.4774 0.1383 0.0195 0.6782 0.1940 0.0692
500 0.5201 0.0288 0.0012 0.4480 0.1574 0.0273 0.6696 0.1934 0.0660

Case 8

5 0.5173 0.0469 0.0025 0.5082 0.0735 0.0054 0.5288 0.3028 0.0921
50 0.5165 0.0241 0.0008 0.5101 0.0588 0.0035 0.6227 0.2211 0.0637
100 0.5130 0.0223 0.0007 0.5139 0.0536 0.0031 0.6534 0.1945 0.0612
300 0.5187 0.0309 0.0013 0.5140 0.0338 0.0013 0.6828 0.1735 0.0634
500 0.5160 0.0249 0.0009 0.5089 0.0700 0.0050 0.6622 0.1714 0.0555

Case 9

5 0.4869 0.0316 0.0012 0.4870 0.0350 0.0014 0.4845 0.2030 0.0412
50 0.4760 0.0351 0.0018 0.4906 0.0195 0.0005 0.3837 0.1732 0.0434
100 0.4759 0.0365 0.0019 0.4909 0.0188 0.0004 0.3737 0.1642 0.0428
300 0.4758 0.0294 0.0014 0.4920 0.0365 0.0014 0.3692 0.1569 0.0416
500 0.4759 0.0337 0.0017 0.4945 0.0146 0.0002 0.3629 0.1686 0.0471

Table 4

Student-t. Mean, standard deviation (SD), and mean squared error (MSE) of three
estimators when the change point exists in the middle β = 0.5, T = 100.

p
SPACE Dette’s KCP-raw

MEAN SD MSE MEAN SD MSE MEAN SD MSE

Case 6

5 0.5184 0.1311 0.0174 0.4430 0.2088 0.0466 0.5292 0.3020 0.0916
50 0.5459 0.1050 0.0131 0.2622 0.2492 0.1184 0.5582 0.2581 0.0696
100 0.5256 0.1100 0.0127 0.1886 0.2398 0.1542 0.5710 0.2512 0.0679
300 0.5312 0.1200 0.0153 0.0909 0.1777 0.1987 0.5812 0.2483 0.0679
500 0.5279 0.1129 0.0135 0.0552 0.1293 0.2145 0.5954 0.2495 0.0710

Case 7

5 0.5028 0.2041 0.0413 0.3172 0.2686 0.1052 0.5460 0.3411 0.1179
50 0.5265 0.1502 0.0232 0.1998 0.2502 0.1524 0.5212 0.3481 0.1210
100 0.5221 0.1413 0.0204 0.1324 0.2121 0.1799 0.5111 0.3467 0.1197
300 0.5174 0.1644 0.0272 0.0658 0.1637 0.2152 0.5814 0.3465 0.1261
500 0.5223 0.1472 0.0220 0.0434 0.1114 0.2209 0.5691 0.3516 0.1278

Case 8

5 0.5363 0.1253 0.0169 0.4472 0.1955 0.0408 0.5460 0.3089 0.0971
50 0.5343 0.1042 0.0120 0.2999 0.2541 0.1042 0.5372 0.3266 0.1075
100 0.5289 0.1119 0.0133 0.1906 0.2412 0.1536 0.5614 0.3221 0.1070
300 0.5287 0.1235 0.0160 0.0866 0.1773 0.2022 0.5951 0.3162 0.1085
500 0.5233 0.1054 0.0116 0.0688 0.1554 0.2100 0.5990 0.2988 0.0986

Case 9

5 0.4936 0.0749 0.0056 0.4852 0.0825 0.0070 0.4992 0.2183 0.0474
50 0.4727 0.0948 0.0097 0.3815 0.2147 0.0599 0.4300 0.2403 0.0623
100 0.4673 0.1030 0.0116 0.2891 0.2471 0.1052 0.3961 0.2400 0.0681
300 0.4649 0.1201 0.0156 0.1902 0.2391 0.1528 0.4391 0.2579 0.0699
500 0.4680 0.1279 0.0173 0.1070 0.1887 0.1899 0.4222 0.2627 0.0747
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Table 5

Normal. Mean, standard deviation (SD), and mean squared error (MSE) of three estimators
when the change point fraction is β = 0.7, T=100.

p
SPACE Dette’s KCP-raw

MEAN SD MSE MEAN SD MSE MEAN SD MSE

Case 6

5 0.6315 0.1072 0.0161 0.5908 0.1700 0.0407 0.5971 0.3093 0.1057
50 0.6980 0.0311 0.0010 0.5701 0.1743 0.0471 0.7632 0.1665 0.0316
100 0.6959 0.0328 0.0011 0.5777 0.1525 0.0381 0.7800 0.1446 0.0272
300 0.7014 0.0265 0.0007 0.5587 0.1753 0.0505 0.7810 0.0944 0.0154
500 0.6987 0.0237 0.0006 0.5359 0.1939 0.0643 0.7881 0.0944 0.0166

Case 7

5 0.5744 0.1518 0.0387 0.4318 0.2545 0.1364 0.5640 0.3384 0.1325
50 0.6763 0.0530 0.0034 0.5098 0.2369 0.0920 0.6664 0.3006 0.0910
100 0.6768 0.0509 0.0031 0.5059 0.2281 0.0894 0.6714 0.2968 0.0884
300 0.6861 0.0446 0.0022 0.5338 0.2116 0.0722 0.7835 0.1801 0.0393
500 0.6855 0.0419 0.0020 0.4842 0.2400 0.1039 0.7765 0.1958 0.0440

Case 8

5 0.6690 0.0738 0.0064 0.6309 0.1339 0.0226 0.5794 0.3196 0.1162
50 0.7034 0.0168 0.0003 0.6393 0.1304 0.0206 0.6993 0.2409 0.0578
100 0.7039 0.0184 0.0004 0.6221 0.1479 0.0278 0.7458 0.2284 0.0540
300 0.7032 0.0115 0.0001 0.6231 0.1250 0.0215 0.8087 0.1191 0.0259
500 0.7060 0.0140 0.0002 0.6082 0.1370 0.0271 0.7920 0.1482 0.0303

Case 9

5 0.6585 0.0622 0.0056 0.6551 0.0661 0.0064 0.6147 0.2390 0.0641
50 0.6410 0.0693 0.0083 0.6633 0.0567 0.0045 0.5434 0.2441 0.0838
100 0.6293 0.0820 0.0117 0.6619 0.0665 0.0058 0.5226 0.2347 0.0863
300 0.6223 0.0922 0.0145 0.6611 0.0711 0.0065 0.5147 0.2303 0.0871
500 0.6239 0.0878 0.0135 0.6455 0.1157 0.0163 0.5038 0.2465 0.0989

Table 6

Student-t. Mean, standard deviation (SD), and mean squared error (MSE) of three
estimators when the change point fraction is β = 0.7, T = 100.

p
SPACE Dette’s KCP-raw

MEAN SD MSE MEAN SD MSE MEAN SD MSE

Case 6

5 0.5954 0.1710 0.0400 0.4872 0.2634 0.1143 0.5587 0.3283 0.1272
50 0.6262 0.1598 0.0308 0.2358 0.2727 0.2894 0.6408 0.2990 0.0925
100 0.6235 0.1558 0.0300 0.1740 0.2600 0.3440 0.6515 0.3048 0.0948
300 0.6137 0.1778 0.0389 0.0703 0.1703 0.4254 0.6966 0.2714 0.0733
500 0.6363 0.1502 0.0265 0.0370 0.0953 0.4487 0.6984 0.2647 0.0697

Case 7

5 0.5393 0.2279 0.0773 0.3236 0.2819 0.2208 0.5359 0.3454 0.1456
50 0.5846 0.1902 0.0493 0.1734 0.2610 0.3450 0.5352 0.3669 0.1611
100 0.5826 0.1798 0.0460 0.1200 0.2186 0.3839 0.5593 0.3730 0.1583
300 0.5602 0.2120 0.0643 0.0621 0.1671 0.4346 0.6358 0.3625 0.1348
500 0.5825 0.2000 0.0536 0.0418 0.1207 0.4478 0.5956 0.3699 0.1470

Case 8

5 0.6353 0.1584 0.0292 0.5100 0.2680 0.1076 0.5703 0.3236 0.1210
50 0.6561 0.1421 0.0220 0.2893 0.3041 0.2607 0.6012 0.3516 0.1327
100 0.6295 0.1600 0.0304 0.1585 0.2568 0.3588 0.6035 0.3554 0.1350
300 0.6329 0.1755 0.0352 0.0781 0.1788 0.4185 0.6464 0.3374 0.1161
500 0.6314 0.1627 0.0311 0.0489 0.1335 0.4417 0.6405 0.3463 0.1229

