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Abstract

We prove the existence and weak uniqueness of weak solutions of Itô’s stochastic time
dependent equations with irregular diffusion and drift terms of Morrey class with
mixed norms.
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1 Introduction

This paper is a natural complement of [10] where the drift term was assumed to be
the sum of two terms, one of which was bounded in x and L2 in t, and another one was
in a Morrey class for each t with small norm. In this paper we concentrate on the case
when the drift is in a Morrey class with respect to (t, x) with mixed norms.

Let Rd be a d− dimensional Euclidean space of points x = (x1, ..., xd) with d ≥ 2. Let
(Ω,F , P ) be a complete probability space, carrying a d-dimensional Wiener process wt.
Fix δ ∈ (0, 1] and denote by Sδ the set of d× d symmetric matrices whose eigenvalues lie
in [δ, δ−1].

Throughout the article we assume that on Rd+1 = {(t, x) : t ∈ R, x ∈ Rd} we are given
Borel Rd-valued function b = (bi) and Sδ-valued σ = (σij). We are going to investigate
the equation

xs = x+

∫ s

0

σ(t+ u, xu) dwu +

∫ s

0

b(t+ u, xu) du. (1.1)

We are interested in the so-called weak solutions, that is solutions that are not
necessarily Fws -measurable, where Fws is the completion of σ(wu : u ≤ s). We present
sufficient conditions for the equation to have such solutions on appropriate probability
spaces and investigate uniqueness of their distributions.

We just reproduced part of the introduction in [10]. The reader interested in learning
more about the history of the problem, motivation, and the literature is sent to [1], [3],
[12] and to the the introduction in [10].
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On weak solutions

Our Morrey type condition on b is stated in terms of mixed norms (different powers
of summability with respect t and x). In [3] the Morrey type condition on b is stated in
terms of Lp-norms in (t, x) and the weak solvability of (1.1) is proved, if σ is the unit
matrix, along with weak uniqueness provided the solutions possess some additional
properties. Our result in this respect contains [3] and also allow us to give conditions for
unconditional weak uniqueness.

Still our general uniqueness theorem and uniqueness theorems in [12] are conditional.
We prove uniqueness only in the class of solutions (which is proved to be nonempty)
admitting certain estimates, however, as we said before, there are cases in which we
prove unconditional weak uniqueness.

Our σ is not constant or continuous and it is worth saying that restricting the situation
to the one when σ and b are independent of time allows one to relax the conditions on b
significantly further, see, for instance, [4] and the references therein.

In Remark 3.15 we compare our results with some of those in excellent papers by
Röckner and Zhao [12] and [3]. By the way, G. Zhao ([14]) gave an example showing that,
if in the definition of bρ (in Theorem 2.1) we replace r with rα, α > 1, and keep (2.2) (with
k = 0), weak uniqueness may fail even in the time homogeneous case and unit diffusion.
In Example 2.7 we show that in the time inhomogeneous case even the existence may
fail.

Here is an example in which we prove existence and (unconditional) weak uniqueness
of weak solutions: |b| = cf , where the constant c > 0 is small enough and

f(t, x) = I1>t>0,|x|<1|x|−1
( |x|√

t

)1/(d+1)

, σ = 2(δij) + Ix 6=0ζ(x) sin(ln | ln |x||),

where ζ is any smooth symmetric d×d-matrix valued function vanishing for |x| > 1/2 and
satisfying |ζ| ≤ 1. This example is inadmissible in [12] because b is too singular and σ is
not constant but admissible in [3] if σ is constant and yields weak solutions conditionally
weakly unique. This example does not fit into the scheme in [10] (barely misses) because
of special b.

The paper is organized as follows. In Section 2 we prove the solvability of (1.1) when
the drift is the sum of terms with different summability properties. In Section 3 we deal
with weak uniqueness and construct the corresponding Markov processes. This time the
drift is not split. Section 4 contains a result from [11] used in Section 3.

We conclude the introduction by some notation. We set

Di =
∂

∂xi
, Du = (Diu), Dij = DiDj , D2u = (Diju), ∂t =

∂

∂t
.

If σ = (σi...) by |σ|2 we mean the sum of squares of all entries.
Introduce

BR(x) = {y ∈ Rd : |x− y| < R}, BR = BR(0),

Cτ,ρ(t, x) = [t, t+ τ)×Bρ(x), Cρ... = Cρ2,ρ..., Cρ = Cρ(0, 0),

and let Cρ be the collection of Cρ(t, x).
In the proofs of our results we use various (finite) constants called N which may

change from one occurrence to another and depend on the data only in the same way as
it is indicated in the statements of the results.

2 Solvability of Itô’s equations

Let d ≥ 2 and let (Ω,F , P ) be a complete probability space. Let Ft, t ≥ 0, be an
increasing family of complete σ-fields Ft ⊂ F , and let wt be an Rd-valued Wiener process
relative to Ft. Recall that σ is assumed to be Sδ-valued.
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On weak solutions

It is well known that, if σ and b are smooth and b is bounded, the solutions of the
system

xs = x+

∫ s

0

σ(tr, xr) dwr +

∫ s

0

b(tr, xr) dr, ts = t+ s (2.1)

form a strong Markov process X with trajectories (ts, xs).
Define

bρ = sup
r≤ρ

r−1 sup
(t,x)∈Rd+1

sup
C∈Cr

Et,x

∫ τC

0

|b(ts, xs)| ds,

where τC is the first exit time of (ts, xs) from C.
To continue we need some notation which are somewhat different from what we use

in Sections 3 and 4. For p, q ∈ [1,∞) and domain Q ⊂ Rd+1 by Lp,q(Q) we mean the
space of Borel (real-, vector- or matrix-valued) functions on Q with finite norm given by

‖f‖qLp,q(Q) = ‖fIQ‖qLp,q =

∫
R

(∫
Rd
|fIQ(t, x)|p dx

)q/p
dt

if p ≥ q and by

‖f‖pLp,q(Q) = ‖fIQ‖pLp,q =

∫
Rd

(∫
R

|fIQ(t, x)|q dt
)p/q

dx

if p ≤ q. Set Lp,q = Lp,q(R
d+1). These definitions extend naturally when one or both p, q

are infinite. As usual, we write something like f ∈ Lp,q,loc if fζ ∈ Lp,q for any infinitely
differentiable ζ with compact support. We write ‖u, v, ...‖Lp,q to mean the sum of the
Lp,q-norms of what is inside.

By W 1,2
p,q (Q) we mean the collection of u such that ∂tu, D2u, Du, u ∈ Lp,q(Q). The

norm in W 1,2
p (Q) is introduced in an obvious way. We abbreviate W 1,2

p,q = W 1,2
p,q (Rd+1).

If a Borel Γ ⊂ Rd+1, by |Γ| we mean its Lebesgue measure and∫
–
Γ

f(t, x) dxdt =
1

|Γ|

∫
Γ

f(t, x) dxdt.

If C ∈ Cρ we set

–‖f‖Lp,q(C) = ‖1‖−1
Lp,q(C)‖f‖Lp,q(C) = N(d)ρ−d/p−2/q‖f‖Lp,q(C).