Case 9

5 0.6321 0.1222 0.0195 0.6032 0.1604 0.0349 0.6158 0.2619 0.0754
50 0.5763 0.1593 0.0406 0.4105 0.3065 0.1773 0.5565 0.2759 0.0963
100 0.5759 0.1628 0.0418 0.2841 0.3098 0.2684 0.5083 0.2896 0.1202
300 0.5628 0.1687 0.0472 0.1979 0.2897 0.3356 0.5528 0.2977 0.1098
500 0.5708 0.1649 0.0437 0.1137 0.2256 0.3943 0.5074 0.3035 0.1287
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Table 7

Normal. Mean, standard deviation (SD), mean squared error (MSE), and iteration
time(ITER) of SPACE+SMOTE algorithm for Case 6 when the change point exists in the

extreme tail, ε = 10−3.
p 5 50 100 300 500

T=100

β = 0.8

MEAN 0.7072 0.7904 0.7966 0.8021 0.8019
SD 0.1473 0.0523 0.0447 0.0358 0.0304

MSE 0.0302 0.0028 0.0020 0.0013 0.0009
ITER 0.9450 1.1650 1.4050 1.3050 1.2850

β = 0.9

MEAN 0.7287 0.8306 0.8364 0.8570 0.8617
SD 0.1884 0.1138 0.1077 0.0867 0.0733

MSE 0.0646 0.0177 0.0156 0.0093 0.0068
ITER 1.1350 2.0000 2.4100 2.5000 2.7900

β = 0.95

MEAN 0.6642 0.7656 0.7814 0.8231 0.8393
SD 0.2286 0.1378 0.1260 0.0968 0.0986

MSE 0.1336 0.0529 0.0442 0.0254 0.0216
ITER 0.9650 2.2200 2.7450 3.5500 4.2400

T=200

β = 0.8

MEAN 0.7739 0.8047 0.8041 0.8056 0.8058
SD 0.0758 0.0126 0.0072 0.0089 0.0097

MSE 0.0064 0.0002 0.0001 0.0001 0.0001
ITER 0.7300 0.6100 0.5450 0.4200 0.4555

β = 0.9

MEAN 0.8267 0.9021 0.9012 0.9027 0.9024
SD 0.1320 0.0099 0.0163 0.0053 0.0052

MSE 0.0227 0.0001 0.0003 0.0000 0.0000
ITER 1.3950 1.8350 1.7650 1.6200 1.6250

β = 0.95

MEAN 0.7464 0.8785 0.9113 0.9269 0.9284
SD 0.1889 0.0948 0.0710 0.0343 0.0255

MSE 0.0769 0.0141 0.0065 0.0017 0.0011
ITER 1.0200 2.9600 3.5200 4.0450 4.1250

performs slightly better than SPACE only under Case 9. For student-t samples,
SPACE is the best, while Dette’s estimator performs the worst since the mean
tends to 0 as the dimension increases.

5.3. Change point in the extreme tail

To show the performance of the SPACE+SMOTE Algorithm, we explore Case
6 when the change point occurs in the extreme right tail, β = 0.8, 0.9, 0.95. The
mean change point fraction, SD, MSE, and average iterations of the algorithm
are shown in Table 7. As the dimension p increases from 5 to 500, or the sample
size T increases from 100 to 200, the mean values become very close to the
true value, and SD and MSE become smaller as expected. The algorithm is
time-efficient as small number of iterations is enough.

To compare the overall performance of SPACE+SMOTE, SPACE, Dette’s
estimator and KCP-raw, Figure 4 shows the variation of the absolute value of
β̂−β of these four methods as the true change point fraction β changes from 0.5
to 0.95. A smaller absolute value indicates a more accurate estimated result. We
consider Case 6 and Case 7 with p = 100, T = 100, 200 for normal samples. The
SPACE+SMOTE Algorithm is the most effective one in estimating the location
of the change point in the extreme tail. SPACE is also better than Dette (2020)
and KCP-raw methods.
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Fig 4. The absolute values of β − β̂ varies with β.

5.4. Heteroscedasticity and dependence

Till now, homoscedasticity of random variables is assumed, which is often chal-
lenged in real data application, however. Therefore, we consider the following
heteroscedasticity setting.

D̃ = diag(σ1, . . . , σp), Σ1 = D̃R1D̃, Σ2 = D̃R2D̃,

where σi, i = 1, . . . , p are independently drawn from Uniform distribution U(1, 21).
We compare SPACE with Dette’s estimator and KCP-raw under Cases 6-9 for
normal and student-t distributed data, respectively. The results are similar to
that for the homoscedasticity setting in the Section 5.2. The tables are in the
supplementary materials.

The independence assumption on the sequence of data y1, . . . ,yT is also
not common in real applications. We investigate the performance of SPACE
for dependent data. Moreover, heteroscedastic scenarios are also considered.
Following [9], we consider a vector autoregression of order 1,

yt = ψyt−1 + et,
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where the error vector et = (et1, . . . , etp)′ has zero mean and covariance matrix
Σt = DtR̃tDt with Dt = diag(σt1, . . . , σtp) and correlation matrix at time t, R̃t.
Here we consider the setting of correlation matrices in Case 6, that is, R̃t = R1
for 1 ≤ t ≤ t0, R̃t = R2 for t0 + 1 ≤ t ≤ T . The following four scenarios are
considered.

• Homoscedasticity serial dependence: serial dependence is considered by
ψ = 0.8, et = Σ1/2

t ηt, σ1i = · · · = σpi = 1 and ηt = (ηt1, . . . , ηtp)′ is a
vector of standard normal random variables.

• Heteroscedasticity serial dependence: ψ = 0.8, et = Σ1/2
t ηt, σ1i = · · · =

σpi1 are independently from U(1, 21).
• Conditional Heteroscedasticity: ψ = 0, et = Σ1/2

t ηt, σ2
li = (1− α1 − α2) +

α1a
2
l,i−1 + α2σ

2
l,i−1, l = 1, . . . , p, (α1, α2) = (0.1, 0.89).

• Unconditional Heteroscedasticity: ψ = 0, et = Σ1/2
t ηt, σli = σ0(1 + δI(i >

T/2)), σ0 = δ = 1 for all 1 ≤ l ≤ p.

The simulation results are presented in Table 8. Under both homoscedastic-
ity serial dependence and conditional heteroscedasticity scenarios, SPACE and
Dette’s estimator perform better than the KCP estimator. Dette’s estimator
is better than SPACE in terms of mean, while SPACE is better than Dette’s
estimator in terms of SD and MSE. Under the unconditional heteroscedasticity
scenario, the KCP estimator performs the best, and SPACE performs similarly
with Dette’s estimator.

6. Real data analysis

Though the proposed SPACE outperforms the existing ones in the simulation
experiments, we now compare SPACE and Dette’s estimator on two real data
sets. The KCP-raw method is omitted here due to its bad performance in the
simulations.

6.1. Gene expression profile

The first data is a real gene expression profile studied by [23]. The data set
investigated the relationship between peripheral blood gene expression patterns
and coronary artery disease severity. Patients undergoing coronary angiography
were selected according to their coronary artery disease index (CADi), a val-
idated angiographical measure of the extent of coronary atherosclerosis. RNA
was extracted from the blood of 110 patients with at least a stenosis greater
than 50% (CADi ≥ 23) and from 112 controls without evidence of coronary
stenosis (CADi= 0). Therefore, the total sample size is n = 222. Rearrange the
data so the true change point position is t0 = 110. The raw dataset is available
at the Gene Expression Omnibus repository with the accession number Series
GSE12288.

Following [10], we first apply the two sample t-tests with a significance level
0.05 to all genes, and 1410 genes are reserved. As mentioned in [23], many genes
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Table 8

Mean, standard deviation (SD), and mean squared error (MSE) of three estimators under
dependence and heteroscedasticity, β = 0.5.

Homoscedasticity
Serial

Dependence

SPACE

p 5 50 100 300 500
Mean 0.5203 0.5503 0.5530 0.5562 0.5594
SD 0.1136 0.0769 0.0701 0.0655 0.0739

MSE 0.0133 0.0084 0.0077 0.0074 0.0090

Dette’s
Mean 0.5093 0.5480 0.5455 0.5494 0.5566
SD 0.1387 0.0883 0.0748 0.0685 0.0818

MSE 0.0192 0.0101 0.0076 0.0071 0.0099

KCP-raw
Mean 0.5180 0.5601 0.5757 0.6306 0.6048
SD 0.2358 0.2055 0.1731 0.1700 0.1633

MSE 0.0557 0.0456 0.0355 0.0458 0.0375

Heteroscedasticity
Serial

Dependence

SPACE
Mean 0.5226 0.5381 0.5436 0.5434 0.5454
SD 0.1049 0.0536 0.0611 0.0453 0.0592

MSE 0.0115 0.0043 0.0056 0.0039 0.0055

Dette’s
Mean 0.5183 0.5357 0.5392 0.5379 0.5370
SD 0.1378 0.0668 0.0665 0.0528 0.0539

MSE 0.0192 0.0057 0.0059 0.0042 0.0043

KCP-raw
Mean 0.5573 0.6021 0.6050 0.6344 0.6252
SD 0.2604 0.2152 0.1958 0.1837 0.1664

MSE 0.0707 0.0565 0.0492 0.0516 0.0432

Conditional
Heteroscedasticity

SPACE
Mean 0.5135 0.5269 0.5242 0.5287 0.5295
SD 0.0894 0.0413 0.0401 0.0435 0.0419

MSE 0.0081 0.0024 0.0022 0.0027 0.0026

Dette’s
Mean 0.5008 0.5227 0.5269 0.5272 0.5341
SD 0.1267 0.0864 0.0886 0.0846 0.0841

MSE 0.0160 0.0079 0.0085 0.0079 0.0082

KCP-raw
Mean 0.5137 0.6094 0.6219 0.6166 0.6016
SD 0.2627 0.1767 0.1683 0.1541 0.1477

MSE 0.0689 0.0430 0.0430 0.0372 0.0320

Unconditional
Heteroscedasticity

SPACE
Mean 0.5372 0.5316 0.5316 0.5292 0.5332
SD 0.0462 0.0414 0.0416 0.0347 0.0473

MSE 0.0035 0.0027 0.0027 0.0020 0.0033

Dette’s
Mean 0.5270 0.5300 0.5326 0.5349 0.5343
SD 0.0372 0.0400 0.0439 0.0544 0.0795

MSE 0.0021 0.0025 0.0030 0.0042 0.0075

KCP-raw
Mean 0.5297 0.5149 0.5139 0.5113 0.5130
SD 0.0622 0.0267 0.0266 0.0318 0.0257

MSE 0.0047 0.0009 0.0009 0.0011 0.0008

are not correlated with CADi, and thus it is suitable to do such a preprocessing
step.

To show the estimation performance of these two estimators, we change the
number of genes kept in estimation procedures from p = 5 to p = 1410 cor-
responding to the smallest p-values in the two sample t-tests. Table 9 records
the estimated change point fractions for different p. As p becomes large, both
estimators are closer to the true value. SPACE performs better and remains
stable when p is large enough. In particular, SPACE achieves the true value
when p ≥ 200, while Dette’s estimator never reaches the true value.
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Table 9

The true change point fraction is β = 110/222 = 0.4955.

p 5 20 50 100 200 300 500 1000 1410
SPACE 0.4775 0.3694 0.4820 0.4910 0.4955 0.4955 0.4955 0.4955 0.4955
Dette’s 0.4730 0.4324 0.2342 0.2342 0.4279 0.4279 0.4279 0.2477 0.2477

6.2. FRED-MD data set

The second data set is the FRED-MD, a macroeconomic database of 134 monthly
U.S. indicators from eight aspects (output and income, labor market, consump-
tion and orders, orders and inventories, money and credit, interest rate and
exchange rates, prices and stock market) from January 1959, aim to establish
a convenient starting point for empirical analysis that requires “big data” [20].
The data set is updated in a timely manner and can be downloaded for free
from the website.1 [13] used this data set to predict the risk of U.S. bond risk
premia. As the change of correlation coefficient is often accompanied by risk, we
apply the proposed method to estimate the change point location in this data
set.

After removing the missing data, 127 macroeconomic indicators are retained
for nearly 20 years, that is, p = 127. The latest month is July 2022. To show
the estimation performance of these two estimators, we change the number of
months T until July 2022 from 50 to 200. Table 10 records the estimated change
point location (the exact month) for different T , with change point fraction in
parentheses.

Table 10

The estimated change point month in the FRED-MD data set.
T 50 100 130 150 200

start month June 2018 April 2014 October 2011 February 2010 December 2005
SPACE Oct. 2021 Apr. 2020 Apr. 2020 Apr. 2020 Sep. 2008

(0.82) (0.73) (0.79) (0.82) (0.17)
Dette’s Feb. 2021 Jan. 2021 Oct. 2020 Apr. 2020 Apr. 2020

(0.66) (0.82) (0.84) (0.82) (0.87)

When T = 50, the period is from June 2018 to July 2022. The SPACE
estimated change point month is October 2021. This coincided with a sharp
drop in U.S. stocks at the end of the third quarter of 2021, with the S&P 500
posting its worst monthly drop since the coronavirus outbreak in March 2020,
and the risk of stagflation loomed in the US economy, according to the reports
in The Wall Street Journal and the BBC.

When T = 100, 130, 150, SPACE has been estimating the change point month
to be April 2020, which coincided with the coronavirus outbreak. The World
Health Organization (WHO) announced a global pandemic on March 11, 2020.
The New York Times reported on April 2, 2020 that the United States was
facing a dire situation, with more than 200,000 confirmed cases in the United
States, and the federal medical supplies reserve is almost exhausted.

1http://research.stlouisfed.org/econ/mccracken/sel/

http://research.stlouisfed.org/econ/mccracken/sel/


962 Z. Li and J. Gao

When T = 200, the period is from December 2005 to July 2022. The SPACE
estimated change point month is September 2008. This month, the financial
crisis started to spiral out of control and led to the failure or government takeover
of many fairly large financial institutions, triggering an economic recession.

By comparison, when T = 50, 100, 130, Dette’s estimates are February 2021,
January 2021 and October 2020, respectively. However, the implications of the
changes are unclear. When T = 150, Dette’s estimator gives the same estimator
as SPACE, the time of the coronavirus outbreak. When T = 200, Detter’s
estimator also gives the timing of the coronavirus outbreak.

7. Conclusion

In this paper, we propose a break test and a change point location estimator
in the correlation structure of high-dimensional data. The main appeal of our
methods is that they are developed without any assumption on the ratio of
p and T and are thus appropriate for a wide range of large dimensional data
sets. The larger p or T , the better performance of the proposed methods. More-
over, they are also effective when the change point exists in the extreme tail
of a data seqence. Monte Carlo experiments and real data analyses demon-
strated the superiority of the proposed methods over several existing methods.
In addition, when a change point exists, our methods automatically provide
support recovery in the index set wτ1 or wτ2 . The proposed estimator is robust
to non-Gaussian data, although the theories are developed under the normal
assumption.

There are several possible extensions of our methods. A direct extension
is to detect and estimate the change point in the covariance structure of a
sequence of high-dimensional vectors. In addition, as we have presented, signflip
permutation can break the change point structure and construct the behavior
under the null without a change point. Thus, signflip can be used in other change
point problems, including online detection.



Efficient change point detection and estimation in HD correlation matrices 963

Appendix A

A.1. More simulation results

Algorithm 3 : SPAD+SMOTE
Input : Data Matrix Y(i) ∈ R

p×T (p variables and T series), i = 1, . . . ,m. small
positive number ε.
Output : the successful detection rate under H1.

1 for i ← 1 to m do
2 a(i) = card(wτ1) > 0, a(i) = 1 when there exists a change point, a(i) = 0,

otherwise.
3 end
4 α0 ← sum(a)

m
, the successful detection rate under H1 for raw data.

5 for i ← 1 to m do
6 Y0(i) = Y(i).
7 let [γT + 1, T ] columns of Y0(i) be the minority class, get(1 − γ)T SMOTE

variables, γ ≥ 0.9.
8 Y(i) ← combine Y0(i) and SMOTE variables.
9 a(i) = card(wτ1) > 0 for Y(i).
10 end
11 α1 ← sum(a)

m
, the successful detection rate for inflated data.

12 while α1 − α0 ≥ ε do
13 α0 = α1;
14 Repeat the above steps 5–11.
15 end
16 α1 ← the successful detection rate under H1.

Table 11 shows the result of the success rate of detecting the existence of
the change point over 200 times repetitions under H1 when the change point
occurs in the tail(β = 0.9, 0.95), and the correlation matrix before and after
the change point is the same as Case 6 setting. We let ε = 0.05 in order to
improve computing efficiency. Compared with the result of Case 3 in Table 2,
where β = 0.75, when the position of the change point is closer to the tail, the
proportion of successful detection of the change point is greatly increased, which
also verifies the effectiveness of the iterative algorithm proposed in this paper.