Take the Fabes-Stroock constant d0 = d0(d, δ) ∈ (d/2, d) introduced in [9] and let us
say that (p, q) are admissible if

p, q ∈ [1,∞],
d0

p
+

1

q
≤ 1.

Also take mb = mb(d, δ) > 0 introduced in [9].
Here is a generalization of Corollary 2.14 of [7].

Theorem 2.1. Assume that σ and b are smooth and b is bounded and there is a nonnega-
tive integer k and there are Borel functions bi(t, x), 0 ≤ i ≤ k, such that b =

∑k
i=0 bi, and

we are given admissible (pi, qi), i ≤ k. Define

bρ = sup
r≤ρ

r sup
C∈Cr

k∑
i=0

–‖bi‖Lpi,qi (C),

introduce b̂ = b̂(d, δ) so that Nb̂ = mb/4, where N = N(d, δ) is taken from Theorem 1.1 of
[7] and suppose that

bρb ≤ b̂ (2.2)

holds for some ρb ∈ (0,∞). Then
bρb/2 ≤ mb. (2.3)
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One proves this theorem by repeating the proof of Theorem 1.1 of [7], where the fact
that there k = 0 was not used at all, and also using the argument in Step 1 of the proof
of Theorem 1.2 of [7]. After that the same argument as in Corollary 2.14 of [7] yields the
result.

Example 2.2. One of situations when bρ is finite presents when k = 1, |b0(t, x)| ≤ h0(x),
|b1(t, x)| ≤ h1(t) and, say h0(x) ≤ c|x|−1, where c is sufficiently small, and h1 ∈ L2(R). In
that case one can take p1 = d0, q1 =∞, p2 =∞, q2 = 1.

Indeed, if |x0| ≤ 2r, then∫
–
Br(x0)

|x|−d0 dx ≤ 2d
∫
–
B2r

|x|−d0 dx = N(d)r−d0 .

and if |x0| ≥ 2r, then |x|−1 ≤ r−1 on Br(x0) and –‖| · |−1‖Ld0 (Br(x0)) ≤ r−1.
Also ∫

–
s+r2

s

h1(t) dt ≤ r−1
(∫ s+r2

s

h2
1(t) dt

)1/2

and the integral here tends to zero as r ↓ 0 uniformly with respect to s. Therefore, by
taking c small enough and taking appropriately small ρb we can satisfy (2.2) with any
given b̂ > 0.

In the following theorem we prove the existence of weak solutions of equation (2.1).
Somewhat unusual split in its assumption about b is caused by the necessity to use
smooth approximations of the bi’s converging to the bi’s in the corresponding norms.

Theorem 2.3. Suppose that (2.2) holds for some ρb ∈ (0,∞) with admissible pi, qi such
that, for each i, either (a) pi + qi <∞, or (b) pi <∞, qi =∞ and bi is independent of t.
Then

(i) there is a probability space (Ω,F , P ), a filtration of σ-fields Fs ⊂ F , s ≥ 0, a process
ws, s ≥ 0, which is a d-dimensional Wiener process relative to {Fs}, and an Fs-adapted
process xs such that (a.s.) for all s ≥ 0 equation (2.1) holds with (t, x) = (0, 0).

(ii) Furthermore, for any nonnegative Borel g on Rd and f on Rd+1 and T ∈ (0,∞) we
have

E

∫ T

0

f(s, xs) ds ≤ N(d, δ, T, ρb)‖f‖Lpi,qi , (2.4)

E

∫ T

0

g(xs) ds ≤ N(d, δ, T, ρb)‖g‖Ld0 (Rd). (2.5)

Proof. Approximate σ, b by smooth σ(ε), b(ε), by using mollifying kernel ε−d−1ζ(t/ε, x/ε),
where nonnegative ζ ∈ C∞0 (Rd+1) has unit integral and ζ(0) = 1. Then set bεi (t, x) =

b
(ε)
i (t, x)ζ(εt, εx) to make the new bi have compact support. Observe that bεi satisfy (2.2)

with the same b̂, ρb. Therefore, the corresponding Markov process (tt, x
ε
t ) satisfies

bερb/2 ≤ mb which makes available all results of [9]. In particular, by Corollary 3.10 of [9]
for any ε, n > 0 and r > s ≥ 0

E0,0 sup
u∈[s,r]

|xεu − xεs|n ≤ N(|r − s|n/2 + |r − s|n), (2.6)

where N = N(n, ρb, d, δ). This implies that the P0,0-distributions of xε· are precompact on
C([0,∞),Rd) and a subsequence as ε = εn ↓ 0 of them converges to the distribution of a
process x0

· defined on a probability space (the coordinate process on Ω = C([0,∞),Rd)

with cylindrical σ-field F completed with respect to P , that is the limiting distribution of
xε· ). Furthermore, by Theorem 5.9 (ii) of [9] for any nonnegative Borel g on Rd and f on
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Rd+1 and ε, T ∈ (0,∞) we have

E0,0

∫ T

0

f(s, xεs) ds ≤ N(d, δ, T, ρb)‖f‖Lpi,qi , (2.7)

E0,0

∫ T

0

g(xεs) ds ≤ N(d, δ, T, ρb)‖g‖Ld0 (Rd), (2.8)

which by continuity is extended to ε = 0 for bounded continuos f and then by the usual
measure-theoretic argument for all Borel f ≥ 0. This proves (ii).

After that arguing as in the proof of Theorem 3.9 of [10] proves assertion (i). Here
passing to the limit in the drift term the case (a) we use (2.7) and in the case (b) we
use (2.8). The theorem is proved.

Remark 2.4. Actually as is easy to see, in case (b) the condition that bi is independent of
t can be replaced with the following which is somewhat cumbersome: for any R ∈ (0,∞)

lim
ε↓0

∫
BR

sup
t
|b(ε) − b|d0(t, x) dx = 0.

Remark 2.5. It may look like assertion (i) of Theorem 2.3 is a generalization of Theorem
3.1 (i) of [5] about the solvability of (2.1) with b ∈ Lp,q and d/p + 1/q ≤ 1. However, in
the typical case of k = 0, along with b ∈ Lp0,q0,loc , d0/p0 + 1/q0 ≤ 1, we require (2.2)
to hold and, if we ask ourselves what p, q should be in order the inclusion b ∈ Lp,q to
imply (2.2), the answer is d/p+ 2/q ≤ 1, somewhat disappointing. At the same time in
the next example we show that Theorem 3.1 (i) of [5] does not cover all applications of
Theorem 2.3.

In assumption (2.2) the size of b̂ could not be too large.

Example 2.6. Let

b(t, x) = b(x) = − d

|x|
x

|x|
Ix 6=0, σ =

√
2(δij).