Table 11

The success rate of detection change point under H1 and iteration time (ITER) of
SPAD+SMOTE estimator under Case 6 when the change point exists in the extreme tail,

ε = 0.05, T=100.
p 20 50 100 200 300 500

β = 0.9 Success rate 0.8108 0.8672 0.8961 0.9138 0.9228 0.9327
ITER 3.5650 3.2700 3.1550 3.1150 3.0800 3.0000

β = 0.95 Success rate 0.6656 0.7950 0.8492 0.8879 0.8984 0.9082
ITER 3.9800 4.0800 3.9600 3.7900 3.7650 3.6300

The following four Tables 12, 13, 14 and 15 contain the simulation results
under heteroscedasticity setting in Section 5.4.
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Table 12

Heteroscedasticity setting. Normal distribution. Mean, standard deviation (SD), and mean
squared error (MSE) of three estimators when the change point exists in the middle β = 0.5.

p
SPACE Dette’s KCP-raw

MEAN SD MSE MEAN SD MSE MEAN SD MSE

Case 6

5 0.5243 0.0671 0.0051 0.4947 0.1209 0.0146 0.5238 0.2903 0.0844
50 0.5231 0.0290 0.0014 0.5000 0.0890 0.0079 0.6377 0.1996 0.0586
100 0.5231 0.0327 0.0016 0.5037 0.0738 0.0054 0.6146 0.1576 0.0378
300 0.5248 0.0344 0.0018 0.5067 0.0682 0.0047 0.6262 0.1547 0.0397
500 0.5217 0.0312 0.0014 0.4947 0.0880 0.0077 0.6168 0.1544 0.0374

Case 7

5 0.5163 0.1136 0.0131 0.4130 0.2365 0.0632 0.5645 0.3325 0.1141
50 0.5227 0.0294 0.0014 0.4883 0.1202 0.0145 0.6006 0.2812 0.0888
100 0.5236 0.0326 0.0016 0.4611 0.1408 0.0212 0.6274 0.2547 0.0808
300 0.5244 0.0349 0.0018 0.4840 0.1243 0.0156 0.6689 0.2198 0.0766
500 0.5201 0.0288 0.0012 0.4657 0.1417 0.0212 0.6624 0.2054 0.0683

Case 8

5 0.5173 0.0469 0.0025 0.5076 0.0797 0.0064 0.5381 0.2965 0.0889
50 0.5165 0.0241 0.0008 0.5086 0.0731 0.0054 0.6304 0.2269 0.0682
100 0.5130 0.0223 0.0007 0.5064 0.0589 0.0035 0.6332 0.1978 0.0567
300 0.5187 0.0309 0.0013 0.5165 0.0379 0.0017 0.6837 0.1771 0.0650
500 0.5160 0.0249 0.0009 0.5099 0.0614 0.0038 0.6636 0.1709 0.0558

Case 9

5 0.4869 0.0316 0.0012 0.4845 0.0410 0.0019 0.4726 0.2160 0.0472
50 0.4761 0.0351 0.0018 0.4841 0.0429 0.0021 0.3944 0.1788 0.0430
100 0.4759 0.0365 0.0019 0.4877 0.0225 0.0007 0.3758 0.1649 0.0425
300 0.4758 0.0294 0.0014 0.4882 0.0252 0.0008 0.3655 0.1574 0.0427
500 0.4760 0.0337 0.0017 0.4890 0.0416 0.0018 0.3605 0.1695 0.0481

Table 13

Heteroscedasticity setting. Student-t distribution. Mean, standard deviation (SD), and mean
squared error (MSE) of three estimators when the change point exists in the middle β = 0.5.

p
SPACE Dette’s KCP-raw

MEAN SD MSE MEAN SD MSE MEAN SD MSE

Case 6

5 0.5184 0.1311 0.0174 0.4430 0.2088 0.0466 0.5292 0.3020 0.0916
50 0.5460 0.1050 0.0131 0.2622 0.2492 0.1184 0.5582 0.2581 0.0696
100 0.5256 0.1100 0.0127 0.1887 0.2398 0.1542 0.5710 0.2512 0.0679
300 0.5312 0.1200 0.0153 0.0909 0.1777 0.1987 0.5812 0.2483 0.0679
500 0.5279 0.1129 0.0135 0.0552 0.1293 0.2145 0.5954 0.2495 0.0710

Case 7

5 0.5028 0.2041 0.0413 0.3173 0.2686 0.1052 0.5461 0.3411 0.1179
50 0.5265 0.1502 0.0232 0.1998 0.2502 0.1524 0.5212 0.3481 0.1210
100 0.5221 0.1413 0.0204 0.1325 0.2121 0.1799 0.5111 0.3467 0.1197
300 0.5174 0.1644 0.0272 0.0658 0.1637 0.2152 0.5814 0.3465 0.1261
500 0.5223 0.1472 0.0220 0.0433 0.1114 0.2209 0.5691 0.3516 0.1278

Case 8

5 0.5363 0.1253 0.0169 0.4472 0.1955 0.0408 0.5460 0.3089 0.0971
50 0.5343 0.1042 0.0120 0.3000 0.2541 0.1042 0.5372 0.3266 0.1075
100 0.5289 0.1119 0.0133 0.1906 0.2412 0.1536 0.5614 0.3221 0.1070
300 0.5287 0.1235 0.0160 0.0866 0.1773 0.2022 0.5951 0.3162 0.1085
500 0.5233 0.1054 0.0116 0.0687 0.1554 0.2100 0.5990 0.2988 0.0986

Case 9

5 0.4936 0.0749 0.0056 0.4852 0.0825 0.0070 0.4992 0.2183 0.0474
50 0.4728 0.0948 0.0097 0.3815 0.2147 0.0599 0.4300 0.2403 0.0623
100 0.4673 0.1030 0.0116 0.2892 0.2471 0.1052 0.3961 0.2400 0.0681
300 0.4650 0.1201 0.0156 0.1903 0.2391 0.1528 0.4392 0.2579 0.0699
500 0.4680 0.1279 0.0173 0.1071 0.1887 0.1899 0.4222 0.2627 0.0747



Efficient change point detection and estimation in HD correlation matrices 965

Table 14

Heteroscedasticity setting. Normal distribution. Mean, standard deviation (SD), and mean
squared error (MSE) of three estimators when the change point exists in the tail β = 0.7.

p
SPACE Dette’s KCP-raw

MEAN SD MSE MEAN SD MSE MEAN SD MSE

Case 6

5 0.6315 0.1072 0.0161 0.5902 0.1725 0.0417 0.6013 0.3078 0.1040
50 0.6981 0.0311 0.0010 0.6116 0.1313 0.0250 0.7564 0.1731 0.0330
100 0.6959 0.0328 0.0011 0.5772 0.1667 0.0427 0.7768 0.1412 0.0257
300 0.7015 0.0265 0.0007 0.5906 0.1634 0.0386 0.7777 0.1052 0.0170
500 0.6988 0.0237 0.0006 0.5821 0.1433 0.0343 0.7847 0.1062 0.0184

Case 7

5 0.5744 0.1518 0.0387 0.4319 0.2590 0.1387 0.5664 0.3363 0.1304
50 0.6764 0.0530 0.0034 0.5308 0.2189 0.0763 0.6371 0.3065 0.0974
100 0.6768 0.0509 0.0031 0.5011 0.2292 0.0918 0.6759 0.2988 0.0894
300 0.6861 0.0446 0.0022 0.5575 0.2030 0.0613 0.7565 0.2159 0.0496
500 0.6855 0.0419 0.0020 0.4975 0.2485 0.1024 0.7678 0.2036 0.0458

Case 8

5 0.6690 0.0738 0.0064 0.6354 0.1379 0.0231 0.5718 0.3155 0.1155
50 0.7034 0.0168 0.0003 0.6394 0.1290 0.0202 0.7012 0.2520 0.0632
100 0.7039 0.0184 0.0004 0.6381 0.1196 0.0181 0.7408 0.2243 0.0517
300 0.7032 0.0115 0.0001 0.6490 0.0915 0.0109 0.8097 0.1221 0.0269
500 0.7060 0.0140 0.0002 0.6380 0.1241 0.0192 0.7920 0.1399 0.0279

Case 9

5 0.6585 0.0622 0.0056 0.6505 0.0796 0.0088 0.6122 0.2382 0.0642
50 0.6410 0.0693 0.0083 0.6375 0.1098 0.0159 0.5339 0.2527 0.0911
100 0.6293 0.0820 0.0117 0.6484 0.0779 0.0087 0.5192 0.2344 0.0873
300 0.6223 0.0922 0.0145 0.6333 0.1132 0.0172 0.5051 0.2329 0.0919
500 0.6239 0.0878 0.0135 0.6187 0.1295 0.0233 0.4964 0.2504 0.1039

Table 15

Heteroscedasticity setting. Student-t distribution. Mean, standard deviation (SD), and mean
squared error (MSE) of three estimators when the change point exists in the middle β = 0.7.

p
SPACE Dette’s KCP-raw

MEAN SD MSE MEAN SD MSE MEAN SD MSE

Case 6

5 0.5954 0.1710 0.0400 0.4872 0.2634 0.1143 0.5588 0.3283 0.1272
50 0.6262 0.1598 0.0308 0.2359 0.2727 0.2894 0.6408 0.2990 0.0925
100 0.6235 0.1558 0.0300 0.1740 0.2600 0.3440 0.6515 0.3048 0.0948
300 0.6138 0.1778 0.0389 0.0703 0.1703 0.4254 0.6967 0.2714 0.0733
500 0.6363 0.1502 0.0265 0.0369 0.0953 0.4487 0.6984 0.2647 0.0697

Case 7

5 0.5393 0.2279 0.0773 0.3236 0.2819 0.2208 0.5359 0.3454 0.1456
50 0.5846 0.1902 0.0493 0.1735 0.2610 0.3450 0.5353 0.3669 0.1611
100 0.5826 0.1798 0.0460 0.1201 0.2186 0.3839 0.5593 0.3730 0.1583
300 0.5602 0.2120 0.0643 0.0621 0.1671 0.4346 0.6358 0.3625 0.1348
500 0.5826 0.2000 0.0536 0.0417 0.1207 0.4478 0.5956 0.3699 0.1470

Case 8

5 0.6353 0.1584 0.0292 0.5101 0.2680 0.1076 0.5703 0.3236 0.1210
50 0.6562 0.1421 0.0220 0.2894 0.3041 0.2607 0.6012 0.3516 0.1327
100 0.6296 0.1600 0.0304 0.1586 0.2568 0.3588 0.6035 0.3554 0.1350
300 0.6329 0.1755 0.0352 0.0781 0.1788 0.4185 0.6464 0.3374 0.1161
500 0.6314 0.1627 0.0311 0.0489 0.1335 0.4417 0.6405 0.3463 0.1229

Case 9

5 0.6321 0.1222 0.0195 0.6033 0.1604 0.0349 0.6158 0.2619 0.0754
50 0.5763 0.1593 0.0406 0.4105 0.3065 0.1773 0.5565 0.2759 0.0963
100 0.5759 0.1628 0.0418 0.2842 0.3098 0.2684 0.5083 0.2896 0.1202
300 0.5628 0.1687 0.0472 0.1980 0.2897 0.3356 0.5529 0.2977 0.1098
500 0.5708 0.1649 0.0437 0.1138 0.2256 0.3943 0.5074 0.3035 0.1287
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A.2. Proofs of main results

We first introduce some auxiliary results that are frequently used in the proofs.

Lemma A.1 (Lemma 2.7.7 in [25]). Consider the samples xt = (xt1, . . . , xtp)′,
t = 1, . . . , T satisfying Assumption 1. For any 1 ≤ i ≤ j ≤ p, xti and xtj

are sub-Gaussian random variables, then xtixtj is a sub-exponential random
variable.

Lemma A.2 (Proposition 2.7.1 in [25]). Let xti, t = 1, . . . , T be a sub-exponential
random variable, then there exist positive constants c1, c2 > 0 such that for every
a > 0,

P(|xti| ≥ a) ≤ c1e
−c2d.

Lemma A.3 (Corollary 2.8.3 in [25]). Let x1, . . . , xT be independent, mean zero,
sub-exponential random variables, then there exist positive constants c1, c2 > 0
such that for every a > 0,

P

{∣∣∣∣∣ 1T
T∑

t=1
xt

∣∣∣∣∣ ≥ a

}
≤ c1e

−c2T ·min(a2,a).

A.2.1. Proof of Theorem 3.1

In Theorem 3.1, we prove P

{ ⋃
(i,j)∈N

{w(i, j) > τ2}
}
→ 0 under Assumptions 1

& 3. Without loss of generality, we can assume ρ1(i, j) = ρ2(i, j) = 0 for any
1 ≤ i, j ≤ p. Observing

P

⎧⎨
⎩

⋃
(i,j)∈N

{w(i, j) > τ2}

⎫⎬
⎭ ≤

∑
(i,j)∈N

P{w(i, j) > τ2} ≤ 1
2(p2 − p)P{w(i, j) > τ2},

(22)

then it is sufficient to verify P{w(i, j) > τ2} = o
(

1
p2

)
.

The components of the vector w corresponding to the entry in the position
(i, j) (1 ≤ i, j ≤ p) of the correlation matrices R̂1, R̂2 are given by

w(i, j) = 1
T − 3

T−2∑
t=2

t(T − t)
T

(
1
t

t∑
k=1

xkixkj −
1

T − t

T∑
k=t+1

xkixkj

)2

As t varies from 2 to T−2, the weight t(T−t)
T has relatively larger values when

�
√
T  + 1 ≤ t ≤ T − �

√
T  − 1, compared to its values when 2 ≤ t ≤ �

√
T  and

T−�
√
T  ≤ t ≤ T−2. In addition, when T is big enough,

√
T can be pretty small,

and the two tails of t(T−t)
T show symmetric form. Moreover, both the two tails

only involve (�
√
T  − 1) terms, and thus the coefficient 1

T−3 = �
√
T	−1
T−3 · 1

�
√
T	−1
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gives an extra factor of order 1√
T

in the calculations. Thus, we can decompose
w(i, j) in terms of t into three parts,

w(i, j) = w(1)(i, j) + w(2)(i, j) + w(3)(i, j),

where w(1)(i, j) corresponds to t ∈
[
2, �

√
T 
]
, w(2)(i, j) corresponds to

t ∈
[
�
√
T  + 1, T − �

√
T  − 1

]
, w(3)(i, j) corresponds to t ∈

[
T − �

√
T , T − 2

]
.

Therefore, in order to prove 1
2 (p2 − p)P{w(i, j) > τ2} → 0, it is sufficient to

prove
p2
P{w(h)(i, j) > cτ2} → 0, h = 1, 2, 3.

In this inequality and hereafter in the proof, c and ci (i = 1, 2, . . .) indicate some
positive constants that may change from line to line.

The case h = 1, 3:
For the index h = 1 and h = 3 the arguments are quite similar, and for brevity,
we only consider the case h=1. For the statistic w(1)(i, j), we find that

P

{
w(1)(i, j) ≥ cτ2

}

= P

⎧⎨
⎩ �

√
T � − 1
T − 3

· 1
�
√
T � − 1

�
√
T�∑

t=2

t(T − t)
T

⎛
⎝1

t

t∑
k=1

xkixkj − 1
T − t

T∑
k=t+1

xkixkj

⎞
⎠

2

> cτ2

⎫⎬
⎭

≤
[
√
T ]∑

t=2
P

⎧⎨
⎩
∣∣∣∣∣∣
1
t

t∑
i=k

xkixkj − 1
T − t

T∑
k=t+1

xkixkj

∣∣∣∣∣∣ >
√

cτ2T
√
T

t(T − t)

⎫⎬
⎭

≤
�
√
T�∑

t=2

⎧⎨
⎩P

⎛
⎝
∣∣∣∣∣1t

t∑
k=1

xkixkj

∣∣∣∣∣ >
√

cτ2T
√
T

t(T − t)

⎞
⎠+ P

⎛
⎝
∣∣∣∣∣∣

1
T − t

T∑
k=t+1

xkixkj

∣∣∣∣∣∣ >
√

cτ2T
√
T

t(T − t)

⎞
⎠
⎫⎬
⎭ .

Since xti and xtj are sub-Gaussian random variables and xtixtj is a sub-exponential
random variable based on Lemma A.1. Then, according to Lemmas A.2 & A.3,
we have

P

⎛
⎝
∣∣∣∣∣1t

t∑
k=1

xkixkj

∣∣∣∣∣ >
√

cτ2T
√
T

t(T − t)

⎞
⎠ ≤ c1e

−c2tmin
(√

cτ2T
√

T
t(T−t) ,

cτ2T
√

T
t(T−t)

)

≤ c1e
−c2 min

(
T 1/4√τ2,τ2

√
T
)
≤ c1e

−c2T
1/4√τ2 ,

and

P

⎛
⎝
∣∣∣∣∣ 1
T − t

T∑
k=t+1

xkixkj

∣∣∣∣∣ >
√

cτ2T
√
T

t(T − t)

⎞
⎠ ≤ c1e

−c2(T−t) min
(√

cτ2T
√

T
t(T−t) ,

cτ2T
√

T
t(T−t)

)

≤ c1e
−c2 min

(√
τ2T (T−

√
T ),τ2T

)

≤ c1e
−c2

√
τ2T (T−

√
T ),
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for t = 2, . . . ,
√
T . Therefore,

P

{
w(1)(i, j) ≥ cτ2

}
≤

�
√
T�∑

t=2

(
c1e

−c2

√
τ2

√
T + c3e

−c4
√

τ2T (T−
√
T )
)