Then as is easy to see, for any p ∈ (d0, d) and any q the quantity ρ –‖b‖Lp,q(C), ρ > 0, C ∈ Cρ,
is bounded. However, the equation dxt = σ dwt + b(xt) dt with initial condition x0 = 0

does not have any solution.
Indeed, if it does, then by Itô’s formula

|xt|2 = 2d

∫ t

0

Ixs=0 ds+ 2
√

2

∫ t

0

xt dwt. (2.9)

Here the first integral is the time spent at the origin by xs up to time t. This integral is
zero, because by using Itô’s formula for |x1

t |, one sees that the local time of x1
t at zero

exists and is finite, implying that the real time spent at zero is zero.
Then (2.9) says that the local martingale starting at zero which stands on the right is

nonnegative. But then it is identically zero, implying the same for xt. However, xt ≡ 0,
obviously, does not satisfy our equation.

At the same time according to Theorem 2.3, the equation dxt = σ dwt + εb(xt) dt

with initial condition x0 = 0 does have solutions if ε is sufficiently small. Observe that
b 6∈ Lp,q,loc for any p, q ∈ (0,∞) satisfying d/p+ 1/q ≤ 1, so this example is not covered
by Theorem 3.1 (i) of [5].

It turns out that in the definition of b one cannot replace r with r1+α, no matter how
small α > 0 is.

Example 2.7. Take numbers α and β satisfying

0 < α ≤ β < 1, α+ β = 1
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and set

b(t, x) = − 1

tα|x|β
x

|x|
I0<|x|≤1,t≤1.

Using that d0 < d, it is not hard to find p, q such that d0/p + 1/q < 1 and the quantity
ρ1+α –‖b‖Lp,q(C), ρ > 0, C ∈ Cρ, is bounded. However, as we know from [5], the equation
dxt = dwt + εb(t, xt) dt with zero initial condition does not have solutions no matter how
small ε > 0 is (actually ε = 1 in [5] but self-similar transformations take care of any
ε > 0).

Remark 2.8. If b ≡ 0, it turns out that for any admissible (p, q), R ∈ (0,∞), x ∈ Rd and
Borel f(t, x) ≥ 0

E

∫ τ

0

f(s, xs) ds ≤ N(d, δ)R2 –‖f‖Lp,q(CR(0,x)), (2.10)

where τ is the first exit time of (s, xs) from CR(0, x).
Indeed, if R = 1, this follows from (2.4), where we take T = 1, any appropriate ρb and

observe that τ ≤ 1 and we may assume that f = 0 outside C1(0, x). The case of general
R is treated by parabolic scaling of Rd+1.

This simple observation has the following implication in which

L0u(t, x) = ∂tu+ (1/2)aij(t, x)Diju(t, x), a = σ2.

Lemma 2.9. Let (p, q) be admissible and finite, x ∈ Rd, R ∈ (0,∞), u ∈ W 1,2
p,q (CR(0, x))

and u = 0 on ∂′CR(0, x) (that is
(
∂BR(x)× [0, R2]

)
∪
(
B̄R(x)× {R2}

)
). Then

|u(0, 0)| ≤ N(d, δ)R2 –‖L0u‖Lp,q(CR(0,x)). (2.11)

Proof. First note that, since d0 > d/2 we have d/p + 2/q < 2 and u is continuous in
C̄R(0, x) by embedding theorems. Then approximate u in W 1,2

p,q -norm by smooth functions
un vanishing on ∂′CR(0, x). By Itô’s formula

un(0, 0) = −E
∫ τ

0

L0u
n(s, xs) ds.

In light of (2.10) estimate (2.11) holds with un in place of u. Sending n→∞ yields (2.11)
as is and proves the lemma.

Here is Itô’s formula we have on the basis of Theorem 2.3.

Theorem 2.10. (i) Suppose that k = 0 and (2.2) holds for some ρb ∈ (0,∞) and

p0, q0 ∈ (1,∞),
1

2
≤ 1

β0
:=

d0

p0
+

1

q0
< 1. (2.12)

(ii) Let xt be a solution of equation (2.1) with (t, x) = (0, 0) on a probability space
such that

(a) for p = p0/β0, q = q0/β0, any R ∈ (0,∞) and Borel nonnegative f on Rd+1

E

∫ τR

0

f(s, xs) ds ≤ N‖f‖Lp,q , (2.13)

where N is independent of f and τR is the first exit time of (s, xs) from CR.
(iii) Let u ∈W 1,2

p,q (CR) be such that Du ∈ Lr,k(CR), where (r, k) = (β0 − 1)−1(p0, q0).
Then, with probability one for all t ≤ R2,

u(t ∧ τR, xt∧τR) = u(0) +

∫ t∧τR

0

Diuσ
ik(s, xs) dw

k
s

+

∫ t∧τR

0

[∂tu(s, xs) + aijDiju(s, xs) + biDiu(s, xs)] ds
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and the stochastic integral above is a square-integrable martingale, where τR is the first
exit time of xt from BR.

Proof. The last statement, of course, follows from (2.13) and the fact that 2p ≤
r, 2q ≤ k. To prove the rest we approximate u by smooth functions u(ε) = ζε ∗ u, where
ζε(t, x) = ε−d−2ζ(t/ε2, x/ε), and ζ ∈ C∞0 (Rd+1) has support in (−1, 0) × B1 and unit
integral. Since d/p + 2/q < 2 (d < 2d0), by embedding theorems u ∈ C(C̄R) and,
therefore, u(ε) → u as ε ↓ 0 uniformly in any CR′ with R′ < R.

Fix R′ < R. Then for all sufficiently small ε > 0 by Itô’s formula

u(ε)(t ∧ τR′ , xt∧τR′ ) = u(ε)(0) +

∫ t∧τR′

0

Diu
(ε)σik(s, xs) dw

k
s

+

∫ t∧τR′

0

[∂tu
(ε) + aijDiju

(ε) + biDiu
(ε)](s, xs) ds. (2.14)

We send ε ↓ 0 and observe that u(ε) → u in W 1,2
p,q (CR′) and Du(ε) → Du in Lr,k(CR′).

Hence, (2.13) allows us easily to pass to the limit in (2.14), for instance, by using
Hölder’s inequality we obtain

‖gh‖Lp,q(Cρ) ≤ ‖g‖Lp0,q0 (Cρ)‖h‖Lr,s(Cρ), (2.15)

implying that

E

∫ τR′

0

|b| |Du−Du(ε)|(t, xt) dt ≤ N‖|b| |Du−Du(ε)|‖Lp,q(CR′ )

≤ N‖b‖Lp0,q0 (CR)‖Du−Du(ε)‖Lr,s(CR′ ) → 0.

It follows that (2.14) holds with u in place of u(ε). After that it only remains to send
R′ ↑ R and again use (2.13). The theorem is proved.

Remark 2.11. The assumption that Du ∈ Lr,s(CR) looks unrealistic because Sobolev
embedding theorems do not provide such high integrability of Du for functions u ∈
W 1,2
p,q (CR). However, if u is in the Morrey class E1,2

p,q,β(CR), then Du ∈ Lr,k(CR) indeed
(cf. Remark 4.5).

3 Weak uniqueness and a Markov process

Here we prove a generalization of the Stroock-Varadhan theorem in [13] obtained for
σ which is uniformly continuous in x uniformly in t and bounded b. We need an additional
assumption on a and can relax conditions imposed on b in Section 2. Since a will have
some regularity the range of p0, q0 can be substantially extended. Indeed, observe that if
d0/p0 + 1/q0 = 1, then 1 < d/p0 + 2/q0 < 2 since d > d0 > d/2 (cf. (3.3)).