≤ c1
√
Te−c2T

1/4√τ2 ,

as the smallest absolute value between the exponents is T 1/4√τ2. Under As-
sumption 3, we have

p2 · P
{
w(1)(i, j) > cτ2

}
≤ c1p

2
√
T · e−c2T

1/4√τ2 → 0. (23)

The case h = 2:
For the statistic w(2)(i, j), we have

P

{
w(2)(i, j) > cτ2

}

= P

⎧⎨
⎩ 1

T − 3

T−�
√
T�−1∑

t=�
√
T�+1

t(T − t)
T

⎛
⎝1

t

t∑
k=1

xkixkj − 1
T − t

T∑
k=t+1

xkixkj

⎞
⎠

2

> cτ2

⎫⎬
⎭

≤
T−�

√
T�−1∑

t=�
√
T�+1

P

⎛
⎝
∣∣∣∣∣∣
1
t

t∑
k=1

xkixkj − 1
T − t

T∑
k=t+1

xkixkj

∣∣∣∣∣∣ >
√

cτ2T

t(T − t)

⎞
⎠

≤
T−�

√
T�−1∑

t=�
√
T�+1

⎧⎨
⎩P

(∣∣∣∣∣1t
t∑

k=1
xkixkj

∣∣∣∣∣ >
√

cτ2T

t(T − t)

)
+ P

⎛
⎝
∣∣∣∣∣∣

1
T − t

T∑
k=t+1

xkixkj

∣∣∣∣∣∣ >
√

cτ2T

t(T − t)

⎞
⎠
⎫⎬
⎭ .

Then according to Lemma A.3, we have

P

(∣∣∣∣∣1t
t∑

k=1

xkixkj

∣∣∣∣∣ >
√

cτ2T

t(T − t)

)
≤ c1e

−c2tmin
(√

cτ2T
t(T−t) ,

cτ2T
t(T−t)

)

≤ c1e
−c2 min(T 1/4√τ2,τ2),

and

P

⎛
⎝
∣∣∣∣∣ 1
T − t

T∑
k=t+1

xkixkj

∣∣∣∣∣ >
√

cτ2T
√
T

t(T − t)

⎞
⎠ ≤ c1e

−c2(T−t) min
(√

cτ2T
t(T−t) ,

cτ2T
t(T−t)

)

≤ c1e
−c2 min

(
T 1/4√τ2,τ2

)
,

for t = �
√
T  + 1, . . . , T − �

√
T  − 1. Therefore, we have

P

(
w(2)(i, j) > cτ2

)
≤ c1Te

−c2 min(T 1/4√τ2,τ2).

Under Assumption 3, we have

p2 · P
(
w(2)(i, j) > cτ2

)
≤ c1p

2T · e−c2 min(T 1/4√τ2,τ2) → 0.

We complete the proof of Theorem 3.1.
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A.2.2. Proof of Theorem 3.2

The result of Theorem 3.2 is equivalent to

P

⎧⎨
⎩

⋃
(i,j)∈P

(w(i, j) ≤ τ2)

⎫⎬
⎭→ 0.

As

P

⎧⎨
⎩

⋃
(i,j)∈P

(w(i, j) ≤ τ2)

⎫⎬
⎭ ≤

∑
(i,j)∈P

P(w(i, j) ≤ τ2) ≤ p2 · P(w(i, j) ≤ τ2) → 0,

it is sufficient to prove p2 · P(w(i, j) ≤ τ2) → 0. A straightforward calculation
gives

E

(
1
t

t∑
k=1

xkixkj −
1

T − t

T∑
k=t+1

xkixkj

)
=

⎧⎪⎨
⎪⎩

T − t0
T − t

(ρ1(i, j) − ρ2(i, j)) , t ≤ t0

t0
t

(ρ1(i, j) − ρ2(i, j)) , t > t0

Let

At = 1
t

t∑
k=1

xkixkj −
1

T − t

T∑
k=t+1

xkixkj−E

(
1
t

t∑
k=1

xkixkj−
1

T − t

T∑
k=t+1

xkixkj

)
,

Bt = E

(
1
t

t∑
k=1

xkixkj −
1

T − t

T∑
k=t+1

xkixkj

)
,

then w(i, j) = 1
T−3

T−2∑
t=2

t(T−t)
T (At + Bt)2. When t ≤ t0, Bt ≥ T−t0

T (ρ1(i, j) −

ρ2(i, j)), when t > t0, Bt ≥ t0
T (ρ1(i, j)−ρ2(i, j)), so Bt ≥ min(T−t0

T , t0
T )(ρ1(i, j)−

ρ2(i, j)) and 1
|Bt| ≥

1
|ρ1(i,j)−ρ2(i,j)| . We have

1
T − 3

T−2∑
t=2

t(T − t)
T

B2
t ≥ 1

T − 3

T−2∑
t=2

t(T − t)
T

min
(

(T − t0)2

T 2 ,
t20
T 2

)
· (ρ1(i, j) − ρ2(i, j))2

≥ min
(

(T − t0)2

T 2 ,
t20
T 2

)
· Tλ2

6

≥ min
(

(T − t0)2

T 2 ,
t20
T 2

)
· T

6
· c τ2

T
· max

(
T 2

(T − t0)2
,
T 2

t20

)

=
cτ2

6
,

(24)

according to Assumption 2, and then, with a sufficiently large constant c ≥ 12,
we obtain

τ2 ≤ 1
2(T − 3)

T−2∑
t=2

t(T − t)
T

B2
t .
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Thus, we can have

P(w(i, j) ≤ τ2)

= P

(
1

T − 3

T−2∑
t=2

t(T − t)
T

(At + Bt)2 ≤ τ2

)

≤ P

(
2

T − 3

T−2∑
t=2

t(T − t)
T

AtBt ≤ τ2 −
1

T − 3

T−2∑
t=2

t(T − t)
T

B2
t

)

≤ P

(∣∣∣∣∣ 2
T − 3

T−2∑
t=2

t(T − t)
T

AtBt

∣∣∣∣∣ ≥
∣∣∣∣∣− 1

2(T − 3)

T−2∑
t=2

t(T − t)
T

B2
t

∣∣∣∣∣
)

≤
T−2∑
t=2

P

(
|At| ≥

∣∣∣∣ T

2t(T − t)

∣∣∣∣ · 1
|Bt|

· 1
2(T − 3)

T−2∑
t=2

t(T − t)
T

B2
t

)
.

(25)

From (24), it is easy to obtain

1
T − 3

T−2∑
t=2

t(T − t)
T

B2
t ≥ c · T min

(
(T − t0)2

T 2 ,
t20
T 2

)
|ρ1(i, j) − ρ2(i, j)|2,

then the right-hand side within the probability function in (25) is
∣∣∣∣ T

2t(T − t)

∣∣∣∣ · 1
|Bt|

· 1
2(T − 3)

T−2∑
t=2

t(T − t)
T

B2
t

≥ cT 2

t(T − t) min
(

(T − t0)2

T 2 ,
t20
T 2

)
|ρ1(i, j) − ρ2(i, j)|

≥ cT

t(T − t)
√
τ2T .

Then P(w(i, j) ≤ τ2) in (25) becomes

P(w(i, j) ≤ τ2) ≤ TP

(
|At| ≥

cT

t(T − t)
√

τ2T

)

≤ TP

⎧⎨
⎩
∣∣∣∣∣∣
1
t

t∑
k=1

xkixkj − 1
T − t

T∑
k=t+1

xkixkj − E

⎛
⎝1

t

t∑
k=1

xkixkj − 1
T − t

T∑
k=t+1

xkixkj

⎞
⎠
∣∣∣∣∣∣

≥ cT

t(T − t)
√

τ2T

}

≤ TP

⎧⎨
⎩
∣∣∣∣∣∣
1
t

t∑
k=1

xkixkj − E

⎛
⎝1

t

T∑
k=t+1

xkixkj

⎞
⎠
∣∣∣∣∣∣ ≥

cT

t(T − t)
√

τ2T

⎫⎬
⎭

+ TP

⎧⎨
⎩
∣∣∣∣∣∣

1
T − t

T∑
k=t+1

xkixkj − E

⎛
⎝ 1

T − t

T∑
k=t+1

xkixkj

⎞
⎠
∣∣∣∣∣∣ ≥

cT

t(T − t)
√

τ2T

⎫⎬
⎭

≤ TP

{∣∣∣∣∣1t
t∑

k=1
xkixkj

∣∣∣∣∣ ≥ cT
√
τ2T

t(T − t)

}
+ TP

⎧⎨
⎩
∣∣∣∣∣∣

1
T − t

T∑
k=t+1

xkixkj

∣∣∣∣∣∣ ≥
cT

√
τ2T

t(T − t)

⎫⎬
⎭ .
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According to Lemma A.3, for t ∈ [2, T − 2], we have

P

{∣∣∣∣∣1t
t∑

k=1

xkixkj

∣∣∣∣∣ ≥ cT
√
τ2T

t(T − t)

}
≤ c1e

−c2tmin
(

cT
√

τ2T

t(T−t) ,
cT3τ2

t2(T−t)2

)

≤ c1e
−c2 min(

√
τ2T ,τ2T ) ≤ c1e

−c2
√
τ2T ,

and

P

{∣∣∣∣∣ 1
T − t

T∑
k=t+1

xkixkj

∣∣∣∣∣ ≥ cT
√
τ2T

t(T − t)

}
≤ c1e

−c2(T−t) min
(

cT
√

τ2T

t(T−t) ,
cT3τ2

t2(T−t)2

)

≤ c1e
−c2 min(

√
τ2T ,τ2T ) ≤ c1e

−c2
√
τ2T ,

finally, we have

P(w(i, j) ≤ τ2) ≤ c1Te
−c2

√
τ2T .

Then under Assumption 3, we have p2 · P(w(i, j) ≤ τ2) ≤ c1p
2Te−c2

√
τ2T → 0,

we complete the proof.

A.2.3. Proof of Theorem 3.3

To prove the consistency of the estimator t̂ defined in Equation (13), we rewrite

P

{∣∣∣∣∣ β̂β − 1

∣∣∣∣∣ ≥ ε

}
= P

{
β̂ ≥ (1 + ε)β

}
+ P

{
β̂ ≤ (1 − ε)β

}
.

We only consider the first term because the second term can be handled simi-
larly. If we want to prove

P{β̂ ≥ β(1 + ε)} → 0,

it is sufficient to show that

P

⎧⎨
⎩

⋃
t̂≥(1+ε)t0

(UT (t) ≥ UT (t0))

⎫⎬
⎭ ≤

T∑
t≥(1+ε)t0

P {UT (t) ≥ UT (t0)}

≤ T ·P (UT (t) ≥ UT (t0)) → 0. (26)



972 Z. Li and J. Gao

Define the vectors mk = (mk1, . . . ,mkd)′ = zk − E(zk), then

UT (t) =
1
T 4

t∑
i,k=1

T∑
j,l=t+1

(zi − zj)′ (zk − zl)

=
1
T 4

t∑
i,k=1

T∑
j,l=t+1

[(mi −mj) + (E(zi) − E(zj))]′ [(mk −ml) + (E(zk) − E(zl))]

=
1
T 4

t∑
i,k=1

T∑
j,l=t+1

(mi −mj)′ (mk −ml)

+
1
T 4

t∑
i,k=1

T∑
j,l=t+1

(E(zi) − E(zj))′ (mk −ml)

+
1
T 4

t∑
i,k=1

T∑
j,l=t+1

(E(zk) − E(zl))′ (mi −mj)

+
1
T 4

t∑
i,k=1

T∑
j,l=t+1

(E(zi) − E(zj))′ (E(zk) − E(zl))

= f(t) + g(t) + h(t) + δ(t).

Let μ1,μ2 be the d-dimensional vectors containing the elements of the correla-
tion matrices R1 and R2, respectively, which correspond to positions (i, j) ∈ wτ2 .
First, we can calculate

δ = δ(t0) − δ(t)

= 1
T 4

t0∑
i,k=1

T∑
j,l=t0+1

(E(zi) − E(zj))′ (E(zk) − E(zl))

− 1
T 4

t∑
i,k=1

T∑
j,l=t+1

(E(zi) − E(zj))′ (E(zk) − E(zl))

= 1
T 4 t

2
0(t− t0)(2T − t0 − t)||μ1 − μ2||2.

Then,

P{UT (t) ≥ UT (t0)} = P{(f(t) − f(t0)) + (g(t) − g(t0)) + (h(t) − h(t0)) ≥ δ}
≤ P{f(t) − f(t0) ≥ cδ} + P{g(t) − g(t0) ≥ cδ}

+ P{h(t) − h(t0) ≥ cδ}. (27)

For the first term in (27), as

f(t) = 1
T 4

t∑
i,k=1

T∑
j,l=t+1

(mi −mj)′ (mk −ml)

= (T − t)2

T 4

t∑
i,k=1

m′
imk − 2 · t(T − t)

T 4

t∑
i=1

T∑
l=t+1

mi
′ml + t2

T 4

T∑
j,l=t+1

m′
jml

= f1(t) − 2f2(t) + f3(t),
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we have f(t)− f(t0) = (f1(t)− f1(t0))− 2(f2(t)− f2(t0)) + (f3(t)− f3(t0)). For
f1(t) − f1(t0),

P(|f1(t) − f1(t0)| ≥ cδ)

= P

⎛
⎝
∣∣∣∣∣∣
(T − t)2

T 4

t∑
i,k=1

m′
imk − (T − t0)2

T 4

t0∑
i,k=1

m′
imk

∣∣∣∣∣∣ ≥ cδ

⎞
⎠

= P

⎛
⎝
∣∣∣∣∣∣
(

(T − t)2

T 4 − (T − t0)2

T 4

) t0∑
i,k=1

m′
imk

+(T − t)2

T 4

t∑
i,k=t0+1

m′
imk + 2 · (T − t)2

T 4

t0∑
i=1

t∑
k=t0+1

m′
imk

∣∣∣∣∣∣ ≥ cδ

⎞
⎠

= P(−ν1 + ν2 + 2ν3)

In order to verify T ·P(|f1(t) − f1(t0) ≥ cδ|) → 0, it is sufficient to prove
T ·P(|ν1| ≥ cδ) → 0, T ·P(|ν2| ≥ cδ) → 0 and T ·P(|ν3| ≥ cδ) → 0. First,

P(|ν1| ≥ cδ)

= P

⎛
⎝
∣∣∣∣∣∣
(

(T − t0)2

T 4 − (T − t)2

T 4

) t0∑
i,k=1

m′
imk

∣∣∣∣∣∣ ≥ c
1
T 4 t

2
0(t− t0)(2T − t0 − t)||μ1 − μ2||2

⎞
⎠

≤ P

⎛
⎝
∣∣∣∣∣∣
1
d

d∑
s=1

t0∑
i,k=1

mismks

∣∣∣∣∣∣ ≥
ct20
d

||μ1 − μ2||2
⎞
⎠

≤
d∑

s=1
P

(∣∣∣∣∣ 1
t0

t0∑
k=1

m2
ks

∣∣∣∣∣ ≥ ct0

d
||μ1 − μ2||2

)

≤ dt0P

(
|mks| ≥ c

√
t0

d
||μ1 − μ2||

)
.

Since mk = zk −E(zk), and zk is the d-dimensional subvector of vecho(xkx
′
k),

then mks = xksxks′ − E(xksxks′), we can obtain

P

(
|mks| ≥ c

√
t0
d
||μ1 − μ2||

)
= P

(
|xksxks′ − E(xksxks′)| ≥ c

√
t0
d
||μ1 − μ2||

)

≤ c1e
−c2

√
t0
d ||μ1−μ2|| ≤ c1e

−c2
√
τ2 ,

according to Lemma A.2. Hence,

P(|ν1| ≥ cδ) ≤ dt0c1e
−c2

√
τ2 ≤ c1pTe

−c2
√
τ2 . (28)
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Second,

P(|ν2| ≥ cδ)

= P

⎛
⎝
∣∣∣∣∣∣
(T − t)2

T 4

t∑
i,k=t0+1

m′
imk

∣∣∣∣∣∣ ≥ c
1
T 4 t

2
0(t− t0)(2T − t0 − t)||μ1 − μ2||2

⎞
⎠

≤ P

⎛
⎝
∣∣∣∣∣∣
1
d

d∑
s=1

t∑
i,k=t0+1

mismks

∣∣∣∣∣∣ ≥
ct20(t− t0)
d(T − t) ||μ1 − μ2||2

⎞
⎠

≤ dP

(∣∣∣∣∣ 1
t− t0

t∑
k=t0+1

m2
ks

∣∣∣∣∣ ≥ ct20
d(T − t) ||μ1 − μ2||2

)

≤ d(t− t0)P
(
|mki| ≥

ct0||μ1 − μ2||√
d(T − t)

)
,

where

P

(
|mki| ≥

ct0||μ1 − μ2||√
d(T − t)

)

≤ P

(
|xksxks′ − E(xksxks′)| ≥

ct0||μ1 − μ2||√
d(T − t)

)

≤ c1e
−c2

t0||μ1−μ2||√
d(T−t) ≤ c1e

−c2
√
τ2T .