An important distinction of the rest of the article from Section 2 is that here (and in
Section 4) for p, q ∈ [1,∞) and domain Q ⊂ Rd+1 by Lp,q(Q) we mean the space of Borel
(real-, vector- or matrix-valued) functions on Q with finite norm given in one of two ways
which is fixed throughout the rest of the paper:

‖f‖qLp,q(Q) = ‖fIQ‖qLp,q =

∫
R

(∫
Rd
|fIQ(t, x)|p dx

)q/p
dt (3.1)

or

‖f‖pLp,q(Q) = ‖fIQ‖pLp,q =

∫
Rd

(∫
R

|fIQ(t, x)|q dt
)p/q

dx. (3.2)

Naturally, –‖ · ‖Lp,q(Q) and the spaces W 1,2
p,q (Q) are now introduced in the same way as

in Section 2 but with the new meaning of Lp,q(Q).
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Fix p0, q0, β0, β
′
0 such that

β0 ∈ (1, 2), β′0 ∈ (1, β0), p0, q0 ∈ (β0,∞),
d

p0
+

2

q0
≥ 1. (3.3)

Take an α ∈ (0, 1) and θ(d, δ, p, q, α) introduced in Assumption 4.3 and set

θ̃ = θ(d, δ, p0/β0, q0/β0, α) ∧ θ(d, δ, p0/β
′
0, q0/β

′
0, α)

Also take some ρa, ρb ∈ (0, 1], take b̌(d, δ, p, q, ρa, β0, α) from Theorem 4.4 and set

b̃ = b̌(d, δ, p0/β0, q0/β0, ρa, β0, α) ∧ b̌(d, δ, p0/β
′
0, q0/β

′
0, ρa, β

′
0, α).

Finally, one more restriction on the drift term is related to the following condition:

d

p0
+

1

q0
≤ 1 and

{
either p0 ≥ q0 and Lp,q is defined as in (3.1),

or p0 ≤ q0 and Lp,q is defined as in (3.2).
(3.4)

Throughout this section we suppose that the following assumption is satisfied unless
stated otherwise.

Assumption 3.1. We have

a]x,ρa := sup
ρ≤ρa
C∈Cρ

∫
–
C

|a(t, x)− aC(t)| dxdt ≤ θ̃,

where

aC(t) =

∫
–
C

a(t, x) dxds (note t and ds).

Introduce

bρ = sup
r≤ρ

r sup
C∈Cr

–‖b‖Lp0,q0 (C).

The parts (a), (b), (c) of the following assumption will be imposed in various combina-
tions.

Assumption 3.2. (a) bρb ≤ b̃,
(b) bρb ≤ b̂ ≤ 1 and N1b̂ ≤ mb, where N1 depending only on d, δ, p0, q0, β0, ρa, α is taken

from (3.18),
(c) condition (3.4) is satisfied and bρb ≤ b̂ ≤ 1 and Nb̂ ≤ mb, where N = N(d, δ, p0, q0)

is taken from (3.14)

The following is very important.

Remark 3.3. Consider equation (2.1) with zero initial data and make the change of
variables xt = ρbyρ−2

b t, Bt = ρbwρ−2
b t. Then

dyt = b̃(t, yt) dt+ σ̃(t, yt) dBt, (3.5)

where b̃(t, x) = ρbb(ρ
2
bt, ρbx), σ̃(t, x) = σ(ρ2

bt, ρbx), and Bt is a Wiener process.
Taking into account that ρb ≤ 1, it is easy to check that σ̃ and b̃ satisfy Assumptions 3.1

and 3.2 with the same ρa, θ̃, b̂, b̃ and 1 in place of ρb. At the same time the issues of
existence and uniqueness of solutions of (3.5) and (2.1) are equivalent.

This remark shows that without loosing generality in the rest of the article we impose

Assumption 3.4. We have ρb = 1.
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For β ≥ 0, introduce Morrey’s space Ep,q,β as the set of g ∈ Lp,q,loc such that

‖g‖Ep,q,β := sup
ρ≤1,C∈Cρ

ρβ –‖g‖Lp,q(C) <∞. (3.6)

Define
E1,2
p,q,β = {u : u,Du,D2u, ∂tu ∈ Ep,q,β}

and provide E1,2
p,q,β with an obvious norm.

It is important to have in mind that if β < 2 (our main case) and u ∈ E1,2
p,q,β, then

according to Lemma 2.5 of [11], u is bounded and continuous.
Here is a useful approximation result.

Lemma 3.5 (Lemma 2.3 of [11]). Let f ∈ Ep,q,β. Define f (ε) as in the proof of Theo-
rem 2.3. Then for any C ∈ C and β′ > β

lim
ε↓0
‖(f − f (ε))IC‖Ep,q,β′ = 0. (3.7)

Introduce
Lu = ∂tu+ aijDiju+ biDiu.

In the following lemma Assumptions 3.1 and 3.2 are not used.

Lemma 3.6. Let x· be a solution of (2.1) with (t, x) = (0, 0). Set

p = p0/β0, q = q0/β0 (3.8)

and assume that
(a) for any R ∈ (0,∞) and Borel nonnegative f on Rd+1

E

∫ τR

0

f(s, xs) ds ≤ N‖f‖Ep,q,β0 , (3.9)

where N is independent of f and τR is the first exit time of (s, xs) from CR. Then
(b) for any R ∈ (0,∞) and u ∈ E1,2

p,q,β′0
, with probability one for all t ≥ 0,

u(t ∧ τR, xt∧τR) = u(0) +

∫ t∧τR

0

Diuσ
ik(s, xs) dw

k
s +

∫ t∧τR

0

Lu(s, xs) ds (3.10)

and the stochastic integral above is a square-integrable martingale.

Proof. By Corollary 5.6 of [8] we have |Du|2 ∈ Er/2,s/2,2(β′0−1), where r = pβ′0/(β
′
0− 1),

s = qβ′0/(β
′
0 − 1). Note that

2 > β′0 > 1, β′0/(β
′
0 − 1) > 2, 2(β′0 − 1) < β0, r/2 ≥ p, s/2 ≥ q.

This implies that the last statement of the lemma follows from (3.9).
To prove (3.10), as in the proof of Theorem 2.10 write

u(ε)(t ∧ τR, xt∧τR) = u(ε)(0) +

∫ t∧τR

0

Diu
(ε)σik(s, xs) dw

k
s

+

∫ t∧τR

0

[∂tu
(ε) + aijDiju

(ε) + biDiu
(ε)](s, xs) ds. (3.11)

Since 2(β′0 − 1) < β0, by Lemma 3.5 we have |Du − Du(ε)|2ICR → 0 in Ep,q,β0
and the

stochastic integral will converge in the mean square sense as ε ↓ 0 to the one in (3.10)
owing to (see (3.9))

E sup
t

∣∣∣ ∫ t∧τR

0

Diu
(ε)σik(s, xs) dw

k
s −

∫ t∧τR

0

Diuσ
ik(s, xs) dw

k
s

∣∣∣2
≤ NE

∫ τR

0

|Du(ε) −Du|2(s, xs) ds ≤ N‖(Du−Du(ε))2ICR‖Ep.q.β0 .
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Since u is bounded and continuous (Lemma 2.5 of [11]), we have the convergence of
the terms without integrals. Regarding the integrals only the term with b needs to be
addressed.

Notice that, thanks to p = p0/β0, q = q0/β0 and (3.3)

d

p
+

2

q
≥ β0 (> 1).

Also for any C ∈ C
–‖b‖Lβ0p,β0q(C) = –‖b‖Lp0,q0 (C).

This along with (3.9) and Remark 5.8 of [8] imply that

‖ICb|Du−Du(ε)| ‖Ep,q,β0 ≤ Nb̂‖IC(u− u(ε))‖E1,2
p,q,β0

,

where N is independent of ε and, owing to the fact that β0 > β′0 and Lemma 3.5, the
right-hand side tends to zero as ε ↓ 0. This proves the lemma.

We need the following fact which is a consequence of Theorem 4.4.

Theorem 3.7. Under Assumptions 3.1 and 3.2 (a) there exists

λ0 = λ0(d, δ, p0, q0, β0, β
′
0, ρa, α) > 0

such that for γ = β0 and γ = β′0, p = p0/γ, q = q0/γ, for any λ ≥ λ0, Borel c(t, x) such that
|c| ≤ 1, and f ∈ Ep,q,γ there exists a unique solution u ∈ E1,2

p,q,γ of

Lu− (λ+ c)u+ f = 0. (3.12)

Furthermore for any u ∈ E1,2
p,q,γ we have

‖λu,
√
λDu,D2u, ∂tu‖Ep,q,γ ≤ N0‖Lu− (λ+ c)u‖Ep,q,γ , (3.13)

where N0 = N0(d, δ, p0, q0, β0, β
′
0, ρa, α).

Actually, Theorem 4.4 treats only the case of γ = β0. However, its assumptions
are also satisfied if we replace β0 with β′0. Then its conclusion holds true with such a
replacement as well, but for Theorem 3.7 to hold we need to take the largest of the λ̌0’s
and the N ’s corresponding to γ = β0 and γ = β′0 in Theorem 4.4.

In the following theorem we, in particular, specify the constant N in Assumption 3.2
(c).

Theorem 3.8 (Unconditional and conditional weak uniqueness). Under Assumptions 3.1
and 3.2 (a)

(i) If Assumption 3.2 (c) is satisfied, then all solutions of (2.1) with fixed (t, x) (provided
they exist) have the same finite-dimensional distributions.

(ii) Generally, let y· and z· be two solutions of (2.1) with (t, x) = (0, 0) perhaps on
different probability spaces. Assume that for x· = y· and x· = z· either (a) or (b) of
Lemma 3.6 holds.

Then x· and y· have the same finite-dimensional distributions.

Proof. First we prove (ii). Since by Lemma 3.6 (a) implies (b), we only need to show
that (b) implies weak uniqueness.

Take bounded Borel c, f on Rd+1 such that 0 ≤ c ≤ 1. By Theorem 3.7 with
λ = λ0 there is a bounded function u defined uniquely by a, b, c, λ, f , such that u ∈
E1,2
p0/β′0,q/β

′
0,β
′
0
⊂ E1,2

p0/β0,q/β0,β′0
and (3.12) holds. In light of (b) by Itô’s formula applied to

u(t, xt) exp
(
− λt−

∫ t

0

c(s, xs) ds
)
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for any finite T we obtain

u(0) = Eu(T ∧ τR, xT∧τR) exp
(
− λ(T ∧ τR)−

∫ T∧τR

0

c(s, xs) ds
)

+E

∫ T∧τR

0

f(t, xt) exp
(
− λt−

∫ t

0

c(s, xs) ds
)
dt,

where τR is the first exit time of (s, xs) from CR. We send here T,R → ∞ taking into
account that λ+ c ≥ λ0 > 0, u, f are bounded and τR →∞. Then we get that

E

∫ ∞
0

f(t, xt) exp
(
− λt−

∫ t

0

c(s, xs) ds
)
dt

is uniquely defined by a, b, c, λ, f (since it equals u(0)). For T > 0 and f = (λ+ c)It<T this
shows that

E exp
(
− λT −

∫ T

0

c(s, xs) ds
)

is uniquely defined by a, b, c, λ, T . The arbitrariness of c and T certainly proves assertion
(ii).

To prove (i), we take any solution of (2.1), say with (t, x) = (0, 0). Set

1

γ
:=

d

p0
+

1

q0

and use Theorem 4.2 of [5] that greatly simplifies in our situation. With (p0, q0)/γ in
place of its (p0, q0), in its conditional form this theorem yields that, since for each t ≥ 0,
ρ ≤ 1 and C ∈ Cρ we have that τC , defined as the first exit time of (t + s, xt+s), s ≥ 0,
from C, is less than ρ2 and since

‖b‖2p0/(p0−γd)
Lp0/γ,q0/γ(C) ≤

[
N(d)(b̂/ρ)ργd/p0+2γ/q0

]2p0/(p0−γd)

= N(d, p0, q0)b̂2p0/(p0−γd)ρ2 = N(d, p0, q0)b̂2q0/γρ2,

we have with constants N depending only on d, δ, p0, q0, that

E
{∫ τC

0

|b(t+ s, xt+s)| ds | Ft
}

≤ N
(
ρ2 + ‖b‖2p0/(p0−γd)

Lp0γ,q0/γ(C)

)γd/(2p0)‖b‖Lp0/γ,q0/γ(C)

≤ Nργd/p0(1 + b̂2q0/γ)γd/(2p0)b̂ργd/p0+2γ/q0−1 ≤ N(d, δ, p0, q0)b̂ρ, (3.14)

where in the last inequality we used that b̂ ≤ 1. Hence, the left-hand side is less than
mbρ, provided that N(d, δ, p0, q0)b̂ ≤ mb. In that case all results of [9] are available, in
particular, estimate (2.13) (implying (3.9) with any β0) holds for our solution whenever
d0/p + 1/q ≤ 1, that in our case holds with p = p0/β0, q = q0/β0 if we use 1/β0 :=

d0/p0 + 1/q0 to define β0, which is in (1, 2) owing to d/p0 + 1/q0 ≤ 1, d/p0 + 2/q0 ≥ 1, and
d0 ∈ (d/2, d). This proves the theorem.

Remark 3.9. It is shown in [2] that assuming b ∈ Lp,q with d/p0 + 1/q0 ≤ 1 alone does
not guarantee weak uniqueness even with unit diffusion.

Next, we proceed to proving the existence of weak solutions. Assumptions 3.1, 3.2 (a)
and (b), and 3.4 are supposed to hold throughout the rest of this section and we define
p, q as in (3.8). We start by drawing consequences from Theorem 3.7.
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Corollary 3.10. Assume that a, b are smooth and bounded. Take R ≤ 1, smooth f , and
let u be the classical solution of

Lu+ f = 0 (3.15)

in CR with zero boundary condition on ∂′CR. Then

|u| ≤ NR2−β0‖ICRf‖Ep,q,β0 , (3.16)

where N depends only on d, δ, p0, q0, β0, ρa, α.