Hence,

P(|ν2| ≥ cδ) ≤ c1d(t− t0)e−c2
√
τ2T ≤ c1pTe

−c2
√
τ2T . (29)

Third,
P(|ν3| ≥ cδ) =

≤ P

⎧⎨
⎩
∣∣∣∣∣∣
(T − t)2

T 4

t0∑
i=1

t∑
k=t0+1

m′
imk

∣∣∣∣∣∣ ≥ c
1
T 4 t

2
0(t− t0)(2T − t0 − t)||μ1 − μ2||2

⎫⎬
⎭

≤ dP

⎧⎨
⎩
∣∣∣∣∣∣
(

t∑
k=1

mks

)2

−
(

t0∑
k=1

mks

)2

−

⎛
⎝ t∑

k=t0+1
mks

⎞
⎠

2∣∣∣∣∣∣ ≥
ct20(t− t0)
d(T − t)

||μ1 − μ2||2
⎫⎬
⎭

≤ d

{
P

(∣∣∣∣∣1t
t∑

k=1
mks

∣∣∣∣∣≥ ct0
√

(t− t0)||μ1 − μ2||
t
√

d(T − t)

)
+ P

(∣∣∣∣∣ 1
t0

t0∑
k=1

mks

∣∣∣∣∣≥ c
√
t− t0||μ1 − μ2||√

d(T − t)

)}

+ dP

⎛
⎝
∣∣∣∣∣∣

1
t− t0

t∑
k=t0+1

mks

∣∣∣∣∣∣ ≥
ct0||μ1 − μ2||√
d(T − t)(t− t0)

⎞
⎠ ,

where

P

(∣∣∣∣∣1t
t∑

k=1
mks

∣∣∣∣∣ ≥ ct0
√

(t− t0)||μ1 − μ2||
t
√

d(T − t)

)

≤ c1e
−c2tmin

(
ct0

√
(t−t0)||μ1−μ2||
t
√

d(T−t) ,
ct20(t−t0)||μ1−μ2||2

dt2(T−t)

)
≤ c1e

−c2
√
τ2T ,
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P

(∣∣∣∣∣ 1t0
t0∑

k=1

mki

∣∣∣∣∣ ≥ c
√

(t− t0)||μ1 − μ2||√
d(T − t)

)

≤ c1e
−c2t0min

(
c
√

(t−t0)||μ1−μ2||√
d(T−t) ,

c(t−t0)||μ1−μ2||2
d(T−t)

)
≤ c1e

−c2
√
τ2T ,

and

P

(∣∣∣∣∣ 1
t− t0

t∑
k=t0+1

mki

∣∣∣∣∣ ≥ ct0||μ1 − μ2||√
d(T − t)(t− t0)

)

≤ c1e
−c2(t−t0)min

(
ct0||μ1−μ2||√
d(T−t)(t−t0) ,

ct20||μ1−μ2||2
d(T−t)(t−t0)

)
≤ c1e

−c2
√
τ2T .

Hence, we have

P(|ν3| ≥ cδ) ≤ c1de
−c2

√
τ2T ≤ c1pe

−c2
√
τ2T . (30)

By combaning (28), (29) and (30), we obtain

P(|f1(t) − f1(t0)| ≥ cδ) ≤ c1pTe
−c2

√
τ2 + c1p

2Te−c2
√
τ2T ≤ c1pTe

−c2
√
τ2 .

For the other two terms (f2(t) − f2(t0)) and (f3(t) − f3(t0)) in (27), following
similar analysis, we can obtain

P(|f2(t) − f2(t0)| ≥ cδ) ≤ c1pTe
−c2

√
τ2 ,

P(|f3(t) − f3(t0)| ≥ cδ) ≤ c1pTe
−c2

√
τ2 .

Therefore, we obtain

P{f(t) − f(t0) ≥ cδ} ≤ c1pTe
−c2

√
τ2 . (31)

For the second term in (27), we have
g(t) − g(t0)

=
1
T 4

t∑
i,k=1

T∑
j,l=t+1

(E(zi) − E(zj))′ (mk −ml)

− 1
T 4

t0∑
i,k=1

T∑
j,l=t0+1

(E(zi) − E(zj))′ (mk −ml)

=
1
T 4

t0

t
(μ1 − μ2)′

⎛
⎝t(T − t)2

t∑
k=1

mk − t2(T − t)
T∑

l=t+1
ml

⎞
⎠

− 1
T 4 (μ1 − μ2)′

⎛
⎝t0(T − t0)2

t0∑
k=1

mk − t20(T − t0)
T∑

l=t0+1
ml

⎞
⎠

=
t0

T 4 (μ1 − μ2)′
{

[(2T − t− t0)(t0 − t)]
t0∑

k=1
mk+

[t0(T − t0) − t(T − t)]
T∑

k=t0+1
mk + T (T − t)

t∑
k=t0+1

mk

⎫⎬
⎭

= −η1 + η2 + η3,
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where
η1 =

t0

T 4 [(2T − t− t0)(t− t0)] (μ1 − μ2)′
t0∑

k=1
mk,

η2 =
t0

T 4 [t0(T − t0) − t(T − t)] (μ1 − μ2)′
T∑

k=t0+1
mk,

η3 =
t0

T 3 (T − t)(μ1 − μ2)′
t∑

k=t0+1
mk.

To prove T ·P(|g(t)− g(t0)| ≥ cδ) → 0, it is sufficient to prove T ·P(|η1| ≥ cδ) →
0, T ·P(|η2| ≥ cδ) → 0 and T ·P(|η2| ≥ cδ) → 0. First,
P(|η1| ≥ cδ)

= P

(
t0

T 4 [(2T − t− t0)(t− t0)] (μ1 − μ2)′
t0∑

k=1
mk ≥ c

1
T 4 t

2
0(t− t0)(2T − t0 − t)||μ1 − μ2||2

)

= P

(
1
d

∣∣∣∣∣
d∑

s=1

t0∑
k=1

mks

∣∣∣∣∣ ≥ ct0||μ1 − μ2||
d

)

≤ dP

(∣∣∣∣∣ 1
t0

t0∑
k=1

mks

∣∣∣∣∣ ≥ c||μ1 − μ2||
d

)

≤ c1de
−c2t0 min

(
c||μ1−μ2||

d
,
c||μ1−μ2||2

d2

)
≤ c1p

2e−c2 min(
√
τ2T,τ2).

Second,
P(|η2| ≥ cδ)

= P

⎧⎨
⎩ t0

T 4 [t0(T − t0) − t(T − t)] (μ1 − μ2)′
T∑

k=t0+1
mk

≥ c
1
T 4 t

2
0(t− t0)(2T − t0 − t)||μ1 − μ2||2

}

≤ P

⎛
⎝1

d

∣∣∣∣∣∣
d∑

s=1

T∑
k=t0+1

mks

∣∣∣∣∣∣ ≥
ct0(T − t0)||μ1 − μ2||

d(t0 + t− T )

⎞
⎠

≤ dP

⎛
⎝
∣∣∣∣∣∣

1
T − t0

T∑
k=t0+1

mks

∣∣∣∣∣∣ ≥
ct0||μ1 − μ2||
d(t0 + t− T )

⎞
⎠

≤ c1de
−c2(T−t0) min

(
ct0||μ1−μ2||
d(t0+t−T ) ,

ct20||μ1−μ2||2

d2(t0+t−T )2

)

≤ c1p
2e−c2 min(

√
τ2T,τ2).

Last,

P(|η3| ≥ cδ) = P

⎧⎨
⎩ t0

T 3 (T − t)(μ1 − μ2)′
t∑

k=t0+1
mk ≥ c

1
T 4 t

2
0(t− t0)(2T − t0 − t)||μ1 − μ2||2

⎫⎬
⎭

≤ P

⎛
⎝
∣∣∣∣∣∣
1
d

d∑
s=1

t∑
k=t0+1

mks

∣∣∣∣∣∣ ≥
ct0(t− t0)||μ1 − μ2||

dT

⎞
⎠

≤ dP

⎛
⎝
∣∣∣∣∣∣

1
t− t0

t∑
k=t0+1

mks

∣∣∣∣∣∣ ≥
ct0||μ1 − μ2||

dT

⎞
⎠

≤ c1p
2e−c2 min(

√
τ2T,τ2).
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Therefore, we obtain

P(|g(t) − g(t0)| ≥ cδ) ≤ c1p
2e−c2 min(

√
τ2T ,τ2). (32)

For the third term in (27), similarly, we can obtain

P(|h(t) − h(t0)| ≥ cδ) ≤ c1p
2e−c2 min(

√
τ2T ,τ2). (33)

By combining (31), (32), and (33), we can prove that P(UT (t) ≥ UT (t0)) ≤
c1p

2e−c2
√
τ2 and Equation (26) holds under Assumption 3. We complete the

proof.
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