Indeed, the case R < 1 is reduced to R = 1 by using parabolic dilations. If R = 1, the
maximum principle allows us to concentrate on f ≥ 0 and also shows that u(t, x)eλ0t is
smaller in C1 than the solution v of

Lv − λ0v + IC1
feλ0t = 0

in Rd+1. Since β0 < 2 by embedding theorems we have on C1

u ≤ v ≤ N‖v‖E1,2
p,q,β0

≤ N‖IC1
f‖Ep,q,β0 .

Now we can specify the constant N1 in the definition of b̂ in Assumption 3.2 (b).
Observe that so far the size of b̂ played a role only in assertion (i) of Theorem 3.8.

Corollary 3.11. Assume that a, b are smooth and bounded and let (ts, xs) be the corre-
sponding Markov diffusion process. Then for any (t, x) ∈ Rd+1, ρ ≤ 1, C ∈ Cρ, and Borel
f ≥ 0

I(t, x) := Et,x

∫ τC

0

f(t, xt) dt ≤ Nρ2−β0‖ICf‖Ep,q,β0 , (3.17)

where τC is the first exit time of (ts, xs) from C. In particular,

Et,x

∫ τC

0

|b(t, xt)| dt ≤ N1ρb̂, (3.18)

and in both estimates N and N1 depend only on d, δ, p0, q0, β0, ρa, α.

Indeed, if f is smooth, by Itô’s formula, I coincides with the solution of (3.15) in a
shifted Cρ and (3.17) follows from (3.16). For bounded Borel f we use the notation f (ε)

from the proof of Theorem 2.3 and observe that f (ε) → f almost everywhere, and the
corresponding left-hand sides of (3.17) converge because they are expressed in terms of
the Green’s function of L. As far as the right-hand sides are concerned, observe that
by Minkowski’s inequality ‖f (ε)‖Ep,q,β0 ≤ ‖f‖Ep,q,β0 and this yields (3.17) with ‖f‖Ep,q,β0
in place of ‖fIC‖Ep,q,β0 . Plugging fIC in such relation in place of f leads to (3.17) as is.
The passage to arbitrary f ≥ 0 is achieved by taking f ∧ n and letting n→∞.

To prove (3.18) observe that due to self-similar transformations we may assume that
ρ = 1, in which case we use (3.17) and the fact that for r ≤ 1 and C ′ ∈ Cr

rβ0 –‖ICb‖Lp,q(C′) ≤ r
β0 –‖b‖Lp0,q0 (C′) ≤ Nr –‖b‖Lp0,q0 (C′) ≤ Nb̂.

Once N1 is specified, we have the following.

Corollary 3.12. Suppose that a, b are smooth and bounded and let (ts, xs) be the corre-
sponding Markov diffusion process. Then b1 ≤ mb and all results from [9] are applicable.

Corollary 3.13. Suppose that a, b are smooth and bounded and let (ts, xs) be the corre-
sponding Markov diffusion process. Then for any (t, x) ∈ Rd+1, Borel f ≥ 0, T ∈ (0,∞),
there exists N depending only on d, δ, p0, q0, β0, ρa, α, T , such that

Et,x

∫ T

0

f(t, xt) dt ≤ N‖f‖Ep,q,β0 . (3.19)
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The proof of this is almost identical to the proof of (3.17) when ρ = 1.
Now we abandon the assumption that a and b are smooth and come back to our

assumptions (that are supposed to hold throughout the rest of the section) stated before
Corollary 3.10. Here is a counterpart of Theorem 2.3.

Theorem 3.14. (i) There is a probability space (Ω,F , P ), a filtration of σ-fields Fs ⊂ F ,
s ≥ 0, a process ws, s ≥ 0, which is a d-dimensional Wiener process relative to {Fs},
and an Fs-adapted process xs such that (a.s.) for all s ≥ 0 equation (2.1) holds with
(t, x) = (0, 0).

(ii) Furthermore, for any nonnegative Borel f on Rd+1 and T ∈ (0,∞) we have

E

∫ T

0

f(s, xs) ds ≤ N‖f‖Ep,q,β0 , (3.20)

where N is the constant from (3.19).

Proof. As in the proof of Theorem 2.3, approximate σ, b by smooth σ(ε), b(ε) and take
the corresponding Markov processes (tt, x

ε
t ). We noted in Corollary 3.12 that all results

of [9] are available for (tt, x
ε
t ). In particular, by Corollary 3.10 of [9] for any ε, n > 0 and

r > s ≥ 0 we have (2.6) where N = N(n, d, δ). This implies that the P0,0-distributions
of xε· are precompact on C([0,∞),Rd) and a subsequence ε = εn ↓ 0 of them converges
to the distribution of a process x· = x0

· defined on a probability space (the coordinate
process on Ω = C([0,∞),Rd) with cylindrical σ-field F completed with respect to P ,
which is the limiting distribution of xε· ). Furthermore, by Theorem 5.1 of [9] for any
nonnegative Borel f on Rd+1 and ε, T ∈ (0,∞) we have

E0,0

∫ T

0

f(s, xεs) ds ≤ N(d, δ, T )‖f‖Ld+1(Rd+1), (3.21)

which by continuity is extended to ε = 0 for bounded continuos f and then by the usual
measure-theoretic argument for all Borel f ≥ 0. After that estimate (3.21) also shows
that for any bounded Borel f with compact support

lim
ε↓0

E0,0

∫ T

0

f(s, xεs) ds = E0,0

∫ T

0

f(s, x0
s) ds. (3.22)

Furthermore, one can pass to the limit in (3.20) written for xεs in place of xs and see
that it holds for x0

s if f is bounded and continuous. The extension of (3.20) to all Borel
nonnegative f is standard and this proves assertion (ii).

Now we prove that assertions (i) holds for x·. Estimate (2.6) implies that for any
finite T

lim
c→∞

P (sup
s≤T
|x0
s| > c) = 0,

and estimate (3.20) shows that for any finite c

E

∫ T

0

I|x0
s|≤c|b(s, x

0
s)| dt <∞.

Hence, with probability one ∫ T

0

|b(s, x0
s)| dt <∞.

Next, for 0 ≤ t1 ≤ ... ≤ tn ≤ t ≤ s, bounded continuos φ(x(1), ..., x(n)), and smooth
bounded u(t, x) with compact support by Itô’s formula we have

E0,0φ(xεt1 , ..., x
ε
tn)
[
u(s, xεs)− u(t, xεt )−

∫ s

t

Lεu(r, xεr) dr
]

= 0,
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where

Lεu = ∂tu+ aεijDiju+ bεiDiu, aε = (1/2)(σ(ε))2.

Using (3.20), Lemma 3.5, and the fact that u has compact support show that

lim
ε1↓0

lim
ε↓0

E0,0

∫ s

t

∣∣bε − b(ε1)
∣∣(r, xεr)|Du(r, xεr)| dr = 0,

lim
ε↓0

E0,0

∫ s

t

b(ε1)i(r, xεr)Diu(r, xεr) dr = E

∫ s

t

b(ε1)i(r, x0
r)Diu(r, x0

r) dr,

lim
ε1↓0

E

∫ s

t

∣∣b− b(ε1)
∣∣(r, x0

r)|Du(r, x0
r)| dr = 0.

After that we easily conclude that

Eφ(x0
t1 , ..., x

0
tn)
[
u(s, x0

s)− u(t, x0
t )−

∫ s

t

Lu(r, x0
r) dr

]
= 0.

It follows that the process

u(s, x0
s)−

∫ s

0

Lu(r, x0
r) dr

is a martingale with respect to the completion of σ{x0
t : t ≤ s}. Referring to a well-known

result from Stochastic Analysis proves assertion (i). The theorem is proved.

Remark 3.15. In [12] the weak uniqueness is proved in the class of solutions admitting,
as they call it, Krylov type estimate when σ is constant and we have p, q ∈ [1,∞] such
that

d

p
+

2

q
= 1,

(∫
R

(∫
Rd
|b|p dx

)q/p
dt
)1/q

<∞ (3.23)

(the Ladyzhenskaya-Prodi-Serrin condition).

Actually, p =∞, q = 2 is not allowed in [12], this case fits in [10] where weak existence
and conditional weak uniqueness is obtained. In case p = d, q =∞ the comparison of the
results in [10] and [12] can be found in [10].

If p ∈ [d+ 1,∞) and we use the norms in (3.1), set p0 = p and q0 := q/2 (p ≥ q0). Then
for any ρ > 0, and C ∈ Cρ, by Hölder’s inequality we have

‖b‖Lp0,q0 (C) ≤ ρ2/q‖b‖Lp,q(C), –‖b‖Lp0,q0 (C) ≤ N(d)ρ−1‖b‖Lp,q(C) (3.24)

and the last norm tends to zero as ρ ↓ 0. In that case also d/p0 + 1/q0 = 1. This shows
that Assumption 3.2 (c) is satisfied on account of choosing ρb small enough.

By Theorem 3.8 (i) we get unconditional weak uniqueness of weak solutions that exist
by Theorem 3.14 if, say σ is constant (as in [12] and [3]).

In case d < p < d+ 1 (q > 2p), set p0 = q0 = p. Then by Hölder’s inequality we again
get the second relation in (3.24), but this time our result is the same (if σ is constant) as
in [12] and [3]: weak existence and conditional weak uniqueness.

Interestingly enough, in case p < d+ 1 the estimates (3.24) are still valid and show
that Assumption 3.2 (a) is satisfied for an appropriate ρb, provided that the inequality
in (3.23) is replaced with ∫

Rd

(∫
R

|b|q dt
)p/q

dx <∞. (3.25)

At the same time equations with b satisfying (3.25) are not covered in the literature so
far (apart from the author’s works) and we present in Remark 3.16 an example related
to (3.25).
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Remark 3.16. There are examples showing that the assumption of Theorem 3.8 (i)
concerning b is satisfied with the norm in Lp,q understood as in (3.25) but not as in (3.23)
and (3.23) does not hold no matter what p, q are, so that these examples are not covered
by the results of [12] or [10]. For instance, take b(t, x) such that |b| = cf , where the
constant c > 0 and

f(t, x) = I1>t>0,|x|<1|x|−1
( |x|√

t

)1/(d+1)

.

If p =∞, the second condition in (3.23), obviously, is not satisfied. If p = d, q =∞, so
that the first condition in (3.23) is satisfied, then∫

|x|≤1

fd(t, x) dx =

∫
|x|≤1/

√
t

|x|−d+d/(d+1) dx→∞

as t ↓ 0. Thus, the second condition in (3.23) is not satisfied in this case. If p ∈ (d,∞)

and t > 0, r < 1, then∫
|x|≤r

fp(t, x) dx = Nt(d−p)/2
∫ r/

√
t

0

ρd−1−p+p/(d+1) dρ =: t(d−p)/2I(r/
√
t).

In order for that integral to converge, we need

p < d+ 1 (q > 2(d+ 1)), (3.26)

and in this case I(ρ) ∼ ρd−p+p/(d+1) as ρ→∞. Next,∫ r2

0

(∫
|x|≤r

fp(t, x) dx
)q/p

dt =

∫ r2

0

t(d−p)q/(2p)Iq/p(r/
√
t) dt

= 2r2+(d−p)q/p
∫ ∞

1

ρ−3−(d−p)q/pIq/p(ρ) dρ.

Here the integrand has order of ρ−3+q/(d+1) and −3 + q/(d+ 1) > −1 by virtue of (3.26)
and (3.23). Therefore, the last integral diverges and condition (3.23) indeed fails to hold.

In contrast to this, although, if norms are understood as in (3.1), the assumption
of part (i) of Theorem 3.8 concerning b, obviously, are not satisfied if d/p0 + 1/q0 = 1

and p0 ≥ q0 (because then p0 ≥ d + 1), it turns out that they are satisfied with norms
from (3.2) for some q0 > p0 (d/p0 + 1/q0 = 1, q0 > d+ 1) if c is small enough.

Indeed, take d+ 1 < q0 < 2(d+ 1) (p0 < d+ 1) and note that for r ≤ 3∫ r2

0

fq0(t, x) dt = I|x|<1|x|−q0
∫ 1∧r2

0

( |x|√
t

)q0/(d+1)

dt

≤ |x|2−q0
∫ r2/|x|2

0

t−q0/(2d+2) dt =: |x|2−q0J(r2/|x|2),

where J(s) ∼ s1−q0/(2d+2) as s→∞. Next,∫
|x|<r

(∫ r2

0

fq0(t, x) dt
)p0/q0

dx

= N

∫ r

0

ρd−1+(2−q0)p0/q0Jp0/q0(r2/ρ2) dρ

= Nrd+(2−q0)p0/q0

∫ 1

0

sd−1+(2−q0)p0/q0Jp0/q0(s−2) ds.
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Here in the integral with respect to s

d+ (2− q0)p0/q0 − 2
(
1− q0/(2d+ 2)

)
p0/q0 = d− p0d/(d+ 1),

which is strictly greater than zero and the above integral with respect to ds is finite
implying that

–‖f‖Lp0,q0 (Cr) ≤ Nr−1. (3.27)

If r ≤ 1, t ∈ (−r2, r2) and |x| ≤ 2r, then

–‖f‖Lp0,q0 (Cr(t,x)) ≤ –‖f‖Lp0,q0 (C3r) ≤ Nr−1.

In case r ≤ 1, t 6∈ (−r2, r2) or |x| > 2r the left-hand side above is zero. It follows that for
small c our b satisfies Assumption 3.2 (a) with ρb = 1. Also d/p0 + 1/q0 = 1. Therefore,
due to Theorem 2.3, (2.1) has a solution starting from any point, say if σ is constant, and
all solutions starting from the same point have the same finite-dimensional distributions
by Theorem 3.8 (i).

On the other hand, the results of [3] still guarantee that there is weak existence and
conditional weak uniqueness in this example if σ is constant. Recall that our σ is not
necessarily constant or even continuous.

By changing the origin we can apply Theorem 3.8 to prove the solvability of (2.1)
with any initial data (t, x) and get solutions with the properties as in Theorems 3.14 (ii)
weakly unique by Theorem 3.8. For such a solution denote by Pt,x the distribution of
(ts, xs), s ≥ 0, (ts = t+s) on the Borel σ-field F of Ω = C([0,∞),Rd+1). For ω = (t·, x·) ∈ Ω

set (ts, xs)(ω) = (ts, xs). Also set Ns = σ{(tt, xt), t ≤ s}.
Theorem 3.17. The process

X = {(t·, x·),∞,Nt, Pt,x} (∞ is the life time)

is strong Markov with strong Feller resolvent for which (2.3) holds true.

Proof. Take u from Theorem 3.7 with γ = β′0, c = 0, λ ≥ λ0 and Borel bounded f . By
Itô’s formula for any (t, x) and 0 ≤ r ≤ s we obtain that with Pt,x-probability one

u(ts, xs)e
−λ(s∧τR) = u(tr, xr)e

−λ(r∧τR) +

∫ s∧τR

r∧τR
e−λvσikDiu(tv, xv) dw

k
v

−
∫ s∧τR

r∧τR
e−λvf(tv, xv) dv, (3.28)

where τR is the first exit time of (tv, xv) from CR
From (3.28) with r = 0 as in the proof of Theorem 3.8 we obtain

Et,x

∫ ∞
0

e−λvf(tv, xv) dv = u(t, x). (3.29)

If f is continuous, this implies that the Laplace transform of the continuous in v function
Et,xf(tv, xv) is a Borel function of (t, x). Then the function Et,xf(tv, xv) itself is a Borel
function of (t, x). Since it is continuous in v, it is Borel with respect to all its arguments.
This fact is obtained for bounded continuous f , but by usual measure-theoretic arguments
carries it over to all Borel bounded f .

Then take 0 ≤ r1 ≤ ... ≤ rm = r and continuous f and a bounded Borel function
ζ
(
x(1), ..., x(m)

)
on Rmd and conclude from (3.28) that

Et,xζ(xr1 , ..., xrm)u(tr, xr)e
−λr

= Et,xζ(xr1 , ..., xrm)

∫ ∞
r

e−λvf(tv, xv) dv.

EJP 29 (2024), paper 95.
Page 16/19

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1159
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On weak solutions

In light of (3.29) this means that∫ ∞
r

Et,xζ(xr1 , ..., xrm)e−λvEtr,xrf(tv−r, xv−r) dv

=

∫ ∞
r

Et,xζ(xr1 , ..., xrm)e−λvf(tv, xv) dv.

We have the equality of two Laplace’s transforms of functions continuous in v. It follows
that for v ≥ r

Et,xζ(xr1 , ..., xrm)Etr,xrf(tv−r, xv−r) = Et,xζ(xr1 , ..., xrm)f(tv, xv).

Again a measure-theoretic argument shows that this equality holds for any Borel bounded
f and then the arbitrariness of ζ yields the Markov property of X.

To prove that it is strong Markov it suffices to observe that, owing to (3.29) its resol-
vent Rλ is strong Feller, that is maps bounded Borel functions into bounded continuous
ones.

To deal with (2.3), take, for instance, (t, x) = (0, 0) and approximate our (conditionally
weakly unique) solution as in the proof of Theorem 2.3 by xε· . for R ∈ (0,∞), y ∈ Rd,
introduce the functional γy,R(x·) on C([0,∞),Rd) as the first exit time of (s, xs) from
CR(0, y). As is easy to see, γy,R(x·) is lower semi-continuous. It follows that the same is
true for ∫ γy,R(x·)

0

f(r, xr) dt,

as long as a bounded continuous f(t, x) ≥ 0. It follows that

lim
n→∞

E0,0

∫ γy,R(xεm· )

0

f(r, xεmr ) dt ≥ E0,0

∫ γy,R(x0
· )

0

f(r, x0
r) dt. (3.30)

In light of (3.20), inequality (3.30) holds for f = |b|. If f = |b| and R ≤ ρb, as we have
said in the proofs of Theorem 3.8 (i) and as it follows from (3.18), the left-hand side
of (3.30) is smaller that mbR. But then

E0,0

∫ τR(y)

0

|b(s, x0
s)| ds ≤ mbR,

and this with the possibility to change the origin leads to (2.3). The theorem is proved.

4 A result from [11]

The content of this section is independent of Sections 2 and 3, however, we borrow
some notation from Section 3.

We have p, q, β0 such that

p, q, β0 ∈ (1,∞), β0 6= 2,
d

p
+

2

q
≥ β0. (4.1)

Fix some ρa ∈ (0,∞). Parameters θ and b̌ below will be specified later.

Assumption 4.1. We have

a]x,ρa = sup
ρ≤ρa
C∈Cρ

∫
–
C

|a(t, x)− aC(t)| dxdt ≤ θ, (4.2)

where

aC(t) =

∫
–
C

a(t, x) dxds (note t and ds).
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Assumption 4.2. We have

b1 := sup
r≤1

r sup
C∈Cr

–‖b‖Lpβ0,qβ0 (C) ≤ b̌. (4.3)

Let us specify θ in (4.2). It is easy to choose θ1(d, δ, p, q) introduced in Lemma 4.5 of
[11], so that it is a decreasing function of d, and we suppose it is done. In the following
α ∈ (0, 1) is a free parameter.

Assumption 4.3. For r defined as the least number such that

r ≥ (d+ 2)/α, r ≥ p, q

and Θ(α) = {(p′, q′) : p ≤ p′ ≤ r, q ≤ q′ ≤ r} Assumption 3.1 is satisfied with

θ = inf
Θ(α)

θ1(d+ 1, δ, p′, q′) =: θ(d, δ, p, q, α).

The fact that this θ > 0 is noted in [11].
Here is the main result of [11] adjusted to our needs. The constant ν = ν(d, β0, p, q)

below is taken from Remark 2.2 of [11] when ρb = 1.

Theorem 4.4. Under the above assumptions there exist

b̌ = b̌(d, δ, p, q, ρa, β0, α) ∈ (0, 1], λ̌0 = λ̌0(d, δ, p, q, ρa, β0, α) > 0

such that, if (4.3) holds with this b̌, then for any λ ≥ λ̌0, function c(t, x) such that |c| ≤ 1

and f ∈ Ep,q,β0 there exists a unique E1,2
p,q,β0

-solution u of Lu− (c+λ)u = f . Furthermore,
there exists a constant N depending only on d, δ, p, q, ρa, β0, α, such that

‖∂tu,D2u,
√
λDu, λu‖Ep,q,β0 ≤ Nν

−1‖f‖Ep,q,β0 . (4.4)

Remark 4.5. The unique solution u from Theorem 4.4 possesses the following properties
a) obviously, u ∈W 1,2

p,q,loc ;
b) by Lemma 2.6 of [11], we have Du ∈ Lr,s,loc , where (r, s) = (β0 − 1)−1β0(p, q);
c) for β0 < 2 we have that u is bounded and continuous according to Lemma 2.5 of

[11].
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